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Abstract
Component software is a promising approach for dealing
with the problem of large scale distributed system
devel opment, because it decreases development costs and
increases software quality. One of the central issues for
component software in distributed systems is the location
of components. In large scale distributed systems trading
is already used as a service location mechanism. This is
considered the only way to manage servicesin large scale
distributed systems where complete knowledge of the
system is both unreasonable and unrealistic. Providing
trading mechanisms appropriate for component
development requires a move from appearance based
(interface) to behaviour based (semantic) trading. We
present a semantically enhanced component trading
architecture that enables this move.

1. Introduction

The last few years have placed component software
and component-oriented development issues at the centre
of research for both academia and industry [1, 2, 3, 4].
The reason for this is that despite of continuous progress
in software engineering, software construction remains
still a high risk and high cost process [6]. Software
development techniques seem unable to provide the
necessary productivity increases to keep up with the need
for more and higher quality software. Set aong side,
distributed systems are considered more difficult to
develop, because of the issues that their distributed nature
introduces. Thus, it is not surprising that in large scale
distributed systems the problem is exasperated. This
problem is often referred to as “ software crisis’ and since
its identification variations on the component solution
have been proposed [5].

The basic idea behind component software is that
software systems should be developed by composing
prefabricated components in a way analogous to the way
hardware systems are developed by plugging together
circuit boards. The use of prefabricated components has a
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number of advantages. First, the cost and risk for each
particular system drops significantly. The reason for this
is that the risk in using prefabricated components is lower
since they have been already tested in other systems while
the cost of their development is distributed over a number
of different projects. In addition, the fact that components
are reused from system to system increases confidence in
them since errors are more likely to be detected and
corrected. Moreover, as the devel opment cost and time for
the components is spread into more than one project, the
search for optimal solutions and implementations
becomes feasible. Finally, there is strong belief that
components are a natural step in maturity for software
engineering, in the same way as it was for other
engineering disciplines.

Modular programming and object-oriented
programming are early attempts to provide a component
approach for software development. These techniques
although they contributed in dealing with the software
crisis problem, they failed to realise the full potential of
component software. But the success of technologies like
ActiveX controls [7], JavaBeans [8] and Enterprise
JavaBeans [9] combined with the emergence of
distributed object frameworks like CORBA [10] and
COM [11], and architectures like Jini [12], stimulated
interest in component software [1, 2, 4]. Despite this
interest most issues (e.g. component description
languages, component location and composition
mechanisms) are still open for component software.

This paper focuses on the issue of component location
in large scale distributed systems. In particular it
examines what is the role of trading; a technique aready
in use in large scale distributed systems, as a component
location mechanism. It starts by a short presentation of
components and trading and how they can be combined,
which leads to the realisation of the need for semantically
enhanced component trading. Then, it looks into the
closely related area of component location in software
reuse in order to determine how a semantically enhanced
component trader architecture should be constructed. It
continues to present the architecture and discuss some
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issues related to its implementation. Finally, it concludes
and gives some points for further investigation.

2. Componentsand Trading

In order to determine how components and trading can
be combined we need to define what components and
trading are. A good definition of trading is the following:
“the activity of choosing services, such that they match
some service requirements. The choice is based on the
comparison of the specification of a service required
(provided by a prospective consumer) and the service
specification supplied by service providers or their
agents’ [13]. The main advantage of trading is that it does
not require knowledge of the services available in the
system as naming or directory services do. It just requires
knowledge of the developer needs (specification of a
service type). Thus, a trading service seems the only way
to manage the development of large-scale compositional
systems, where knowledge of the whole system is both
impossible and unreadlistic. Trading was first introduced in
the ANSA model [13] for open distributed processing,
and was adopted as part of the international standard for a
basic reference model of open distributed processing
(ODP) [14]. To date the OMG object trading service [15]
is certainly the most influential due to the success of the
common object request broker architecture (CORBA)
[10Q]. For this reason, the rest of the discussion on trading
is based mainly on the OMG object trading service.

A good definition of components is the following: “A
software component is the unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition by
third parties’ [1]. This definition captures all the defining
characteristics of components (unit of composition, is
subject to composition, etc) and also guarantees that each
component can be reused in a meaningful way by people
other than its producers (explicit context dependencies,
composition by third parties). As is expected, this
definition has significant consequences in the way that
components and trading can be combined.

According to the above definitions, three are the
characteristics of components which have significant
implications for trading: (@) “... explicit context
dependencies...”, (b) “...contractually  specified
interface...” and (c) “...subject to composition by third
parties...”. These characteristics have implication both for
the way components are described (component
description language) and the way components are
matched (trading matching process). A detailed analysis
of these implications can be found in [16], here we just
outline the conclusions.

