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Abstract This chapter explores how the Internet of Things and the utilization of
cutting-edge information technology are shaping global research and discourse on the
health and wellbeing of urban populations. The chapter begins with a review of smart
cities and health and then delves into the types of data available to researchers. The
chapter then discusses innovative methods and techniques, such as machine learning,
personalized sensing, and tracking, that researchers use to examine the health and
wellbeing of urban populations. The applications of these data, methods, and tech-
niques are then illustrated taking examples fromBERTHA (BigDataCentre for Envi-
ronment and Health) based at Aarhus University, Denmark. The chapter concludes
with a discussion on issues of ethics, privacy, and confidentiality surrounding the use
of sensitive and personalized data and tracking or sensing individuals across time
and urban space.

17.1 Smart Cities and Health

Smart cities have become popular in urban discourse, research, and policy envi-
ronments; yet the term remains ambiguous. Here, we conceptualize smart cities as
enabledby the Internet ofThings (IoT),where sensing citizens and authorities employ
information and technology to better navigate their lives and manage resources more
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efficiently. The utilization of information technology presents unique opportunities
for understanding individual behavior and interactions in the urban space and their
implications for human health and wellbeing. Often the aim is to combine the use of
digital technologies and green city planning to optimize wellbeing and at the same
time improve the physical environment and mitigate climate change. Boulos and
Al-Shorbaji (2014) assert that an important component of smart cities is that they
contain the ingredients necessary for improving the quality of life and wellbeing
of residents. The technology and information available to urban residents have the
potential to affect their health positively or negatively.

On the one hand, technology and the interconnection of people via the Internet
present the opportunity for increasing access to health and health-enhancing infor-
mation while reducing the cost of health care, particularly for the socioeconomically
vulnerable (Aborokbah et al. 2018; Solanas et al. 2014). Remote monitoring of indi-
viduals can help quantify individual-level risks and provide vital information for
effective person-centered health care (Aborokbah et al. 2018). For instance, real-
time individual physiological and environmental information could help healthcare
providers understand contextual factors that expose an individual to adverse health
outcomes or improve their health and psychosocial wellbeing (Bryant et al. 2017;
Lomotey et al. 2017; Rocha et al. 2019).

Others talk about the use of technology and information to deliver services to
vulnerable and disadvantaged persons in the urban context with the aim of increasing
their independence and wellbeing (Gilart-Iglesias et al. 2015; Rodrigues et al. 2018;
Turcu and Turcu 2013). Just as studies show the myriad advantages associated with
using personal information and technology in advancing health and wellbeing, they
also highlight their negative effect on health outcomes (Do et al. 2013). The use of
the Internet has opened new health and wellbeing challenges, beyond the traditional
methods of providing and sustaining health and wellbeing, including misinforma-
tion, cyberbullying, cyber-fraud, and victimization. Do et al. (2013) observed that
excessive use of the Internet among adolescents contributes to a higher incidence
or likelihood of reporting depressive symptoms, suicidal thoughts, overweight, and
lower self-reported health status due to sleep deprivation. Likewise, studies also
show that the Internet has given an impetus to anti-vaccination campaigns through
misinformation, contributing to lower acceptance and hesitation in accepting vaccine
(Dubé et al. 2014).

This chapter is structured into four main sections, all considering health and well-
being in an urban context. We begin by discussing data in an informatics era, before
considering existing and emerging analytical techniques and methods. Example
applications are taken from our BERTHA center, before we round off the discussion
with the important issues surrounding privacy and confidentiality.

BERTHA (Big Data Centre for Environment and Health) is our interdisciplinary
research center, based at Aarhus University, Denmark, bringing together urban
geographers, environmental modelers, data scientists, and medical practitioners.
BERTHA aims to muster the huge potential opportunities from the big data revolu-
tion in medical, environmental and population registers, personalized sensors, and
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crowdsourced data mining to disentangle the complex interactions between whole-
life-course environmental and social exposures, and human health. Key to this over-
arching aim is assembling, linking, and analyzing diverse, huge datasets, developing
algorithms, and intelligent data analytics.

