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Abstract: To simulate the behaviors of photovoltaic (PV) systems properly, the best values of the
uncertain parameters of the PV models must be identified. Therefore, this paper proposes a novel
optimization framework for estimating the parameters of the triple-diode model (TDM) of PV
units with different technologies. The proposed methodology is based on the generalized normal
distribution optimization (GNDO) with two novel strategies: (i) a premature convergence method
(PCM), and (ii) a ranking-based updating method (RUM) to accelerate the convergence by utilizing
each individual in the population as much as possible. This improved version of GNDO is called
ranking-based generalized normal distribution optimization (RGNDO). RGNDO is experimentally
investigated on three commercial PV modules (Kyocera KC200GT, Ultra 85-P and STP 6-120/36)
and a solar unit (RTC Si solar cell France), and its extracted parameters are validated based on
the measured dataset points extracted at generalized operating conditions. It can be reported here
that the best scores of the objective function are equal to 0.750839 mA, 28.212810 mA, 2.417084 mA,
and 13.798273 mA for RTC cell, KC200GT, Ultra 85-P, and STP 6-120/36; respectively. Additionally,
the principal performance of this methodology is evaluated under various statistical tests and
for convergence speed, and is compared with a number of the well-known recent state-of-the-art
algorithms. RGNDO is shown to outperform the other algorithms in terms of all the statistical
metrics as well as convergence speed. Finally, the performance of the RGNDO is validated in various
operating conditions under varied temperatures and sun irradiance levels.

Keywords: renewable energy; PV triple-diode model; parameter extraction; optimization methods;
premature convergence; ranking method

1. Introduction

Over the last decades, due to the significant financial and environmental issues with
conventional energy sources, such as fossil fuels, there has been considerable interest
in clean, renewable energy sources (RESs) [1,2]. Among the RESs, solar energy—using
photovoltaic (PV) systems to convert solar energy into electricity—is the second most
used RES worldwide, after wind energy [3]. Since PV systems rely on solar energy, their
performance is significantly influenced by variations in solar irradiance levels and in
temperature. Therefore, to optimize the performance of these systems before installation,
suitable mathematical models are required to accurately simulate the behavior of the PV
system under different operation conditions [4–6]. The three most common PV system
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models found in the literature are the single-diode model (SDM) [7,8], the double-diode
model (DDM) [7,8], and the triple-diode model (TDM) [9,10].

The SDM needs only five parameters to be estimated, which is straightforward, but its
performance deteriorates at low irradiance levels and under temperature variations [11].
To overcome those drawbacks, the DDM with seven unknown parameters was proposed,
using an additional diode to recombine the current and manage other non-idealities [11].
However, the DDM still suffers from some defects in recombining the current and the other
non-idealities. Thus, the TDM with nine unknown parameters was proposed using an
additional diode [12]. Regrettably, the nine unknown parameters are not directly provided
by the manufacturers, so they need to be accurately estimated to optimize the PV systems.
The problem is converted to an optimization problem with a non-linear objective function
(OF) with a large count of local minima in order to minimize the difference between the
measured and estimated I-V and P-V curves.

Due to the significant success of meta-heuristic algorithms in solving many real-
world optimization problems [13–16], they have attracted the interest of researchers to
solve the parameter extraction problems of PV models. A new parameter estimation
technique based on the Interior Search Optimization Algorithm has been recently proposed
for estimating the unknown parameters of the supercapacitor (SC) as an energy storage
device for different applications like electric vehicles and hybrid renewable systems [17].
Allam [10] adapted the moth-flame optimization (MFO) algorithm to identify the nine
parameters of the TDM for the multi-crystalline solar cell/module. Experimentally, MFO
was compared with a number of recent robust state-of-the-art algorithms: differential
evolution with integrated mutation per iteration and flower pollination (FPA) algorithms
to verify its efficacy. Moreover, MFO was investigated at different operation conditions
to identify its ability to extract the unknown parameters of the PV models at different
irradiance levels and temperatures. The experimental studies confirm the superiority of
MFO in minimizing the Root Mean Square Error (RMSE) within the least execution time.

El-Hameed [6] employed the manta-rays foraging optimizer (MRFO) to estimate the
nine unknown parameters of the TDM and used two datasets to validate its performance:
the measured data and the three key points taken from the manufacturer’s datasheets.
They used two test cases—Kyocera polycrystalline KC200GT solar module and the Ultra
85-P—to investigate the performance of MRFO, which was compared with a number of the
well-known optimization algorithms. The grasshopper optimization algorithm (GOA) [18]
was proposed to estimate the parameters of the TDM Kyocera KC200GT and Solarex MSX-
60 PV cells. Its performance was validated under different irradiance and temperature
levels and compared with a number of the other parameter estimation algorithms under
the same condition to ensure a fair comparison.

Yousri, D. et al. [19] proposed a new parameter extraction technique based on frac-
tional chaotic ensemble particle swarm optimizer (FC-EPSO) to estimate the parameters
of SDM, DDM, and TDM based on measured data extracted under different irradiance
and temperature levels. In FC-EPSO, the factional chaos maps are integrated with the PSO
to improve its performance in reaching accurate and reliable outcomes. FC-EPSO was
validated on three different experimental datasets: two are extensively used in commercial
applications and the third was measured in the laboratory at different irradiance and
temperature levels. Finally, FC-EPSO was compared with a number of state-of-the-art
algorithms to verify its efficacy.

In [20], the coyote optimization algorithms (COA) were proposed for estimating the
parameters of the various PV models: SDM, DDM, and TM. The COA was investigated
on various types of PV modules: mono-crystalline, multi-crystalline, and thin-film under
various operation conditions. Further, Selem [3] proposed the artificial electric field algo-
rithm (AEFA) to extract the unknown TDM parameters. AEFA was investigated on two
commercial models, validated on measured dataset points, and compared with a range
of other techniques to determine its superiority. Additionally, Ibrahim [21] proposed the
improved wind-driven optimization algorithm (IWDO) to find unidentified parameters of
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the TDM based on improving the performance of IWDO by using the mutation strategy
of the differential evolution algorithm to boost the exploration operator of the standard
algorithm. The proposed approach was used to find the parameters of three commercial
PV models and, to verify its efficacy, it was compared with a number of algorithms, such
as the standard wind-driven optimization, the MFO, the sunflower optimization, the adap-
tive wind-driven optimization, and the improved opposition-based whale optimization
algorithms. Two additional algorithms have been recently proposed for tackling these
problems: the Harris hawks optimization (HHO) algorithm [22], and the interval branch
and bound global optimization algorithm [23]. Some of the other recent optimization
algorithms proposed for the different PV models: SDM, DDM, TDM, and PV modules are
reviewed in Table 1.

