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1 | INTRODUCTION animal diets and more (Deiner et al., 2017; Ruppert et al., 2019). For

metabarcoding to be successful, DNA sequences recovered from en-
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vasive species, detect changes in communities over time, monitor a common limiting factor to plant metabarcoding studies (Dormontt
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et al., 2018), which is due to both the difficulty in generating plant
barcodes and the lack of a universal, discriminatory gene region
across all plant groups (Taberlet et al., 2012).

Generating standardized and comprehensive reference DNA
sequence databases for plants is more challenging than it is for
animals. The standard metabarcoding region for animal DNA is the
mitochondrial cytochrome c oxidase subunit 1 (CO1) region (Liu
et al., 2017); however, an equally informative region does not exist
for plants (Dormontt et al., 2018). Plant mitochondria have a very
low rate of nucleotide substitution (Hollingsworth et al., 2011),
and can commonly undergo genome rearrangement, which makes
them technically challenging and not a suitable barcoding region.
Up to now, the organellar chloroplast genome regions matK, rbcL,
and trnH-psbA have been used as barcoding regions for plants
(CBOL Plant Working Group, 2009), as well as the ribosomal nu-
clear region, the internal transcribed spacer (ITS) (Hollingsworth
etal., 2016).

To improve reference sequence generation for plant species
and ensure compatibility with metabarcoding research, we propose
multiple chloroplast barcodes be generated in parallel for plant
taxa. Conventional (PCR-based) barcoding can be costly and time-
consuming as only a single region can be amplified per PCR (Jones
et al., 2021). More recent approaches to generating chloroplast ref-
erence data include genome skimming (Straub et al., 2012), which
does generate data for multiple gene regions, but this is not always
of high quality, nor can multiple regions of interest be reliably recov-
ered across all samples. Furthermore, this approach requires high se-
quencing effort, bioinformatic processing, and assembly, which can
be challenging for chloroplast genomes (~150 KB). An alternative ap-
proach to generating chloroplast gene references is targeted or hy-
bridization capture (Weitemier et al., 2014). This approach involves
designing RNA “baits” that capture genetic regions of interest—in
this case, chloroplast gene regions—and retain these while unwanted
DNA is removed. Subsequent sequencing on next-generation se-
quencing (NGS) platforms is efficient because the target regions are
well represented in post-capture libraries and multiple samples can
be pooled within sequencing libraries.

This study implemented a targeted capture approach to ref-
erence generation using a bait set designed to capture across
20 chloroplast gene regions for all flowering plants. Thus, for a
similar cost of generating references for the standard barcodes,
matK, rbcL, and trnH-psbA, 20 chloroplast gene region references
could be generated instead. We tested this approach by creating
a database of temperate coastal plants, given the availability of
voucher specimens and the need for a reference database of tem-
perate coastal plant taxa. We quantified the success of this ap-
proach by documenting the number of genetic regions recovered
for each species and demonstrated the ability of this database to
identify unknown sequences. Additionally, given the unique situ-
ation of having references for multiple chloroplast gene regions,
we assessed the ability of these regions to separate taxa based
on genetic distance both separately and when gene regions were
combined iteratively.

2 | METHODS

2.1 | Generating the reference database

2.1.1 | Sample collection and DNA Extraction

A total of 93 coastal plant specimens were collated from a com-
bination of field collections and previously collected herbarium
specimens common across temperate Australian extant coastal
communities. These specimens included key family groups from sea-
grass, saltmarsh, mangroves, and coastal plants (sample and location
information can be found in Appendix S1: Table A1). Field collec-
tions were vouchered at the South Australia State Herbarium (AD),
and species identification was verified by Herbarium botanists. All
plant specimens were sampled for DNA and sent to Intertek, South
Australia (www.intertek.com), for DNA extraction and quantifica-
tion. Extracts were then normalized to 2 ng/pl in a volume of 100 pl.

