

Engineering Intelligent Sensor Networks with ASSL and DMF

Emil Vassev and Paddy Nixon

Lero–the Irish Software Engineering Research Center, University College Dublin, Ireland

emil.vassev@lero.ie, paddy.nixon@lero.ie

ABSTRACT

We describe the use of ASSL (Autonomic System

Specification Language) and DMF (Demand

Migration Framework) in the development of software

systems for intelligent sensor networks. ASSL is used

to formally specify and automatically generate

autonomous intelligent sensor nodes. DMF is applied

to connect those nodes in a sensor network. ASSL

provides sensor networks with self-management

behavior based on special policies allowing sensor

nodes to reason and collaborate by exchanging

information via a DMF instance.

KEYWORDS: sensor networks, autonomic systems,

self-management, ASSL, DMF

1. INTRODUCTION

Nowadays, we witness how the latest in computing

and communication technology emphasizes more and

more low-cost sensor networks intended to help people

in their daily lives. Such networks operate over

sensors collecting and processing data in diverse

domains such as air quality control, weather forecast,

traffic control, security and surveillance applications

etc. Although there have been great advances in the

field of sensor networks [1, 9, 10, 11, 12, 13, 14, 15],

the development of resource-efficient sensor networks

able to adapt to situations in order to improve their

efficiency is still a challenging task. Such a “smart”

behavior requires “intelligent” sensor nodes able not

only to sense the environment but also to reason and

collaborate with other sensor nodes in the network.

Such sensor networks (SNs) we term intelligent sensor

networks (ISNs).

This research aims at building ISNs capable of self-

management. We consider such systems to be

autonomic systems (ASs) [2] employing self-

management by virtue of special policies driving the

network in question in critical situations.

Conceptually, the AS paradigm draws inspiration

from the human body’s autonomic nervous system.

The idea is that software systems can manage

themselves and deal with dynamic requirements, as

well as unanticipated changes, automatically, just as

the human body does, through self-management based

on high-level objectives [3]. Our approach to the

development of ASs is ASSL (Autonomic System

Specification Language), an initiative promoting

formal specification, validation, and code generation

of ASs within a framework [4, 5]. In order to build

intelligent sensor nodes exhibiting AS features, we

draw upon our experience1 with the ASSL framework.

Hence, with ASSL we specify and generate intelligent

sensor nodes. To connect these sensor nodes in an

ISN, we use a special networking mechanism called

DMF (Demand Migration Framework) [8, 18]. Note

that neither ASSL nor DMF were originally developed

for the purpose of building ISNs, but the combination

of both allows for this successful technological

convergence applicable to heterogeneous sensor

networks.

The rest of this paper is organized as follows. In

Section 2, we review related work to intelligent

networks such as 1) adaptable networks employing

certain intelligent behavior; 2) energy-aware sensor

networks employing energy-management algorithms;

and 3) agent-based ISNs incorporating self-

management features. In Section 3, we briefly

1 With ASSL we successfully built prototypes of ASs

such as the NASA ANTS [6] and NASA Voyager [7]

missions.

94978-1-4244-6622-1/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

introduce the concept of sensor networks together with

that of ASSL and DMF. In Section 4, we present our

approach to the development of ISNs by using ASSL

and DMF. In this section, we also present a case study

demonstrating how our approach can be applied for

developing an ISN for home-automation. Finally,

Section 5 provides brief concluding remarks and a

summary of future research and investigation trends.

2. RELATED WORK

One of the important aspects of any SN (sensor

network) is the underlying network mechanism. By

their nature, SNs are distributed networks with

multiple nodes exchanging messages (cf. Section 3.1).

Moreover, often network nodes can be used as re-

transmitters and thus, there may be multiple routing

paths used to deliver a message from a source to a

destination. Here, as intelligent are considered special

ad-hoc networks employing special adaptive routing

protocols. Such networks decide on-the-fly the most

appropriate route considering different factors such as:

current network status, performance measures, cost of

transmission over a given route, reliability of a path,

time of transmission, etc.