17.2 Data

17.2.1 Big Data

There has been a lot of hype and hyperbole in the past decade over the Big Data
paradigm. Big Data from a variety of data sources from government and citizens
can be applied to improve urban health and wellbeing (Fleming et al. 2014). Within
BERTHA, we see Big Data as not just about using large datasets, but critically, the
combination of (huge) datasets to reveal value greater than the sum of the individual
parts. The Big Data term has also been used to encompass the use of predictive data
analytics and the computational analysis of extremely large, multi-source datasets to
reveal patterns, trends, and associations. Thus, we prefer Rich Data rather than Big
Data.

17.2.2 Individual and Population Data

Decisions on the health and wellbeing of a population are often informed by data and
knowledge available on individual citizens. Generally, there are two sources of data
for this decision-making process: individual or population data, and environmental
data. Traditionally, administrative records and censuses were the main sources of
individual or population-level data. While these data sources have their flaws, the
data from some countries, including the Scandinavian countries, contain rich infor-
mation about individuals from the onset of their lives till their demise (Frank 2000).
The data from these registers enable detailed analyses and research on each individual
in the population. The information from the various registers can be linked to each
member of the population through a unique personal identification number. Exam-
ples of such unique identification numbers are Denmark’s Centrale Personregister
(Central Person Register, CPR) number, Norway’s Fødselsnummer (national identi-
fication number), and Sweden’s personnummer. In Denmark, these unique identifiers
enable researchers to link data and information from nearly 200 databases from infor-
mation on places of residence, employment, to medical records and socioeconomic
data on salaries and tax. The records of some databases extend as far back as 1924
(Pedersen 2011; Pedersen et al. 2006), but the critical ones have been digital since
1968. In other countries, the information about individuals fromgovernment registers
and databases can be extracted or linked using social-security numbers; for example,
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Canada’s Social InsuranceNumber (SIN). Similar to the Scandinavian personal iden-
tification numbers, these unique social-security numbers are normally assigned at
birth. Information from the registers and the databases, such as a residential address,
workplace, and school, can also be geocoded, enabling researchers to identify envi-
ronmental exposures over each individual’s total life course (Pedersen 2011). Partic-
ularly in the case of the data from Scandinavian registers, it is possible to define
location histories of each individual in the population, accurately georeferenced to
1 m (Pedersen 2011).

In thedigital era, tracking and sensingof an individual’s activities in urban environ-
ments has become commonplace (Lupton 2013, 2017; Swan 2009, 2012). Advances
in technology and miniaturization have facilitated the ability to track time-activity
patterns of individuals, via GPS-enabled smartphone apps, watches, or proprietary
wearable devices. These digital devices and social-media platforms not only enable
individuals to generate and analyze personalized health data, but also enable them to
share this information directly or indirectly with others (Gimpe et al. 2013; Lupton
2013, 2017). Prior to this, the accepted practice was to use daily research diaries to
record life events and activities. These diaries may be intimate journals with uncen-
sored information about one’s thoughts, opinions, or experiences; or memoirs often
written with an audience in mind; or a log of events and activities that occurred in
one’s life (Elliott 1997).

17.2.3 Environmental Data

Records of air pollution, water quality, housing conditions, recreational space, and
exposure to chemicals traditionally came from field surveys, household surveys, or
stationary observations. However, these data are usually limited in sample size and
are not often available for longitudinal studies. Increasingly, environmental data are
obtained from modeling or simulation, informed from field monitoring.

Remote sensing is a valuable source of environmental data, which are complemen-
tary to survey data and help to capture the dynamics of urban environments. Time-
series satellite images allow understanding of urban sprawl and shrinkage in many
parts of the world. For instance, urban expansion has been investigated with Landsat
time-series images over more than two decades in India (Sharma and Joshi 2013),
the USA (Li et al. 2018; Sexton et al. 2013), Japan (Bagan and Yamagata 2012), and
China (Shi et al. 2017). The variations of urban greenness across the years can also
be monitored via remote-sensing data and used to predict the outbreaks of mosquito-
borne diseases in cities (Chen et al. 2018). On the other hand, building damage and
land-use changes due to environmental disturbances, such as the 2003 Bam earth-
quake in Iran (Chini et al. 2008) and the 2011 Fukushima nuclear disaster in Japan
(Sekizawa et al. 2015), were traced by satellite. In complex human-environment
systems, researchers also utilize satellite images to understand different pathways of
agricultural damage (Chen and Lin 2018).