2.1.2 | Library preparation

The DNA extracts were first sheared to a size distribution peaking
around 400-600 bp using a sonicator (Diagenode Bioruptor Pico)
run cycle of 15 s On, 90 s Off, and repeat 5 times. Libraries were
then generated on the normalized, sonicated DNA extracts, using
the NEBNext Ultra Il Library preparation kit (New England Biolabs®).
Manufacturer's instructions were followed with the following modi-
fications: Reactions were done in 1/3 of the recommended volumes;
custom-made stubby (incomplete, P5 and P7 indexes missing) Y-
adaptors (25 uM) (Glenn et al., 2019) were used at the ligation step.
The design of these adapters replaced the uracil excision in the Ultra
Il protocol as instead, DNA underwent end repair then A-tailing prior
to ligating Y-adapters. Each adapter had a unique eight nucleotide
barcode, giving each sample a unique pair of identical internal mo-
lecular identifiers (identified as the eight first base calls for each
read). Following adapter ligation, libraries were amplified to detect-
able concentrations using the supplied Q5 Master Mix at the original
reaction volume of 50 ul with in-house primers P7 preCap Long and
P5 preCap Long (cycling conditions: [98°C 10's, 65°C 30 s, and 72°C
30 s] x 17 cycles, 72°C 120 s, and 4°C hold). The partially complete
libraries were then visually checked (2 uL) using gel electrophoresis
(1 x TE buffer, 1.5% agarose gel for 40 min at 80 V). The indexed
libraries were then pooled according to concentration estimates (de-
termined via visual inspection) into batches of 16 samples and then
purified using AMPure XP (at 0.8 x volume concentration) to remove

small fragments, remaining oligos, and other impurities.

2.1.3 | Multi-gene bait capture

Bait design

We used the RefSeq release of plastid sequences (https://ftp.ncbi.
nlm.nih.gov/refseq/release/plastid/ accessed October 2017) to
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design probes targeting a set of chloroplast gene regions for angio-
sperms (Appendix S1: Table A2). Using Arabidopsis lyrata (GenBank
reference NC_034379) as a reference, target regions were extracted
from the RefSeq data using Blast (blastn, e value <1e-50) and were
clustered using CD-HIT (Li & Godzik, 2006) with a 95% identity cut-
off, retaining the longest sequence per cluster for probe design. A
total of c. 2800 representative sequences, ranging in length from
180 to 900 bp (mean 370 bp), were used to design c. 15,000 120-
mer probe sequences with 2X tiling (i.e., each probe overlaps half
its length). For more information on bait design, see Waycott et al.
(2021).

Targeted capture

Targeted capture was performed on each batch of libraries following
the myBaits® Targeted NGS Manual Version 4.01 as per the manu-
facturer's instructions. The hybridization temperature/time was
65°C for 24 h. Following hybridization, the product was amplified
using custom P7 and P5 indexed primers designed in-house using
cycling conditions: 98°C 120 s, [98°C 20 s, 60°C 30 s, 72°C 45 s] x
17 cycles, 72°C 30 s, and 4°C hold. The final product was an lllumina
library where each sample had a unique combination of identical in-
ternal dual barcodes (incorporated during library preparation) and
two indexes (incorporated by PCR after hybridization). Within our
laboratory, all dual barcode-Index 1-Index 2 combinations are only
used once, thus reducing contamination risk.

Following targeted capture and amplification, the resulting li-
braries were run on a 2100 Bioanalyzer (Agilent) using the high sen-
sitivity DNA assay and molarity was calculated between 300 and
800 bp. All libraries were then pooled in equimolar concentration
and purified using AMPure XP (New England Biolabs) at 0.8 x con-
centration to remove primer dimer and short sequences. The final
library underwent further size selection using a Pippin Prep (Sage
Science) with a 1.5% agarose gel cassette set to select between 300
and 600 bp. The resulting library was further quantified using an
Agilent High Sensitivity D1000 ScreenTape (Agilent) and sent to
the Garvan Institute of Medical Research (Sydney, Australia) to be
sequenced on one lane of an lllumina HiSeq X Ten using 2 x 150

chemistry.