Table 1. Survey of the existing state-of-the-art algorithms for parameter estimation of different PV models.

Algorithm Year PV Model Contributions and Limitations.

Classified Perturbation
Mutation Based PSO Algorithm
(CPMPSO) [24]

2020 SDM, and
DDM

- The individuals in terms of the fitness values are divided into
two groups: a high-quality and a low-quality group. An
exploration operator based the Perturbation Mutation
Strategy (CPMS) is assigned to those with low-quality, while
the exploitation operator will be used with the others to
promote the local exploitation capability.

- Still need more improvements to accelerate its convergence.
- Still suffers from the local minima with the DDM.

Enhanced Adaptive Differential
Evolution [8] 2020 SDM, and

DDM

- Using the crossover sorting mechanism for keeping the good
individuals in the next generation.

- Applying the dynamic population reduction strategy to
accelerate convergence.

GOA [18] 2020 TDM - Its performance over the recent algorithms is not specified.
- Its CPU time is not introduced.

Whale Optimization Algorithm
(WOA) based Reflecting
Learning (RLWOA) [25]

2020 SDM
- Using the reflection learning strategy with the WOA to avoid

becoming trapped in local optima.
- Its speedup needs to be analyzed.

Improved equilibrium
optimizer (IEO) [2]. 2020 SDM, and

DDM

- Improving the performance of the equilibrium optimizer (EO)
under two strategies: the former is used to accelerate the
convergence speed, while the latter is proposed to avoid
falling into local minima.

Improved
Electromagnetism-like
algorithm [26]

2020 SDM

- Using a nonlinear Equation to adjust the number of particles
in each iteration in order to accelerate the convergence speed.

- Increasing the exploration operator to speed up the search for
the optimal solution by simplifying the total force formula.

- Only compared on the SDM; its performance is not specified
for the other PV models (DDM and TDM).

Grey Wolf Optimizer (GWO)
And Cuckoo Search (CS):
GWOCS [7]

2020 SDM, and
DDM

- In this research, the authors integrated the GWOCS and the
CS to estimate the parameters of different PV models, in
addition to using the opposition-based theory with the GWO
to preserve the diversity among the individuals of the
population.

- Still suffers from the local optima, especially with DDM.
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Table 1. Cont.

Algorithm Year PV Model Contributions and Limitations.

Boosted Harris Hawk’s
Optimization (BHHO) [27] 2020 SDM

- Incorporating the random exploratory steps of the flower
pollination algorithm with a mutation scheme borrowed from
the differential evolution.

- Need to be observed on more PV models, such as DDM
and TDM.

FPA [28]. 2020 DDM

- Proposed a new parameter extraction technique for the DDM
based on the FPA.

- Its performance was validated on RTC France and compared
with four other techniques.

- Needs to be compared with some of the recent robust
algorithms, in addition to observing its performance on TDM.

Camel behavior search
algorithm (CBSA) [29]. 2020 SDM

- The authors developed the CBSA for estimating the
parameters of the SDM for the multi-crystalline KC 200GT
PV module.

- This model needs to be observed on more models to
determine its stability with increasing the number of
known parameters.

Improved social spider
algorithm [30] 2020 SDM, and

DDM

- The authors adapted the social spider algorithm with an
improvement based on replacing the worst particles after
each period to increase the exploration operator.

- Needs to be validated on the TDM to check its performance
with the high number of unknown parameters.

Improved
Teaching-Learning-Based
Optimization (ITLBO) [31]

2019 SDM, and
DDM

- Improving the learning phase by adding a new learning
strategy to balance exploration and exploitation.

- Adding different teaching strategies based on the learner
levels in the teacher phase.

- Still suffers from a fall into local minima with the DDM, its
performance on TDM is not known.

Chaotic JAYA (CJAYA) [32] 2021 SDM, and
DDM

- A self-adaptive weight operator to accelerate the convergence
speed, and a local search operator to improve the exploration
operator are employed with the JAYA algorithm also
improved using the chaotic maps to develop a parameter
estimation technique for finding the unknown parameters of
the PV models, namely CJAYA.

- The performance of this algorithm for the TDM has not been
observed hence it is not a strong alternative for estimating the
parameter of the TDM.

Gradient-baed optimizer
(GBO) [33]. 2021 SDM, DDM,

and TDM

- The GBO recently proposed for global optimization has been
adapted for tackling the parameter estimation problem of the
SC and PV modules.

- The experimental findings show the effectiveness of this
algorithm compared to some of the other techniques.

- This algorithm needs to be observed with re PV modules to
affirm its efficiency as an alternative parameter estimation
method to the existing one.
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Table 1. Cont.

Algorithm Year PV Model Contributions and Limitations.

Improved levy flight-based
grasshopper optimization
algorithm [34]

2020 SDM, and
DDM

- To guarantee solutions diversity, in addition to improving
both exploration and exploitation operators of the standard
grasshopper optimization algorithm, the levy flight trajectory
was incorporated with it effectively to do all those.

- The experimental outcomes show its effectiveness for SDM,
DDM, and PV modules; however, its performance for the
TDM has not been identified.

Enhanced
teaching–learning-based
optimization (ETLBO) [35].

2020 SDM, and
DDM

- The classical teaching-learning-based optimization has been
improved by adjusting the control parameters responsible for
the explorative and exploitative operators to balance
between them.

- This algorithm could fulfill superior performance in
comparison to the others and the standard one.

- Still suffers from the slow convergence speed and local
minima problem.

Slime mould algorithm
(SMA) [36] 2020 SDM, and

DDM

- The slime mould algorithm was recently adapted for
estimating the unknown parameters of the SDM, and DDM,
due to its ability to escape of local minim problem with high
convergence speed.

Improved Artificial Bee Colony
Algorithm (IABC) [37] 2020 SDM

- The chaotic maps were integrated with the classical artificial
bee colony algorithm to produce a new variant having a high
ability for escaping from the local minima with accelerating
convergence. This variant has been employed for estimating
the unknown parameters of the SCs and PV modules.

- Its performance unknown for the DDM, and TDM.

Chaotic optimization
approach [38] 2019 SDM, and

DDM

- A new parameter estimation technique based on the theory of
chaos, namely COA, has been recently proposed for
estimating the unknown parameters involved in SDM,
and DDM.

- COA was extensively compared with several parameter
estimation techniques to show its superiority.

- The convergence speed curve for this algorithm against the
others has not been pictured and the readers could not judge
if this algorithm has a high convergence to fulfill better
outcomes in a lesser number of function evaluations.

GWO [39] 2019 SDM

- In this paper, the performance of the grey wolf optimizer has
been investigated to estimate the unknown parameters of the
SDM and DDM.

