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Abstract: The critical path method is one of the oldest and most important
techniques used for planning and scheduling projects. The main objective
of project management science is to determine the critical path through a
network representation of projects. The critical path through a network can
be determined by many algorithms and is useful for managing, monitoring,
and controlling the time and cost of an entire project. The essential problem
in this case is that activity durations are uncertain; time presents considerable
uncertainty because the time of an activity is not always easily or accurately
estimated. This issue increases the need to use neutrosophic theory to solve
the critical path problem. Real-world problems are characterized by a lack of
precision, consistency, and completeness. The concept of neutrosophic sets has
been introduced as a generalization of fuzzy, intuitionistic fuzzy, and crisp sets
to overcome the ambiguity surrounding real-world problems. Truth-, falsity-,
and indeterminacy-membership functions are used to express neutrosophic
elements. This study was performed to examine a neutrosophic event-oriented
algorithm for determining the critical path in activity-on-arc networks. The
activity time estimates are presented as trapezoidal neutrosophic numbers, and
score and accuracy functions are used to obtain a crisp model of the prob-
lem. An appropriate numerical example is then used to explain the proposed
method.

Keywords: Project management; project life cycle; project planning;
project scheduling; CPM; neutrosophic set theory; trapezoidal neutrosophic
number

1 Introduction

A project is a venture to accomplish a set of interrelated jobs; when these jobs are accom-
plished, the project is considered completed. Each job requires specific amounts of time and
resources, which are governed by specific relations. A project is a unique set of activities meant to
produce a defined outcome within an established time frame using specific allocations of resources.

This work 1is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.



http://dx.doi.org/10.32604/cmc.2022.018947

1282 CMC, 2022, vol.70, no.1

Three fundamental components are related to the project definition: (1) the goal that answers the
question, “What do we want?;” (2) the objectives that answer the question, “How do we want it?”;
(3) and the scope that answers the question, “How much of it do we want?” Whether the project
is any good is also a consideration. Project management is the application of knowledge, skills,
methods, experience, tools, and techniques to project activities to meet the project objectives. The
study and understanding of projects involve three axes, namely, the project objectives, the project
constituents, and the basic composition of the related jobs or activities, which are important
because they consume time and resources and are responsible for project completion. Fig. 1 shows
the different types of projects, including personal, local-neighborhood, organizational, national,
and global projects.

e.g.

(  Personal level projects | |_> Writing a book.
Getting a dressed.

A family vacation.

e.g. N\

Local neighbourhood projects ] |:> A school function.
Cleanliness drive.

Clubs construction. J

CXG ~
[ Organizational projects ] |::> Constuction of building, highway.

Planning & lunching a new product.
A turnaround in a refinery Y,

(e.g.

[ National projects ] > | Launching a new satellite.

Litercy campagin/poverty removal.

\ Preparation of annual budget .

(e.g.

[ Global projects ] :> Organizing peace mission.
Space expolration.

\ Environment protection.

Figure 1: Different types of projects

Despite the tremendous variety of the nature and size of different projects, all projects feature
a number of common characteristics or features. Regardless of whether the project is personal or
organizational, finding and defining the features of the project is necessary. The common features
of projects are used to plan, lead, and control various types of projects, which is the goal of
project management science. These features are summarized in Fig. 2. Each project has a life
cycle that begins with selecting the appropriate project from among several alternatives to achieve
definite goals. A number of studies have discussed project scheduling, project life cycles, project
planning, the critical path method (CPM), and advanced project management science [1-5]. The
project life cycle begins with the client choosing the best project alternative from the available
project set. In terms of life cycles, when a project is undertaken to accomplish a goal, a path that
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leads to a specific desired state, one that is distinct from the current state, is constructed. Several
different projects could lead to the same desired state from the same current state, as shown in
Fig. 3.

*Well-defined collection of jobs.
\ *Generally a non-repetitive, one-time effort.

™\

«Jobs interrelated through precedence.

Jobs otherwise independent.

*Jobs consume time and resources.

*Coordination needed between individuals, groups, and organizations.

*Constant pressure of conformance to Time/Cost/Perormance goals.