The first conclusion was that in order to make context
dependencies explicit, the component description
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language should include besides the interface provided by
the component aso the interface required by the
component, which includes the interface definition of all
the operations that the component invokes on other
components. Additionally, it should include the
description of the produced and consumed events, as well
as description of exposed states. It is important to make
states visible, because in some cases the behaviour of a
component depends on the state that the component was,
when the operation was invoked. Moreover, it should
support the expression of relationships between
components. There are already component description
languages under development, which provide the ability
to express al the parts mentioned above, for example [17,
18]. Second, the meaning of the term contractually
specified interface depends on the assumed scope for
contracts. At one level, the “no surprise rule’, which
current traders abide to, offers some kind of contract
between interacting parties, ensuring that no surprise
input, output or termination condition occurs. At a
different level current traders do not support a definition
of contract like the one in contract-based programming
[19], which requires the support of pre-/post-conditions
and invariants. This observation in combination with the
“composition by third parties’ characteristic of
components raises the issue of semantics in trading.
Currently, trading is syntactic in nature; it focuses only to
the appearance (interface) of component and ignores the
behaviour (semantics). So, the main conclusion in [16] is
that incorporation of semantics in trading is required, in
order to move towards component trading.

2.1. Component retrieval in softwarereuse

The issue of how to describe the behaviour of
components has been under investigation in software
reuse, since it is essentia for the component retrieval
phase. Proposed solutions fall into three categories [20]:
text-based, lexical descriptor based and specification
based. Text based ones use the textual representation of a
component as an implicit description of its behaviour,
while employing arbitrarily complex string matching
expressions to retrieve required components. Although
text based solutions have low maintenance cost and are
easy to introduce, a textual representation does not
guarantee sufficient information for the classification and
in fact could be misleading. Lexical descriptor based ones
use key phrases, which are constructed from a predefined
vocabulary provided by subject experts, to describe the
component. This technique can be extended to describe a
number of different aspects of the component, leading to a
technique commonly called multi-faceted classification.
The use of key phrases, which are assigned by subject
experts, makes the method sounder and more complete.
But, the construction of the predefined vocabulary is a
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non-trivial task and there is also ambiguity associated
with the type of semantics (computational or application
ones) that the vocabulary should describe. Finaly,
specification based ones use a specification language,
whose semantics define the classification and retrieval
scheme. In fact, “specification-based retrieval comes
closest to achieving full equivalence between what a
component is and does and how it is encoded
[described]” [20]. There are a number of specification
methodol ogies ranging from informal [21, 22] to formal
[23, 24] ones. Specification based approaches are in
genera more powerful than both text and lexical
descriptor based ones, mainly because of the wide range
of formality they offer, making them preferable as a basis
for component trading.

Selecting the appropriate level of formality involves a
trade-off between precison and usability. Formality
provides precise, complete and consistent descriptions of
components; “the only way to eliminate ambiguity isto be
formal” [25]. But the complexity of formal specification
languages makes them difficult to use limiting their
popularity [26]. Specification matching at a high level of
formality has been studied in the past and can provide
various kinds of matching [27], while at the same time the
high level of formality provides more alternatives even at
the signature matching level [28]. The matching process
at this level requires support from a theorem prover, like.
Theorem-proving techniques are too complex to alow
efficient component retrieval in a large component
collection [29] and they can not be fully automated. To
make things worse formal specifications introduce
significant maintenance costs. These costs could be
minimised if the specification of components is done
before their implementation, but usually this is not the
case. So, athough a formal approach seems ideal in
limiting ambiguity, because of the reasons discussed
aboveit isnot currently very popular.

The use of conceptual structures and knowledge
representation techniques can aso be used to limit
ambiguity [30]. In fact in [31] they combined trading and
semantic networks in order to allow the trader to support
the cognitive domain of application users, through
learning of new ways to describe services. While in [32]
they used a linguistic ontology to allow users to overcome
vocabulary inconsistencies in describing and phrasing
requests for components. Conceptual structures of
particular interest are concept ontologies. An ontology is
a collection of concepts together with their definition and
a number of relationships between them. The fact that
each concept is associated with its definition and its
relationships with the others can guarantee that there are
no misconceptions hiding [33]. Ontologies are recognised
to be particularly suitable in tackling semantic
interoperability problems [34], particularly during system
integration [35]. Another similar approach is to use
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standard concepts with well-defined meaning, which is
the basis for business objects[36].

In conclusion, specification based retrieval techniques
seem appropriate as the basis for our component trading.
Although, making forma the semantics of the
specifications eliminates ambiguity it also deters
developers from using them. ldeas from knowledge
representation techniques can also be deployed to limit
ambiguity. The work on kind theory provides a system-
modelling construct, which acts as a syntactic and
semantic bridge between types [37]. So, a popular
modelling language like UML [22] (although it is not
formal has a formal part the object constraint language)
extended with the kind construct in combination with a
specification technique at a conceptual level, like the one
described in [38] seem to be a reasonable balance. It
should be noted that even if a specification technique
based on concepts was not followed at the construction of
the system we could use reverse knowledge engineering
to extract it [39].