- This algorithm was extensively compared with several
algorithms in the literature to show its effectiveness.

According to the small amount of the research addressing parameter selection for
TDM the techniques investigated are prone to becoming trapped in local minima and
are generally slow in converging to the near-optimal solution. Recently, a new meta-
heuristic algorithm known as the generalized normal distribution optimization (GNDO)
was proposed to address the parameter extraction of SDM and DDM [40]. Although
significant success was achieved by this algorithm for SDM and DDM, it still suffers from
the low premature convergence caused by:
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v Relating its exploitation capability with the average of the current mean position of
the population, the best-so-far solution, and the position of the current individual,
and that may cause low convergence toward the best-so-far solution for reaching
better solutions quickly whether the best-so-far solution is not a local minimum one.

v Relating its exploration capability with three solutions selected randomly from the
population and may make the algorithm explore regions that may already have been
explored.

To help the algorithm to explore more regions, while increasing its convergence speed,
two improvements are proposed:

v A novel ranking-based position updating method (RUM) to help the algorithm in
exploring as many regions as possible; and

v A premature convergence method (PCM) to help accelerate its convergence speed
toward the near-optimal solution.

Those two methods: RUM and PCM, are integrated with the GNDO to accelerate
its convergence toward the near-optimal solution for triple-diode models; this improved
version of GNDO is called the ranking-based GNDO (RGNDO).

Experimentally, the performance of RGNDO is investigated on three PV modules
and a single solar cell, and its extracted parameters on TDM are validated based on the
measured I-V data. Its performance is then extensively evaluated in terms of various
statistical metrics: the best, average (avg), worst, standard deviation (SD), the quartiles
and Wilcoxon Rank Sum test for its outcomes, and the convergence speed toward the
near-optimal solution. Finally, to check its efficacy, it was compared with a number of state-
of-the-art optimization algorithms that prove the superiority of the proposed algorithm
in terms of all statistical metrics and convergence speed. This paper briefly provides the
following contributions:

• Improving the GNDO by the novel RUM and the premature convergence method
(PCM) to produce a new variant called RGNDO for tackling the parameter estimation
of the TDM.

• Comparing the performance of RGNDO with some well-established parameter estima-
tion techniques, in addition to the standard GNDO, on five well-known commercial
PV modules confirms the superiority of RGNDO over these compared algorithms in
terms of convergence speed and final accuracy, in addition to its competitivity for the
computational cost.

The organization of this paper is as follows: Section 2 describes the mathematical
model of the TDM, Section 3 describes the standard GNDO, Section 4 extensively introduces
the proposed improved RGNDO algorithm, Section 5 describes the experimental settings,
Section 6 shows the numerical results of the experiments with some discussion, and Section
7 provides some conclusions along with an outline for the future work.

2. Mathematical Descriptions of the Triple-Diode Model

The performance of the PV systems under the SDM deteriorates with low irradiance
and temperature deviation [11]. Therefore, DDM that employs another diode to recombine
current and other non-idealities of the solar cell (SC) has been developed to get rid of
this problem [41]. Unfortunately, the DDM [41] still suffers from some anomalies in the
recombination process, so the TDM [12] has been suggested to overcome those drawbacks
for reaching a better model. In parallel with the diodes of the DDM, the TDM used another
diode to dispose of the flaws of the recombination process in DDM.

The structure of the TDM is depicted in Figure 1, in which the output current is
calculated by subtracting the source current Iph or also called photo-current source, from
the four currents: ID1, ID2, ID3, and Ish as described in the following equation:

I = Iph −
3

∑
i

IDi − Ish (1)
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where ID1 is the diffusion current, ID2 indicates the recombination current employed to
recombine current and other non-idealities, and ID3 indicates the current diode element
due to recombination in the flaw regions, grain boundaries, etc. [42,43]. Generally, IDi is
computed by Equation (2), and Ish is the shunt current extracted using Equation (3).

IDi = Isdi

(
e

V+IRs
aiVt − 1

)
, ∀ i ∈ 1 : 3, Vt =

KT
q

(2)

Ish =
V + IRs

Rsh
(3)

Isdi indicates the reverse saturation current of the ith diode, V is the output voltage
of the cell, Rs indicates the series resistance, ai expresses the ideality factor of the ith
diode, K refers to Boltzmann’s Constant

(
1.3806503× 10−23 J/K

)
, q is the electron charge(

1.60217646× 10−19C
)
, and T is the temperature of the cell in kelvin (K).

Figure 1. The equivalent circuit of TDM.

When the solar generation unit comprises a single solar cell, the amount of electricity
generated is very small. Consequently, PV modules connect Ns solar cells in series to
increase the output voltage of the PV system. The PV modules can be also formulated with
the previous equations with the difference that Vt =

NsKT
q .

3. The Standard Algorithm: Generalized Normal Distribution Optimization

Recently, Zhang [40] proposed a novel optimization algorithm inspired by the Gaus-
sian distribution theory called the GNDO algorithm for estimating efficiently and accurately
the parameters of the SDM and DDM. As with other meta-heuristic algorithms, GNDO uses
two operators: exploration and exploitation to search for the solution of the optimization
problem. The mathematical model of GNDO is explained in the remainder of this section.

3.1. Local Exploitation

In this operator, GNDO searches for a better solution under guiding the current mean
of the population, the best-so far solution, and the current solution—that is mathematically
described as:

Ti
t = µi + δi × η, ∀ i = 1 : N (4)

where Ti
t is a vector containing the next position of the ith individual at generation t. N

is the population size. µi refers to the generalized mean position of the ith individual
and computed using Equation (5). η is the penalty factor and computed according to
Equation (8).

µi = (Xi
t + X∗ + M)/3.0 (5)

where X* is the best-so-far solution, Xi
t is the current position of the ith individual at

generation t, M is the current population mean estimated using Equation (6), and the
generalized standard variance (δi) is estimated according to Equation (7).

M =
∑N

i=1 Xi
t

N
(6)
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δi =

√
1
3

[
(Xi

t − µ)2 + (X∗ − µ)2 + (M− µ)2)
]

(7)

η =

{ √
− log(1ג)× cos(2π2ג), r1 ≤ r2√

− log(1ג) × cos(2π2ג + π), r1 > r2
(8)

where r1, r2, ,1ג and 2ג are random numbers generated between 0 and 1.