2.2 | Bioinformatic analysis

Sequences were demultiplexed based on the P7 index using Illlumina
Bcl2fastq v2.18.0. The output Read 1 and Read 2 fastq.gz files were
then demultiplexed based on the Y-adapter internal barcodes using
AdapterRemoval v2 (Schubert et al., 2016). The following analysis
is available in Appendix S2; collapsed and truncated reads were
recovered from the AdapterRemoval output and mapped to a ref-
erence using BWA-MEM (Li, 2011). This mapper was chosen as it
has consistently been shown to be the most accurate for mapping
next-generation sequencing (NGS) reads of plants (Schilbert et al.,
2020; Wu et al.,, 2019; Yao et al., 2020). The choice of a reference
sequence to map each sample to was based on a National Centre
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for Biotechnology Information (NCBI Resource Coordinators, 2018)
search for the closest taxonomic relative, starting from species-level
relation and working up the taxonomic rank until a mutual level was
found (Appendix S1: Table Al). SAMtools markdup (Li, 2011) was
used to remove PCR duplicates post-mapping, and variants were
called using SAMtools mpileup (Li, 2011) specifying ploidy as 1 and
filtering for base quality and mapping quality <30. SAMtools mpileup
was chosen as the variant calling tool based on results from variant
calling tests using plant NGS data (Schilbert et al., 2020; Wu et al.,
2019; Yao et al., 2020). Variant calls were normalized with BCFtools
norm (Li, 2011), and BEDtools genomecov (Quinlan & Hall, 2010)
was used to create a BED file to replace read coverage (sequence
depth) <50 with ambiguous nucleotides (Ns). BCFtools consensus
caller was then used to call the consensus FASTA files. These were
then imported into Geneious (Geneious Prime® 2020.2.3) and anno-
tated (similarity 25% and 100 bp either side of the gene region) using
the closest relative chloroplast reference genome collected from
the National Centre for Biotechnology Information (NCBI Resource
Coordinators, 2018).

2.3 | Testing of the reference database

To test the discriminatory ability of the reference database, we con-
ducted a similar analysis to Jones et al. (2021), employing the use of
the BLAST (Altschul et al., 1990) to search for sequence similarity in
the dataset as is commonly done in metabarcoding studies (Deiner
et al., 2017). Each sample was individually searched against the rest
of the reference database using BLAST but minus the sample to pre-
vent biasing results. This was done separately for each gene region
using rBlast (https://github.com/mhahsler/rBLAST) on R (R core
team, 2018), selecting blastn, and only retaining the top hit. Each hit
was then classified at the species, genus, family, order, or class level

and summarized for each sample.

2.4 | Choosing a chloroplast barcode

241 | Separate chloroplast gene regions

Utilizing the availability of 20 chloroplast gene regions across 93 tem-
perate coastal plant species, we investigated whether discrimination
between taxa improved depending on which chloroplast gene region
was used and compared this to using all 20 gene regions. Firstly, each
of the 20 target chloroplast gene regions was separately aligned for
each specimen in the database using MAFFT (Katoh et al., 2002) with
parameters -auto. R (R Core Team, 2018) was then used to compute
K2P distances for each alignment using dist.dna and inserting gaps
for missing data (Paradis & Schliep, 2019). The sample “Avicennia ma-
rina St. Kilda” was chosen as the sample to which all other sample
distances were measured as all 20 target gene regions were recov-
ered for this sample. In addition, K2P distances were also computed
when all available gene regions for each sample were concatenated
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and aligned, and this was done in R using the seqinr package (Charif
& Lobry, 2020) and is denoted as “all.” Plotting these results also in-
cluded a dendrogram, which was constructed in R with ggdendro (de

Vries & Ripley, 2022) using the distances calculated in “all.”

