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ABSTRACT 
 

We describe the use of ASSL (Autonomic System 

Specification Language) and DMF (Demand 

Migration Framework) in the development of software 

systems for intelligent sensor networks. ASSL is used 

to formally specify and automatically generate 

autonomous intelligent sensor nodes. DMF is applied 

to connect those nodes in a sensor network. ASSL 

provides sensor networks with self-management 

behavior based on special policies allowing sensor 

nodes to reason and collaborate by exchanging 

information via a DMF instance. 
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1.  INTRODUCTION 
 

Nowadays, we witness how the latest in computing 

and communication technology emphasizes more and 

more low-cost sensor networks intended to help people 

in their daily lives. Such networks operate over 

sensors collecting and processing data in diverse 

domains such as air quality control, weather forecast, 

traffic control, security and surveillance applications 

etc. Although there have been great advances in the 

field of sensor networks [1, 9, 10, 11, 12, 13, 14, 15], 

the development of resource-efficient sensor networks 

able to adapt to situations in order to improve their 

efficiency is still a challenging task. Such a “smart” 

behavior requires “intelligent” sensor nodes able not 

only to sense the environment but also to reason and 

collaborate with other sensor nodes in the network. 

Such sensor networks (SNs) we term intelligent sensor 

networks (ISNs). 

This research aims at building ISNs capable of self-

management. We consider such systems to be 

autonomic systems (ASs) [2] employing self-

management by virtue of special policies driving the 

network in question in critical situations. 

Conceptually, the AS paradigm draws inspiration 

from the human body’s autonomic nervous system. 

The idea is that software systems can manage 

themselves and deal with dynamic requirements, as 

well as unanticipated changes, automatically, just as 

the human body does, through self-management based 

on high-level objectives [3]. Our approach to the 

development of ASs is ASSL (Autonomic System 

Specification Language), an initiative promoting 

formal specification, validation, and code generation 

of ASs within a framework [4, 5]. In order to build 

intelligent sensor nodes exhibiting AS features, we 

draw upon our experience1 with the ASSL framework. 

Hence, with ASSL we specify and generate intelligent 

sensor nodes. To connect these sensor nodes in an 

ISN, we use a special networking mechanism called 

DMF (Demand Migration Framework) [8, 18]. Note 

that neither ASSL nor DMF were originally developed 

for the purpose of building ISNs, but the combination 

of both allows for this successful technological 

convergence applicable to heterogeneous sensor 

networks. 

 

The rest of this paper is organized as follows. In 

Section 2, we review related work to intelligent 

networks such as 1) adaptable networks employing 

certain intelligent behavior; 2) energy-aware sensor 

networks employing energy-management algorithms; 

and 3) agent-based ISNs incorporating self-

management features. In Section 3, we briefly 

                                                        
1 With ASSL we successfully built prototypes of ASs 

such as the NASA ANTS [6] and NASA Voyager [7] 

missions. 
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introduce the concept of sensor networks together with 

that of ASSL and DMF. In Section 4, we present our 

approach to the development of ISNs by using ASSL 

and DMF. In this section, we also present a case study 

demonstrating how our approach can be applied for 

developing an ISN for home-automation. Finally, 

Section 5 provides brief concluding remarks and a 

summary of future research and investigation trends. 

 

2.  RELATED WORK 
 

One of the important aspects of any SN (sensor 

network) is the underlying network mechanism. By 

their nature, SNs are distributed networks with 

multiple nodes exchanging messages (cf. Section 3.1). 

Moreover, often network nodes can be used as re-

transmitters and thus, there may be multiple routing 

paths used to deliver a message from a source to a 

destination. Here, as intelligent are considered special 

ad-hoc networks employing special adaptive routing 

protocols. Such networks decide on-the-fly the most 

appropriate route considering different factors such as: 

current network status, performance measures, cost of 

transmission over a given route, reliability of a path, 

time of transmission, etc. 

 

Considerable work has been done on routing protocols 

in ad-hoc networks. For example, routing protocols for 

mobile wireless networks are discussed in [9, 10, 11, 

12]. Another example is special routing algorithms 

based on game theory developed by Altman et al. [12].   

