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ABSTRACT The next generation 6G communication network is typically characterized by the full connec-
tivity and coverage of Users Equipment (UEs). This leads to the need for moving beyond the traditional two-
dimensional (2D) coverage service to the three-dimensional (3D) full-service one. The 6G 3D architecture
leverages different types of non-terrestrial or aerial nodes that can act as mobile Base Stations (BSs) such
as Unmanned Aerial Vehicles (UAVs), Low Altitude Platforms (LAPs), High-Altitude Platform Stations
(HAPSSs), or even Low Earth Orbit (LEO) satellites. Moreover, aided technologies have been added to the 6G
architecture to dynamically increase its coverage efficiency such as the Reconfigurable Intelligent Surfaces
(RIS). In this paper, an enhanced Computational Intelligence (CI) algorithm is introduced for optimizing
the coverage of UAV-BSs with respect to their location from RIS in the 3D space of 6G architecture. The
regarded problem is formulated as a constrained 3D coverage optimization problem. In order to increase
the convergence of the proposed algorithm, it is hybridized with a crossover operator. For the validation
of the proposed method, it is tested on different scenarios with large-scale coordinates and compared with
many recent and hybrid CI algorithms, as Slime Mould Algorithm (SMA), Lévy Flight Distribution (LFD),
hybrid Particle Swarm Optimization and Gravitational Search Algorithm (PSOGSA), the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), and hybrid Grey Wolf Optimizer and Cuckoo Search (GWOCS).
The experiment and the statistical analysis show the significant efficiency of the proposed algorithm in
achieving complete coverage with a lower number of UAV-BSs and without constraints violation.

INDEX TERMS 6G technology, computational intelligence, non-terrestrial base stations, reconfigurable
intelligent surfaces, three-dimensional coverage optimization problem.

I. INTRODUCTION

Roughly speaking, the usage of fifth-generation (5G)
technology is adequate for the current demand of several
countries. This is because 5G technology preserves internet
protocol television, high-definition video streaming, basic
virtual and augmented reality services, and faster transmis-
sion. However, it is an urgent issue to shift to another
extensive networking technology because of the exponen-
tial increase of Internet of Things (IoT) objects and their
related flood of user-centric information. In particular, the
expected number of IoT-connected objects will be 41.6 billion
in 2025 according to International Data Corporation (IDC).
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Moreover, by the 2040s, it is expected that the number of
IoT-connected objects will reach trillions according to IEEE
Conference on Standards for Communications and Network-
ing (CSCN) [1].

The vision of sixth-generation (6G) technology has begun
with the aim of providing telecommunications services for
future requirements over the upcoming years that is expected
to reach huge data rates up to 1 Tb/s and wide-ranging
frequency bands of 100 GHz to 3 THz. As shown in Fig.1,
6G technology is a full-scale on-demand self-reconfiguration
wireless network that envisaged to incorporate advanced fea-
tures with existing 5G technology to meet high-rate individ-
ual and commercial demands. There are many services added
by 6G technologies, such as Artificial Intelligence (Al),
holographic communications, high precision manufacturing,
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FIGURE 1. 6G verses 5G.

Visible Light Communications (VLC), terrestrial, aerial radio
APs for cloud services, and three-dimensional (3D) coverage
framework.

The 3D full coverage of 6G technology obligates
shifting from the standard hierarchy and specifications.
Accordingly, the standards of the 3rd Generation Partner-
ship Project (3GPP) will be appropriate for these interfered
network components. Each non-terrestrial node has its own
specific features as altitude, payload, computation latency,
storage, coverage area, and so on. As shown in Fig.2, the 3D
hierarchy of 6G technology contains various aerial objects
in each networking layer, such as Unmanned Aerial Vehicles
(UAVs), Low Altitude Platforms (LAPs), High-Altitude Plat-
form Stations (HAPSs), and Even Low Earth Orbit (LEO)
satellites. The cooperation of these flying objects can be
utilized to deliver unified and affordable high-level Quality
of Services (QoS) to Users Equipment (UEs) especially for
remote areas and emergency scenarios [2]. Another great
advantage of the 3D architecture of 6G technology is that it
can be leveraged to increase the connectivity and reliability
of the two-dimensional (2D) plane besides its comprehensive
3D networking services.