2.4.2 | Iterative addition of chloroplast gene regions
For ease of analysis and a prior understanding of the taxonomy of
these groups, we separated our reference database into two broad
taxonomic (evolutionary) groups (seagrass and saltmarsh/samphire)
and conducted K2P distance comparisons (Kimura, 1980) between
different levels of relatedness. For the seagrasses, comparisons
were conducted using Amphibolis griffithii Western Australia
Rottnest Island (Cymodoceaceae) as the baseline species, and thus,
comparisons included the following: between family (7 samples
from Hydrocharitaceae, Zosteraceae), within family (6 samples
from the Cymodoceaceae complex; Ruppiaceae, Posidoniaceae),
within genus (2 samples of Amphibolis antarctica), and within spe-
cies (2 samples of Amphibolis griffithii, separate populations). For the
saltmarsh group, all comparisons were determined from Salicornia
quinqueflora St Kilda. As all species were from Chenopodiaceae,
we separated comparisons into groups: Group 1—2 samples of
Chenopodium glaucum; Group 2—2 samples of Suaeda australis;
and Group 3—7 species of Tecticornia, within genus (2 samples
of Salicornia blackiana) and within species (1 sample of Salicornia
quinqueflora, separate populations). The 20 target chloroplast gene
regions were ordered by the more commonly used barcoding loci
according to those outlined in Hollingsworth et al. (2011), and
thereafter ordered randomly. For each comparison (seagrass and
saltmarsh/samphire), sequences were iteratively concatenated in R
using the seqinr package (Charif & Lobry, 2020) based on the gene
order. These were then separately aligned using MAFFT (Katoh
etal., 2002) with parameters -auto. R (R Core Team, 2018) was then
used to compute K2P distances for each alignment using dist.dna
and inserting gaps for missing data (Paradis & Schliep, 2019).

3 | RESULTS

3.1 | Reference library generation

Reference sequences for 93 coastal plant species were generated
across 20 target chloroplast gene regions (Figure 1). The maximum
number of target gene regions recovered was 20, and the minimum
was 4, with an average recovery of 18 chloroplast gene regions
across all samples in the database.

3.2 | Testing of the reference database

The utility of the constructed reference database to detect unknown
sequences showed variation across the 20 target chloroplast gene

regions (Figure 2). The gene region ndhC returned the highest num-
ber of species-level matches with 66% of samples matching to spe-
cies level. Other gene regions psbA, psbH, and psbZ also had high
percentage of species-level matches (62%, 61%, and 59%, respec-
tively). rpoC1 was the worst-performing gene region only detect-
ing 44% of samples at species level, and the most classifications at
order and class levels of any gene region (16% and 4%, respectively).
Overall, all gene regions achieved over 41% species-level matches
(the lowest being 41% for petD), with genus-level matches ranging
from 15 to 38%, family from 5 to 21%, order from 2 to 16%, and
class from 1 to 4% of total samples. Overall, 80% of all samples in the
reference database could be matched to a sequence at family level

or below across all 20 gene regions.

3.3 | Choosing a chloroplast barcode

Comparing genetic distances between samples in the reference da-
tabase for each of the 20 chloroplast gene regions highlighted that
no one gene region confers the same level of discrimination across
all samples. For the 20 chloroplast genes used in this study, rpl16 dis-
played the largest genetic distance across all comparisons among taxa
(Figure 3). Other gene regions that had high genetic distances across
the different taxa were matK, petA, and atpF. Specific gene regions
conferred greater genetic distance within some orders than others;
for example, psbH showed higher genetic distance within Alismatales,
atpH worked better for Alismatales and Poales, and rpoC1 performed
well for Poales (although this gene region was overall poorly recovered
across taxa). Using all the available gene regions was shown to gener-
ate genetic distances between taxa comparable with matK.