Considerable work has been done on routing protocols

in ad-hoc networks. For example, routing protocols for

mobile wireless networks are discussed in [9, 10, 11,

12]. Another example is special routing algorithms

based on game theory developed by Altman et al. [12].

Another aspect of SN intelligence is energy

management. Practice has shown that energy

efficiency appears to be of crucial importance for both

performance and reliability of any energy-independent

(battery-driven) SNs. Here, algorithms of energy

awareness and management have been developed,

where network intelligence is implemented at the level

of single node or/and at the global level of the entire

network [13].

An approach to ISNs providing autonomic behavior is

described in [14]. Similar to our approach, there an

ISN is achieved through the use of multi-agent

architecture and self-management behavior.

In [15] an agent oriented programming paradigm for

the development of intelligent sensor networks is

presented. The proposed architecture for ISNs consists

of autonomous intelligent agents that interact with

other agents over special high-level communication

protocol implementing a special declarative high-level

agent communication language.

In our approach, we do not aim at efficient routing

algorithms, although such can be implemented with

ASSL as a global network-level behavior. Instead, by

using ASSL we develop intelligent autonomous units

embedding sensors and driven by self-management

policies. Moreover, we may use ASSL to specify

global self-management policies, those working at the

network level and forming global network-level

intelligence. Therefore, an ASSL-developed ISN

usually employs an intelligent behavior at both levels

– sensor node level and network level. Moreover, in

our approach, the networking mechanism exposes a

centralized topology and is independent of sensor

nodes. This makes an ISN both reliable and efficient,

because its network nodes are volunteers and any node

can be easily replaced by new one, without

interrupting the entire network.

3. PRELIMINARIES

3.1. Sensor Networks

In general, a sensor network is composed of sensor

nodes connected to other sensor nodes. The network

connection usually is wireless and sensor nodes often

rely on routing protocols to communicate with other

nodes not directly connected to the first. Usually, a

sensor node has limited computational resources. This

is due to the fact that in most cases, sensor networks

rely on batteries, where high-performance hardware

cannot be efficiently supplied with energy [1, 13].

In our approach, sensor nodes are considered to have

enough computational power to run both a Java virtual

machine and the Java-implemented self-management

control software generated with ASSL. Note that

ASSL generates Java code [4] and the employed DMS

[8, 18] (a DMF instance) is JINI-based [16], which is

a Java application as well.

3.2. ASSL

Although ASSL is dedicated to autonomic computing

[2], with this work we demonstrate how it can be used

for the development of sensor networks with self-

management capabilities. In this subsection, we

present the ASSL specification model by emphasizing

special features that make the framework suitable for

the development of ISNs.

95

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

3.2.1. ASSL Specification Model

ASSL is based on a specification model exposed over

hierarchically organized formalization tiers. The

ASSL specification model is intended to provide both

infrastructure elements and mechanisms needed by an

AS (autonomic system), or in this case by an ISN.

Each tier of the ASSL specification model is intended

to describe different aspects of the AS under

consideration, such as special service-level objectives,

policies, interaction protocols, events, actions, etc.

This helps to specify an AS at different levels of

abstraction imposed by the ASSL tiers (cf. Table 1).

Table 1. ASSL Multi-tier Specification Model

AS

AS Service-level Objectives

AS Self-management Policies

AS Architecture

AS Actions

AS Events

AS Metrics

ASIP

AS Messages

AS Channels

AS Functions

AE

AE Service-level Objectives

AE Self-management Policies

AE Friends

AEIP

AE Messages

AE Channels

AE Functions

AE Managed Elements

AE Recovery Protocols

AE Behavior Models

AE Outcomes

AE Actions

AE Events

AE Metrics

The ASSL specification model considers the ASs as

being composed of special autonomic elements (AEs)

interacting over interaction protocols, whose

specification is distributed among the ASSL tiers.

Note that although ASSL allows for specification and

code generation of interaction protocols, the latter

cannot be used as an ISN networking mechanism,

because ASSL currently does not generate distributed

systems. Instead, it generates multithreaded systems

with embedded messaging. Here, we rely 1) on ASSL

to specify and generate sensor nodes in the form of

AEs; and 2) on DMF to implement the needed

networking mechanism, which connects the nodes

together.