Unmanned Aerial Vehicle Base Stations (UAV-BSs) are
mobile base stations with an unprecedented degree of
freedom which makes them work in the low-frequency,
microwave, and mm-wave bands. These features provide
more flexible and reliable connectivity and on-demand time-
and spatially-varying services. Therefore, UAV-BSs offer
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jointly real-time control and computation with complete ser-
vices in 3D space. With Al guidance, UAV-BSs can be
dynamically reallocated to prevent interference and increase
area coverage.

Reconfigurable Intelligent Surfaces (RIS) or what
so-called Intelligent Reflecting Surfaces (IRS) have led to
the emergence of the ‘“smart radio environments” concept.
In particular, RIS affords auto-configuration of reflecting
electromagnetic waves propagation environment from meta-
surfaces by electronic devices like pin-diodes or varactors.
As mentioned above, the full coverage feature of 6G technol-
ogy leads to the exploitation of additional coverage increment
methods. As a consequence, RIS has become an integral
part of any 6G system. In other words, it can be considered
a 6G sub-technology [3].

Al is a key feature in 6G technology and it plays an
important role in the 6G communication revolution. For
instance, Al-based algorithms or so-called Computational
Intelligence (CI) algorithms can be used for network resource
allocation and smart management of the spectrum in order
to attain close-to-optimum performance. Also, they can be
used for realizing the environment and applying a real-time
adjustment to radio waves.

In this paper, an enhanced CI algorithm called ‘“Marine
Predators Algorithm with Crossover (CMPA)” is proposed to
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maximize the coverage of 6G technology by finding the best
positions of UAV-BSs and RIS. This problem is formulated
as a constrained 3D coverage optimization problem. The pro-
posed algorithm proves its efficiency in achieving ubiquitous
coverage without constraint violations.

The rest of this paper is organized as follows:
Section 2 presents a literature review of the related works,
section 3 describes the considered 6G system configurations,
the definition of the constraint 3D coverage problem is intro-
duced in section 4, the proposed algorithm is introduced in
section 5, the validation experiment is conducted in section 6,
the implication of the proposed algorithm on cost-efficient
QoS of 6G technology is discussed in section 7, and finally
the conclusion and future works are given in section 8.

II. LITERATURE REVIEW

Because the 6G technology is still emerging in lots of
countries, the literature that discusses 6G optimization is
relatively few. Fig.3 shows the percentages of published lit-
erature that handle the 6G-related topics from 2016 to 2020
(forecast from Scopus, Google scholar, and IEEE explore).
As observed, the literature that handling the optimization
of 6G is very few. Regarding the 6G coverage optimization,
the related literature is almost scarce. Next, the most recent
examples of literature that handling 6G optimization and the
3D coverage optimization will be presented.

10000

g

2

& 1000

L

3

5 100

5 = Optimization
Q

g 10 = Coverage
z Architecture

i~ 3 1 n

201
016 2017 5918 2018 5090

6G Technology Related Literature

FIGURE 3. 6G related literature (Forecast).

A. THE LITERATURE OF 6G OPTIMIZATION
Nawaz et al. [4] introduced a Quantum Machine Learn-
ing (QML) based framework for the communication
of 6G wireless networks. The proposed framework was able
to blend the intelligence with various 6G levels of archi-
tecture, as network-infrastructure, network-edge, proactive
caching, multi-objective routing optimization, resource allo-
cation, big data analytics, and mmWave communications,
etc. However, the role of CI algorithms was not addressed
in this literature. Also, there were no conducted experiments
or statistical comparisons.

Letaief et al. [5] proposed a roadmap of the possible usage
of Al in optimizing the performance of 6G wireless systems.
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The authors suggested applying Al-based optimization to the
analytics of 6G big data, closed-loop, and wireless commu-
nication. Also, Yang et al. [6] discussed the potentials of
Al usage in the layers’ optimization of 6G technology. The
authors showed that the architecture of 6G consists of four
main layers, including intelligent sensing, data mining and
analytics, intelligent control, and smart application layers.
In addition, Al leverages in each layer were discussed.

Hashida et al. [7] presented the problem of RIS place-
ment optimization. The authors discussed the effect of Base
Stations (BSs) and RIS positions on communication with
Aerial Users (AUs). The main objective of this optimization
problem is to maximize the spatial signal-to-interference-
plus-noise ratio (SINR) while mitigating inter-cell interfer-
ence. Although the authors proposed the optimal placement
of RIS for the best coverage of AUs, they didn’t point
out the placement of BSs. Also, Hashida et al. didn’t use
any optimization algorithms for finding the best placement
of RIS.

