2010 Fourth International Symposium on Theoretical Aspects of Software Engineering

Automated Test Case Generation of Self-Managing Policies for NASA Prototype
Missions Developed with ASSL

(Invited Paper)

Emil Vassev
Lero, University College Dublin
Dublin, Ireland
Email: emil.vassev@lero.ie

Abstract—Self-managing policies provide a self-management
behavior for autonomic systems developed with ASSL (Auto-
nomic System Specification Language). With ASSL we have
successfully developed special autonomic prototypes of both the
NASA ANTS (Autonomous Nano-Technology Swarm) concept
mission and NASAs Voyager Mission. In these prototypes,
we applied ASSL self-managing policies to drive the missions
in critical situations in response to environmental or system
changes. Therefore, the logical correctness of the ASSL spec-
ification of such policies appears to be of major importance.
Experience has shown, however, that ASSL specifications may
contain logical faults causing improper behavior. To handle
such behavior, self-managing policies are often tested with
manually injected inputs triggering events and satisfying con-
straints to allow for the activation, execution, and deactivation
of these policies. The logical correctness of an ASSL self-
managing policy currently depends solely upon the relation
between inputs and conclusion. In this paper, we present our
initial work on a novel tool, part of the ASSL framework, that
generates test cases based on change-impact analysis. Our main
goal is to reduce testing costs and effort and improve the quality
of testing, thus eventually assuring the logical correctness of
the self-managing policies developed with ASSL.

Keywords-self-management; testing; test generation; ASSL

I. INTRODUCTION

Safety is a major concern in safety-critical systems
such as NASA exploration missions, where both reliability
and maintainability are essential drivers. In that context,
NASA’s Reliability and Maintainability Program [1] targets
engineering activities intended to asses and improve the
reliability performance of systems used for both manned
and unmanned space-exploration missions. The goal of
this program is to help NASA system engineers develop
highly reliable systems through design evaluation, automated
model analysis and verification, and testing, thus establishing
“confidence that those systems will function properly when
needed. Moreover, the maintainability part of this program
[1] targets maintenance reduction and minimization of the
maintenance downtime in spacecraft systems. To achieve
these goals, NASA increasingly relies on formal develop-
ment approaches and on concepts from Autonomic Com-
puting (AC) [2]. Both the Autonomous Nano-Technology
Swarm (ANTS) concept mission [3] and the Deep Space

978-0-7695-4148-8/10 $26.00 © 2010 IEEE
DOI 10.1109/TASE.2010.32

Mike Hinchey
Lero, University of Limerick
Limerick, Ireland
Email: mike.hinchey@Iero.ie

Paddy Nixon
Lero, University College Dublin
Dublin, Ireland
Email: paddy.nixon@Ilero.ie

One (DS1) mission [4] represent a new generation of AC-
based unmanned missions. Software developed with the use
of formal methods has demonstrated to be more reliable,
because both a formal notation and suitable mature tool
support are provided.

In order to develop reliable autonomic systems (ASs)
capable of performing unmanned missions, NASA must rely
on formal methods that cope well with the principles of AC.
To the best of our knowledge, ASSL [5] is currently the
only complete solution to the problem of AS specification
and implementation. ASSL has been successfully used to
develop autonomic properties and generate special prototype
models of the NASA ANTS concept mission [6], [7] and
NASA’s Voyager mission [8]. These prototype models have
helped us simulate space exploration missions.