Table 1 presents the multi-tier specification model of

ASSL. As shown, it decomposes an AS in two

directions:

1) into levels of functional abstraction;

2) into functionally related tiers (sub-tiers).

With the first decomposition (cf. first column in Table

1), an AS is presented from three different

perspectives depicted as three main tiers:

1) AS Tier forms a general and global AS

perspective exposing the architecture

topology, general system behavior rules, and

global actions, events, and metrics applied to

these rules.

2) ASIP Tier (AS interaction protocol) forms a

communication perspective exposing a means

of communication for the AS under

consideration.

3) AE Tier forms a unit-level perspective, where

an interacting sets of the AS’s individual

components is specified. These components

are specified as AEs with their own behavior,

which must be synchronized with the

behavior rules from the global AS

perspective.

It is important to mention that the ASSL tiers are

intended to specify different aspects of the AS in

question but it is not necessary to employ all of them

in order to model an ISN. Thus, to specify a simple

ISN, we need to specify a single AE per sensor node

providing the self-management control software

controlling the node’s sensors and the communication

with other AEs. Moreover, self-management policies

must be specified to provide self-management

behavior at the level of AS (the AS tier) and at the

level of AE (AE tier) (cf. Table 1). Note that this rule

is implied by the fact that any ASSL specification

must be based on self-management [2].

With the following sub-subsection, we present some of

the ASSL constructs needed to specify an ISN.

3.2.2. Self-management Policies

The self-management behavior of an AS (or ISN), is

specified with ASSL self-management policies (cf. the

appropriate tiers in Table 1). These policies are

96

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

specified with special ASSL constructs termed fluents

and mappings:

 A fluent is a state where an AS enters with

fluent-activating events and exits with fluent-

terminating events.

 A mapping connects fluents with particular

actions to be undertaken.

Self-management policies are driven by events and

actions determined in a deterministic manner, similar

to finite state machines. For the purpose of ISN

development, self-management policies may be

specified to control the network sensors and the

process of sending and receiving messages. Moreover,

both network-level (at the AS tier) and node-level (at

the AE tier) self-optimizing policies can be specified.

Self-management policies can be used to control the

communication in real-time systems, which are

bounded by deadlines. Deadlines may be a particular

time, a time interval, or the occurrence of an event.

Thus, we can use ASSL to specify real-time ASs,

where different events can be used to trigger different

policies intended to solve problems when the deadline

cannot be met.

3.2.3. ASSL Events

ASSL aims at event-driven autonomic behavior.

Hence, to specify self-management policies driving the

sensor nodes of an ISN, we need to specify appropriate

events. Here, we rely on the reach set of event types

exposed by ASSL. To specify ASSL events, one may

use logical expressions over service-level objectives, or

may attach events to metrics (cf. Section 3.2.4), other

events, actions, time, and messages. Moreover, ASSL

allows for the specification of special conditions that

must be stated before an event is prompted.

3.2.4. ASSL Metrics

For an ISN, one of the most important success factors

is the ability to sense the environment and to react on

sensed events. Here, together with the reachable set of

events, ASSL imposes metrics as a means of

determining dynamic information about external and

internal points of interest. Although four different

types of metrics are allowed [4], for the needs of ISN

development, the most important are the so-called

resource metrics intended to measure special managed

resource quantities. Note that a managed resource (cf.

Section 3.2.5) can be a controlled sensor and in such a

case, an ASSL metric is linked with a network sensor.

3.2.5. Managed Resources

An AE (autonomic element) typically controls a

managed resource specified with ASSL as managed

elements [4]. Generally, a managed element (ME) is a

functional unit (hardware or software). In an ASSL-

developed INS, a managed element may present a

controlled sensor (or a group of sensors). In order to

understand how an ASSL-developed INS works, it is

important to understand the AE-ME relationship.

Note that an AE monitors and interacts with its MEs.