Fu et al. [8] introduced an Al-based framework of
6G Recommendation-aware Content Caching (RCC). On the
other hand, the authors introduced a general framework with-
out studying the performance of a specific optimization algo-
rithm. In addition, the authors didn’t mention the coverage
issue of the 6G technology.

Tarable et al. [9] introduced a mathematical model for
the pre-configuration of 6G meta-surface orientation. The
main objective of the proposed mathematical model is the
optimization of sub-Terahertz (sub-THz) wireless networks
in the 6G technology environment. However, the authors
didn’t mention the roles of Al techniques and only mention
one heuristic optimization technique in the optimization of
sub-THz wireless networks.

Regarding the resource allocation of 6G networks,
Yu et al. [10] used the Greedy Shrinking Algorithm (GSA)
for the Joint Time-Slot and Sub-band scheduling and
Power (JTSP) allocation problem. The proposed problem was
expressed in the form of a Mixed-Integer Nonlinear Program-
ming (MINLP) problem. The proposed scheme achieved a
12.5% to 60.7% increase in productivity. Also, Calvanese
Strinati ef al. [11] proposed an overview and modeling of
the resource allocation of interfered flying devices in the
3D environment. The authors didn’t handle the coverage issue
of the 6G networks in the 3D environment.

B. THE LITERATURE OF 3D COVERAGE OPTIMIZATION
Watfa and Commuri [12] introduced an analysis of the
3D coverage problem. They proposed an algorithm for dis-
tributing sensors in areas with small dimensions.

The authors in [13] proposed two different appointments
of sensors in the 3D regions. These static arrangements pre-
served the connectivity between sensors and area coverage.

Andersen and Tirthapura [14] presented a discrete formu-
lation of a 3D coverage problem that can reduce the number
of needed sensors.
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Liu et al. [15] proposed the Artificial Fish Swarm Algo-
rithm (AFSA) for 3D coverage for healthcare purposes and
applied it for only one observed area.

Sharma and Gupta [16] proposed a multi-objective for-
mulation of a 3D coverage problem. This multi-objective
function comprised the distance metric between double sen-
sors and the used ones. The Harmony Search (HS) algorithm
was used for solving this multi-objective problem. Besides,
the authors deployed the proposed technique to increase the
performance of a network lifetime. Comparing to the Low-
Energy Adaptive Clustering Hierarchy (LEACH) protocol,
it has a good performance. On the other hand, the main
disadvantage of the proposed technique was the incomplete
coverage of the observed area.

Ding et al. [17] presented the Fuzzy Harris hawks
optimizer (FHHO) for 3D monitoring of cardiomyopathy
patients. In addition, the authors proposed the Wearable Sens-
ing Data Optimization (WSDO) algorithm for precise and
consistent cardiomyopathy sensing data manipulation.

C. THE CONTRIBUTIONS OF THIS LITERATURE
This work introduces an enhanced CI algorithm for lever-
aging the coverage of 6G networks in the 3D environment.
In particular, Marine Predators Algorithm (MPA) [18] is cho-
sen for handling the regarded problem due to several reasons
which are scalability, rapidness, high-quality solutions, and a
good exploration of the search space as it comprises several
distributions while searching (as we will discuss next).
From the above-discussed kinds of literature, there was
no literature handling the problem of allocation of UAV-BSs
with respect to RIS using CI algorithms [19]. In other words,
the previously proposed methods are limited to machine
learning methods, theoretical frameworks, and mathematical
representation. On the other hand, the used CI algorithms pro-
posed for the 3D coverage optimization problem also didn’t
address the optimization problem of UAV-BSs allocation with
respect to RIS.

Ill. PROBLEM DESCRIPTION
RIS is a full-duplex transparent rebroadcast technology that
simultaneously receives the signal from transmitters and then
re-radiates the propagation of the radio waves impinging
upon it with controllable time-delays [20]. RIS comprises
many nanoengineered structures (reflecting elements, equiv-
alent circuits, and controllers, etc.) that can set different time
delays, thus aggregating the scattering behavior of an arbi-
trarily shaped object of the same size. These semi-passive ele-
ments on the RIS reflect the impinged signal with adjustable
phase shift and without the need for a dedicated power source
for signal processing, making it highly energy-efficient [21].
In particular, RIS is constructed from small, lightweight,
and compatibility elements that are attached to a low pro-
file surface. As a consequence, it can be easily deployed
on objects with high elevation in order to enhance trans-
mission strength with beamforming and the use of multi-
path (such as facades of buildings, factory walls, ceilings,
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and billboards). Moreover, RIS offers channel optimization
besides the optimization of transmitter and receiver. This
provides a transformative medium for a naturally passive
wireless environment into a programmable smart entity.
RIS can be easily integrated into existing wireless networks
without the modification of its uniformity of the physical
layer, making it transparent to users. Therefore, consideration
must be given to the place of BSs instruction with respect to
the angle of incidence on the RIS because it greatly affects
the reflected electromagnetic waves. In general, the static
physical structure of RIS makes it preferable to exploit a
mobile BS to support propagated signals such as UAV-BSs.