 

Another aspect of SN intelligence is energy 

management. Practice has shown that energy 

efficiency appears to be of crucial importance for both 

performance and reliability of any energy-independent 

(battery-driven) SNs. Here, algorithms of energy 

awareness and management have been developed, 

where network intelligence is implemented at the level 

of single node or/and at the global level of the entire 

network [13].  

 

An approach to ISNs providing autonomic behavior is 

described in [14]. Similar to our approach, there an 

ISN is achieved through the use of multi-agent 

architecture and self-management behavior.  

 

In [15] an agent oriented programming paradigm for 

the development of intelligent sensor networks is 

presented. The proposed architecture for ISNs consists 

of autonomous intelligent agents that interact with 

other agents over special high-level communication 

protocol implementing a special declarative high-level 

agent communication language. 

 

In our approach, we do not aim at efficient routing 

algorithms, although such can be implemented with 

ASSL as a global network-level behavior. Instead, by 

using ASSL we develop intelligent autonomous units 

embedding sensors and driven by self-management 

policies. Moreover, we may use ASSL to specify 

global self-management policies, those working at the 

network level and forming global network-level 

intelligence. Therefore, an ASSL-developed ISN 

usually employs an intelligent behavior at both levels 

– sensor node level and network level. Moreover, in 

our approach, the networking mechanism exposes a 

centralized topology and is independent of sensor 

nodes. This makes an ISN both reliable and efficient, 

because its network nodes are volunteers and any node 

can be easily replaced by new one, without 

interrupting the entire network. 

 

3.  PRELIMINARIES 
 

3.1. Sensor Networks 
 

In general, a sensor network is composed of sensor 

nodes connected to other sensor nodes. The network 

connection usually is wireless and sensor nodes often 

rely on routing protocols to communicate with other 

nodes not directly connected to the first. Usually, a 

sensor node has limited computational resources. This 

is due to the fact that in most cases, sensor networks 

rely on batteries, where high-performance hardware 

cannot be efficiently supplied with energy [1, 13].  

 

In our approach, sensor nodes are considered to have 

enough computational power to run both a Java virtual 

machine and the Java-implemented self-management 

control software generated with ASSL. Note that 

ASSL generates Java code [4] and the employed DMS 

[8, 18] (a DMF instance) is JINI-based [16], which is 

a Java application as well. 

 

3.2. ASSL 
 

Although ASSL is dedicated to autonomic computing 

[2], with this work we demonstrate how it can be used 

for the development of sensor networks with self-

management capabilities. In this subsection, we 

present the ASSL specification model by emphasizing 

special features that make the framework suitable for 

the development of ISNs. 
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3.2.1. ASSL Specification Model  

 

ASSL is based on a specification model exposed over 

hierarchically organized formalization tiers. The 

ASSL specification model is intended to provide both 

infrastructure elements and mechanisms needed by an 

AS (autonomic system), or in this case by an ISN. 

Each tier of the ASSL specification model is intended 

to describe different aspects of the AS under 

consideration, such as special service-level objectives, 

policies, interaction protocols, events, actions, etc. 

This helps to specify an AS at different levels of 

abstraction imposed by the ASSL tiers (cf. Table 1). 

 

Table 1. ASSL Multi-tier Specification Model 

 

AS 

AS Service-level Objectives 

AS Self-management Policies 

AS Architecture 

AS Actions 

AS Events 

AS Metrics 

ASIP 

AS Messages 

AS Channels 

AS Functions 

AE 

AE Service-level Objectives 

AE Self-management Policies 

AE Friends 

AEIP 

AE Messages 

AE Channels 

AE Functions 

AE Managed Elements 

AE Recovery Protocols 

AE Behavior Models 

AE Outcomes 

AE Actions 

AE Events 

AE Metrics 

 

The ASSL specification model considers the ASs as 

being composed of special autonomic elements (AEs) 

interacting over interaction protocols, whose 

specification is distributed among the ASSL tiers. 

Note that although ASSL allows for specification and 

code generation of interaction protocols, the latter 

cannot be used as an ISN networking mechanism, 

because ASSL currently does not generate distributed 

systems. Instead, it generates multithreaded systems 

with embedded messaging. Here, we rely 1) on ASSL 

to specify and generate sensor nodes in the form of 

AEs; and 2) on DMF to implement the needed 

networking mechanism, which connects the nodes 

together.    