3.2. Global Exploration

To explore the search space of the problem without becoming trapped in local minima,
GNDO uses the exploration operator, which is based on three individuals selected randomly
from the population and is modeled as follows:

Ti
t = Xi

t + β× |3ג|) × v1) + (1− β)× |4ג|) × v2) (9)

3ג and 4ג are two random numbers based on the standard normal distribution, β is a
random number between 0 and 1 and known as the adjusting parameter, and v1 and v2 are
two trial positions computed by:

v1 =

{
Xi

t − Xp1
t, if f(Xi

t) ≤ f
(
Xp1

t)
Xp1

t − Xi
t, otherwise

(10)

v2 =

{
Xp2

t − Xp3
t, if f

(
Xp2

t) ≤ f
(
Xp3

t)
Xp3

t − Xp2
t, otherwise

(11)

p1, p2, and p3 are three indices selected randomly from the population where p1 6= p2 6= p3
6= i. The tradeoff between the exploration and exploitation in GNDO is achieved randomly.

4. The Proposed Algorithm: RGDNO

In this phase, the GNDO is improved using two strategies: a ranking method based
on a novel methodology, and a PCM for tackling the parameter extraction of the TDM.
The ranking method eliminates the individuals that may be unbeneficial within the next
generation, due to the local optima problem or to their far distance from the optimal
solution, while PCM seeks to accelerate the convergence toward the optimal solution
based on a controlling factor that moves the current solution toward either two individuals
selected randomly from the population or the current and the best-so-far solution. In the
rest of this section, the steps of the proposed algorithm are explained in detail.

4.1. Initialization

At the start of the optimization process using GNDO, a number of N individuals are
randomly created with dimension, d, equal to the number of unknown parameters (nine
in our problem) that needed to be estimated. Initially, those individuals are randomly
assigned values within the search ranges of the problem according to the following formula.

→
Xi =

→
L +

→
r ×

(→
U−

→
L
)

, ∀ i = 1 : N (12)

where
→
L and

→
U are two vectors including the upper and lower bound of the problems,

respectively, and r is a vector assigned randomly between 0 and 1. The search ranges of the
nine unknown parameters of the TDM according to the literature [6] are given in Table 2
and an illustrative example for representing a solution within those search ranges with ISC
= 0.7605 is given in Table 3.
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Table 2. Search ranges of nine parameters.

Parameter L U

Iph(A) 0.9ISC 1.1ISC
Isdi(A), i∈1 : 3 1 nA 10 µA

Rs(Ω) 0 0.5
Rsh(Ω) 0 500

a1 1 2
a2 1.2 2
a3 1.4 2

Table 3. An initial solution within the search ranges of nine parameters.

Iph(A) Isd1(A) Isd2(A) Isd3(A) Rs(Ω) Rsh(Ω) a1 a2 a3

0.720205 3.87 × 10−7 9.43 × 10−9 1.49 × 10−8 0.03571 69.93044 1.90020 1.29812 1.68252

4.2. The Objective Function

To optimize the parameters extraction problem of the TDM using the optimization
algorithm, an OF needs to be defined. This OF is established according to the root mean
squared error (RMSE) between the estimated current based on the obtained parameters of
the empirical mathematical model solved by the Newton–Raphson method (NPM) and the
measured current given in the datasheet of a real SC [44]. The algorithm with the lowest
RMSE considers the best because it could obtain the parameters that minimize the error
rate between the measured and estimated. Generally, the OF for TDM is mathematically
formulated as follows [20]:

RMSE = f(Xi) =

√√√√ 1
M
×

M

∑
k=1

(Im − Ie)
2 (13)

where Im is the measured current, M is the length of the measured data, and Ie is the
estimated current based on the mathematical model solved by NPM and computed by the
following formula:

Ie = Ie −
I
I′

(14)

I is substituted using Equation (1) and I’ is the first derived of Equation (1) with respect to I.

4.3. Ranking-Based Novel Updating Method (RUM)

In [45], a novel method known as the ranking method was proposed to eliminate
the solutions that may be unbeneficial within the rest of the optimization process and to
replace them with solutions created based on a novel methodology to help the optimization
algorithm, in particular, to accelerate the convergence speed and cover intractable regions.

The author in [45] sought to accelerate the convergence toward the best-so-far solution
by moving the unbeneficial solutions to the region located between the current position
and the best-so-far solution in the hope of finding a better solution within this region before
accelerating the convergence toward the optimal solution. Within this research, a new
methodology working on balancing between the exploration and exploitation operators is
proposed and formulated as follows:

Xi
t =

t
tmax

× X∗ +
tmax − t

tmax
× Xi

t (15)

where tmax is the maximum generation. In this equation, within the start of the optimization
process, the part taken of the best-so-far solution is very small, while the part taken by
the unbeneficial solution is very high, which increases the exploration capability of the
algorithm that decreases gradually as the optimization process progresses. Gradually,
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the part taken from the best-so-far is increased and the other part that is taken from Xi
t

reduces, until reaching the end of the optimization process. In this case, the part taken of
the best-so-far is so high compared with the part taken of the unbeneficial solution that is
very small and this will encourage the exploitation capability. The unbeneficial solutions,
according to [45], are extracted by calculating the number of consecutive generations (NCG)
predefined by the researcher based on their experiments, in which those solutions couldn’t
find a better solution than the last local best one. The flowchart of this strategy is given in
Figure 2.

Figure 2. The flow chart of the ranking method integrated with a novel updating method.

4.4. Premature Convergence Method (PCM)

In an attempt to accelerate the convergence toward the best-so-far solution while
avoiding becoming trapped into local minima, a novel method known as the PCM has
been proposed here. This method uses a controlling factor, namely `, and created randomly
within [0, 1] that is used to determine if the next search will be within the current and
the best-so-far, or within two individuals, I1 and I2, selected randomly of the population,
where I1 6= I2. This method will increase the exploration when ` < 0.5 while increasing the
exploitation when l > 0.5 and balancing between the two when l = 0.5. In general, the
mathematical model of this method is as follows:

Xi
t = X∗ + `×

(
−Xi

t + X∗
)
+ (1− `)×

(
−XI1

t + XI2
t), (16)

Finally, the two methods: the premature convergence of PCM and the ranking-based
novel updating of RUM are integrated with GNDO to increase its exploration and exploita-
tion capability to help the algorithm to reach better outcomes in fewer evaluations when
estimating the unknown parameters of the TDM. The RUM is used to balancing between
the exploration and exploitation capability of the algorithm in the hope of finding better
solutions within the optimization process, while PCM is related to l that controls the next
position of the current individuals. The steps of the proposed algorithm RGNDO are listed
in Table 4. The main advantages of the improved GNDO (RGNDO) as follows:

• Utilizing each individual in the population through the optimization process by the
RUM to help in exploring more regions within the search space as possible. The
RUM here aids the standard GNDO to improve the exploration operator at the start
of the optimization process as an attempt to prevent stuck into local minima, while,
with increasing the current function evaluation, the exploration operator is gradually
converted into exploitation to search around the best-so-far solution to promote the
convergence speed.