This paper deals with the allocation of UAV-BSs in order
to increase the coverage percentage as well as consider the
incident angle on the RIS.

IV. PROBLEM MATHEMATICAL FORMULATION

In this section, the positioning problem of RIS-empowered
UAV-BSs is formulated as a constraint 3D coverage optimiza-
tion problem. Next, we will discuss all related definitions.

A. 3D COVERAGE MODEL

Let S be a set of kK UAV-BSs such that § = {s1s2,...,5}.
Each sy has a sphere-shaped wave with a radius r¢. As well,
each sy has a coordinate (xg, y, zx) in the 3D plane. Accord-
ingly, the area covered by a spherical wave can be computed
as:

4 r,?
3

where Covy is the sphere-shaped coverage zone of
a UAV-BS k.

ey

Covy =

B. 3D COVERAGE PERCENTAGE

The 3D covered area called A is partitioned into discrete
points a(x, y, z) where any point a(x,y, z) is covered by
a UAV-BS sy if the Euclidean distance between s, and p is
smaller than the sphere-shaped coverage radius ry, as:

d(@s) =6 -+ 0—nP+ -2 @)

So, the coverage percentage of a set of UAV-BSs can be
computed via dividing the covered points by the total points
of the area to be covered as:

el

Z= 3)

llall

where a€ is a covered point and a is any point in the 3D area
to be covered.

C. THEORETICAL 3D COVERAGE PERCENTAGE

Formerly, the theoretical 3D coverage percentage of k
UAV-BSs can be calculated as [15]:

477r,f’ ¢
X=1-(1- 3L 4)
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where L is the volume of the area to be covered, and X is the
theoretically expected coverage ratio.

Thence, the corresponding number of UAV-BSs that
attains X coverage percentage can be computed as [17]:

In(1 —X)

4r3

where & is the corresponding number of UAV-BSs and ry, is
the predefined coverage radius of a UAV-BS k.

k= (5)

D. FORMULATION OF OPTIMIZATION PROBLEM

In this paper, the area to be covered is divided by a virtual
3D grid, then the resultant grid points are calculated. Thence,
the 3D coverage optimization problem can be formulated as:

Z;v'vzl Xj
G
subject to  x; < G,

max f =

if a g point is covered

1
Xj = ’ ,geG 6
J { 0, Otherwise & ©)

where w is the total number of UAV-BSs, G is the total number
of calculated grid points and x; is a binary variable indicated
whether a grid point g is covered or not.

E. SPATIAL ALLOCATION OF UAV-BSS WITH RIS

The RIS empowered propagation is more vital than increasing
the number of used BSs because it can decrease the imper-
fections of various propagation environments and fade the
coverage holes. The spatial allocation of RIS and UAV-BSs
effects on the 6G coverage. In particular, there are three main
links in any RIS-empowered UAV-BSs, including UAV-BSs
to the user, RIS to the user, and RIS to UAV-BSs. The first
link is the direct link that connected UAV-BSs with a user.
The second link represents the connections between RIS and
a user. The last link demonstrates the link between RIS and
UAV-BS:s. In the 3D space, the incident angle from UAV-BSs
determines the direction of the reflected waves from RIS.
So that, it can mainly affect the coverage of the whole
6G system. In addition, the distance between UAV-BSs and
RIS must have a predetermined upper and lower bound.
In this paper, not only UAV-BSs must be allocated at a certain
angle and distance from RIS but also the coverage must be
maximized without constraints violation.

V. PROPOSED ALGORITHM
In this section, the proposed enhanced technique for solving
the 3D coverage is presented as shown in Fig.4.

A. MARINE PREDATORS ALGORITHM

The main inspiration of MPA is the biological interaction
between hunter and victim in the marine environment. This
interaction behavior mainly depends on Lévy and Brownian
distribution behavior. The main governing assumptions of
MPA are:
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FIGURE 4. Flowchart of proposed allocation technique.

