
Graphical Assistance in Parallel Program Development

Kang Zhang* Wanli Ma**
*Department of Computing, Macquarie University, NSW 2109, Australia

**Computer Sciences Laboratory, Australian National University, ACT 0200, Australia

Abstract Researchers have proposed many visualisation
tools that assist the development of parallel programs. A
number of graph formalisms or notations - which we will
call graph models - have been used to visualise various
aspects of parallel programs and their executions. This
paper attempts to classify and compare these graph models
which provide different information at different stages of
parallel program development.

1: Introduction
There have been several interesting taxonomies and surveys
of the systems using computer graphics to assist program
development [l]. Yet limited work has been done on
classifying or summarising the role of computer graphics in
parallel program development, although an increasing
number of parallel programming environments that support
graphical visualisation have been developed. The aim of
this review is to systematically examine the role of
computer graphics in different stages of parallel program
development. We restrict ourselves to the use of graphics to
aid the understanding of parallel programs and their
executions. As Miller puts it: “visualistion should guide, not
rationalise. ‘Guide’ means that the visualisation leads you to
discover things that you did not already know. ‘Rationalise’
means that it lets you illustrate things that you already
know” [2]. We focus on the graph models that meaningfully
interpret parallel computations, rather than on explanatory
presentations that improve visual aesthetics. Therefore, we

are not interested in a presentation that incorporates visual
events or aspects that have no direct counterparts in the
computation being depicted.

We propose a model that classifies parallel program
visualisation systems according to the purpose of using
graphics at different stages of parallel program
development. This classification method relates to the
definition of “scope” in Myer’s taxonomy [3], and
“aspect” in that of Stasko and Patterson [l], but tailored for
the parallel program development cycle. We find that there
are three main stages where computer graphics plays a
guiding role: program construction, debugging, and
performance tuning. As illustrated in Figure 1, at different
stages, graphics plays different roles and may have different
notations. Any of the three stages may be entered more than
once during the development life cycle. The purpose of
using graphics in different iterations of a cycle of the same
stage may vary depending on the progress with the program
development.

At the first stage, the user may use a graphical editor
to build a graphical program which is directly executable
with its operational semantics; or to draw a diagram and then
generate an intermediate textual program of an existing
language syntax for execution. The program may be
optimised during this design stage with the aid of graphics.
This type of system is called a visual programming system
[3]. Another type of system, aprogram visualisation system,
allows program graphs to be generated from textual
n

program construction

software debugging

hardware debugging

performance tuning

graphical

representation

4
trace

information

Figure 1: A classification model for using graphics to aid parallel program development

168
0-8186-6660-9/94 $04.00 0 1994 IEEE

Authorized licensed use limited to: University of Canberra. Downloaded on November 09,2020 at 06:48:43 UTC from IEEE Xplore. Restrictions apply.

programs. At the debugging stage, the execution dynamics
at the program level and its reflection on the multiprocessor
configuration at the machine level may be visualised.
Program animation techniques and some structure- or
process+riented diagrams may be used to help debugging.
The final stage of parallel program development is usually
concerned with the performance tuning. The trace
information recorded during the program execution can be
visualised using various graphical notations which
meaningfully depict the program behaviour. The graphical
assistance at both the debugging and tuning stages is also
classified as program visualisation. Using different
conventional visual formats, such as bar charts, to visualise
the pure statistical data that profiles the performance of a
program is called data visualisation. This paper attempts to
summarise various program visualistion methods used at
different stages of parallel program development.

Petri net modelling/ver$catio;

, Form-based structured design

2: Program Construction

Process graph

PDG

The use of graphics at this stage may serve two reciprocal
purposes, for instance, using a graphical editor supporting a
predefined notation to generate visual programs to perform
desired functions, or displaying the structure of the program
graphically to show either data dependencies or control
flow. The former purpose is classified as visual
programming and the latter program visualisation,
according to Myer [3]. There are several widely used graph
models for constructing programs, such as Petri nets,
Program Dependence Graphs (PDGs), Process Graphs, and
form-based notations. Many systems use more than one
type of graph model, each of which may represent a different
conceptual model of the problem. The criteria for
comparing various graph models for program construction
are described below:

desigdmapping

optimisa tiodtransfonnation

Graph model I Functionality

Functionality - what is the primary purpose of using a
particular model at this stage of program
development.

Code generation - whether it is easy or possible at all to
generate the textual form of the program from the
graphical layout constructed in the first stage. This
criterion does not apply to the parallel visual
languages which are directly executable on
multiprocessor machines without the need to
generate textual programs. The parallel languages of
the latter category are rare at the present and are not
covered in this review.

Scalability - whether a graph model supports hierarchical
constructions so that different levels of program
details can be viewed or constructed through
‘zoom-in’ and ‘zoom-out’ effects. Ideally, a graph
model should allow a given display space to visualise
a parallel program of any size.

Formalism - whether a graph model is built on a formal
basis so that certain program properties are provable
or derivable from the graphical syntax and
underlying semantics.

Parallelism - how easily the viewer can identify parallelism
from a given graph and whether parallel execution is
supported by the graphical semantics.