• Highly stable due to using the PCM that helps in steering the convergence speed in
the right direction of the best-so-far solution to explore the promising regions that
appear within the optimization process.
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Table 4. The steps of RGNDO Algorithm.

Output: return X∗

1. Input: N, tmax, and NCG
2. t = 0
3. RK: a vector of size N and initialized with 0’s value.
4. Initialize a population of N individuals using Equation (12)
5. While t < tmax
6. For i = 1 : N
7. Create two random numbers α, α1 within [0, 1]
8. If α > α1
9. Calculate the mean of the population M using Equation (6)
10. Compute µi, δi, and η
11. Compute Ti

t using Equation (4).
12. If f (Ti

t) < f
(
Xi

t)
13. Xi

t = Ti
t

14. RKi = 0;
15. Else
16. RKi ++
17. End
18. Else
19. // global exploration
20. Compute Ti

t according to Equation (9).
21. If f (Ti

t) < f
(
Xi

t)
22. Xi

t = Ti
t

23. RKi = 0;
24. Else
25. RKi ++
26. End
27. Applying the ranking method depicted in Figure 2
28. End
29. t ++;
30. End
31. /// applying the premature convergence method.
32. Generate two random numbers α1 and α2 within [0, 1].
33. If α1 < α2
34. For i = 1 : N
35. Compute Ti

t using Equation (16).
36. If f (Ti

t) < f
(
Xi

t)
37. Xi

t = Ti
t

38. RKi = 0;
39. Else
40. RKi ++
41. End
42. t ++;
43. End
44. End
45. End

5. Experimental Results

In this section, the parameter settings and dataset descriptions are described in detail
to illustrate all the dimensions of our experiments which are performed on an Intel(R) Core
(TM) i7-4700MQ CPU @ 2.40 GHz device with 32 GB of RAM, using MATLAB R2019a to
implement the algorithms.

5.1. Parameter Settings

RGNDO has a single parameter, NCG, which needs to be optimally adjusted to
maximize the performance of the RNGDO. NCG is defined as the lower bound of the
number of times each individual could find a worse solution than the last best one. To
efficiently extract this parameter, the performance of RNGDO under different values (0, 1,
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2, 3, 4, 5, 6, 7, 8, 10, and 11) within 30 independent times is depicted in Figure 3. According
to this figure, the best value for NCG is 3 or 4. As a result, a value of 3 is used for NCG
within our experiments. The second most important parameter with a major effect on the
performance of the proposed algorithm is the population size: a large population size will
increase the diversity among the members, reducing the possibility of reaching the optimal
solution; a small population size skips a lot of the regions within the search space, which
may include the promising solution. Hence, an extensive experiments are conducted to
estimate the best value for this parameter and depicted in Figure 4 that confirms that a
value of 30 is the best for the parameter N.

Figure 3. Sensitivity analysis of parameter NCG.

Figure 4. Sensitivity analysis of parameter N.

In addition, to confirm the superiority of the proposed RNGDO method, it is compared
with a number of the well-known algorithms proposed recently for the parameter extraction
of the solar cells according to the parameters used by the authors with the exception of
tmax that is adopted at 30,000 to make a fair comparison:

� Artificial ecosystem-based optimization (AEO) [46].
� CPMPSO [24].
� Improved teaching learning-based optimization (ITLBO) [31].
� WOA [47].
� GNDO [40].
� Interior search algorithm (ISA) [17].
� HHO [22].
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5.2. Dataset Descriptions

To validate the efficacy of RNGDO to characterize the TDM at standard operating
conditions (STC), a PV model based on RTC France [46] and consists of a PV cell will be
used, in addition to two PV modules, which consists of a number of solar cells joined in
series: Kyocera KC200GT [18], Ultra 85-P [48] and STP6-120/36 module [49]. Furthermore,
the Ultra 85-P module is used to determine the performance of the proposed algorithm
in estimating its nine parameters at dynamic irradiance and various temperature levels.
RTC France comprises a single solar cell with 26 test points, experimentally extracted at
T = 33 ◦C and G = 1000 W/m2). Additionally, ISC for RTC France is being set to 0.7605 A.
For the Ultra 85-P module, ISC is equal to 5.45 A and experiments on this module are
conducted on measured data of 20 test points extracted at 48.7 ◦C and 950 W/m2. For the
STP6-120/36 module, ISC is equal to 7.48 A and 24 test points were used and extracted at
55 ◦C and 1000 W/m2. Regarding the Kyocera KC200GT—204.6 W module, it consists of
54 cells connected in series with ISC = 8.21 A, T = 25◦C, and G of 1000 W/m2 at standard
operating conditions.

6. Results and Discussion
6.1. Test Case 1: RTC France Cell

For this solar cell, the proposed algorithm and the seven others are executed 30 inde-
pendent times and the best RMSE for each with its parameter values is displayed in Table 5.
The statistical analysis, such as best, worst, avg, SD, and ranks within the independent
runs are introduced in Table 6, from which it can be seen that the proposed algorithm has
superior performance in terms of best, avg, worst, SD, and rank. Additionally, Figure 5a,b
compares the I-V and P-V curves between the measured and estimated data that show the
efficacy of RGNDO in estimating the unknown parameters accurately and efficiently to
minimize the difference between the measured and estimated. In the final stage, Figure 6a
shows the convergence speed of all algorithms, confirming that RGNDO is the fastest.

Table 5. Comparison according to the best RMSE and its corresponding parameter on RTC France.

Algorithms Iph(A) Isd1(A) Isd2(A) Isd3(A) Rs(Ω) Rsh(Ω) a1 a2 a3 RMSE

AEO [46] 0.760205 3.87 × 10−7 9.43 × 10−9 4.49 × 10−8 0.0357 69.9304 1.5002 1.9981 1.8825 9.899220431 × 10−4

ITLBO [31] 0.760500 2.98 × 10−8 9.17 × 10−7 1.86 × 10−9 0.0381 59.7254 1.3101 1.7186 1.6611 7.618033553 × 10−4

ISA [17] 0.760500 1.21 × 10−7 1.00 × 10−9 1.68 × 10−6 0.0377 59.5672 1.3995 1.9936 2.0000 7.534445387 × 10−4

HHO [22] 0.759740 1.75 × 10−7 2.77 × 10−7 9.10 × 10−7 0.0342 127.1454 1.4533 1.7284 1.8222 1.546454764 × 10−3

WOA [47] 0.760010 2.86 × 10−9 6.62 × 10−7 6.64 × 10−7 0.0303 353.9084 1.5664 1.6037 1.6904 2.556963482 × 10−3

CPMPSO [24] 0.760500 9.62 × 10−8 3.73 × 10−7 1.67 × 10−6 0.0379 61.1542 1.3812 1.9995 1.9993 7.508298630 × 10−4

GNDO [40] 0.760499 1.02 × 10−6 4.43 × 10−7 1.40 × 10−7 0.0374 59.0192 1.9912 2.0000 1.4112 7.557191951 × 10−4

RGNDO 0.760500 9.08 × 10−8 1.96 × 10−6 1.58 × 10−7 0.0380 61.3221 1.3766 2.0000 2.0000 7.506838880 × 10−4

Bold values indicate the best results.