« Hunter or predators use the Lévy movement for the areas
with a low intensity of victim and Brownian motion for
the environment with the plentiful victim.

o The Lévy and Brownian motion percentages are the
same.

o The behavior of a predator changes according to two
factors natural eddy formation or human-caused (FADs).

o The best movement for a predator is Lévy’s strategy
in the low-Velocity ratio (V = 0.1) while the movement
of the prey is either Brownian or Lévy.

o The best movement for a hunter is the Brownian strategy
if a prey moves in Lévy in the case of the unit Velocity
ratio (V = 1). The other cases depend on system size.

o The best movement for a hunter is not transferring at all
while the prey is transferring either Brownian or Lévy in
the high-Velocity ratio (V >= 10).

« In the high-velocity ratio, the prey utilizes best memory
in the recapping of their associates and the best foraging
location.

As MPA is a population-based metaheuristic, it begins with
the random initialization of the starting population. After the
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initialization step, the obtained solutions are ordered accord-
ing to their fitness in order to construct the matrix of elite.
This matrix contains the best solution or top hunter which
is repeated n times where n is the population size. At the
end of each search iteration, the matrix of elite is updated
with a better predator. Besides, another matrix of prey is
created with the same size as the matrix of elite. This matrix is
responsible for updating the movement of the elite predator.
In particular, the searching process of MPA consists of three
main phases according to the level of the velocity ratio. In the
first searching phase, the hunter is not transferring at all
while the prey is transferring either Brownian or Lévy at
the premature phase of searching (in the first third of total
searching iterations) or with a high-velocity ratio (V >= 10).
This is done by the following:

Wpi = I?;@ (elitei—l?l)g@preyi) i=1,2,...,n
@)
%
previt + 1) = preyi(t) + P. R ® step; ®)

where step; is the prey step size, Rp is a vector of Brownian
random rgrg)bers, the notation ® means entry-wise multipli-
cations, elite; is the best predator from the matrix of elite,
p—re}:- is a solution from the matrix of prey, P is a constant
number, and ? is a vector of uniform random numbers
between [0, 1].

The second phase of searching happens in the second third
of the total searching iterations. The best movement for a
predator is the Brownian strategy if a prey moves in Lévy in
the case of V = 1. Particularly, the population of search agents
is divided into two subpopulations. The first half is updated
as follows:

step; = I?Z ® (elite,- - I?Z ®preyl-)

i=1.2....1, ©)
previ(t + 1) = preyi(t) + P.R ® step; (10)

where I?Z is a vector of Lévy random numbers.
The second half of the population search agents is updated
as follows:

- N
step; = Rp ® (RB Q elite; — P”e)’i)

n
i=§+1,...,n )
prey;(t + 1) = elite; + P.C ® @ (12)

where C is an adaptive parameter that calculated as:

it
C=|1--

itmax

where it is the current iteration number and itmax is the
maximum number of iterations.

The third phase of searching occurs in the last third of the

total searching iterations. The best movement for a predator is

Lévy’s strategy (V = 0.1) while the movement of the prey is

(13)

it
) (2* itrilux)
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either Brownian or Lévy. The candidate solutions are updated
as:

step; = R.® (I?i ® elite; —prey,-)

i=12,...,n (14)
previ(t + 1) = elite; + P.C ® step; (15)

Another searching mechanism is added to MPA which
simulates natural eddy formation or FADs. The occurrence
of such a case happens according to a predefined probability
FADs which is set to 0.2. Then, the calculation of candidate
solutions will be as follows:

prey;(t + 1)
prey;(t) + C l_b> + r
- = o
®(ub-1)|® 0,
prey; (t) + [FADs (1 — rand)

+ rand] (prey,; — preyrz) , otherwise

if rand < FADs

(16)

where 7b and u_l; are the vectors of the lower and upper
bound of the searching domain, respectively, U is a random
vector of binary numbers, rand is a uniform random number
between [0, 1], and prey,; and prey,, are two random preys.
Algorithm 1. shows the MPA pseudo-code.

Algorithm 1 MPA Pseudo-Code

1: Set MPA parameters: itmax, n, FADS, P.