In ASSL, a ME is specified with a set of special

interface functions intended to provide control

functionality over the same. Thus, ASSL provides an

abstraction of a ME through specified interface

functions. Here, ASSL can specify and generate the

interface controlling a ME, but not the

implementation of this interface in that controlled

ME. Here, when developing an ISN, the generated

interfaces must be implemented by the appropriate

sensor drivers.

3.3. DMF

DMF (Demand Migration Framework) [8, 18] is a

generic scheme for migrating information in the form

of messaging objects, in a heterogeneous and

distributed environment determined by both

information senders and information recipients (both

termed as communication nodes). Hence, the

framework establishes a context for performing

migration activities, where the migrated messaging

objects encapsulate behavior functions and data. In

general, DMF may be applied as a concept underlying

a generic architecture for the implementation of

special family of Demand Migration Systems (DMSs)

[8, 17, 18].

3.3.1. Rationale

Originally, DMF was developed in [8] to expose a

generic framework for object-migration in a

heterogeneous and distributed environment. By

applying DMF, we can design a variety of DMSs

conforming to a set of requirements described by the

following elements [8]:

 platform interoperability – deals with

process-machine boundaries and with the

diversification of different hosting platforms

(connects nodes running on Linux, Solaris,

Windows, and Mac-OS platforms);

97

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

 “at least once” delivery semantics – ensures

that no object could be delivered to a wrong

recipient and is delivered at least once [3];

 asynchronous communication –

communication nodes run independently and

have no synchronized lifecycles;

 no prioritization – both objects and

communication nodes are served equally by

the system;

 secure communication;

 fault-tolerant migration;

 hot-plugging – communication nodes are

“volunteers” in the communication process.

3.3.2. DMF Architectural Model for ISNs

DMF exposes a layer-structured architecture. Figure 1

depicts an ISN-elaborated variant of that architecture.

As shown, the largest circle depicts an ISN as

composed of AEs controlling sensor nodes. The

double-lined inner circle depicts DMF. Here, AEs are

communication nodes, and DMF is a communication

intermediate between them.

DMF consists of two main functional layers called

demand dispatcher (DD) and migration layer (ML)

respectively. DMF relies on these two functional layers

to form an asynchronous message-persistent

communication protocol where messages are

permanently stored and delivered upon request. DD

(depicted by a bold-lined circle – cf. Figure 1) is an

object-based storage mechanism able to dispatch

messaging objects to their recipients. ML (depicted as

a dark grayed layer on top of DD) is the layer

performing object migration from an AE to another

AE. ML makes the communication in a heterogeneous

distributed environment possible.

In addition, ML (migration layer) emphasizes the use

of special kind of agents called transport agents

(TAs), which are based on distributed technologies

exposed over a special TA interface. Therefore, in

order to use the DMF communication protocol, the

AEs (autonomic elements) of an ISN must adhere to

the special TA interface exposed by the DMF transport

agents. Moreover, the DD (demand dispatcher) layer

establishes a context of demand propagator that

consists of two layers - demand space (DS) and

presentation layer (PL) (cf. Figure 1). The demand

space layer defines a context of internal object-based

storage mechanism. The presentation layer is an

abstract layer on top of DS that makes all the DS

functionality transparent and generic.

Figure 1. Demand Migration Framework (DMF)

3.3.3. DMS for ISNs

The communication protocol of an ISN is an instance

of DMF termed DMS (Demand Migration System). In

our approach, we rely on the DMS described in [17].

This DMS exposes transport agents based on JINI [16]

and termed JINI TAs. Thus, the AEs controlling the

sensors of an ISN adhere to the JINI TA interface.

4. BUILDING INTELLIGENT SENSOR

NETWORKS

Our understanding of an ISN is that of a sensor

network composed of sensors incorporating an event-

driven behavioral mechanism to allow the network

reacts to changes in the network structure (e.g., a node

is down) or environment. As we have already

explained in previous sections, we build an ISN by

using ASSL to specify and generate intelligent sensor

nodes as AEs. Next, we connect the generated AEs in

a network by using a special DMS instantiated from

DMF and exposing JINI TAs.