Table 6. Comparison among algorithms on RTC France under the statistical analysis.

Method AEO [46] ITLBO [31] ISA [17] HHO [22] WOA [47] CPMPSO [24] GNDO [40] RGNDO

Best 9.899220 × 10−4 7.618033 × 10−4 7.534445 × 10−4 1.546454 × 10−3 2.556963 × 10−3 7.508298 × 10−4 7.557192 × 10−4 7.506838 × 10−4

Worst 4.845654 × 10−3 2.006802 × 10−3 3.193321 × 10−3 9.090638 × 10−3 1.140435 × 10−2 7.797626 × 10−4 1.457815 × 10−3 7.663392 × 10−4

Avg 2.480973 × 10−3 1.001097 × 10−3 1.568473 × 10−3 6.079471 × 10−3 8.282383 × 10−3 7.622312 × 10−4 8.259549 × 10−4 7.529015 × 10−4

SD 9.316490 × 10−4 3.767089 × 10−4 6.760342 × 10−4 2.146342 × 10−3 2.002442 × 10−3 8.744482 × 10−6 1.434043 × 10−4 3.933168 × 10−6

Rank 6 4 5 7 8 2 3 1

Bold values indicate the best results.



Mathematics 2021, 9, 995 14 of 23

6.2. Test Case 2: Kyocera KC200GT—204.6 W Module

Additionally, to further affirm the superiority of RGNDO, this section presents a
comparison with some of the other algorithms on another PV module called Kyocera
KC200GT—204.6 W at the STC. All algorithms in this comparison are executed 30 in-
dependent times and the obtained parameters in the best time are presented with the
corresponding RMSE value in Table 7, in addition to showing the other statistical analyses
in Table 8. From which it is clear that GNDO fulfills the best values (indicated in bold), for
all performance metrics: best, worst, avg, and rank, except for SD, where GNDO could
reach better value. Further, Figure 5c,d confirms the effectiveness of RGNDO in minimiz-
ing the error between the measured and estimated data. Further, Figure 6b confirms the
superiority of RGNDO in terms of convergence. It is worthy stating that the reported
results in Table 7 are per cell.

Table 7. Comparison of the best RMSE and its extracted parameter per cell on Kyocera KC200GT.

Algorithms Iph(A) Isd1(A) Isd2(A) Isd3(A) Rs(Ω) Rsh(Ω) a1 a2 a3 RMSE

AEO [46] 8.1614 1.13 × 10−9 2.42 × 10−8 2.67 × 10−9 0.0038 5.9997 1.7205 1.2159 1.7762 0.04384316
ITLBO [31] 8.1037 9.29 × 10−9 5.97 × 10−7 6.13 × 10−7 0.0040 352.8323 1.1612 1.9926 1.8737 0.04596226
ISA [17] 8.1797 1.00 × 10−9 1.19 × 10−9 2.50 × 10−9 0.0046 3.1251 1.0468 2.0000 1.6340 0.02897981
HHO [22] 8.1384 9.00 × 10−8 4.29 × 10−8 1.00 × 10−9 0.0033 23.2043 1.3046 1.5244 1.5825 0.05640261
WOA [47] 8.1265 1.02 × 10−9 3.47 × 10−6 1.02 × 10−9 0.0041 152.0232 1.0546 1.8552 1.4212 0.04680127
CPMPSO [24] 8.1888 1.65 × 10−9 1.49 × 10−9 9.70 × 10−9 0.0044 3.1390 1.0742 1.2009 1.9451 0.03042386
GNDO [40] 8.2002 1.00 × 10−9 1.00 × 10−9 1.04 × 10−9 0.0046 2.6505 1.0469 1.8270 1.6336 0.02822634
RGNDO 8.2011 1.00 × 10−9 1.00 × 10−9 1.00 × 10−9 0.0046 2.6410 1.0469 2.0000 2.0000 0.02821281

Bold values indicate the best results.

Table 8. Comparison of the fitness on Kyocera KC200GT.

Algorithms AEO [46] ITLBO [31] ISA [17] HHO [22] WOA [47] CPMPSO
[24]

GNDO
[40] RGNDO

Best 0.0438431608 0.0459622563 0.0289798147 0.0564026070 0.0468012666 0.0304238578 0.0282263443 0.0282128080
Worst 0.0934460402 0.1163438794 0.0867319890 0.1359284618 0.2418484379 0.0683562899 0.0683562899 0.0683562899
Avg 0.0654501748 0.0719622807 0.0581298639 0.1028267389 0.1369643198 0.0434628437 0.0422750429 0.0406449525
SD 0.0100639011 0.0163810072 0.0113337942 0.0229987194 0.0421336396 0.0100268403 0.0119265384 0.0145287520
Rank 5 6 4 7 8 3 2 1

Bold values indicate the best results.

6.3. Test Case 3: Ultra 85-P

In this study, the performance of RGNDO is compared to this module at the STC. After
running each algorithm 30 independent runs, the best fitness with its extracted parameters
is in Table 9 and the statistical analysis is in Table 10, from which it can be seen that RGNDO
achieves the best outcomes (indicated in bold), for all statistical metrics: best, worst, avg,
SD, and rank. Further, Figure 5e,f confirms the effectiveness of RGNDO in minimizing the
error between the measured and estimated data. Further, Figure 6c confirms the superiority
of RGNDO in terms of convergence. Once again, it is worthy to mention that the resported
paramters in Table 9 is per cell.

Table 9. Comparison of the best RMSE and its extracted parameter per cell on Ultra 85-P.