2: Initialize the initial population of preysi =1,2,...n
3: while (it < itmax) do

4: Evaluate each prey
5: Construct the matrix of elite
6: if(it < ttmax/+) then
7: Exploration with high-velocity ratio of the prey
8: elseif {3”"‘”/3 <it <2% itmax/3) then
9: Split the population of preys
10: Intermittent search between exploration
and exploitation
11: else
12: Exploitation with predator Lévy’s movement
13: endif
14: Applying FADs Effect
15: Update the matrix of elite

16: endwhile
17: return the best solution

B. CROSSOVER PHASE

For increasing the convergence of MPA, the crossover phase
can be added. It allows the mixing of characteristics from
various search agents in order to have a new search agent
that owns good features from its predecessors. In this
paper, the phase of crossover takes the generated solution
which makes the elite solution unchanged the best search
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agent (see Fig.4). This additional phase creates a new search
agent as follows:

N —
prey;(t + 1) = y. * elite; + (1 — y). * prey"” a7

\J\Ler)e y is a uniform random number between [0, 1] and
prey" is the generated solution that doesn’t increase the fit-
ness of the best solution. The pseudo-code of the proposed
Marine Predators Algorithm with Crossover (CMPA) is rep-
resented in Algorithm 2.

C. HANDLING CONSTRAINTS

As shown in Fig.5, the regarded problem of 3D allocation of
RIS empowered UAV-BSs has various constraints that should
be handled. The first constraint is the incident angle between
RIS and UAV-BSs. Typically, UAV-BSs rise at high altitudes
while RISs are usually located on the building facade [22].
As a consequence, we assume in this paper that the incident
angle is between [30], [50] degrees.

The second constraint is that the RIS must be connected to
at least one UAV-BSs. The last constraint is that the distance
between RIS and UAV-BSs must be greater than half of the
UAV-BSs coverage radius.

In this paper, the Death Penalty method [23] is chosen
for handling the previous constraints as it has lower com-
plexity and simpler to be implemented. The Death Penalty
method works based on the subtraction of a great number
from the value of solution fitness in case of infeasibility. As a
consequence, the infeasible solution is discarded from the
candidate solutions.

VI. VALIDATION EXPERIMENT

A. EXPERIMENT SETUP

In order to validate the performance of the proposed algo-
rithm, two validation experiments are conducted. In the first
experiment, CMPA is tested on the allocation of UAV-BSs
for only maximizing the area coverage. It is compared with
several other CI algorithms, including Coyote Optimiza-
tion Algorithm (COA) [24], Harris Hawks Optimization
(HHO) [25], Slime Mould Algorithm (SMA) [26], Lévy
Flight Distribution (LFD) [27], Salp Swarm Algorithm (SSA)
[28], and Whale Optimization Algorithm (WOA) [29].

Moreover, the proposed algorithm is tested on the alloca-
tion of UAV-BSs with the previously mentioned constraints.
In this experiment, CMPA is compared with two hybrid
CI algorithms, including hybrid Particle Swarm Optimiza-
tion and Gravitational Search Algorithm (PSOGSA) [30],
the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [31], hybrid Grey Wolf Optimizer and Cuckoo
Search (GWOCS) [32].

The used parameters of all comparators are listed
in Table 1. The number of iterations is set to 150 for all
algorithms. The population size is set to 10 except the popu-
lation size of CMA-ES is computed according to the problem
instant dimension, as:

Np = (4 + [3log (dim)])'° (18)
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Algorithm 2 CMPA Pseudo-Code

1: Set MPA parameters: itmax, n, FADS, P.

2: Initialize the initial population of preysi =1,2,...n
3: while (it < itmax) do

4: Calculate the coverage percentage f for each prey

5: Construct the matrix of elite

6: if (it < ttmax /) then

7: Exploration with high-velocity ratio of the prey

8: elseif (1Max/; < jr < 2% itmax/3) then

9: Split the population of preys

10: Intermittent search between exploration and
exploitation

11: else

12: Exploitation with predator Lévy’s movement

13: endif

14: Applying FADs Effect

15: Update the matrix of elite

16: if still as previous then

17: Apply crossover phase

18: Update the matrix of elite

19: endif

20: endwhile
21: return the best solution

where Np is the population size and dim is the dimension of
the problem.

The experiments are carried out and all yalgorithms
are coded in MATLAB R2020a. The device specifica-
tions are a 64-bit operating system with a 2.60 GHz CPU
and 6 GB RAM.

B. LARGE-SCALE TEST CASES

The QoS of 6G wireless networks mainly depends on the
coverage of vast areas. As a consequence, the validation
test cases are generated in 3D large-scale coordinates rang-
ing from 150 to 1,000 cubic meters for the first validation
experiment. Table 2 shows the characteristics of the gener-
ated large-scale test cases for the first experiment. While the
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TABLE 1. The parameters values of compared algorithms.

TABLE 4. Descriptive statistics of CMPA and the comparators for the first
experiment.