Figure 2: Common features of different projects

Desired

State

Current

State

Figure 3: Alternatives pathways as projects

Once the appropriate project has been selected, the project must be planned and then
implemented. Finally, upon project completion, an audit is performed. The project life cycle is
summarized in Fig. 4. This paper addresses the scheduling sub-phase of the planning stage in
detail.

The second stage of the project life cycle is planning, as described below:

Determine the project team and its leader.
Define the scope and terms of reference.
Create a work breakdown structure.
Determine the basic process of scheduling.
Evaluate time/expenditure tradeoffs.
Consider resources.
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The basic scheduling sub-phase in the planning stage involves:

Project representation as a network.
Estimates of activity durations.

Calculation of forward and backward passes.
Determination of activity floats.
Determination of the critical path.

Selection of a project

* Identify Project.
* Appraisal Project.
* Select Project.

U

Planning the project

¢ Development of the extent of work.
¢ The basic process of scheduling.

e Time/ expenditure tradeoffs.
e Resource consideration.

1L

Project implementation

e Team & work organizing.

» Time/expenditure/achievement objectives.
* Monitoring the project.

o Controlling the project.

1l

Project Completion

¢ Resolving the project team.
¢ Delivering the project.
¢ Making accounting and reports.

Figure 4: Project life cycle

2 Preliminaries

Neutrosophic theory was developed by the authors in [6]. Some concepts regarding neutro-
sophic sets are presented below.

Definition 1: Let X be a space of points and x € X. A neutrosophic set 4 in X is
defined by a truth-membership function 74(x), an indeterminacy-membership function 74(x),
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and a falsity-membership function F4(x), and T 4(x), 14(x), and F4(x) are real standard or real
nonstandard subsets of [—0, +1].

Definition 2: Let oz, 65, and B; € [0, 1] and aj, a, a3, and a4 € R, where a1 < a»
< a3 < a4. Then, a single-value trapezoidal neutrosophic number a = ((a1, a2, a3, aq); oy,
0, Bz) 1s a special neutrosophic set on the real line set R, with truth-, indeterminacy-, and
falsity-membership functions defined as:

X—a
ag ( ) (a1 =x=<a)
ar —ay
o am<x<a
To(x) = | % o (a2 =x=a3) ()
Qg ( ) (a3 <x=<ayq)
as — as
0 otherwise,
(a2 —x+0;(x—ay)) (@1 <x<a)
(az —ay)
o (a2 <x=<az)
L) =1\ (x — a3 +6; (ad — x)) 2
(a3 <x=<ay)
(as —az) -
1 otherwise,
(az—i;/ia;;—al)) (a1 <=x<ap)
ag (a2 <x=<az)
Fa) =1 (x — a3+ Bz (a4 — x)) 3)
@ — ) (a3 <x<ay)
1 otherwise,

where «;, 0;, and B; depict the maximum truth-membership degree, the minimum indeterminacy-
membership degree, and the minimum falsity-membership degree, respectively.

3 Methodology

In this section, we discuss the basic neutrosophic scheduling of an activity-on-arc (AOA)
network. The primary contribution of the program evaluation and review technique (PERT) and
CPM is the development of project schedules, which is one of the core topics in PERT and CPM
use. Projects can be broadly represented in two modes, i.e., the AOA mode and the activity-on-
node mode. A number of common terms are used in network (arrow) diagrams, such as “activity,”
which is a task that requires time and resources. An activity is represented by an arrow; the tail
represents the start, and the head represents the completion of the activity. The length, shape,
and direction of the arrows are not related to the size of the activity. The events or nodes are the
beginning and endpoints of an activity and represent specific points in time. Each activity has start
and finish events. It does not consume any resources and is represented by a cycle. The tail event
is the (ith) event, and the head event is the (jth) event where (j > 1). The path is an unbroken chain
of activity arrows connecting the initial event to some other event. Arrow (network) diagrams
are graphical depictions of sequentially connected arrows and nodes representing the activities
and events of a project. Tab. 1 summarizes the differences between the two modes of project
representation. Care is required when deciding the type of representation to use for various
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activities in the project network and activity durations, as we shall see how uncertain activity times
or random activity durations can be accommodated in the project scheduling framework using the
neutrosophic CPM methodology. The essential problem in this case is that activity durations are
uncertain; time presents considerable uncertainty because the time required to complete an activity
is not always easily or accurately estimated. Therefore, neutrosophic theory is used to estimate the
times of activities in a project assuming various estimates based on expert opinion; these times
are expressed as trapezoidal neutrosophic numbers.