 

Table 1 presents the multi-tier specification model of 

ASSL. As shown, it decomposes an AS in two 

directions: 

1) into levels of functional abstraction; 

2) into functionally related tiers (sub-tiers). 

 

With the first decomposition (cf. first column in Table 

1), an AS is presented from three different 

perspectives depicted as three main tiers: 

1) AS Tier forms a general and global AS 

perspective exposing the architecture 

topology, general system behavior rules, and 

global actions, events, and metrics applied to 

these rules. 

2) ASIP Tier (AS interaction protocol) forms a 

communication perspective exposing a means 

of communication for the AS under 

consideration.  

3) AE Tier forms a unit-level perspective, where 

an interacting sets of the AS’s individual 

components is specified. These components 

are specified as AEs with their own behavior, 

which must be synchronized with the 

behavior rules from the global AS 

perspective. 

 

It is important to mention that the ASSL tiers are 

intended to specify different aspects of the AS in 

question but it is not necessary to employ all of them 

in order to model an ISN. Thus, to specify a simple 

ISN, we need to specify a single AE per sensor node 

providing the self-management control software 

controlling the node’s sensors and the communication 

with other AEs. Moreover, self-management policies 

must be specified to provide self-management 

behavior at the level of AS (the AS tier) and at the 

level of AE (AE tier) (cf. Table 1). Note that this rule 

is implied by the fact that any ASSL specification 

must be based on self-management [2]. 

 

With the following sub-subsection, we present some of 

the ASSL constructs needed to specify an ISN.  

 

3.2.2. Self-management Policies 

 

The self-management behavior of an AS (or ISN), is 

specified with ASSL self-management policies (cf. the 

appropriate tiers in Table 1). These policies are 
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specified with special ASSL constructs termed fluents 

and mappings: 

 A fluent is a state where an AS enters with 

fluent-activating events and exits with fluent-

terminating events. 

 A mapping connects fluents with particular 

actions to be undertaken. 

 

Self-management policies are driven by events and 

actions determined in a deterministic manner, similar 

to finite state machines. For the purpose of ISN 

development, self-management policies may be 

specified to control the network sensors and the 

process of sending and receiving messages. Moreover, 

both network-level (at the AS tier) and node-level (at 

the AE tier) self-optimizing policies can be specified. 

Self-management policies can be used to control the 

communication in real-time systems, which are 

bounded by deadlines. Deadlines may be a particular 

time, a time interval, or the occurrence of an event. 

Thus, we can use ASSL to specify real-time ASs, 

where different events can be used to trigger different 

policies intended to solve problems when the deadline 

cannot be met. 

 

3.2.3. ASSL Events 

 

ASSL aims at event-driven autonomic behavior. 

Hence, to specify self-management policies driving the 

sensor nodes of an ISN, we need to specify appropriate 

events. Here, we rely on the reach set of event types 

exposed by ASSL. To specify ASSL events, one may 

use logical expressions over service-level objectives, or 

may attach events to metrics (cf. Section 3.2.4), other 

events, actions, time, and messages. Moreover, ASSL 

allows for the specification of special conditions that 

must be stated before an event is prompted. 

 

3.2.4. ASSL Metrics 

 

For an ISN, one of the most important success factors 

is the ability to sense the environment and to react on 

sensed events. Here, together with the reachable set of 

events, ASSL imposes metrics as a means of 

determining dynamic information about external and 

internal points of interest. Although four different 

types of metrics are allowed [4], for the needs of ISN 

development, the most important are the so-called 

resource metrics intended to measure special managed 

resource quantities. Note that a managed resource (cf. 

Section 3.2.5) can be a controlled sensor and in such a 

case, an ASSL metric is linked with a network sensor. 

3.2.5. Managed Resources 

 

An AE (autonomic element) typically controls a 

managed resource specified with ASSL as managed 

elements [4]. Generally, a managed element (ME) is a 

functional unit (hardware or software). In an ASSL-

developed INS, a managed element may present a 

controlled sensor (or a group of sensors). In order to 

understand how an ASSL-developed INS works, it is 

important to understand the AE-ME relationship. 