Algorithm Parameters Value
p P - Cases Algorithms Worst Best Mean Std.
CMPA Fish Aggregating Devices (FADs) 0.2 ChPA 99.40% __ 100.00% __ 99.90% __ 0.176
P Constant 0.5 Case —coA 75.88%  97.16% 89.34%  4.498
COA Number of packs 1 ! HHO 7536% __ 99.24% 9157% 5822
HHO Switching Probability 0.5 SMA 83.96% 98.84% 92.43% 3.963
SMA Switching Probability () 0.03 LFD 83.16% 95.04% 8821% 2733
LFD Switching Probability 0.5 SSA 96.00% 100.00% 98.80% 1.087
SSA Switching Probability 0.5 WOA 83.00% 97.76% 92.56% 3.868
WOA Switching Probability 0.5 Case CMPA 97.50% 100.00% 99.33% 0.690
PSOGSA gravitational constant 1 2 COA 71.78% 82.28% 77.50% 2.896
Acceleration coefficient C1 0.5 HHO 76.25% 89.00% 80.96% 3.269
Acceleration coefficient C2 1.5 SMA 61.44% 80.94% 71.56% 3.060
. ) LFD 63.00% 80.56% 68.93% 4.202
CMA-ES Coefficient alpha 2 SSA 83.86% __ 95.83% 92.14% 3017
WOA 74.53% 94.61% 84.82% 5.324
CMPA 99.73% 100.00% 99.95% 0.071
TABLE 2. Characteristics of the first experiment large-scale test cases. Case COA 81.27% 02.98% 85.53% 2376
3 HHO 79.56% 95.27% 88.83% 4.476
. SMA 68.03% 89.59% 79.12% 5.881
Cases Large _Scale UAV- Radius of Expected LFD 73.66% 34 64% 7798% 3705
Coordinates BSs Coverage coverage SSA 91.00% 99.47% 97 11% 1884
Numbers WOA 83.50%  97.97% 91.63% _ 3.696
Case 1 150 X 150 X 150 10 50 81% CMPA 99.70% 100.00%  99.96% _ 0.066
Case 2 300 X 300 X 300 60 50 69% Case COA 78.00% 93.19% 86.02% 3.256
Case 3 400 X 400 X 400 70 70 80% 4 HHO 76.16% 94.20% 85.69% 4.113
Case 4 600 X 600 X 600 80 100 79% SMA 69.44% 92.70% 78.19% 5.456
Case 5 1000 X 1000 X 100 150 80% LFD 70.81% 83.05% 76.26% 2.675
1000 SSA 90.22% __ 98.89% 96.69% __ 2.003
WOA 82.28% 97.33% 91.87% 3.234
Case CMPA 99.49% 100.00% 99.91% 0.128
TABLE 3. Characteristics of the second experiment large-scale test cases. 5 COA 76.31% 92.42% 82.98% 2.988
HHO 71.72% 91.50% 83.85% 4.500
SMA 66.11% 83.35% 74.21% 4.969
Cases  Large Scale UAV- RIS Radius of  Expected LFD 67.75% 86.03% 74.42% 4.929
Coordinates BSs Numbers  Coverage  coverage SSA 90.41% 98.74% 95.11% 1.855
Numbers WOA 83.73% 95.34% 89.59% 3.195
Case 1000 X 1000 2 6 500 89.18 %
R1 X 1000
Case 1500 X 1500 10 20 500 81.47 % ... -
R2 X 1500 TABLE 5. Descriptive statistics of CMPA and the comparators for the
Case 2000 X 2000 15 30 500 63.77% second experiment.
R3 X 2000

3D large-scale coordinates ranging from 1000 to 2000 for
the second validation experiment. In Table 3, the character-
istics of the generated large-scale test cases for the second
experiment are presented.

C. HANDLING CONSTRAINTS

In this subsection, CMPA is tested on the large-scale test cases
against the other comparators. For a fair comparison, each
algorithm runs for 30 independent runs and the descriptive
statistics are gathered.

1) RESULTS OF THE FIRST EXPERIMENT

Table 4 depicts the gathered descriptive statistics which are
the best, worst, mean, and standard deviation (Std.) of the
obtained 3D coverage percentages. As observed, the perfor-
mance of the proposed algorithm is significantly superior
compared to other algorithms.