17 Urban Health and Wellbeing 263

Many recent epidemiological studies have evaluated the health impacts of specific
land-cover types and the configuration of urban land use, including commercial, resi-
dential, and recreational areas, green space, agricultural areas, and proximity to blue
space. The literature shows that natural environments, such as green or blue space,
can have health-enhancing (or salutogenic) properties that improve the physical and
psychosocial wellbeing of urban residents (Bornioli et al. 2018; Duarte et al. 2010;
Olsen et al. 2019; Stigsdotter et al. 2017); however, the associations between envi-
ronmental measures and health remain uncertain (Briggs et al. 2009; Wheeler et al.
2015). Other studies have questioned the relationship between salutogenic spaces
and health outcomes (Gren et al. 2018). For instance, while green space may miti-
gate pollution levels through removing pollutants from the air, it is also a source of
pollens, aggravating allergies and increasing particulate-matter counts.

Researchers have also been critical of the proxies used in measuring environ-
mental exposures. Determining exposure metrics of various land covers that poten-
tially impact health is complex. Early work (Pearce et al. 2006) used distance as a
proxy for exposure to green space, by defining either a radius around the residential
home or using the road network distance. Nearly, all studies have focused on the
residential home, or neighborhood, as the location of analysis, often ignoring places
of work or education and the more complex daily-life trajectories (Sabel et al. 2000,
2009; Steinle et al. 2013). However, proximity does not equate to accessibility. The
literature highlights the distinction between the two concepts and stresses that phys-
ical and socioeconomic barriers (including, highways, or gated communities) may
impede the ability of individuals in proximity to these natural environments from
fully benefitting from their health-enhancing properties (Markevych et al. 2017).
More recently, research has moved on to consider the quality and configuration of
urban space, since there is evidence that homogeneous spaces are less beneficial to
health than heterogeneous, biodiverse ones (Wheeler et al. 2015).

Air pollution is traditionally measured by costly devices at fixed-site monitoring
stations. It is absolutely crucial that such devices are advanced and accurate, since
they are usually used in air-pollution monitoring programs legislated by govern-
ments to test compliance with air-quality guidelines. However, it is increasingly
being questioned whether assessing personal exposure to air pollution using fixed-
sitemonitoring datamight provide an error in the individual exposure as the impact of
the mobility pattern is ignored (Buonanno et al. 2014; Steinle et al. 2013). However,
newly developed low-cost, portable sensor nodes provide new options for personal-
exposure monitoring (PEM) by mobile measurements. The sensor nodes can easily
be carried around during our daily life, where we constantly move in time and space
through different environments both indoor and outdoor.We commute between home
andwork, spend time indoors with household activities andwork, andmaybewe play
with our kids at the local playground. Thus, we are constantly exposed to highly vari-
able concentrations of air pollution with documented evidence for negative health
effects. However, these low-cost personal air-pollution sensors are not as robust
scientifically as the fixed-site monitors, and it is still uncertain how measurements
are affected when the sensor nodes are moving: how does it affect the performance
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of the sensors when one moves between different microenvironments, especially
when one moves from indoors to outdoors, exposing the sensor to rapid changes in
temperature and humidity.

17.3 Methods and Techniques

Recent advances in information technology have contributed new sources of indi-
vidual data for researchers in their quest to understand human-environment inter-
actions and their impact on health and wellbeing in urban space. Mobile digital
devices, such as smartphones, smartwatches, tablets, and sensors, together with apps
on the devices, can collect users’ data on physical activity, sporting performance, and
daily routines, as well as demographic and health data. These mobile devices also
simultaneously provide spatiotemporal geolocational data of the user, using GPS or
cellphone-network triangulation. The information from these devices has radically
changed the opportunities for researchers and practitioners within the health and
wellbeing arena. For researchers, it has extended the traditional boundaries and the
methods, techniques, or approaches used in conducting our studies; and also makes
us critical of existing models and concepts of health and wellbeing (Lupton 2013;
Swan 2009). For medical practitioners, the data can provide additional information
about patients, the inclusion of the individual in the healthcare process, and the ability
to provide holistic care for patients (Dingler et al. 2014).