Note that an AE monitors and interacts with its MEs.  

 

In ASSL, a ME is specified with a set of special 

interface functions intended to provide control 

functionality over the same. Thus, ASSL provides an 

abstraction of a ME through specified interface 

functions. Here, ASSL can specify and generate the 

interface controlling a ME, but not the 

implementation of this interface in that controlled 

ME. Here, when developing an ISN, the generated 

interfaces must be implemented by the appropriate 

sensor drivers.   

 

3.3. DMF 
 

DMF (Demand Migration Framework) [8, 18] is a 

generic scheme for migrating information in the form 

of messaging objects, in a heterogeneous and 

distributed environment determined by both 

information senders and information recipients (both 

termed as communication nodes). Hence, the 

framework establishes a context for performing 

migration activities, where the migrated messaging 

objects encapsulate behavior functions and data. In 

general, DMF may be applied as a concept underlying 

a generic architecture for the implementation of 

special family of Demand Migration Systems (DMSs) 

[8, 17, 18]. 

 

3.3.1. Rationale 

 

Originally, DMF was developed in [8] to expose a 

generic framework for object-migration in a 

heterogeneous and distributed environment. By 

applying DMF, we can design a variety of DMSs 

conforming to a set of requirements described by the 

following elements [8]: 

 platform interoperability – deals with 

process-machine boundaries and with the 

diversification of different hosting platforms 

(connects nodes running on Linux, Solaris, 

Windows, and Mac-OS platforms);  
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 “at least once” delivery semantics – ensures 

that no object could be delivered to a wrong 

recipient and is delivered at least once [3];  

 asynchronous communication – 

communication nodes run independently and 

have no synchronized lifecycles; 

 no prioritization  – both objects and 

communication nodes are served equally by 

the system; 

 secure communication; 

 fault-tolerant migration; 

 hot-plugging – communication nodes are 

“volunteers” in the communication process.  

 

3.3.2. DMF Architectural Model for ISNs  

 

DMF exposes a layer-structured architecture. Figure 1 

depicts an ISN-elaborated variant of that architecture. 

As shown, the largest circle depicts an ISN as 

composed of AEs controlling sensor nodes. The 

double-lined inner circle depicts DMF. Here, AEs are 

communication nodes, and DMF is a communication 

intermediate between them.  

 

DMF consists of two main functional layers called 

demand dispatcher (DD) and migration layer (ML) 

respectively. DMF relies on these two functional layers 

to form an asynchronous message-persistent 

communication protocol where messages are 

permanently stored and delivered upon request. DD 

(depicted by a bold-lined circle – cf. Figure 1) is an 

object-based storage mechanism able to dispatch 

messaging objects to their recipients. ML (depicted as 

a dark grayed layer on top of DD) is the layer 

performing object migration from an AE to another 

AE. ML makes the communication in a heterogeneous 

distributed environment possible.  

 

In addition, ML (migration layer) emphasizes the use 

of special kind of agents called transport agents 

(TAs), which are based on distributed technologies 

exposed over a special TA interface. Therefore, in 

order to use the DMF communication protocol, the 

AEs (autonomic elements) of an ISN must adhere to 

the special TA interface exposed by the DMF transport 

agents. Moreover, the DD (demand dispatcher) layer 

establishes a context of demand propagator that 

consists of two layers - demand space (DS) and 

presentation layer (PL) (cf. Figure 1). The demand 

space layer defines a context of internal object-based 

storage mechanism. The presentation layer is an 

abstract layer on top of DS that makes all the DS 

functionality transparent and generic. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Demand Migration Framework (DMF) 

 

3.3.3. DMS for ISNs 

 

The communication protocol of an ISN is an instance 

of DMF termed DMS (Demand Migration System). In 

our approach, we rely on the DMS described in [17]. 

This DMS exposes transport agents based on JINI [16] 

and termed JINI TAs. Thus, the AEs controlling the 

sensors of an ISN adhere to the JINI TA interface. 