3. Trader architecture

From the above discussion we can identify two steps
that need to be taken to support component location
through trading. The first step is the replacement of
interface definitions with component descriptions, which
capture more behavioural aspects of a component than
mere interface definitions. The second step is the
replacement of service type conformance, on which
current trading is based, with specification matching.
While service type conformance organises service types
according to interface subtyping, specification matching
uses plug-compatibility [27] and behavioural subtyping
[40] instead.

These two steps lead to a new kind of trading, which
we call semantically enhanced component trading. We
call it semantically enhanced, because it incorporates
semantic information about the component through the
use of specification matching. We call it semantically
enhanced instead of semantically based because the
degree at which we are based on semantics depends on
the level of formality we adopt for specification matching.

With the introduction of semanticaly enhanced
component trading we aim to improve both precision and
recall during the service selection process. Improvements
in precision will come as a result of the increased
confidence on the results of the selection process that
specification matching offers. While improvements in
recall will come as a result of the combination of relaxed
matches that specification matching supports with a
component composition facility that supports various
signature matches [28].

The overall trading architecture is presented in Figure
1. The trader accepts requests for components and returns
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the matching component offers. The request processing is
supported by a relationship service, which has a role
anal ogous to the service subtyping hierarchy supported by
current traders. During request processing the matching
components are determined, which can be either simple or
composite. A simple component corresponds directly to
component offers from the trading space, while a
composite one consist of a set of offers for simple
components and a composition strategy. The set of offers
and the composition strategy are passed to the
composition facility to create the composite component.
The component offers that form the trading space are
analogous to the service offers of current traders. Finally,
the role of the component description repository is
analogous to the interface repository of current traders,
ensuring that component offers comply with the
component description associated with them. The use of
the component description repository athough it provides
a higher degree of confidence during trading, is not
necessary.

Figure 1. Semantically enhanced component
trading architecture

3.1. Queryinginterface

One of the aspects of the architecture presented in
Figure 1 that needs further clarification is the querying
interface. This involves the formatting of requests to, and
replies from, the trader. Current traders organise services
in service types and requests are based on the name of the
service type. The main advantage of this is that it makes
the matching process a lot more efficient, which is
particularly important if the trader is used at runtime. In
order to both maintain this advantage and also overcome
the strict requirements of runtime trading we introduce
two separate querying interfaces, one for runtime and one
for development time trading. For each component
description we associate a hame and queries are based on
that name. The trader organises component offers based
on the description that they comply with, while it also
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maintains a graph of relationships between the various
component descriptions, which is maintained by the
relationship service of the architecture.

The formation of the replies depends on the querying
interface used to submit the request. If the request was
submitted using the runtime interface then the trader
responds in a way similar to current traders. It either
returns a set of valid component references for the
matching offers, which can be subsequently used to
invoke operations on these components, or it throws an
exception to indicate any problems during the matching
process. If areference is returned, then the trader ensures
that the “no surprise rule” holds, meaning that returned
references comply with the interfaces expected by the
requester. As a consequence the matching process using
the runtime interface is more restricted. This is
particularly true in the case of composite components,
because besides the composition strategy the trader needs
also matching offers for all the components involved. If
the reguest was submitted using the development time
querying interface, then the “no surprise rule” is relaxed,
allowing more flexibility to the trader. The trader returns
incomplete composite components in addition to complete
simple or composite components. In which case the reply
contains the set of component description names, the
matching offers for each description name and the
composition strategy. This way the developer can identify
the missing offers and deal with them. In addition, the fact
that we are not restricted by the “no surprise rule” means
that we can support relaxed matches [27]. In which case,
the matched components or the application under
development may require adaptations. Finaly, the
development time querying interface can be also used to
inspect the trading space, in which case, related
components are al so returned.

3.2. Matching process

In the description of the architecture it was mentioned
that the matching process depends on the relationship
service, which holds a graph with the relationships
between the various component descriptions in the
system. During the matching process the description name
that was requested is used to locate the corresponding
node of the graph. From each node all the other nodes that
are connected to it are somehow related. So, an
exhaustive traversal of the graph following all the
appropriate links from that node determines all possible
matches. The request could limit the search scope (the
part of the graph that is traversed) by providing alimit on
the number of matches or on the number of nodes
considered, which is similar to current trading.