Greater genetic separation at the species or genus level across
all taxa was shown to require additional genes to matK, and these
were not consistent across the different taxa (Figure 4). For exam-
ple, the greatest separation of species within Tecticornia occurred
after the addition of all 20 gene regions (Figure 4a), whereas for
Salicornia, separation between species and populations occurred
with the addition of atpF, remained the same when atpH and rpoC1
were added, increased again with the addition of accD, but then, ge-
netic distance did not change between taxa and began decreasing
for psbK and beyond. For the seagrass group comparisons, after all
20 target genes were used, Halophila australis had decreased in K2P
distance relative to the other Halophila species (Figure 4b). Within
Ruppia, however, the greatest difference in K2P distance between
species occurred at matK, and by 20 gene regions, this distance had
decreased. Finally, for the Amphibolis genera, differences in K2P
distances for the within-genus and within-species comparisons
were greatest when the ndhF and psbD gene regions were used.

4 | DISCUSSION

This study has demonstrated that targeted capture can be applied
to generate multispecies reference libraries for 20 chloroplast gene
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FIGURE 1 Summary of the 93 coastal plant references generated in this study. Gene recovery is indicated by a colored rectangle, and
genes that were not recovered are left blank. Target genes are ordered by the more commonly used plant barcodes on the x-axis with
species and location on the y-axis
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regions in a single assay. The coastal temperate reference database
developed in this study contained 93 plant species across multi-
ple chloroplast gene regions. Exploring the utility of this database
to accurately identify unknown sequences highlighted over 80%
classification to family level across all genes, but greater taxonomic
resolution differed between gene regions. Therefore, the database
developed in this study may not be comprehensive enough for un-
known sequence assignment at the species or genus level but is
adequate at the family level. In addition, we explored differences in
K2P distances across the 20 target chloroplast gene regions both
separately and using the iterative addition of gene regions. Our
findings highlight that different gene regions yield varying abili-
ties to separate taxa across divergent plant groups. Overall, this
highlights a multigene region approach to generating references
is necessary for consistent taxonomic discrimination across many
plant groups.

4.1 | Generating a reference database using
targeted capture

A targeted capture approach to reference sequence generation
means we can generate references across multiple plant taxa and
gene regions in a single assay, much more efficiently than standard
(PCR-based) DNA barcoding. This increases our ability to generated
barcodes for a variety of flowering plant taxa for decreased effort
and an increased number of barcodes per species. In addition, this

N
FEISLLITIESLSE

approach does not rely on initial PCR amplification of a targeted
gene region, thus overcoming biases induced by PCR (Coissac et al.,
2012). This study has shown that up to 16 samples can be pooled
per targeted capture reaction and post-capture libraries can be
pooled for 384-480 samples (~4-5 plates; Waycott et al., 2021)
for sequencing (lllumina Novaseq). This is a substantial number of
samples that can be processed for reference generation in a single
sequencing effort, and this study has shown this can occur for up to
20 chloroplast gene regions. The average recovery of target chlo-
roplast gene regions for samples in our database was 92% across
all reference samples, noting a substantially lower gene recovery
for the samples “Atriplex paludosa South Australia MuttonCove” and
“Austrostipa stipoides South Australia SnowLake,” which is likely due
to insufficient or reduced quality of DNA extract for these samples.
Replicates for these species from different locations recovered 20
and 17 genes, supporting the conclusion that it is likely to be an
issue-specific to the plant material for these samples. Fortunately,
for samples that are suspected to be of low quality or unable to
yield high concentrations of DNA, this protocol can be altered by
reducing pooling during capture and sequencing, or by increasing
hybridization time.

4.2 | Testing the generated reference database

Testing the utility of this reference database for unknown species as-
signment using BLAST highlighted that it may not be comprehensive
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FIGURE 3 K2P distance measures compared from the sample “Avicennia marina St. Kilda” to all other samples within the generated
reference database. Colors indicate K2P distance, and samples are highlighted by order on the left. The dendrogram on the right was
constructed using K2P distance for all gene regions available for each sample

enough for genus- and species-level assignment but is adequate for
family-level assignment. However, given the fact reference data-
bases are depauperate for Southern Hemisphere species, particu-
larly coastal plants, and are mostly limited to a few gene regions (i.e.,
Barcode of Life Database; matK and rbclL), this database is a signifi-
cant step toward generating comprehensive reference databases for
this region. Furthermore, classification of unknowns will improve
with the addition of more taxa and the approach we suggest in this
study will increase the efficiency of generating these references.
For metabarcoding studies, having the ability to conduct sequence
matching to 20 genes instead of just one means we have a greater
chance of finding a match at high taxonomic resolution as, evidently,
some gene regions performed better than others for sequence as-
signment at species, genus, and family levels.