Table 1: Alternative project representations

Activity on arc networks (A-O-A) Activity on node networks (A-O-N)

Arrow diagrams Priority & successor diagrams

O——0 Q=

Schedule algorithms
e Event oriented networks e Activity oriented networks
e Path enumeration

Our objective is to determine the critical path, which is the longest path in the network. The
critical path places a lower boundary on the project completion time so that the project cannot
be accomplished at a time shorter than the length of the critical path. A project may take a
longer time to accomplish, but the critical path is the minimum possible completion time of the
project. The critical path also presents a means of providing control for project management.
Because it determines the project duration, the critical path identifies a subset of (critical) activities
that will allow the comprehensive monitoring and control of the entire project. This approach
allows control of the project duration and, to a large extent, the project cost. The critical path
can be determined in several ways. One of the simplest methods for determining the critical
path is by listing and enumerating all network paths yielding not only the longest path but
also the next longest path and all other paths in the project network. This method is useful
in many other areas, such as project crashing, which simply means a project is failing because
more resources than initially estimated are spent being on activities. When activity times are
reduced, the critical path must be made shorter. Then, other paths become critical, and keeping
track of these various other paths is important. Event-based computations on AOA networks
is another method of determining the critical path. Many studies have applied fuzzy set theory
to determine and calculate the critical path in AOA networks, but these works focus only on
membership values [7-17]. Intuitionistic fuzzy set theory deals with both membership and non-
membership values. Neutrosophic set theory developed by Smarandache treats uncertainty and
ambiguity by adding indeterminacy-membership functions, in addition to truth-membership and
falsity-membership functions [18-22].
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The framework of the proposed model is shown in Fig. 5. Here, we present a neutrosophic
event-oriented algorithm to define the critical path in an AOA network as follows:

Neutrosophic event-oriented algorithm in AOA networks

Step 1: Represent the project as an AOA network.

Step 2: Assess the activity durations as a trapezoidal neutrosophic number.

Step 3: Obtain a crisp model of the neutrosophic duration times of the activities.

The means by which any two single-value trapezoidal neutrosophic numbers are compared
depends on the score and accuracy functions. Let a (a single-value trapezoidal neutrosophic
number) = ((ay,by,c1), &z, 05, Bz), then

|
Score function, S (a)= T [al + b1 +cl+dl]x Q+a;—060;— Bz) 4)
and
1
Accuracy function, A (Zl) =16 [al +b14+cl+dl]x Q4+a; —6;+ Bz) . (%)

The crisp model applies the score and accuracy functions of a, in addition to the truth-
membership, indeterminacy-membership, and falsity-membership functions, to represent a neutro-
sophic CPM model using Eqgs. (1)-(5), respectively.

Step 4: Calculate the forward pass.
In any network, the forward pass calculations are performed as follows (Fig. 5):

o @ ©

Figure 5: Forward pass calculations

e Initialization step:

E1 (or the earliest occurrence time of the first node, project start time, S) = 0
(E1 =0, for all source or starting nodes) (6)
e Ej (or the earliest occurrence time of node j) = Max (Ei + Tij) for all i before node j.
(set B(G) (set of all immediately predecessor nodes of node j)). (7)
Step 5: Calculate the backward pass.

In any network, the backward pass calculations are performed as follows (Fig. 6):
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A (i)

Figure 6: Backward pass calculations in AOA networks

e Initialization step:

Ln (latest occurrence of all finishing nodes)
= project duration, T as determined in the forward pass.

(8)

e Li (or the latest occurrence time of node 1) = Min (Lj — Tij) overall successor nodes j of
the node II being investigated.

(set AJi] [the set of all immediate successor nodes of node i]). 9)

Step 6: Calculate the activity schedule from event times.

Determination of an activity schedule from the event times, the forward pass, and the back-
ward pass gives us information on the Early Start (ES), Early Finish (EF), Late Start (LS), and
Late Finish (LF) for all activities in the network (Fig. 7).