Figure 2 depicts a conceptual model of our network.

As shown, the AEs controlling network sensors are

connected in a network through a JINI-based DMS.

Note that the network topology is centralized. The

DMS stores the messages sent by AEs and delivers

them to the recipient AEs when the latter are

available. Moreover, in order to use the DMS, each

AE connects to a JINI TA via a special interface.

 PL

Demand

Space (DS)

 ISN

DMF

Pre

DD

 ML

98

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

DS

Figure 2. ISN’s AEs Communicate via a DMS

Although this is not depicted in Figure 2, note that a

single JINI TA can be shared by multiple AEs.

However, to achieve better performance, it is

recommended to use a distinct TA per AE.

4.1. Steps

The steps of building an ISN with ASSL and DMF are

as follows:

1) Use ASSL to specify the AEs in terms of self-

management policies (providing self-

management behavior) and MEs (managed

elements).

2) Generate the Java implementation of the AEs

with ASSL.

3) Connect the generated AEs with the

appropriate sensors through the generated

ME interfaces.

4) Install the JINI DMS in place.

5) Connect the JINI TAs with the AEs through

the generated ME interfaces.

6) Run the JINI DMS.

7) Run the ISN’s AEs.

4.2. Case Study

In the course of this project we used ASSL and DMF

to build an ISN for home automation. Our first step

was to automate the living room of a house. We used

ASSL to specify four different AEs composing the ISN

for home automation:

 Light AE - controls the lights in the living

room. This AE uses light sensors to

determine the level of brightness in the living

room and uses the light switcher to turn

on/off the lights. Moreover, this AE

communicates with the Motion AE to

determine when and where motion is detected

in the living room, which could prompt

turning lights on.

 Voice AE - controls the microphones in the

living room. This AE detects and recognizes

speech. It communicates with the Light AE

and with the Door AE to perform voice

commands, such as “turn lights on/off” or

“open/close door”.

 Motion AE - controls motion detectors to

sense the living room for motion. It zones the

living room and detects where the motion is

taking place and how many moving objects

are there. The Motion AE communicates with

the Door AE and with the Light AE.

 Door AE - controls (open or close) the door.

It communicates with the Motion AE, e.g.,

when motion is detected towards door, the

Door AE opens the door automatically.

4.2.1. ASSL Specification

For each one of these AEs we specified self-

management policies and managed elements. The,

ASSL specification is built around self-management

policies providing intelligence. Recall that the self-

management policies are driven by events and actions

determined deterministically (cf. Section 3.2.2). The

following ASSL fragments present a partial

specification of the Voice AE.

AESELF_MANAGEMENT {

 OTHER_POLICIES {

 POLICY MANAGE_VOICE_COMMAND {

 FLUENT inSpeach {

 INITIATED_BY { EVENTS.speechDetected }

 TERMINATED_BY { EVENTS.commandRecognized,

 EVENTS.commandNotRecognized }

 }
 FLUENT inCommandRecognized {

 INITIATED_BY { EVENTS. commandRecognized }

 TERMINATED_BY { EVENTS.commandProcessed }

 }
….
 MAPPING { CONDITIONS { inSpeach }

 DO_ACTIONS { ACTIONS.recognizeCommand } }

 MAPPING { CONDITIONS { inCommandRecognized }

 DO_ACTIONS { ACTIONS.processCommand } }

…. }}}

99

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

The first specification presents a self-management

policy. This policy determines the behavior of the AE

when a speech is detected. Here events are specified to

initiate and terminate fluents within this policy. As

shown, when speech is detected (via the controlled

microphones) the AE starts this policy in an attempt to

recognize a voice command. If such is recognized, it

will be propagated to the Door AE (if the voice

command is “open/close door”) or to the Light AE (if

it is “turn on/off lights”) through the DMS installed in

place by using a JINI TA (transport agent).

To control both the microphones and the JINI TA, the

Voice AE specifies two managed elements

determining the control interface. The following

ASSL specification snippet presents the specified

managed elements.