Research Problem and Approach: Our experience with
ASSL has demonstrated that errors can easily be intro-
duced while specifying large systems such as ANTS [6] or
Voyager [8]. Currently, the ASSL framework is capable of
efficiently handling syntax and consistency errors [5]. As
for handling logical errors, in previous work we presented
a methodology for model checking ASSL specifications
[9]. However, due to the so-called state-explosion problem
[10], model checking cannot efficiently handle logical errors.
Therefore, to detect errors introduced not only with the
ASSL specifications, but also with supplementary coding,
the automatic verification provided by the ASSL tools must
be augmented with appropriate testing. ASSL-developed
ASs are driven by special self-managing policies. To test
such ASs properly, we must consider all the implemented
self-managing policies and come up with test cases pro-
viding the necessary inputs and conditions to explore these
policies in all possible paths of execution. Without automatic
test generation, ASSL testing relies solely on the developer’s
intuition to identify test cases for self-managing policies. In
general, the process of manually identifying appropriate test
cases is laborious, and its success depends on the experience
of the tester. This problem is especially serious for users
of ASSL, who typically are not experienced programmers
and lack background in testing. To address this problem, we
have been investigating how to automate the generation of

@) CO‘ pute
1(!) I
& SOCIety

Authorized licensed use limited to: University of Canberra. Downloaded on June 17,2020 at 23:35:29 UTC from IEEE Xplore. Restrictions apply.

test cases for self-managing policies in ways that support
incremental testing and provide immediate visual feedback.
We have used two techniques for test case generation: one
using random selection and another using a change-impact
analysis approach. This paper describes the second approach.

Benefits for Space Systems: An ASSL automatic test
generator will help to complete the AS development process
with ASSL. The ability to properly test the ASSL-developed
ASs for implementation flaws can lead to significant im-
provements in both specification models and generated ASs.
Subsequently, ASSL can be used to develop better prototype
models for current and future space-exploration missions.
Such prototypes can be used for feature validation and
simulated experimental results. This eventually will help in
the construction of more reliable spacecraft systems, which
offers significant benefits.

II. ASSL SELF-MANAGING POLICIES

The Autonomic System Specification Language (ASSL)
[11], [5] is an initiative for self-management of complex
systems where we approach the problem of formal speci-
fication, validation, and code generation of autonomic sys-
tems (ASs) within a single framework. Being dedicated to
AC, ASSL helps AC researchers with problem formation,
system design, system analysis and evaluation, and system
implementation. The framework provides tools that allow
ASSL specifications to be edited and validated. From any
valid specification, ASSL can generate an operational Java
application.

A. ASSL Specification Model

In general, ASSL considers the ASs as being composed
of autonomic elements (AEs) that communicate over inter-
action protocols. To specify those, ASSL is defined through
formalization tiers. Over these tiers, the framework provides
a multi-tier specification model that is designed to be scal-
able and exposes a judicious selection and configuration
of infrastructure elements and mechanisms needed by an
AS. The ASSL tiers and their sub-tiers (see Figure 1) are
abstractions of different aspects of the AS under consider-
ation. They aid not only to the specification of the system
at different levels of abstraction, but also in reduction of
complexity, and thus, improving the overall perception of
the system.

There are three major tiers (three major abstraction per-
spectives), each composed of sub-tiers (see Figure 1):

o AS tier — presents a general and global AS perspective,
where we define the general autonomic system rules
in terms of service-level objectives (SLO) and self-
managing policies, architecture topology and global
actions, events and metrics applied in these rules.

o AS Interaction Protocol (ASIP) tier — forms a communi-
cation protocol perspective, where we define the means

I. Autonomic System (AS)
AS Service-level Objectives
AS Self-managing Policies
Architecture
AS Actions
AS Events
AS Metrics
II. AS Interaction Protocol (ASIP)
AS Messages
AS Communication Channels
AS Communication Functions
. Autonomic Element (AE)
AE Service-level Objectives
AE Self-managing Policies
AE Friends
AE Interaction Protocol (AEIP)
- AE Messages
— AE Communication Channels
— AE Communication Functions
— AE Managed Elements
Recovery Protocol
Behavior Models
Outcomes
Actions
Events
Metrics

* ok ko
P
0

-
o]
* ok ok ok H ok b ot

EEEERE

Figure 1. ASSL Multi-Tier Model

of communication between AEs. An ASIP is composed
of channels, communication functions, and messages.
AE tier — forms a unit-level perspective, where we
define interacting sets of individual AEs with their
own behavior. This tier is composed of AE rules (SLO
and self-managing policies), an AE interaction protocol
(AEIP), AE friends (a list of AEs forming a circle of
trust), recovery protocols, special behavior models and
outcomes, AE actions, AE events, and AE metrics.