Compared with traditional methods, multi-source big data could be collected
frommany other aspects passively and unconsciously. Wang et al. (2019a, b) in their
survey about sensor-based human activity recognition (HAR) catalog common-used
sensors into four types: (1) Inertial sensors, including accelerometer, gyroscope, and
magnetometer applied in detecting multiple motions; (2) Physical health sensors,
such as electrocardiograms, skin temperature, heart rate, and force sensors, used to
detect people’s health conditions, while new technology products like sports watches
and fitness tracking bracelets have a similar function; (3) Environmental sensors like
temperature, light, and barometer sensors, delivering context information related to
activities; (4) Others: other wearable devices like cameras, microphones, and GPS.
GPS can track people’s routes and record locations simultaneously and is useful
in studies of urban space and people’s behavior (Bohte and Maat 2009). The cell
phone has been applied in public-health studies and can be combined with gyroscope
(Shoaib et al. 2014) and barometer (Muralidharan et al. 2014) to identify physical
activity and sleep quality. Image sensors like wearable cameras have been applied
in recording people’s daily exposure (Wang and Smeaton 2013), including dietary
intake (Zhou et al. 2019), and environmental exposure (Chambers et al. 2017).

The emergence of social media and smartphone technologies more generally has
opened new sources of data for understanding health and wellbeing in the urban
context. However, the data from these sources are subject to potential biases since
users are often not fully representative of society, under-representing persons of lower
socioeconomic status, and older and non-tech savvy persons. It can be argued that
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socioeconomic factors are as important as the physical environment in determining
health impacts on human populations, since a disproportionate share of the burden
of environmental exposure falls on vulnerable groups of society, including low SES,
ethnic minorities, women, and the elderly and young, due partly to issues of envi-
ronmental (in)justice. In addition, SES can explain differences in external exposure
because of the different prevalence of specific behaviors in some groups; for example,
differences in diet between SES groups. Individual health and wellbeing are influ-
enced bymany factors including past and present behavior, healthcare provision, and
wider determinants including social, cultural, and environmental factors. Traditional
sources of data, such as government registers, and demographic and health surveys,
offer information on these broader contextual factors that are often absent in indi-
vidual data from smart technologies. The breadth of the traditional data means they
are relatively less susceptible to selection bias compared to the new sources of data.

Additionally, traditional data also bring the ability to construct area-level expo-
sures and their influence on health and wellbeing, such as to address the context
versus composition debate (Macintyre et al. 2002), regarding the wider question of
which is more important for shaping health: the area in which people live (context) or
the people who make up the inhabitants of that area (composition). Area-level SES
is often estimated by means of a weighted index of factors from published secondary
data, such as the UK Index of Multiple Deprivation (IMD) and the Vancouver Area
Neighborhood Deprivation Index (VANDIX) (Bell and Hayes 2012; Ellaway et al.
2012;Macintyre et al. 2008; Schuurman et al. 2007).Weighted factorsmight typically
include measures of education, income, homeownership, and access to transport.

Another informatics area experiencing fast adoption is using citizens as sensors
(Goodchild 2007) to obtain evidence of citizens’ experiences in the urban landscape
(Zook 2017). An emerging field in the health arena, supported by smartphone tech-
nology, is ecological momentary assessment. Here apps are utilized such as in the
Mappiness project (MacKerron and Mourato 2013; Seresinhe et al. 2019) to ask
people to describe their responses to the environment directly, with the advantage
that input is related to the current location viaGPS. This allows researchers to explore
the more psychological aspects of how people are responding to their environments.