 

4.  BUILDING INTELLIGENT SENSOR 

NETWORKS 
 

Our understanding of an ISN is that of a sensor 

network composed of sensors incorporating an event-

driven behavioral mechanism to allow the network 

reacts to changes in the network structure (e.g., a node 

is down) or environment. As we have already 

explained in previous sections, we build an ISN by 

using ASSL to specify and generate intelligent sensor 

nodes as AEs. Next, we connect the generated AEs in 

a network by using a special DMS instantiated from 

DMF and exposing JINI TAs.  

 

Figure 2 depicts a conceptual model of our network. 

As shown, the AEs controlling network sensors are 

connected in a network through a JINI-based DMS. 

Note that the network topology is centralized. The 

DMS stores the messages sent by AEs and delivers 

them to the recipient AEs when the latter are 

available. Moreover, in order to use the DMS, each 

AE connects to a JINI TA via a special interface.  

           PL 

 
Demand 

Space (DS) 

  ISN 

DMF 

 

Pre 

DD 

  

     ML  

98

Authorized licensed use limited to: University of Canberra. Downloaded on June 18,2020 at 04:55:39 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

 

 
 

 

DS 

 

 

 

Figure 2. ISN’s AEs Communicate via a DMS 

 

Although this is not depicted in Figure 2, note that a 

single JINI TA can be shared by multiple AEs. 

However, to achieve better performance, it is 

recommended to use a distinct TA per AE. 

 

4.1. Steps 
 

The steps of building an ISN with ASSL and DMF are 

as follows: 

1) Use ASSL to specify the AEs in terms of self-

management policies (providing self-

management behavior) and MEs (managed 

elements).  

2) Generate the Java implementation of the AEs 

with ASSL. 

3) Connect the generated AEs with the 

appropriate sensors through the generated 

ME interfaces. 

4) Install the JINI DMS in place. 

5) Connect the JINI TAs with the AEs through 

the generated ME interfaces. 

6) Run the JINI DMS. 

7) Run the ISN’s AEs. 

 

4.2. Case Study 
 

In the course of this project we used ASSL and DMF 

to build an ISN for home automation. Our first step 

was to automate the living room of a house. We used 

ASSL to specify four different AEs composing the ISN 

for home automation: 

 Light AE - controls the lights in the living 

room. This AE uses light sensors to 

determine the level of brightness in the living 

room and uses the light switcher to turn 

on/off the lights. Moreover, this AE 

communicates with the Motion AE to 

determine when and where motion is detected 

in the living room, which could prompt 

turning lights on.   

 Voice AE - controls the microphones in the 

living room. This AE detects and recognizes 

speech. It communicates with the Light AE 

and with the Door AE to perform voice 

commands, such as “turn lights on/off” or 

“open/close door”.      

 Motion AE - controls motion detectors to 

sense the living room for motion. It zones the 

living room and detects where the motion is 

taking place and how many moving objects 

are there. The Motion AE communicates with 

the Door AE and with the Light AE. 

 Door AE - controls (open or close) the door. 

It communicates with the Motion AE, e.g., 

when motion is detected towards door, the 

Door AE opens the door automatically. 

 

4.2.1. ASSL Specification 

 

For each one of these AEs we specified self-

management policies and managed elements. The, 

ASSL specification is built around self-management 

policies providing intelligence. Recall that the self-

management policies are driven by events and actions 

determined deterministically (cf. Section 3.2.2). The 

following ASSL fragments present a partial 

specification of the Voice AE.  

 
AESELF_MANAGEMENT { 

 OTHER_POLICIES {  

  POLICY MANAGE_VOICE_COMMAND {  

   FLUENT inSpeach { 

    INITIATED_BY { EVENTS.speechDetected } 

    TERMINATED_BY { EVENTS.commandRecognized,  

                      EVENTS.commandNotRecognized } 

   } 
   FLUENT inCommandRecognized  { 

    INITIATED_BY { EVENTS. commandRecognized } 

    TERMINATED_BY { EVENTS.commandProcessed }  

   } 
…. 
   MAPPING { CONDITIONS { inSpeach }  

    DO_ACTIONS { ACTIONS.recognizeCommand } } 

   MAPPING { CONDITIONS { inCommandRecognized  }  

    DO_ACTIONS { ACTIONS.processCommand } } 

….  }}} 
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The first specification presents a self-management 

policy. This policy determines the behavior of the AE 

when a speech is detected. Here events are specified to 

initiate and terminate fluents within this policy. As 

shown, when speech is detected (via the controlled 

microphones) the AE starts this policy in an attempt to 

recognize a voice command. If such is recognized, it 

will be propagated to the Door AE (if the voice 

command is “open/close door”) or to the Light AE (if 

it is “turn on/off lights”) through the DMS installed in 

place by using a JINI TA (transport agent).   