In particular, CMPA is able to reach 100% coverage
for all test cases with lower Std. In addition, the worst
coverage obtained by CMPA still the best compared to
other comparators. It is also clear that the performance of
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Cases Algorithms Worst Best Mean Std.
Case CMPA 91.42% 98.01% 96.878% 1.194

R1 PSOGSA NA 95.87% NA NA
CMA_ES NA 93.64% NA NA
GWOCS NA 97.53% NA NA

Case CMPA 95.95% 99.98% 98.8443% 1.01
R2 PSOGSA NA 94.24% NA NA
CMA _ES NA 60.50% NA NA

GWOCS NA 99.93% NA NA

Case CMPA 87.31% 97.69% 93.3268% 3.65
R3 PSOGSA NA NA NA 7.80
CMA_ES NA NA NA NA

GWOCS NA 95.81% NA NA

NA means not a number.

the proposed algorithm is stable while changing the test-
ing environment. Moreover, the obtained results of CMPA
and the other compared algorithms are analyzed with the
Friedman Rank test [33] with a level of confidence that
equals 0.05. Fig. 6 shows the ranked mean values of the
Friedman Rank test for the five large-scale test cases.
As observed, the rank of the proposed algorithm is sig-
nificantly greater than other compared algorithms with a
p-value equals to zero. This means that the obtained cover-
age percentages of CMPA are considerably greater than the
comparators.
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FIGURE 6. Friedman results for the first test cases.

FRIEDMAN RANK TEST
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FIGURE 7. Needed UAV- BSs for total coverage in large-scale test cases.

2) RESULTS OF THE SECOND EXPERIMENT

In Table 5, the descriptive statistics of the second experiment
are presented. As clearly observed, the proposed algorithm
can efficiently maximize the area coverage without con-
straints violation.

On the other hand, PSOGSA, CMA-ES, and GWOCS are
trapped in the infeasible area of solutions even after increas-
ing the population size of CMA-ES.

However the high difficulty of these test cases, the pro-
posed algorithm is able to find the best coverage percentage
against other hybrid algorithms. Moreover, CMPA obtained
best values are significantly greater than the expected cover-
age percentages. Also, the CMPA values of Std. denotes its
staple performance.

VOLUME 9, 2021

VII. THE IMPLICATION OF CMPA ON COST-EFFICIENT
QOS OF 6G TECHNOLOGY
In order to achieve total coverage in vast areas, it may lead to
higher setup costs of more UAV-BSs. This mainly shows the
importance of using an efficient optimization algorithm for
optimizing the spatial distribution of these BSs, especially
in large-scale areas. Fig.7 depicts the expected number of
needed UAV-BSs for complete coverage with the growth of
the covered area. As observed, the usage of CMPA consider-
ably reduces the number of needed UAV-BSs and accordingly
reduces costs. On the other hand, not using optimization may
lead to a significant cost increment.

There is another effective way for increasing the 6G cover-
age in large-scale areas. This can be achieved by empowering
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FIGURE 8. The feasibility percentages of CMPA against Comparators.

the system of UAV-BSs with RIS. The spatial allocation of
UAV-BSs mainly affects the incident angle between them
and RISs and by consequence affects the 6G area coverage.
The proposed algorithm can efficiently solve such a problem
without constraint violations. Fig.8 shows the feasibility and
infeasibility percentages of CMPA and the compared algo-
rithms. As observed, only the proposed algorithm reaches one
hundred percent feasibility.

VIIl. CONCLUSION AND FUTURE WORKS

The integration of Al and the 3D framework are essential
features of 6G wireless networks. In this paper, an enhanced
CI optimization algorithm is proposed for finding the best
position of UAV-BSs and RIS empowered UAV-BSs in 6G
wireless networks. For the first experiment, CMPA is tested
on solving many large-scale 3D problems and compared with
other recent algorithms. The experimental results indicate the
significant efficiency of the proposed algorithm as it achieves
a one hundred percent feasible solution of all case studies.
For the second experiment, the proposed algorithm is able
to find the best coverage percentage for RIS-empowered
UAV-BSs in 3D large-scale test cases. Although CMPA is
compared with other powerful hybrid algorithms, it signifi-
cantly achieves the best results without constraint violations.
In addition, the cost-efficient QoS of 6G wireless networks is
noteworthy improved by the proposed algorithm as it reduces
the number of needed UAV-BSs for total coverage.

For future works, we suggest optimizing other 6G func-
tionalities with CMPA such as auto-adjusting radio waves,
dynamic allocation of underwater, and sub-band scheduling
problems. In addition, we suggest enhancing MPA by the
hybridization with other Al techniques such as Fuzzy Logic
and Artificial Neural Networks.
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