The graph consists of a set of nodes, which in order to
accommodate both simple and composite component
matching, are divided into simple and composite
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respectively, and a set of edges, which in order to
accommodate the two querying interfaces are divided into
matching and related links. Every node contains the name
of the corresponding component description associated
with it. Additionally, if a component description
repository is employed then every node contains also a
reference in the repository for the corresponding
description. Moreover, simple nodes contain also the set
of component offers that comply with the description,
while composite nodes contain a composition strategy and
the set of simple nodes that it uses.

Nodes are connected to each other with links, the
graph, though, does not have to be fully connected. Two
nodes are connected with a bi-directional matching link if
their component descriptions are equivaent or a
unidirectional matching link if a behavioural supertype —
subtype relationship holds between them, or the two
descriptions are plug-compatible. Consequently, matching
links represent a strong relationship and are the ones that
are followed during runtime querying. Two nodes are
connected with a related link if their corresponding
component descriptions are conceptually related; both are
of the same kind [37]. Related links are aways bi-
directiona and are followed only during development
time querying.

Since the trading process depends completely on the
graph, its construction should guarantee the semantics of
matching. For each new component offer we have to
ensure that it complies with the component description of
the node it is associated with. This requires the retrieval
of the component description from the repository and the
inspection of the component source code to determine its
compliance. The way this problem is handled in current
tradersis by keeping with each service object alink to the
interface repository for its interface definition. This
approach requires that the trading and the component
development are parts of a unified framework and also
that the source code for the components is available. If
either of these requirements does not hold then the
simplest solution is to assume that the offer complies with
the description, an approach current traders follow when
the interface repository is not available. A more advanced
solution is to use validity evidence as part of the
component offer [41], which could include a formal proof
of correctness, a comprehensive test suite, or references to
other people who have used the component successfully.
Similar approaches can be followed in dealing with issues
of how to guarantee that the composition strategy of
composite nodes is meaningful and that the links are
valid. In general as we saw above, these issues are dealt
with at amiddle level, between the simple assumption and
the formal proof, by employing information extracted
from the design of components, for example a UML
diagram with its corresponding OCL expressions.
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In a more advanced approach the construction of graph
composite nodes and edges can be automated.
Automation can be achieved, by employing extensively
either automated proofing techniques or reasoning
techniques from knowledge representation. Additionaly,
for the automated construction of composite nodes the
work on software architectural styles [42] can provide
guidelines for composition strategies. Although this
approach is particularly interesting and will provide a
very powerful trading facility, it is a very big issue and
requires further investigation.

3.3. Component composition

Although in this paper we are not looking into
component composition issues, we provide some basic
component composition functionality in order to support
the composite nodes described above. In the description
of the architecture we saw that the component
composition facility uses the composition strategy and the
component offers, which composite nodes keep, to
produce composite component. This raises the issue of
how we construct the composite component and how we
describe the composition strategy.

The composition strategy requires the definition of a
composition language to describe the composition process
in terms of the various software architectural styles.
Additionally, the techniques used in dealing with object
interoperability problems [43] can be deployed too. The
more kinds of compositions supported the more complex
the composition language is and it seems reasonable to
provide a modular composition language. The Vanilla
framework [44] can provide the necessary support.
Finally, the underling mechanism for the composition is
based on techniques like Dynamic Skeleton and Interface
Invocation, which are parts of the CORBA specification
[10] and allow invocation and service of calls without
knowledge of the interaction interface supported by the
other party.

4. Conclusionsand futurework

In conclusion, despite progress in software engineering
the development of large-scale distributed systems
remains a high risk, high cost and problematic task.
Component software has the potential to solve this
problem, but most of the issues related to it are still open.
Central to its use is the ability to locate from a set of
working components the appropriate ones. At the same
time, trading is the only reasonable way to manage
component location in large-scale compositional systems,
where complete knowledge of the system is both
unreasonable and unrealistic. We propose semantically
enhanced component trading as a way to address some of
these issues and describe an appropriate trader
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architecture. Our architecture improves both precision and
recall in component location by employing semantic
information in component specifications through a
combination of formal specifications and conceptual
congtructs, and a component composition facility. We
have developed a component repository that stores the
trading space and the component descriptions, and a basic
composition facility. We are currently working on the
implementation of the relationship service and the
development of the graph for the matching process. Initial
experimental results with our trader and repository are
encouraging.

After the completion of the current work, we plan to
extend it in various ways by introducing a number of
advanced features. These features include:

e Support for automatic link and composite node
creation.

e A query by example mechanism, which will alow
gueries to provide a component description of their
own and the trader will try to match it to the
descriptionsit already has.

e A browser for the component description repository,
which will expose the component description graph
of the trader to the developers alowing them to
manipulate it directly.

Finally, we intend to use the trader as a framework for
the study of the various aspects of component-oriented
development. This requires a highly modular trader
implementation, which is another issue for future
development.
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