Algorithms Iph(A) Isd1(A) Isd2(A) Isd3(A) Rs(Ω) Rsh(Ω) a1 a2 a3 RMSE

AEO [46] 5.226139 2.95 × 10−6 8.21 × 10−6 6.50 × 10−6 0.0112 3.9298 1.4669 1.7847 1.7682 2.455842651 × 10−3

ITLBO [31] 5.226022 8.88 × 10−6 2.50 × 10−6 1.00 × 10−5 0.0112 3.9630 1.9046 1.4497 1.7691 2.431633915 × 10−3

ISA [17] 5.226719 3.45 × 10−6 9.23 × 10−7 9.28 × 10−6 0.0111 3.8525 1.4903 1.6419 1.7129 2.497373210 × 10−3

HHO [22] 5.190855 5.21 × 10−6 4.44 × 10−6 3.45 × 10−6 0.0113 7.5484 1.5177 1.7167 1.7359 1.076041865 × 10−2

WOA [47] 5.198240 4.20 × 10−6 5.01 × 10−6 3.79 × 10−7 0.0116 5.9580 1.4955 1.6688 1.6537 1.032542474 × 10−2

CPMPSO [24] 5.225747 1.90 × 10−6 9.98 × 10−6 9.78 × 10−6 0.0113 3.9926 1.4273 1.7946 1.8201 2.423466909 × 10−3

GNDO [40] 5.226051 1.00 × 10−5 2.76 × 10−6 9.91 × 10−6 0.0112 3.9679 1.7967 1.4552 1.9194 2.428164856 × 10−3

RGNDO 5.225629 6.45 × 10−7 1.00 × 10−5 1.00 × 10−5 0.0113 4.0252 1.3519 1.7529 1.7439 2.417084253 × 10−3

Bold values indicate the best results.
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Table 10. Comparison of the fitness on Ultra 85-P.

Algorithms AEO [46] ITLBO [31] ISA [17] HHO [22] WOA [47] CPMPSO
[24]

GNDO
[40] RGNDO

Best 0.002470471 0.002443520 0.002679316 0.019364346 0.010087377 0.002417985 0.002426150 0.002417084
Worst 0.018785517 0.017193050 0.017503896 0.039575676 0.049733913 0.005058644 0.011573784 0.002492268
Avg 0.004108074 0.003789465 0.007121044 0.027427524 0.027609976 0.002573152 0.002819667 0.002446177
SD 0.003918587 0.003717768 0.004665595 0.005092069 0.008970604 0.000482496 0.001656137 0.000025994
Rank 6 5 7 8 9 2 3 1

Bold values indicate the best results.

6.4. Test Case 4: STP6-120/36 Module

In this section, RGNDO is validated on an additional module, namely STP6-120/36,
with different characteristics from the previous two to determine its ability to estimate the
unknown parameters under predefined setup conditions. Experimentally, each algorithm
is implemented 30 independent trials, afterward, the extracted parameters for the best
RMSE obtained within 30 independent runs are in Table 11. The statistical analyses of the
outcomes obtained within those independent runs are in Table 12, which illustrates the
superior performance of RGNDO. To indicate the consistency of RGNDO, the measured
and estimated I-V and P-V curves based on the unknown parameters extracted for this
module are given in Figure 5g,h. Further, Figure 6d establishes that the proposed algorithm
has the best convergence speed. One more time, it is worthy to mention that the resported
paramters in Table 11 is per cell.

Table 11. Comparison of the best RMSE and its extracted parameter per cell on STP6-120/36.

Algorithms Iph(A) Isd1(A) Isd2(A) Isd3(A) Rs(Ω) Rsh(Ω) a1 a2 a3 RMSE

AEO [46] 7.475257 6.02 × 10−9 1.85 × 10−6 2.26 × 10−6 0.004677 17.4376 1.9961 1.2418 1.7719 1.389396490646 × 10−2

ITLBO [31] 7.476115 1.90 × 10−6 1.77 × 10−8 1.00 × 10−9 0.004694 15.1633 1.2437 1.3065 1.4249 1.379885388914 × 10−2

ISA [17] 7.476936 1.00 × 10−9 1.88 × 10−6 1.00 × 10−9 0.004703 14.3643 1.9907 1.2424 1.5690 1.380086028210 × 10−2

HHO [22] 7.458183 2.18 × 10−6 3.64 × 10−9 2.56 × 10−9 0.004653 248.4131 1.2545 1.2125 1.4412 1.424187705506 × 10−2

WOA [47] 7.464125 1.82 × 10−6 1.62 × 10−6 9.32 × 10−6 0.004575 337.8192 1.9703 1.2357 1.7318 1.493293998738 × 10−2

CPMPSO [24] 7.476213 5.09 × 10−8 1.88 × 10−6 1.00 × 10−9 0.004692 15.1426 1.2443 1.2443 2.0000 1.379827332710 × 10−2

GNDO [40] 7.476214 1.93 × 10−6 1.01 × 10−9 1.00 × 10−9 0.004692 15.1424 1.2443 1.2442 2.0000 1.379827333205 × 10−2

RGNDO 7.476213 1.93 × 10−6 1.02 × 10−9 1.00 × 10−9 0.004692 15.1427 1.2443 1.2443 2.0000 1.379827332701 × 10−2

Bold values indicate the best results.

Table 12. Comparison of the fitness on STP6-120/36.

Algorithms AEO [46] ITLBO [31] ISA [17] HHO [22] WOA [47] CPMPSO
[24]

GNDO
[40] RGNDO

Best 0.013893964 0.013798853 0.013800860 0.014241877 0.014932940 0.013798273 0.013798273 0.013798273
Worst 0.028970100 0.014295495 0.023508622 0.049436644 0.141388822 0.014659372 0.014863306 0.013799111
Avg 0.016038025 0.013925848 0.014629957 0.025279469 0.041237117 0.013899188 0.013882239 0.013798325
SD 0.003578909 0.000126236 0.001770716 0.009375668 0.026679451 0.000211721 0.000224301 0.000000149
Rank 6 4 5 7 8 3 2 1

Bold values indicate the best results.



Mathematics 2021, 9, 995 16 of 23

Figure 5. Characteristics curves represented by RGNDO: (a) I−V curve of RTC France; (b) P−V curve of RTC France; (c) I-V
curve of Kyocera KC200GT; (d) P-V curve of Kyocera KC200GT; (e) I−V curve of Ultra 85−P; (f) P−V curve of Ultra 85-P;
(g) I−V curve of STP6−120/36 module; (h) P-V curve of STP6−120/36.
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Figure 6. Convergence curves are achieved by the algorithms: (a) Convergence on RTC France; (b) Convergence on Kyocera
KC200GT; (c) Convergence on Ultra 85−P; (d) Convergence on STP6−120/36.

6.5. Comparison between GNDO and RGNDO

In this section, the efficacy of RGNDO over GNDO is shown in terms of the quartiles
using the boxplot and the convergence speed. Figure 7 illustrates the quartiles of the
outcomes obtained by each algorithm within 30 independent runs. It is obvious from this
figure that RGNDO out-performs GNDO in terms of the minimum, maximum, median,
first quartile, and third quartile for all PV models used in our experiments. Moreover,
RGNDO has higher convergence, as shown in Figure 8.