The AS Tier specifies an AS in terms of service-level
objectives (AS SLOs), self-managing policies, architecture
topology, actions, events, and metrics (see Figure 1). The
AS SLOs are a high-level form of behavioral specification
that help developers establish system objectives (e.g., perfor-
mance). The self-managing policies can be any of (but not
restricted to) the four so-called self-CHOP policies defined
by the AC IBM blueprint [12]: self-configuring, self-healing,
self-optimi-zing and self-protecting. These policies are driven
by events and trigger the execution of actions driving an
AS in critical situations. The metrics constitute a set of
parameters and observables controllable by an AS. At the
ASIP Tier, the ASSL framework helps developers specify
an AS-level interaction protocol as a public communication
interface, expressed with special communication channels,
communication functions and communication messages. At
the AE Tier, the ASSL formal model exposes specification
constructs for the specification of the system’s AEs.
Conceptually, AEs are considered to be analogous to
software agents able to manage their own behavior and their
relationships with other AEs. Note that ASSL targets only
the AC features of a system and helps developers clearly
distinguish the AC features from the system-service features.

Authorized licensed use limited to: University of Canberra. Downloaded on June 17,2020 at 23:35:29 UTC from IEEE Xplore. Restrictions apply.

This is possible, because with ASSL we model and generate
special AC wrappers in the form of ASs that embed the
components of non-AC systems. The latter are considered
as managed elements, controlled by the AS in question.
Conceptually, a managed element can be any software or
hardware system (or sub-system) providing services. Man-
aged elements are specified per AE (see Figure 1) where the
emphasis is on the interface needed to control a managed
element. It is important also to mention that the ASSL tiers
and sub-tiers are intended to specify different aspects of an
AS, but it is not necessary to employ all of them in order to
model such a system. For a simple AS, we need to specify:

1) the AEs providing self-managing behavior intended to
control the managed elements associated with an AE;
2) the communication interface.

For more details on the ASSL multi-tier specification model
and the ASSL framework toolset, the interested reader is
referred to [5], [11].

B. Specifying Self-managing Policies

In the ASSL-developed ASs, the self-management behav-
ior is provided by self-managing policies that are specified at
the level of AS (see the AS Tier in Figure 1) and at the level
of AEs (see the AE Tier in Figure 1). Therefore in general,
an ASSL specification is built around one or more self-
managing policies. This makes the ASSL specifications AC-
driven, i.e., the ASSL-developed ASs are modeled taking
into account the main goal of AC, viz. self-management.
The self-managing policies are driven by ASSL events and
ASSL actions and are specified with special constructs called
fluents and mappings [5]:

o a fluent sets specific conditions determining when a
self-managing policy is activated;

« mappings map particular fluents to particular actions to
be undertaken by the specified AS.

The following ASSL code presents a sample specification
of a self-healing policy.

ASSELF_MANAGEMENT {
SELF_HEALING {
FLUENT inLosingSpacecraft {
INITIATED_BY { EVENTS.spaceCraftLost }
TERMINATED_BY { EVENTS.earthNotified }

MAPPING {
CONDITIONS { inLosingSpacecraft }
DO_ACTIONS { ACTIONS.notifyEarth }

}

Y // ASSELF_MANAGEMENT

As shown, fluents are expressed with fluent-activating and
fluent-terminating events. In order to express mappings,
conditions and actions are considered, where the former
determine the latter in a deterministic manner.