MANAGED_ELEMENTS {

 MANAGED_ELEMENT MICROPHONES {

 INTERFACE_FUNCTION speechDetected {

 RETURNS { Boolean } }

 INTERFACE_FUNCTION retrieveCommand {

 RETURNS { String } }

 }
 MANAGED_ELEMENT JINI_TA {

 INTERFACE_FUNCTION sentMessage {

 PARAMETERS { ISNMessage oMessage } }

 INTERFACE_FUNCTION receiveMessage {

 RETURNS { ISNMessage } }

 }
}

The specified interface functions help the Voice AE

detects speech, retrieves a voice command from

detected speech, and sends and receives messages.

Note that the Light AE controls not only the sensors

(microphones) but also the TA (JINI TA) allowing

this AE to communicate through the DMS run in

place. As shown, the MICROPHONES managed element is

intended to detect and process speech. Here, for the

implementation of the retrieveCommand interface function

we rely on the Nuance Dragon NaturallySpeaking

Solution, Version 9.0 [19]. Dragon NaturallySpeaking

provides a speech to text engine with appropriate SDK

for Java. As for the JINI_TA managed element, the

Voice AE uses this to communicate with a JINI TA

(transport agent) attached to this AE.

4.2.2. Implementation

We used the ASSL framework to validate the

consistency of the ASSL-specified ISN and generate

the implementation of the same. Here, the ISN system

was generated as hierarchically organized Java

packages nesting Java classes derived from the ASSL

specification. The four AEs (Voice, Light, Motion, and

Door) were generated with a special control loop that

applies control rules specified and implemented as

self-management policies (e.g., cf. MANAGE_VOICE_

COMMAND in Section 4.2.1). The following Java code

fragment presents an ASSL-generated control loop.

protected void controlLoop() {

 try {

//monitor-analyzer-simulator-executor

 oMonitor.perform();

 oAnalyzer.perform();

 oSimulator.perform();

 oExecutor.perform();

//applies self-management policies

 applyPolicies();

 Thread.sleep(tDelay);

 }

 catch (InterruptedException ex)

 {....}

}

As shown, a special controlLoop() method is

generated to handle special control loop calls

(performed on a regular basis) for each AE. In its first

part, the control loop uses four components

(oMonitor, oAnalyzer, oSimulator, and

oExecutor) to discover problems with ASSL-

specified metrics. A detailed description of those four

components refers to the autonomic computing nature

of the generated code and is beyond the scope of this

paper. The second part of this control loop is a

function call of the applyPolicies() method that is

intended to apply deterministically the self-

management policies of an AE. The following code

fragment presents a partial implementation of that

method. This implementation is the same for all the

four AEs generated for the ISN.

protected void applayPolicies() {

....

 //applies only "switched-on" policies

 if (currPolicy.isSwitchedOn()) {

 currPolicy.doAllMappings();

 }

 }

}

As shown, the policies of an AE (e.g., Voice AE) are

applied by performing for each policy a

doAllMappings() method. The latter maps actions

to fluents and performs only those actions that are

mapped to initiated fluents, e.g., as specified in the

MANAGE_VOICE_COMMAND policy the inSpeach fluent is

mapped to the recognizeCommand action (cf. Section

4.2.1). Note that a fluent is initiated if at least one of

the fluent-initiating events has occurred, e.g.,

occurrence of the speechDetected event initiates the

inSpeach fluent.

100

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

While performing, an action makes calls on the

managed elements to do sensing or acting. For

example, the ASSL-specified recognizeCommand action

calls the sendMessage() method of the JINI_TA managed

element to send messages (voice commands) to other

AEs (Door AE or Light AE).

ACTION recognizeCommand { …

 DOES {

 voiceCommand = CALL

AEIP.MANAGED_ELEMENTS.MICROPHONES.retrieveCommand;

 ….
 CALL AEIP.MANAGED_ELEMENTS. JINI_TA.sendMessage

(voiceCommand) ;
 ….