Figure 7. Cont.
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Figure 7. Boxplot achieved by GNDO and RGNDO: (a) Boxplot on RTC France; (b) Boxplot on Kyocera KC200GT; (c) Boxplot
on Ultra 85−P; (d) Boxplot on STP6−120/36.

Figure 8. Convergence curves were obtained for GNDO and RGNDO: (a) Convergence on RTC France; (b) Convergence on
Kyocera KC200GT; (c) Convergence on Ultra 85−P; (d) Convergence on STP6−120/36.
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6.6. CPU Time

Figure 9 shows the CPU time (in seconds) required by each algorithm on RTC France.
The figure shows that the CPU time is almost the same for all algorithms, with the exception
of HHO, which takes a long time, and ISA, which takes less than half the time required by
the remainder. RGNDO is therefore much more superior in terms of convergence speed
and quality of the outcome, with negligible difference in CPU time.

Figure 9. CPU time required by each algorithm.

6.7. Wilcoxon Rank Sum Test

In [50], a nonparametric statistical test known as the Wilcoxon rank-sum test, also
called the Mann–Whitney U Test, has been proposed to compare the outcomes obtained
by each of a pair of the algorithms under two hypothesis: the null hypothesis and the
alternative. In the null hypothesis, (h = 0), this test proposes that there is no difference
between the outcomes of the pair, in which case the outcomes of two algorithms are with
equal medians, meanwhile, the alternative (h = 1) hypothesis assumes that there is a
difference between the outcomes, in which case the medians of the two are not equal. This
test also supposes that the outcomes are independent.

At a significant level of 5%, the outcomes of RGNDO are compared with the outcomes
of each algorithm of the compared algorithms to identify whether the null hypnosis will
be accepted. Table 13 shows the h- and p-value that result from comparing RGNDO with
each algorithm. According to this table, RGNDO has a p-value when compared with AEO,
HHO, WOA, and CPMPSO that is less than 0.05 for all four modules, in which case the
alternative hypothesis is accepted, which shows the superiority of RGNDO.

Table 13. Comparison between the proposed with the others under the Mann–Whitney U Test.

Algorithms RTC France KC200GT Ultra 85-P STP6-120/36
h p-Value h p-Value h p-Value h p-Value

RGNDO vs. AEO 1 3.0199 × 10−11 1 2.5473 × 10−12 1 1.2057 × 10−10 1 3.0199 × 10−11

RGNDO vs. ITLBO 1 4.5043 × 10−11 1 2.6537 × 10−13 1 5.0922 × 10−8 1 3.3384 × 10−11

RGNDO vs. ISA 1 8.1527 × 10−11 1 1.1737 × 10−9 1 3.0199 × 10−11 1 3.0199 × 10−11

RGNDO vs. HHO 1 3.0199 × 10−11 1 1.6998 × 10−16 1 3.0199 × 10−11 1 3.0199 × 10−11

RGNDO vs. WOA 1 3.0199 × 10−11 1 3.5254 × 10−17 1 3.0199 × 10−11 1 3.0199 × 10−11

RGNDO vs. CPMPSO 1 4.1178 × 10−6 1 2.2893 × 10−4 1 5.5611 × 10−4 1 8.8411 × 10−7

RGNDO vs. GNDO 1 4.0772 × 10−11 1 4.1782 × 10−3 1 1.0907 × 10−5 1 1.8916 × 10−4
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6.8. Various Steady-State Characteristics under Varied Operating Conditions

In this final phase, non-standard conditions are simulated to generate various principal
characteristics under varied cell temperature and changed levels of solar radiations. To
address such changes, due to G and T variations, the adaptation of the cell parameters
are [6,40,41]:

Iph =
G

GSTC

[
ISTC
ph + Ki(T− 25)

]
(17)

Voc = VSTC
oc + Kv(T− 25) (18)

Eg = ESTC
g

[
1− 2.677× 10−4(T− 25)

]
(19)

Isdi = ISTC
sdi

(
T
25

)3
· exp

(
q·Eg(T− 25)

25ai.K.T

)
, ∀ i ∈ 1 : 3 (20)

Rsh = RSTC
sh ·

(
GSTC

G

)
(21)

where Ki and Kv define the thermal coefficient of current and voltage, respectively, Eg
denotes the semi-conductor band-energy, VOC denotes open-circuited voltage and others
are the normalized parameters at STC.

Due to space limitations, STP6-20/36 is used as a representative demonstration. The
values of Ki and Kv are equal to 0.065%/◦C and −0.346%/◦C, respectively, for this module.
After passing the obtained optimal settings of the nine parameters as depicted in Table 9
generated by RGNDO, the various principal characteristics are illustrated in Figure 10,
which shows the five levels of sun irradiances in Figure 10a,b at a fixed temperature of
25 ◦C. Figure 10c,d reveals the principal characteristics for four levels of temperature at
1000 W/m2.

Figure 10. Cont.
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Figure 10. Principal characteristics of STP6−120 under variables G and T: (a) I-V patterns at varied G; (b) P-V patterns at
varied G; (c) I-V patterns at varied T; (d) P-V patterns at varied T.

7. Conclusions and Future Work

In this paper, the generalized normal distribution optimization (GNDO), improved by
two strategies for tackling the parameter extraction of the triple-diode model, is proposed
and shortened as RGNDO. The first strategy used with GNDO is called as the premature
convergence method (PCM), which is used to accelerate convergence by utilizing a factor
to move the current individual either between the best-so-far position and the current
position or between two individuals selected randomly from the population. The second
strategy known as the ranking method-based-novel updating method (RUM) is integrated
with GNDO to replace the unbeneficial individuals with others created based on a novel
updating method so that most regions within the search space are explored as much as
possible. A single solar cell and three PV modules are used to investigate RGNDO, and
its estimated parameters are validated according to the empirical dataset points. Various
statistical metrics and the convergence curve are used to evaluate the performance of
RGNDO that is compared with a number of recent well-known algorithms: AEO, ITLBO,
CPMPSO, ISA, HHO, WOA, and GNDO. The experimental outcomes show the superiority
of the proposed methodology over the other state-of-the-art, in terms of the final accuracy,
where it could fulfill the following averaged RMSE values: 7.5290151 × 10−4 A, 0.0282128
A, 0.0024461773 A, and 0.0137983255 A for all observed PV models (RTC France, KC200GT,
Ultra 85-P, and STP6-120/36), respectively; the Wilcoxon rank-sum test which shows that
the outcomes of RGNDO are significantly different of those obtained by the compared ones;
and the convergence speed. Future work includes looking for a better updating method to
replace the unbeneficial individuals within the population to further improve the efficacy
of the RGNDO.
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