SELF_PROTECTING {

FLUENT inSecurityCheck {
INITIATED_BY {
EVENTS.privateMessageIsComming

TERMINATED_BY {
EVENTS.privateMessageSecure,
EVENTS.privateMessagelInsecure

}

MAPPING {
CONDITIONS { inSecurityCheck}
DO_ACTIONS { ACTIONS.checkPrivateMessage }}}

Figure 2. Self-protecting Policy

EVENT privateMessageIsComming {
ACTIVATION {
SENT { AEIP.MESSAGES.privateMessage }

}
}
EVENT privateMessagelInsecure {

GUARDS { NOT METRICS.therelIsInsecureMsg }
ACTIVATION {

CHANGED { METRICS.thereIsInsecureMsg }

}
}

EVENT privateMessageSecure {
GUARDS { METRICS.thereIsInsecureMsg }
ACTIVATION {
CHANGED { METRICS.thereIsInsecureMsg }
}
}

Figure 3. Policy Events

ACTION checkPrivateMessage {
GUARDS { }
ENSURES { }
DOES {
senderIdentified = call ACTIONS.checkSenderCertificate;

ONERR_DOES { }
TRIGGERS { }
ONERR_TRIGGERS { }

Figure 4. CheckPrivateMessage Action

Figure 2, Figure 3, and Figure 4 present a partial spec-
ification of a self-protecting policy employed by one of
the prototype models [6] we built for the NASA ANTS
concept mission [3]. Note that ASSL events (see Figure
3) and actions (see Figure 4) may be specified with a
special GUARDS clause stating preconditions that must be
met before an event may be raised or an action may be
undertaken. In addition, events (see Figure 3) are specified
with a special ACTIVATION clause and actions may be
specified with an ENSURES clause to state post-conditions
that must be met after the action execution. Actions may
call other actions in their DOES or ONERR_DOES clauses.
Finally, actions (see Figure 4) may trigger events specified in
special TRIGGERS and ONERR_TRIGGERS clauses. Note

Authorized licensed use limited to: University of Canberra. Downloaded on June 17,2020 at 23:35:29 UTC from IEEE Xplore. Restrictions apply.

that the ONERR_DOES and ONERR_TRIGGERS clauses
specify the action execution path in case of an error [5].
Therefore, a policy may have multiple paths of execution
depending on its fluent organization and the events driving
those fluents. Moreover, each policy has an optional set
of constraints defined as GUARDS and ENSURES clauses
in events and actions [S]. These constraints together with
the event’s ACTIVATION clause may also determine the
execution path of a policy. Therefore, to summarize, the
execution of a policy may be controlled via the policy-
related events (through the ACTIVATION clause) and policy-
related GUARDS and ENSURES clauses.

IIT. TEST GENERATION METHODOLOGY

Policy Execution Paths: Formally, from a policy-
execution perspective, an ASSL-specified self-managing
policy m may be presented as a tuple:

m{F, A}

where F' presents the fluents driving the policy in
question and A presents the actions that eventually will be
undertaken while the policy is active. Here, for each fluent
f € F we have:

f{Ea,Af, Et}

where Fa and FEt are the sets of fluent-activating
and fluent-terminating events respectively and Af C A is
the set of actions to be executed by f. Further, an event:

e € Ea|J Et is a tuple e{grd, act}

where grd is the GUARDS clause and act is the
ACTIVATION clause of the event e. Finally, an action
a € Ais a tuple:

a{grd,ens, Etr, Eer}

where grd and ens are the action’s GUARDS and
ENSURES clauses respectively, and Etr and Fer are sets
of events triggered by the action a in case of normal and
erroneous action execution.

The execution of a policy 7 is activation and termination
of the policy’s fluents. Thus, to trace the policy execution,
we must consider the execution paths of all the policy’s
fluents F'. The execution path of a fluent is a sequence of
the form:

{Ea,Af, Et}

The execution paths of a fluent with n activation events
FEa, m termination events Et, and k actions A is a product:

m xn X v(k)

where the function v(k) gives the variations in the
execution of A. This function takes into account the
action’s formal attributes: grd, ens, Etr, and Eer, together
with their internal dependencies and ASSL formal semantics
[5] as following:

e Eitr and Eer are mutually exclusive, i.e., both cannot
co-exist in same execution path;

o if ens is not met (denoted as !ens), then FEer is
mandatory;

o if grd is not met (denoted as !grd), then the action a
is not executed (denoted as !a).