Vocabulary - how many types of graphical primitives are
required to construct a graph. The vocabulary is
regarded as small if at most five primitives are
needed, medium if it is necessary to remind the user
through a menu or legend of the primitives, and large
if the number of primitives is dependent on the
number of language constructs or dependent on other
factors.

A comparison of the graph models against the above criteria
is shown in Table 1.

Code generation

very difficult

difficult

easy

strong

high weak

high medium

Parallelism I Vocabulary I
indirect 1 ;:: I
indirect

direct

Table 1 : Comparison of graph models supporting parallel program construction

3: Debugging system when executing a particular program. These

hardware levels. At the software level, debugger displays
provide various views of parallel program states. These
include inter-process communication, procedure call order,
etc. At the hardware level, debugger displays show
graphically run-time characteristics of a multiprocessor

Parallel programs may be debugged at both software and characteristics include the pattern Of

inter-processor communication, processor utilisation, etc.
Program animation Plays an important role in debugging
parallel programs. w e can consider the SPY-point and
trace-based debugging approach to be magnified or frozen
animation. Animation can be performed on the existing

169

Authorized licensed use limited to: University of Canberra. Downloaded on November 09,2020 at 06:48:43 UTC from IEEE Xplore. Restrictions apply.

graphical program structures built in the first stage. Typical
graph models used in this category include Petri nets and
Process Graphs. Almost all the models mentioned in Section
2 can support animation in one way or another. In addition to
the four graph models we discussed before, we also compare
Causality Graphs [4] and Space-time Diagrams. The
criteria for comparing various graph models for debugging
are described below:
Orientation - which aspect(s) of the program behaviour a

graph model can explicitly provide for debugging
purposes.

Characterisation - which particular characteristic of the
program a model serves the best to visualise for both
debugging and optimisation purposes. This criterion
distinguishes one graph model from another by
focusing on one characteristic which can be visually
described either by the graph structure or through

Petri net

Process graph

animation.
Granularity - how the primitive graphical components

correspond to the complexity of operations. In other
words, whether a graph node represents a program
statement, a subroutine, a process of computation, or
a processor. Graphs of large granularity are suitable
for high level (e.g. communication) debugging and
those of small granularity are suited for code level
debugging.

Comprehensibility - whether a graph model and its
animation are easy to understand and their implied
meanings of program behaviour are straightforward
to comprehend without textual interpretation (our
judgement of various graph models against this
criterion might be biased by our own experiences).

Table 2 compares various graph models against the above
criteria.

state transition concurrency medium low

communication load balancing large high

I Graph model I Orientation I Characterisation I Granularity I Comprehensibility I

Dependence graph

Causality graph

depencencyhequencing critical path small to large high

communicatiodsequencing time distribution mediudhrge high

I Space-time diagram I communicatiodsynchmnisation I race condition I large I medium I
Table 2: Comparison of graph models supporting parallel program debugging and animation

4: Performance liming
There are two major approaches to displaying performance
data. One is event-oriented display, and the other is
system-oriented display. Event-oriented display depicts all
the interesting events of a program, including types of
events and when they happen. This kind of display has a
strong relation to the original program and mainly serves the
purpose of debugging, as discussed in Section 3.
System-oriented display visualises the execution details of
a given parallel program in terms of the behaviour of the
system components that support the execution. The displays
may show the hardware status or operating system
activities. The graphical notations and the data displayed are
not directly related to the original program.

Time, or a chronological clock, plays an important
role in performance visualistion, since computations are
always performed within space and time. How time is
represented in a graphical notation usually determines the
presentation style. There are two common methods of
representing time, i.e., explicit and implicit representations.
When the chronological order of events are explicitly
displayed along a time axis, the user can view the historical
data and compare the variations of the data across a period of
time. Other visualisation systems use time as an implicit

parameter. The display space only shows the performance
data without a time axis, while the changing of data is shown
through animation.

Many parallel program visualisation systems
provide system-oriented displays using various types of
statistical information. Conventional graphical notations
are usually used at this stage. These include bar charts, dials,
meters, scales, histograms, etc. They give quantitative
measurements of a system’s performance, such as cache
misses, memory and interconnection-network traffic,
communications, etc.

References

[l] J.T. Stasko and C. Patterson, Understanding and
Characterizing Software Visualization Systems. hoc.
1992 IEEE Workshop on Visual Languages, Seattle,
USA, 15-18 September, 1992,3-10.

[2] B.P. Miller, What to Draw? When to Draw? An Essay on
Parallel Program Visualisation. Journal of Parallel and
Distributed Computing, 18(2), June 1993,265-269.

[3] B.A. Myers, Taxonomies of Visual programming and
Program Visualisation. Journal of Visual Languages and
Computing, 1(1), 1990,97-123.

[4] D. Zernik, et al. Using Visualisation Tools to Understand
Concurrency. IEEE Software, May 1992,87-92.

170

Authorized licensed use limited to: University of Canberra. Downloaded on November 09,2020 at 06:48:43 UTC from IEEE Xplore. Restrictions apply.