Modeling, as opposed to monitoring, of urban environments has been enabled
by the digital era. As a branch of artificial intelligence, machine learning is a field
of study growing in popularity in urban modeling that provides computers with the
ability to automatically learn and improve their own algorithms from data. Machine-
learning studies often investigate urban dynamics based on remotely sensed data.
The approach of mapping the urban environment with machine-learning methods
goes back to the 1990s. For instance, Gong et al. (1992) used a maximum-likelihood
classifier and USGS Landsat imagery to automate urban land-use mapping. Such
development, however, was slow until the 2000s, when satellite images at 30 m and
finer resolution became affordable and publicly readable (Weng 2012).

Machine learning has the potential to automate the process of urban mapping,
which traditionally relies on intensive labor. Automatic image recognition, from
sources such as Google Streetview, encourages urban scientists to detect more
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nuanced features in cities.With the capability of increasing computation power, deep-
learningmethods, such as convolutional neural networks (CNNs), have increased the
dimension of detectable urban attributes. Because of CNN’s capabilities in recog-
nizing the spatial patterns of image patches, recent studies have applied CNN to
streetview images and aerial photographs for quantifying a sky view of street canyons
(Gong et al. 2018), mapping local climate zones (Qin et al. 2017), and classifying
specific types of urban facilities (e.g., church, park, and garage) (Kang et al. 2018).
Remote sensing and machine learning are complements to urban simulation models
(Batty 2013), which can forecast dynamics and growth, but not represent spatial
details.

Similarly, researchers have also applied machine-learning methods to data from
personalized sensors and streetview images to understand dynamism in the urban
space and its effect on mental health as well as susceptibility to crime (Goin et al.
2018; Helbich 2018; Helbich et al. 2016; Mohr et al. 2017; Wang et al. 2019a, b).
Machine learning can also be used to improve the prediction accuracy of models that
seek to understand the effect of individual and community factors on health outcomes.
Machine-learning approaches, such as least absolute shrinkage and selection operator
(LASSO) and random forest, have been used to identify optimal individual-level and
community-level factors that predict firearm violence in urban communities (Goin
et al. 2018).

17.4 BERTHA Studies

17.4.1 AirGIS

Models are used in academic research to enhance our knowledge of reality by simpli-
fying the complexity of the phenomena we study as researchers. For instance, GIS
models are used to estimate and assess exposure to adverse environmental conditions.
In Denmark, the Danish AirGIS (Jensen et al. 2001) and Operational Street Pollution
Model (OSPM) (Berkowicz 2000) are routinely used to estimate street- or local-scale
air pollution. In an effort to improve this model system and increase its accessi-
bility, researchers in BERTHA developed an open-source GIS model for computing
local-scale air-pollution estimates (Khan et al. 2019a, b). The new model is able
to reproduce both temporal (correlation range: 0.45–0.96) and spatial (correlation
range: 0.32–0.92) variations in observed air pollution, and subsequently to estimate
both short- and long-term exposures to air pollution, which enables researchers to
better understand its duration and effects on human health andwellbeing. TheAirGIS
system is currently being extended to estimate noise mainly originating from urban
transport.

At present, the AirGIS is being further extended to estimate dynamic time-activity
exposure to air pollution by tracking individuals in urban commuting environments,
and making use of measured and modeled air-pollution data (Khan et al. 2019a,
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Fig. 17.1 a Modeled PM10 (µg m−3) at GPS track points of the walking-based activity of the
study participants in Copenhagen, Denmark. The modeled values are for Monday, February 4,
2019, during 7:00–10.00 am b the same for modeled PM2.5 (µg m−3)

b). The focus is on developing a novel exposure assessment framework to facilitate
health-related studies. As an example a walking-based activity was performed in
Copenhagen, Denmark (Khan et al. 2019a, b). At GPS track points, air-pollution
concentrations (NOx, NO2, PM10, and PM2.5 in µg m−3) were calculated using the
AirGIS system to analyze dynamic exposure to modeled air pollution (Fig. 17.1).
Preliminary findings suggest that exposure estimates based on time-activity patterns
of individuals depend on the level of one’s mobility as well as on the location of
one’s workplace relative to home.