Note that to simplify the problem, in this formal model
we consider events as activated or not activated, thus
helping us generalize over the event’s clauses GUARDS and
ACTIVATION. To illustrate the formal model, we present a
simple example of a fluent

f{Ea, Af, Et}

where n =1, m =1, k = 2, and:

Ea = {eal}
Et = {etl}
Af ={al,a2}

al = {grdl,ensl, Etrl, Eerl}
a2 = {grd2,ens2, Etr2, Eer2}
Here, fluent f
are:

the possible execution paths of the

Pexl = {eal,al{grdl,ensl, Etrl}, a2{grd2, ens2, Etr2},etl};
Pex2 = {eal,al{grdl, ensl, Etrl},!a2{!grd2}, etl};

Pex3 = {eal,al{grdl, ensl, Etrl}, a2{grd2,!ens2, Eer2},etl};
Pex4 = {eal,al{grdl, ensl, Etrl}, a2{grd2, ens2, Eer2},etl};
Pexb = {eal,lal{lgrdl}, a2{grd2, ens2, Etr2},etl};

Pex6 = {eal,!lal{lgrdl}, a2{!grd2}, etl};

Pex7 = {eal,lal{lgrdl}, a2{grd2,lens2, Eer2},etl};

Pex8 = {eal,lal{lgrdl}, a2{grd2, ens2, Eer2}, etl};

Pex9 = {eal, al{grdl,lensl, Eerl}, a2{grd2, ens2, Etr2}, etl};
Pex10 = {eal, al{grdl,!ensl, Eerl},la2{!grd2}, etl};

Pexll = {eal, al{grdl,'ensl, Eerl}, a2{grd2,!ens2, Eer2},etl};
Pex12 = {eal,al{grdl,lensl, Eerl}, a2{grd2, ens2, Eer2},etl};
Pex13 = {eal, al{grdl, ensl, Eerl}, a2{grd2, ens2, Etr2}, etl};
Pexl4d = {eal, al{grdl, ensl, Eerl},la2{lgrd2},etl};

Pex15 = {eal,al{grdl, ensl, Eerl}, a2{grd2,ens2, Eer2},etl};
Pex16 = {eal, al{grdl, ensl, Eerl}, a2{grd2, ens2, Eer2}, etl};

ASSL Test Generator: Our goal is to develop a novel
test generator tool based on change-impact analysis that
will help the ASSL framework automatically generate
high-quality test suites for self-managing policies. The

Authorized licensed use limited to: University of Canberra. Downloaded on June 17,2020 at 23:35:29 UTC from IEEE Xplore. Restrictions apply.

policy pairs tests tests
ASSL execution Pex - N {l, R} T{Pex,N{l,R}} T{Pex,N{l,R}}
aths
B _S_pfc_> Policy i _p__ -5 Change-impact | ____» TestSuit | N TestSuit | N
Extractor Analyzer Generator Reducer

Figure 6. Operational View of the ASSL Test Generator

EVENT privateMessagelnsecure {
ACTIVATION { PERIOD { 1 min } }

}

Figure 5. Replacement Event

test generator tool accepts as input an ASSL specification
comprising sets of policies II that need to be tested and
generates a set of tests 7" as tuples:

T {Pex, N {I, R}}

comprising an execution path Pex and test attributes
N. The latter is a tuple comprising needed inputs [
and optional replacement ASSL constructs R. The latter
are automatically or semi-automatically determined and
generated as special stubs to ensure the execution of Pex.
Figure 5 presents a privateMessagelInsecure replacement
event that shall replace the original one (see Figure 3). As
shown, the new event does not have a GUARDS clause and
its activation is time-ensured, i.e., it does not depend on
external factors.