 

To control both the microphones and the JINI TA, the 

Voice AE specifies two managed elements 

determining the control interface. The following 

ASSL specification snippet presents the specified 

managed elements. 

 
MANAGED_ELEMENTS { 

 MANAGED_ELEMENT MICROPHONES {  

  INTERFACE_FUNCTION speechDetected {  

   RETURNS { Boolean  } } 

  INTERFACE_FUNCTION retrieveCommand {  

   RETURNS { String } } 

 } 
 MANAGED_ELEMENT JINI_TA { 

  INTERFACE_FUNCTION sentMessage {  

   PARAMETERS { ISNMessage oMessage }  } 

  INTERFACE_FUNCTION receiveMessage {  

   RETURNS { ISNMessage  }  } 

 } 
}  

 

The specified interface functions help the Voice AE 

detects speech, retrieves a voice command from 

detected speech, and sends and receives messages. 

Note that the Light AE controls not only the sensors 

(microphones) but also the TA (JINI TA) allowing 

this AE to communicate through the DMS run in 

place. As shown, the MICROPHONES managed element is 

intended to detect and process speech. Here, for the 

implementation of the retrieveCommand interface function 

we rely on the Nuance Dragon NaturallySpeaking 

Solution, Version 9.0 [19]. Dragon NaturallySpeaking 

provides a speech to text engine with appropriate SDK 

for Java. As for the JINI_TA managed element, the 

Voice AE uses this to communicate with a JINI TA 

(transport agent) attached to this AE.  

 

4.2.2. Implementation  

 

We used the ASSL framework to validate the 

consistency of the ASSL-specified ISN and generate 

the implementation of the same. Here, the ISN system 

was generated as hierarchically organized Java 

packages nesting Java classes derived from the ASSL 

specification. The four AEs (Voice, Light, Motion, and 

Door) were generated with a special control loop that 

applies control rules specified and implemented as 

self-management policies (e.g., cf. MANAGE_VOICE_ 

COMMAND in Section 4.2.1). The following Java code 

fragment presents an ASSL-generated control loop.  

 
protected void controlLoop() { 

  try { 

//monitor-analyzer-simulator-executor 

    oMonitor.perform(); 

    oAnalyzer.perform(); 

    oSimulator.perform(); 

    oExecutor.perform(); 

//applies self-management policies 

    applyPolicies(); 

    Thread.sleep(tDelay); 

  } 

  catch ( InterruptedException ex )  

  {....} 

} 

 

As shown, a special controlLoop() method is 

generated to handle special control loop calls 

(performed on a regular basis) for each AE. In its first 

part, the control loop uses four components 

(oMonitor, oAnalyzer, oSimulator, and 

oExecutor) to discover problems with ASSL-

specified metrics. A detailed description of those four 

components refers to the autonomic computing nature 

of the generated code and is beyond the scope of this 

paper. The second part of this control loop is a 

function call of the applyPolicies() method that is 

intended to apply deterministically the self-

management policies of an AE. The following code 

fragment presents a partial implementation of that 

method. This implementation is the same for all the 

four AEs generated for the ISN.    

  
protected void applayPolicies() { 

.... 