Ei Ej
Tij
o, @
Li Lj

Figure 7: Event time calculations

FORWARD PASS:
ES of activity ij = ES(ij) = Ei (10)
EF of activity ij = EF(ij) = ES(ij) + Tij (11)
BACKWARD PASS:
LF of activity ij=LF(@j) =L (12)
LS of activity ij= LF(j) — Tjj (13)
Step 7: Calculate the event slack and float.
e Event slack (Fig. 8)

Slack on node i= Li— Ei. (14)
Slack on node j=1L1j—E;. (15)
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Ei Ej
Tij
@ -
Li Lj
Ei Li Ei Li
1 1 1 1

Figure 8: Event slack calculations

e Activity float

In general, all activities have both predecessors and successors. Activity floats depend on how
these elements accommodate the activity. Four types of float are possible. If the successors are
performed as late as possible and predecessors are performed as early as possible, giving the
maximum, a total float is obtained. If the successors and predecessors are performed as early
as possible, a free float is obtained. If the predecessors are performed as late as possible and
successors are performed as early as possible, leaving very little time left for other activities, an
independent float is obtained. Finally, when the successors and predecessors are performed as late
as possible, a safety float is obtained. These four types of floats are shown in Fig. 9.

SUCCESSORS
Early Late

; Early Free Total
g Float Float
=
@)
=
192]
7]
Q
5} Late Independent Safety

Float Float

Figure 9: Interpretation of four types of floats

Total Float=TF(ij)=Lj— Ei—Tij=LS — ES=LF — EF. (16)
Safety Float=SF(ij) = Lj— Li— Tij=TF — Slack on preceding node. (17)
Free Float = FF(ij) = Ej — Ei — Tij = TF — Slack on succeeding node. (18)

Independent Float = IF(ij) = Max (0, Ej — Li — Tij)

19

= Max(0, Total float — Slack on succeeding and preceding nodes). (1)

Step 8: Determine the critical path, which consists of activities in which the four types of

floats are equal to zero, in the AOA network representation of the project. The framework of the
proposed algorithm is summarized in Fig. 10.
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Project representation as (A-O-A)
network

|
r 3

Assessment the duration times of
activitiesas atrapezoidal neutrosophic
number
1
Determine crisp model of neutrosophic

CPM
l
v

Forward pass calculations

¥

Backward pass calculations

{
Early and late start schedule

—

Event slacks and floats

]
v

Critical path and completion
determination

Figure 10: Framework of the proposed model

4 Tllustrative Example

Consider a project of publishing a new children’s book that has 10 activities: (A) assigning
lunch group members, (B) completing a questionnaire, (C) scheduling interviews, (D) designing
and ordering marketing materials, (E) setting a kick-off book launch meeting, (F) preparing
book profit and loss statements, (G) planning the author’s travel itinerary, (H) completing the
book launch form, (I) preparing book sales, and (J) distributing the internal marketing materials.
The project data are summarized in Tab. 2. Here, the task is to determine the critical path and
compute the completion time of the project.
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Table 2: The project data

Act Di Precedence
A 8

B 7

C 9

D 3 A.

E 5 B.

F 2 C.

G 6 C.

H 4 D.

I 1 D.

J 11 E, F I

Solution:
a. Apply the proposed neutrosophic event-oriented algorithm as discussed above.

e The network representation is shown in Fig. 11.

: D (3)
| (1~)\

V
B (7~)

E (57) J (1) N
@
G (6°)

Figure 11: AOA network representation

b. Estimate the duration of activities as trapezoidal neutrosophic numbers. Let
1=1((1,5,7,9):0.7,0.3,0.2), 6=1((3,5,6,9);0.6,0.4,0.5),

2=1((1,2,4,6);0.4,0.3,0.7), 7=1((2,4,7,11);0.3,0.1,0.5),
3=((1,2,3,5);0.8,0.2,0.6), 8=1((3,5,8,10);0.4,0.2,0.3).
4=1((1,3,4,10);0.5,0.9,0.3), 9=1((5,7,9,13);0.7,0.6,0.3).
5=1((1,3,5,7);0.5,0.2,0.9), 11=((5,6,9,11);0.7,0.2,0.5).

c. Compute the crisp values and score functions of each trapezoidal neutrosophic number by
using Eq. (4). The results of these calculations are presented in Tab. 3.
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Table 3: Crisp values of activity times

>
&

Di Precedence

3.1
2.6
3.8
1.4
1.4
1.1
2.4
1.5
3

5

ST ImQTmmUAw>
oonNNw»

fes!
ey
lam)]

d. Calculate the forward pass using Eqs. (6) and (7) and place the results in a rectangle above
cach node, as shown in Fig. 12.