As shown in Figure 6, the tool consists of four major
components: policy extractor, change-impact analyzer, test
suit generator, and test suit reducer. The key notion of
the tool is to synthesize two or more execution paths of
the same fluent in such a way that test coverage targets
(e.g., certain policies, rules, or conditions) are covered by
the synthesized execution paths. The change-impact analysis
component can then determine for each execution path the
needed test attributes N such as inputs I and optional
replacement constructs 1 in the form of ASSL events, ASSL
actions, and ACTIVATION, GUARDS, and ENSURES clauses
needed to be employed by a fluent execution path in order
to ensure the same. Based on the determined test attributes
and execution paths, the tool generates tests 7'. Often the
number of generated tests is large (recall that the number of
fluent execution paths is a product of the number of events
and actions employed by a fluent) and it is not feasible for
developers to manually inspect their responses. To mitigate
this issue, the final step of the test generator tool reduces the
number of generated tests by selecting tests based on policy
structural coverage.

Change-impact Analysis: The goal of change-impact
analysis is to determine what should be changed in the

events and actions employed by a particular fluent execution
path Pex in order to ensure the same. In general, ASSL
facilitates change-impact analysis because ASSL specifica-
tions allow:
1) extraction of information from the model to see where
a change must occur in order to force one or more
execution paths;
2) calculation of the change impact on the other parts of
the model for any proposed change.
Here, of major importance the evaluation of how the ex-
ecution of a fluent will be affected by a change in a
particular event (GUARDS or ACTIVATION clause) or action
(GUARDS or ENSURES clause). Note that at the time of
writing, we are working on the change-impact analysis
heuristic algorithm. Our initial results have demonstrated
that this algorithm should involve the following logical steps.
« Evaluate what the conditions that must be met to have
a specific fluent execution path ensured are:

— Evaluate the events employed by a specific fluent:

1) For each event analyze the pre-conditions that
must be met (GUARDS clause) and the activa-
tion conditions (ACTIVATION clause);

2) Evaluate if a particular event drives (activates
or terminates) multiple fluents.

— Evaluate the actions employed by a specific fluent:
1) For each action analyze the pre- and post-

conditions that must be met (GUARDS and
ENSURES clause) and the events that are
triggered by the action (TRIGGERS and ON-
ERR_TRIGGERS) action;

2) Evaluate if the action itself executes other
ASSL actions, or other executable constructs
that may have impact on events such as ASSL
interaction functions [5] and ASSL managed
element functions [5].

— Generate a test case that meets the fluent execution
path’s conditions. Replacement constructs must be
generated when the original ones cannot ensure the
path execution. For example, if an event cannot be
triggered due to conditions that must be met new
replacement event may be generated that simulates
the old one.

« Evaluate what the impact of having two or more fluents
executing simultaneously is and what the conditions
that must be met for that are. Generate test cases.

Authorized licensed use limited to: University of Canberra. Downloaded on June 17,2020 at 23:35:29 UTC from IEEE Xplore. Restrictions apply.

o Evaluate the policies involved in the tested execution
path for the presence of chained fluents (the termination
of a fluent activates another one, and so on). Find
the conditions that must be met for that. Generate test
cases.

In addition, it is important to evaluate the impact of modify-
ing an existing construct and that of replacing the same con-
struct with a completely new one. Another aspect that must
be addressed by the change-impact analysis is the tradeoffs
stemming from “disabling GUARDS and ENSURES clauses.
Note that such clauses act as special “behavior constraints
and are usually specified to ensure that certain conditions
are met before processing (or terminating) actions or events.
Therefore, by disabling (removing) those “constraints (see
Figure 5 and Figure 3), we may ensure certain execution
paths, but the impact of such a change needs to be also
analyzed in the context of tradeoffs coming with the “un-
constrained behavior.