    //applies only "switched-on" policies 

    if ( currPolicy.isSwitchedOn() ) { 

      currPolicy.doAllMappings(); 

    } 

  } 

} 

 

As shown, the policies of an AE (e.g., Voice AE) are 

applied by performing for each policy a 

doAllMappings() method. The latter maps actions 

to fluents and performs only those actions that are 

mapped to initiated fluents, e.g., as specified in the 

MANAGE_VOICE_COMMAND policy the inSpeach fluent is 

mapped to the recognizeCommand action (cf. Section 

4.2.1). Note that a fluent is initiated if at least one of 

the fluent-initiating events has occurred, e.g., 

occurrence of the speechDetected event initiates the 

inSpeach fluent.  
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While performing, an action makes calls on the 

managed elements to do sensing or acting. For 

example, the ASSL-specified recognizeCommand action 

calls the sendMessage() method of the JINI_TA managed 

element to send messages (voice commands) to other 

AEs (Door AE or Light AE).  

 
ACTION recognizeCommand { … 

 DOES {  

  voiceCommand = CALL 

AEIP.MANAGED_ELEMENTS.MICROPHONES.retrieveCommand; 

  …. 
  CALL AEIP.MANAGED_ELEMENTS. JINI_TA.sendMessage 

(voiceCommand) ; 
  …. 

 

Here, managed elements such as MICROPHONES and 

JINI_TA (cf. Section 4.2.1) were generated as Java 

classes, where the interface functions are implemented 

as empty class methods. Thus, we had to complete 

those after the ISN code was generated. For example, 

we had to complete both sendMessage() and reciveMessage() 

methods of the JINI_TA class (generated for the identical 

managed element) by using the functionalities of the 

DMS. Thus, we programmed the JINI_TA class to 

connect to a JINI TA (transport agent) and use its 

functionality to send and receive messages.  

 

4.2.3. Test Results  

 

In this case study, we specified and generated the four 

AEs composing the ISN for home-automation. We 

also put together the generated AEs and the JINI 

DMS. However, we did not use real sensors. Instead, 

we simulated sensing home-automation environment 

with ASSL events specified to simulate sensor activity. 

Note that events trigger the specified policies by 

initiating appropriate fluents (cf. the 

AESELF_MANAGEMENT ASSL specification sample 

above). Thus, with such events we were able to 

simulate speech detection, voice command recognition 

and other sensor-related events. The test results 

demonstrated that, under simulated conditions, the 

run-time behavior of the ISN strictly followed the 

ASSL-specified self-management policies. Moreover, 

the ISN’s AEs were able to exchange messages 

through the JINI DMS run in place.  

 

It is important to mention, that we built an ISN for 

home-automation as a pure software solution, and thus 

we could not perform real sensor-based tests, but 

simulated ones. To perform real tests we need to 

implement both sensors and actuators in our ISN. The 

needed components such as motion detector (cf. 

Figure 3) or light control sensors can by bought online 

from ELV Elektronik Deutschland [20]. The use of 

real sensors will allow for further experimental 

evaluation. This will help us answer questions such as 

response time, efficiency of sensors and hardware 

control, etc. For example, a possible response time 

could be defined as the time it takes the system to open 

the door after a user has spoken the “open door” voice 

command.  

 

 

 

 

 

 

 

 

Figure 3. PIR Motion Detector [20] 

 

5. CONCLUSION AND FUTURE WORK 
 

We have demonstrated how ASSL – a formal tool for 

development of autonomic systems, and DMF – a 

framework for message migration in distributed 

environments, can be used together to develop ISNs 

(intelligent sensor networks) with self-management 

capabilities. In our approach, we use ASSL to specify 

special behavioral policies provided by autonomic 

elements intended to control sensors via special 

managed elements. Here, we assume ISNs composed 

of autonomic elements specified with suitable ASSL 

specification constructs and whose Java 

implementation is automatically generated. Moreover, 

in our approach we use a JINI-based DMS (demand 

migration system) to connect the generated autonomic 

elements. This DMS provides a networking protocol 

needed by an ASSL-developed ISN, where the ISN’s 

autonomic elements use special JINI TAs (transport 

agents) to communicate. As a proof of concept, we 

successfully built an ISN for home-automation, where 

sensors were simulated with special events.  

 

Future work is concerned with further ISN 

experiments and development by including hardware 

attached to the control software generated by the 

ASSL framework. Moreover, we intend to build ISN 

prototypes incorporating self-management policies 

such as self-healing, self-protecting, and self-

adapting. This will help us to investigate and develop 
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ISNs able to automatically detect and fix performance 

problems, e.g., by switching to alternative sensors.  
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