4.3 | Which chloroplast gene to use?

The 20 chloroplast gene regions used in this study confer differ-
ent genetic distances between taxa, which is highly important in
deciding which region to use as a plant barcode. The gene regions
matK, rpl16, and atpF appeared to offer the greatest discrimination

between samples across all orders, with other regions performing
better for some taxa and not others (e.g., rpoC1, psbH, and petA).
Moreover, we showed that the addition of all 20 chloroplast gene
regions does not necessarily confer greater genetic distance es-
timates, which is presumably due to an increasing number of in-
variant characters in the matrix as gene regions are added (e.g.,
ndhC, psbE), leading to, on average, less differences. We further
investigated whether the 20 chloroplast gene regions in this study
performed better for species separation when multiple regions
were used iteratively. The addition of chloroplast regions beyond
matK decreased K2P distance for all comparisons in Figure 4,
although this then reached a plateau after three gene regions.
However, we did notice the addition of chloroplast gene regions
increased K2P distance at the genus and species level. This may
mean the genetic information required to separate families, and
groups within families, is contained within the matK gene region,
but species-level changes require additional gene regions. Species
within the Amphibolis, Tecticornia, and Salicornia genera all showed
increases in K2P distance between taxa as the number of chloro-
plast gene regions increased, but this effect was variable among
the included gene regions. Therefore, we confirm there is no one-
size-fits-all approach to plant barcodes (Kress et al., 2005); rather,
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we highlight that multi-gene methods are necessary for distance-
based approaches across multiple taxon groups.

As this work has focused specifically on generating references
for chloroplast gene regions, it has not included the commonly used

barcode, the nuclear ribosomal internal transcribed spacer (ITS)
region. This gene region is likely to offer improved discrimination
among samples and has been proposed as a standard plant barcode
(Banchi et al., 2020). Inclusion of nuclear regions would be possible
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using nuclear baits (Johnson et al., 2019; Waycott et al., 2021) as this
approach has also been found to recover ITS as by-catch (Nge et al.,
2021). However, it should be noted that inclusion of nuclear regions
would come with additional analytical issues such as paralogy and
ploidy. Overcoming these analytical challenges, however, will fur-
ther enhance species identification as chloroplast gene regions are
not capable of disentangling hybridization that occurs—which is a

limitation of generating references for only chloroplast gene regions.

5 | CONCLUSIONS

Reference sequence databases are critical for genomic projects. The
lack of reliable reference sequence databases for a wide range of
taxa, and an efficient method to generate them, is stifling the de-
velopment, application, and correct interpretation of metabarcoding
research. This study has shown that some of these limitations may
be overcome by using a targeted capture approach, in combination
with a specially designed bait set to capture multiple chloroplast
gene regions across all flowering plant communities in a single assay.
This study successfully generated a reference sequence database
for 20 chloroplast gene regions across 93 plant specimens using tar-
geted capture and could identify unknown sequences to family level
for 80% of samples, with the ability for this to improve with the addi-
tion of more taxa. Further, findings of this work have highlighted that
the different gene regions used in this study confer varying levels
of discrimination among taxa. For greater taxonomic resolution, ad-
ditional gene regions need to be used other than the standard plant
barcodes (matK, rbcl) and this will require more effort as reference
databases will need to be built. Ultimately, no single chloroplast bar-
code works well across all plant groups, highlighting the need for
reference generation across multiple gene regions and this study has
shown targeted capture can achieve this. Applying this method and
designing additional bait sets mean plant references can be gener-
ated beyond just flowering plants but to additional plant groups to
achieve reference DNA sequence databases for the world's plants.
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