IV. CONCLUSION AND FUTURE WORK

We have presented our approach towards automatic test
case generation for ASSL self-managing policies. An ASSL
test generator tool automatically generates test suites com-
posed of fluent execution paths and test attributes. The
principle technique is to synthesize such policy execution
paths paired with test attributes in the form of inputs
and special replacement constructs. The test attributes are
determined by change-impact analysis of the effect of a
change in particular events or particular actions employed by
an execution path. It is our understanding that such a testing
mechanism will have a great impact on the development of
prototype models for current and future space-exploration
missions. Properly tested prototypes, eventually, will lead to
the construction of more reliable spacecraft systems. Note
that traditional methods, such as analyzing each requirement
and developing test cases to verify the correctness of ASSL-
implemented ASs, are not effective, because they require
complete understanding of the overall complex system’s
self-management behavior.

Our plans for future work are mainly concerned with
further development of the test generation mechanism for
ASSL. Further, we plan to generate test cases for a number
of self-managing policies developed for ANTS to determine
the effectiveness of this approach as a test covering and
generation strategy. Moreover, it is our intention to build
an animation tool for ASSL, which will help to visualize
counterexamples and trace erroneous execution paths.

It is our belief that automatic test generation will make
ASSL a better and more powerful framework for AS spec-
ification, validation, code generation, and testing.

ACKNOWLEDGMENT

This work was supported in part by an IRCSET postdoc-
toral fellowship grant at University College Dublin, Ireland

and by the Science Foundation Ireland grant 03/CE2/1303_1
to Lero—the Irish Software Engineering Research Centre.

REFERENCES

[1] F. Groen, “Reliability and maintainability program,” 12
2007, http://www.hq.nasa.gov/office/codeq/rm/index.htm, last
viewed January 2010.

[2] R. Murch, Autonomic Computing: On Demand Series. 1BM
Press, Prentice Hall, 2004.

[3] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff, “NASA’s
Swarm Missions: The Challenge of Building Autonomous
Software,” IT Professional, vol. 6, no. 5, pp. 47-52, 2004.

[4] M. Rayman, P. Varghese, D. Lehman, and L. Livesay, “Re-
sults from the deep space 1 technology validation mission,”
Acta Astronautica, vol. 47, p. 475, 2000.

[5]1 E. Vassev, ASSL: Autonomic System Specification Language
- A Framework for Specification and Code Generation of
Autonomic Systems. LAP Lambert Academic Publishing,
2009.

[6] E. Vassev, M. Hinchey and J. Paquet, “Towards an ASSL
Specification Model for NASA Swarm-Based Exploration
Missions,” in Proceedings of the 23rd Annual ACM Sympo-
sium on Applied Computing (SAC 2008) - AC Track. ACM,
2008, pp. 1652-1657.

[7] E. Vassev, M. Hinchey, and J. Paquet, “A Self-Scheduling
Model for NASA Swarm-Based Exploration Missions using
ASSL,” in Proceedings of the Fifth IEEE International Work-
shop on Engineering of Autonomic and Autonomous Systems
(EASe’08). 1EEE Computer Society, 2008, pp. 54-64.

[8] E. Vassev and M. Hinchey, “Modeling the Image-processing
Behavior of the NASA Voyager Mission with ASSL,” in
Proceedings of the 3rd IEEE International Conference on
Space Mission Challenges for Information Technology (SMC-
IT’09). 1EEE Computer Society, 2009, pp. 246-253.

[9] E. Vassev, M. Hinchey and A. Quigley, “Model Checking for
Autonomic Systems Specified with ASSL,” in Proceedings
of the First NASA Formal Methods Symposium (NFM 2009).
NASA, 2009, pp. 16-25.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. MIT Press, 2002.

[11] E. 1. Vassev, “Towards a framework for specification and
code generation of autonomic systems,” Ph.D. dissertation,
Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada, 2008.

[12] IBM Corporation, “An architectural blueprint for autonomic
computing,” IBM Corporation, Tech. Rep., 2006.

Authorized licensed use limited to: University of Canberra. Downloaded on June 17,2020 at 23:35:29 UTC from IEEE Xplore. Restrictions apply.