17.4.2 Personalized Tracking and Sensing

Wearable devices are practically ubiquitous in the informatics era. Among these
devices, the wearable camera has attracted increasing attention, since it can capture
details of daily life by images or videos, which can enhance researchers’ under-
standing of people’smovements, behaviors, and preferences. Zhang and Long (2019)
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Fig. 17.2 Wearable camera (also appears in Zhang and Long 2019)

conducted research in Beijing, validating applying wearable cameras (Fig. 17.2) in
built-environment studies. Through identifying and analyzing 8598 images collected
from a one-week experiment, they summarized the spatiotemporal characteristics of
the user while wearing the camera, and compared the frequency of greenery (the
ratio of green) and outdoor exposure (the ratio of blue) by means of color identifi-
cation. The images were classified using artificial intelligence, and common image
elements (tags) were identified (Zhang and Long 2019), including building, traffic,
figure, food, digital screen, and greenery. Results showed that as a kind of digital
lifelogging, an individual image database is an effective support for future interdisci-
plinary studies involving the environment and personal wellbeing from amicro-scale
perspective. In the future, as the popularization of IoT technology becomes real, an
increasing number of wearable gadgets such as wristbands (pulse, blood pressure,
and heartbeat), glasses (eyesight, eye pressure, distance to screen) and so on, can be
utilized to build a more comprehensive profile of individual health and exposure.

17.4.3 Personalized Air-Pollution Sensors

Computer and sensor technologies have developed tremendously over the past ten
years, and air-pollution sensors have been miniaturized, are reasonably accurate,
cheap, and have a fine time resolution. This development enables personal-exposure
monitoring, and deploying such measurements might improve our knowledge about
how we are exposed to air pollution during our regular activities. However, person-
alized sensors require a user-friendly interface to ease their use by those who wish
to monitor their daily exposures. This is often done by visualizing data via an app.
However, the design of such apps demands that some decisions be made in advance.
Howmuch information should the user of the app be presented with and how are data
visualized in the most useful way? Will the idea of using different color zones make
air-pollution data more understandable or will it misinform; for example, if green,
yellow, and red are used to indicate low, medium, and high concentration ranges,
then there is a risk that the color red will scare the user and that the color green will
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Fig. 17.3 User interface of
personalized air-pollution
monitoring app

misinform, as low concentrations do not necessarily mean a healthy environment.
Another important thought is whether GPS positions are presented or not and how are
these are secured in accordance with the EU’s General Data Protection Regulation
(GDPR). Our work with the personalized air-pollution sensors focuses on optimizing
sensor performance in a mobile environment, along with app development to convey
data to the users (Fig. 17.3).
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17.4.4 Mental Health

In a nationwide study, researchers in BERTHA have combined data from the Danish
Psychiatric register and green space, measured by NDVI from 30 m by 30 m Landsat
imagery, in Denmark from 1985 to 2013 in order to understand the potential effect
of green space exposure on schizophrenia. The study reveals that individuals with
childhood exposure in placeswith the lowest amount of greens pace have an increased
risk (1.52-fold) of developing schizophrenia (Engemann et al. 2018, 2019). From
Fig. 17.4, the relative risk of schizophrenia was shown to be higher among persons
in urban areas, especially in the capital (Copenhagen) compared to people living in
similar NDVI deciles in other regions of the country.

Fig. 17.4 From Engemann et al. (2018)
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Further ongoing work is investigating a broader range of psychiatric disorders
and natural environment exposure. Initial results suggest that growing up in natural
environments is associated with lower levels of psychiatric disorders.

17.4.5 Physical Activity

BERTHA collaborates with RUNSAFE,1 a non-commercial, multidisciplinary
research group based at Aarhus University Hospital, Denmark. In collaboration with
Garmin, RUNSAFE has launched a worldwide study recruiting runners willing to
monitor their running habits with a Garmin device and report their injury and health
status on a weekly basis over an 18-month period. With other big data, the relation-
ship between running activity, personal characteristics, and risk of running-related
injuries will be investigated (Nielsen et al. 2019). This data source is fundamental for
BERTHA, as the fitness data will be combined with air pollution data to investigate
if physical activity in polluted areas increases the risk of heart-rate variability as a
sign of effects of air quality on the cardiovascular system.