Here, managed elements such as MICROPHONES and

JINI_TA (cf. Section 4.2.1) were generated as Java

classes, where the interface functions are implemented

as empty class methods. Thus, we had to complete

those after the ISN code was generated. For example,

we had to complete both sendMessage() and reciveMessage()

methods of the JINI_TA class (generated for the identical

managed element) by using the functionalities of the

DMS. Thus, we programmed the JINI_TA class to

connect to a JINI TA (transport agent) and use its

functionality to send and receive messages.

4.2.3. Test Results

In this case study, we specified and generated the four

AEs composing the ISN for home-automation. We

also put together the generated AEs and the JINI

DMS. However, we did not use real sensors. Instead,

we simulated sensing home-automation environment

with ASSL events specified to simulate sensor activity.

Note that events trigger the specified policies by

initiating appropriate fluents (cf. the

AESELF_MANAGEMENT ASSL specification sample

above). Thus, with such events we were able to

simulate speech detection, voice command recognition

and other sensor-related events. The test results

demonstrated that, under simulated conditions, the

run-time behavior of the ISN strictly followed the

ASSL-specified self-management policies. Moreover,

the ISN’s AEs were able to exchange messages

through the JINI DMS run in place.

It is important to mention, that we built an ISN for

home-automation as a pure software solution, and thus

we could not perform real sensor-based tests, but

simulated ones. To perform real tests we need to

implement both sensors and actuators in our ISN. The

needed components such as motion detector (cf.

Figure 3) or light control sensors can by bought online

from ELV Elektronik Deutschland [20]. The use of

real sensors will allow for further experimental

evaluation. This will help us answer questions such as

response time, efficiency of sensors and hardware

control, etc. For example, a possible response time

could be defined as the time it takes the system to open

the door after a user has spoken the “open door” voice

command.

Figure 3. PIR Motion Detector [20]

5. CONCLUSION AND FUTURE WORK

We have demonstrated how ASSL – a formal tool for

development of autonomic systems, and DMF – a

framework for message migration in distributed

environments, can be used together to develop ISNs

(intelligent sensor networks) with self-management

capabilities. In our approach, we use ASSL to specify

special behavioral policies provided by autonomic

elements intended to control sensors via special

managed elements. Here, we assume ISNs composed

of autonomic elements specified with suitable ASSL

specification constructs and whose Java

implementation is automatically generated. Moreover,

in our approach we use a JINI-based DMS (demand

migration system) to connect the generated autonomic

elements. This DMS provides a networking protocol

needed by an ASSL-developed ISN, where the ISN’s

autonomic elements use special JINI TAs (transport

agents) to communicate. As a proof of concept, we

successfully built an ISN for home-automation, where

sensors were simulated with special events.

Future work is concerned with further ISN

experiments and development by including hardware

attached to the control software generated by the

ASSL framework. Moreover, we intend to build ISN

prototypes incorporating self-management policies

such as self-healing, self-protecting, and self-

adapting. This will help us to investigate and develop

101

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

ISNs able to automatically detect and fix performance

problems, e.g., by switching to alternative sensors.

ACKNOWLEDGEMENTS

This work was supported in part by an IRCSET

postdoctoral fellowship grant (now termed

EMPOWER) at University College Dublin, Ireland

and by Lero – the Irish Software Engineering

Research Centre.

REFERENCES

[1] D. J. Cook and S. K. Das (ed.), SMART

ENVIRONNEMENTS: TECHNOLOGIES, PROTO-

COLS, AND APPLICATIONS. John Wiley, New

York, 2004.

[2] R. Murch, AUTONOMIC COMPUTING: ON

DEMAND SERIES, IBM Press, Prentice Hall, 2004.

[3] P. Horn, “Autonomic Computing: IBM’s Perspective on

the State of Information Technology”, Technical

Report, IBM T. J. Watson Laboratory, 2001.

[4] E. Vassev, TOWARDS A FRAMEWORK FOR

SPECIFICATION AND CODE GENERATION OF

AUTONOMIC SYSTEMS. DOCTORAL THESIS,

Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada,

2008.