Figure 12: Forward pass calculations

e. Calculate the backward pass using Egs. (8) and (9) and place the results above each node,
as shown in Fig. 13.

Figure 13: Backward pass calculations
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f. Calculate four times (ES, EF, LS, and LF) for each activity in our illustrative example by
using Eqgs. (10)—(13). The results of these calculations are presented in Tab. 4.

Table 4: Four time estimates for each activity

Activity Time estimated ES LS EF LF TF
A 3.1 0 3.1 0 3.1 0
B 2.6 0 2.6 3.5 6.1 3.5
C 3.8 0 3.8 2.6 6.4 2.6
D 1.4 3.1 4.5 3.1 4.5 0
E 1.4 2.6 4 6.1 7.5 3.5
F 1.1 3.8 4.9 6.4 7.5 2.6
G 2.4 3.8 6.2 10.1 12.5 6.3
H 1.5 4.5 6 11 12.5 6.5
I 3 4.5 7.5 4.5 7.5 0
J 5 7.5 12.5 7.5 12.5 0

g. Calculate four types of floats for each activity using Eqs. (14)—(19). The results of the float
calculations are shown in Tab. 5.

Table 5: Four float types for each activity

Activity Total float Safety float Free float Independent float
A 0 0 0 0
B 3.5 3.5 0 0
C 2.6 2.6 0 0
D 0 0 0 0
E 3.5 0 3.5 0
F 2.6 0 2.6 0
G 6.3 3.7 6.3 3.7
H 6.5 6.5 6.5 6.5
I 0 0 0 0
J 0 0 0 0

h. Determine the critical path after completing the computations of all types of floats; here,
the critical path consists of activities in which the four types of floats equal to zero.

From Tab. 4, we know that the critical activities are A, D, I, and J and that the four types
of floats for these activities are equal to zero. The critical path is A-D-I-J, as shown in Fig. 14.
The expected project completion time is TA + TD + TI 4+ TJ = 12.5

A ——> D ——> | —> J

Figure 14: The critical path
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We can also track and obtain the critical path using a Gantt chart, a method to represent
the activity scheduling of a project. In the present example, activities A, D, I, and J are critical
activities because they have no floats. These critical activities have a fixed duration and must
occupy time slots as shown in Fig. 15. In addition, we find that the duration times of these
activities are equal to the completion time of the project. However, the remaining activities, e.g.,
activity H, can be performed early or late, as shown in the Gantt chart. If activity H is performed
early, it starts at 4.5 and finishes at 6 units of time; if H is performed late, it starts at 11 with
a flexibility equal to 5 units of time. This situation is also true for all other non-critical activities
(i.e.,, B, C, E, F, G, and H), which similarly have a great deal of flexibility, as shown in the Gantt
chart. The critical path in our example Gantt chart is indicated by red lines.

Time

Activity

Figure 15: Tracking of the critical path through the Gantt chart of a project

5 Conclusion

Little emphasis on the clarity of decision-making processes in daily life real-world problems
has been made, and the resulting decisions are always ambiguous and uncertain. Neutrosophic
sets have been introduced as a generalization of fuzzy, intuitionistic fuzzy, and crisp sets to over-
come the ambiguity surrounding real-world problems. Neutrosophic elements are expressed using
not only truth- and falsity-membership functions but also indeterminacy-membership functions.
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In this paper, we solved the problem of finding the critical path in AOA networks by using a
neutrosophic event-oriented algorithm. The activity time estimates are presented as trapezoidal
neutrosophic numbers, and a crisp model of the problem was obtained by applying score and
accuracy functions.
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