17.4.6 Danish Blood-Donor Study

In combination with personal sensors, we are aiming at a study examining the obsta-
cles and drivers of mobility in different age groups with a special interest in life
periods—children, teenagers, adults, and seniors—as mobility has been shown to
differ between these groups. The Danish blood-donor study is targeting suscepti-
bility factors related to air pollution, taking advantage of the repetitive sampling of
plasma. This enables the study of biomarkers of air pollution in the total population,
or strata related to genetic markers of susceptibility, for example, atopy, gender, and
age (Hansen et al. 2019).

17.5 Privacy

We live in an increasingly monitored world. People can be tracked as they navigate
their urban lives, via cameras, monitoring of their smartphones, or their social media
accounts. Norms and expectations are rapidly evolving. What might be considered
ethically acceptable by young people might be viewed as intrusive for older gener-
ations. While this offers the urban researcher unparalleled data access, there are
important ethical issues to be considered. Particularly in the health and wellbeing

1Garmin RunSafe: Running Health Study (n.d.) Retrieved October 7, 2019. https://garmin-runsafe.
com/.
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domain, there are multiple privacy issues to consider. Some of these have been
covered in other chapters, notably Chap. 32, but there are specific issues to consider
when handling personal health information.

Taking the example ofDenmark, but similar procedures apply elsewhere, access to
all individual-level data is regulated by Danish legislation. Research studies needing
additional information directly from study participants also need approval from the
relevant ethical committee, followed by informed consent from study participants.
Updated individual-level information originating from national registers may only
be accessed at secure research platforms, including Statistics Denmark or the Danish
Health Data Authority. All data must comply with the recently introduced EUGDPR
Regulation 2016/679 (General Data Protection Regulation).

Standard epidemiological protocols around ethics, privacy, and confidentiality
also apply to data derived from personalized sensors and smartphone apps. Online
consent is normally sought, for example, when users sign up to a new service, be
it a wearable device or a social-media account. When users sign up, are the users
aware of exactly what they are consenting to? Most apps or devices cannot be used
without agreeing to the often long list of terms and conditions, and many users will
not read the full terms. Once signed up, often the terms and conditions allow the
service provider or sensor developer to store, analyze, make public, or sell for profit,
an individual’s data. Researchers can then legally access these data, often without the
individual’s knowledge. This is particularly challenging in a big data environment,
when users might have given consent individually but may not be aware of the ability
to link data across platforms to infer much more.

Lastly, the public debate around data privacy needs to balance the individual’s
right to privacy versus the opportunities to make new scientific discoveries from
wider data availability. Globally, governments are leaningmore toward the protection
of citizen’s rights over the exciting opportunities that wider data access could offer
to make fundamental scientific breakthroughs.

17.6 Conclusions

This chapter started by sketching the relationship of smart cities and urban infor-
matics to human health and wellbeing. We talked about the how advancement in
information technology and mobile devices has enhanced health and wellbeing for
urban residents through the provision of person-centered solutions to understand
how the social and built environment impacts their lives. The technology and its
associated platforms offer less costly ways for delivering vital health and wellbeing
services to the wider population at a minimal cost. They have also encouraged indi-
viduals to be proactive participants in the healthcare delivering system, as well as
offered them resources for engaging in healthy lifestyles via tracking their health
behavior. Nevertheless, the emergence of these innovative and smart technologies is
not without caveats. Within a rapidly changing technological world, researchers and
policy-makers have to keep abreast of changing behavior and the preferences of the
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population, particularly the urban population who are often at the forefront of this
technological drive. IoT has also exposed people to new forms of health risks, such
as cyber victimization, misinformation, and addiction. As researchers, we need to
develop new tools and techniques (beyond the traditional ones) to understand these
risks and their implications on individuals and the wider population. Researchers
and policymakers also have to maintain a delicate balance between the desire to
improve health and wellbeing (using the newly available technology and data), and
respecting individual privacy (and other ethical considerations). Considering the
sociodemographic characteristics of users of these smart devices and technology,
critical questions also remain about whether the research will perpetrate inequali-
ties in the urban space through the policy and planning of health and wellbeing that
emerge from the new IoT.
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