[5] E. Vassev and M. Hinchey, “ASSL: A Software

Engineering Approach to Autonomic Computing”,

IEEE Computer, Vol. 42, No. 6, pp. 90–93, 2009.

[6] E. Vassev, M. Hinchey, and J. Paquet, “Towards an

ASSL Specification Model for NASA Swarm-Based

Exploration Missions”, 23rd Annual ACM Symposium

on Applied Computing (SAC 2008) – Autonomic

Computing Track, ACM Press, pp. 1652–1657, 2008.

[7] E. Vassev and M. Hinchey, “Modeling the Image-

Processing Behavior of the NASA Voyager Mission

with ASSL”, 3rd IEEE International Conference on

Space Mission Challenges for Information Technology

(SMC-IT’09), IEEE Computer Society, pp. 246–253,

2009.

[8] E. Vassev, GENERAL ARCHITECTURE FOR

DEMAND MIGRATION IN THE GIPSY DEMAND-

DRIVEN EXECUTION ENGINE, M. Sc. Thesis,

Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada,

2005.

[9] C. Perkins and P. Bhagwat, “Highly Dynamic

Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers”, ACM SIGCOMM

Computer Communication Review, Vol. 24, No. 4, pp.

234–244, 1994.

[10] D. B. Johnson and D. A. Maltz, “Dynamic Source

Routing in Ad-hoc Wireless Networks”, MOBILE

COMPUTING, Vol. 353, Kluwer Academic Publishers,

1995.

[11] S. Das, C. Perkins, and E. Royer, “Performance

Comparison of Two On-demand Routing Protocols for

Ad-hoc Networks”, Nineteenth Annual Joint

Conference of the IEEE Computer and Communications

Societies (INFOCOM 2000), IEEE Computer Society,

pp. 3–12, 2000.

[12] E. Altman, T. Basar, T. Jimenez, and N. Shimkin,

“Competitive Routing in Networks with Polynomial

Costs”, IEEE Transactions on Automatic Control, Vol.

47, No. 1, pp. 92–96, 2002.

[13] V. Raghunathan, C. Schurgers, S. Park, and M. B.

Srivastava, “Energy-aware Wireless Microsensor

Networks”, IEEE Signal Processing Magazine, Vol.

19, No. 2, pp. 40–50, 2002.

[14] D. Marsh, R. Tynan, D. O’Kane, and G. O’Hare,

“Autonomic Wireless Sensor Networks”, Engineering

Applications of Artificial Intelligence, Vol. 17, No. 7,

pp. 741-748, Elsevier, 2004.

[15] B. Karlsson, O. Bäckström, W. Kulesza, and L.

Axelsson, “Intelligent Sensor Networks - an Agent-

Oriented Approach”, Workshop on Real-World

Wireless Sensor Networks (REALWSN'05), Sweden,

2005.

[16] R. Flenner, JINI AND JAVASPACES APPLICATION

DEVELOPMENT‖, Sams Publishing, Indianapolis,

2001.

[17] E. Vassev and J. Paquet, “A General Architecture for

Demand Migration in a Demand-Driven Execution

Engine in a Heterogeneous and Distributed

Environment”, 3rd Annual Communication Networks

and Services Research Conference (CNSR'05). IEEE

Computer Society, Halifax, Canada, pp. 176-182, 2005.

[18] E. Vassev, GENERAL ARCHITECTURE FOR

DEMAND MIGRATION IN DISTRIBUTED

SYSTEMS, LAP Lambert Academic Publishing, 2009.

[19] Nuance Dragon NaturallySpeaking Solution [website],

2009, http://www.nuance.com/naturallyspeaking/.

[20] ELV Elektronik Deutschland [website], 2009,

http://www.elv.de/ output/controller.aspx.

102

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20100406105426
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 1227
 130
 Fixed
 Up
 18.0000
 0.0000

 Both
 2
 CurrentPage
 9

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 0
 9
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20100406105426
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 1227
 130

 Fixed
 Down
 7.2000
 0.0000

 Both
 2
 AllDoc
 9

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 9
 8
 9

 1

 HistoryList_V1
 qi2base

