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Abstract 

Various approaches have been proposed for solving collision avoidance problems in robotic 
systems [l, 2, 3, 4, 5 ,  61. In this paper we propose a method for designing an adaptive two 
layer fuzzy control system for collision-free trajectory control of a multiple robot system. The 
proposed method is based on the integration of Genetic Algorithms and Fuzzy Logic. The 
robots are considered as point masses moving in a common work space. The knowledge base 
which controls how to navigate in the work space without collision is determined by learning 
via Genetic Algorithms. 

1. Introduction 

Fuzzy Logic Control (FLC) is an active research 
area in modern control [7, 8, 9, IO]. It has been 
found useful when the process is either difficult to 
control or difficult to model by conventional 
methods. Although its application to industrial 
processes has often produced results superior to 
classical control [7, 8, 11 1, the design procedures 
are limited by the heuristic rules of the system. It is 
assumed that a significant process change does not 
occur that is outside the fuzzy knowledge based 
system. This implicit assumption limits the 
application of a fuzzy logic controller to the case of 
normal working conditions for which the fuzzy 
knowledge based system is capable of handling. To 
accommodate abnormal working conditions 
adaptive functions can be introduced to adjust the 
parameters of a fuzzy control system to meet any 
unexpected case that may arise. Some self- 
organising fuzzy logic controllers have been 
reported, cf [ l ,  8, lo]. 

In this paper genetic algorithms are used as a self- 
organising mechanism to learn fuzzy rules of a two 
layer fuzzy logic control system. This integrated 
architecture is applied to the problem of 
determining collsion-free trajectory control of two 
mobile robots in the plane. 

2. Fuzzy Logic Control (FLC) 

Several approaches to fuzzy logic control 
development are possible. In general a 
compositional "rule of inference", a mathematical 
statement describing how the linguistic variables 
are to be manipulated, is employed to control the 
problem environment. The first step is to determine 
which variables will be important in choosing an 
effective control action. Any number of these 
decision variables may appear, but the more that are 
used, the larger the rule set that must be written. 
Decision variables are simply the variables upon 
which the control decision is based. It is known 
[ 131, that the total number of rules in a system is an 
exponential function of the number of system 
variables. For a multi dimensional system, it may 
become unproductive to realise the fuzzy rule- 
based controller. To overcome this problem, the 
authors in [14] use a hierarchical fuzzy control 
structure in which the most influential parameters 
are chosen as the system variables in the first level, 
the next most important parameters are chosen as 
the system variables in the second level. In the 
hierarchy, the first level gives an approximate 
output which is then modified by the second level 
rule set. This procedure is repeated in succeeding 
levels of the hierarchy. The number of rules in a 
complete rule set is reduced to a linear function of n 
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by the hierarchy, instead of an exponential function 
of n [ 131. A few methods for transforming human 
knowledge or experience into the rule base and 
database of a fuzzy inference system have been 
suggested, cf [ I ,  151. These methods try to 
generate the rule-base of a system by learning all 
parameters of the system at once. Their success is 
only limited, and if there is a need to add or remove 
one of the parameters of the rule-base, the whole 
rule-base must be rebuilt. In this paper, we design 
an adaptive two layer FLC system for the control of 
two mobile robots considered as point masses 
moving in a plane. A genetic algorithm (GA) [16], 
is used as an adaptive learning method to define a 
new layer of fuzzy rules which can be incorporated 
easily into an existing FLC knowledge base. Based 
on the rule-base generated by the FLC performance 
a second fuzzy rule base is constructed. 

3. Collision Avoidance application using 
FLC and GA 

We use a two layer Adaptive Fuzzy Logic Control 
(AFLC) system. For our robot application the first 
level rule set controls the basic direction of a robot 
from an initial position, and the second level rule set 
controls each robots individual speed. A block 
diagram model for the control of the robot system is 
given in Figure 1 illustrating its major parts: the 
AFLC system, GA system and plant (robot system). 

1- 1 

Figure 1. AFLC and GA model 

We assume that there exists a separate fuzzy 
knowledge base to drive each robot to its target 
using constant speed with heading angle as control; 
for example see [ l ,  151. A GA is then used to build 
a new fuzzy knowledge base that extends this 
existing knowledge and incorporates fuzzy rules to 
control both direction and speed. There is a 
mechanism built into the second layer to control 
each robot's speed in order to avoid collision. We 
give below a description of the knowledge base in 
layer one. 

The fuzzy rules have two inputs x,$ and single- 

output j7. Here x, represents the x-position 
(horizontal coordinate) and $ the heading angle 
measured relative to the horizontal, respectively. 
The output 7 is the steering angle 0 It is assumed 
that there exists enough clearance between robot 
and the target so we can ignore the y-position 
(vertical coordinate) of the robot, for details see [S, 
151. We divide the domain intervals into 
appropriate regions, and assign a fuzzy membership 
function, see Figure 2. 
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Figure 2 
membership functions ofx, 0 and 0 

Fuzzy regions and the corresponding 

Consider now the second layer of fuzzy rules that 
controls the speed of each robot. The analysis is 
performed by taking each robot in turn, that is, robot 
one moves first then robot two, then robot one etc. 
Consider without loss of generality the control of 
robot one, similar construction follows for robot 
two. 
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Figure 3 
membership functions of U, ,U* and y,  

Fuzzy regions and t h e  corresponding 
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For its fuzzy rules, there are also two inputs U ,  

which is the distance between the two robots, and U, 

which is the current speed of robot one, and output 

y ,  which is the speed of robot one for the next 
iteration. Figure 3 shows the fuzzy regions for these 
variables and their membership functions. 

Intervals of definition U,, u2 and y ,  are each 
divided into four regions with linguistic variables 
VC (Very Close), CL (Close), FA (Far), TF (Too 
Far), and VS (Very Slow), SL (Slow), FA (Fast), 
VF (Very Fast) and VS, SL, FA, VF respectively. 
There are sixteen fuzzy rules. The fuzzy rule base 
can be formed as a 4 by 4 table with cells to hold 
the corresponding actions that must be taken given 

the conditions corresponding to U, and u2 are 
satisfied. The table is initially empty. We can 
encode the input and output regions into bit-strings 
(of 0 and l), for example, a coded bit-string of a 
fuzzy rule may look like : 

which means 

if distance = VC and current speed = VS 
then next speed = VS 

if distance = TF and current speed = VF 
then next speed = FA 

This string can be reduced considerably in length 
by noting that we need only encode the output 
control signal. The complete bit string has then the 
form: 

VS SL FA VF 

made up of 16 individual output bit strings of 
length 4. This illustration is the encoding for the 
fuzzy knowledge base given in the next section. 

The choice of output control signal to be set for 
each fuzzy rule is made by a genetic algorithm. It 

initialises randomly a population of complete bit- 
strings. Each of these bit-strings are then decoded 
into fuzzy rules and the associated fitness evaluated 
by the AFLC. The GA's cross-over procedure is 
modified to ensure that crossover takes place 
appropriately at a boundary of an individual output 
bit string (of length 4). The mutation operator is 
also modified. If the bit to be changed lies within 
an indiviudal output string and is not the bit 
currently tumed on, that is, it has a value of 0, then 
it is tumed on (set to l), and all others in this output 
bit string are set to 0. If the bit is that one which is 
tumed on, then the mutation process is continued 
by randomly selecting one of the other positions in 
this output string, tuming it on and all the others 
off. Crossover probability was set at 0.6 and 
mutation rate at 0.01. 

The GA then performs a self-directed search, 
leaming better fuzzy rules for the second 
knowledge base of the AFLC. The fitness of each 
bit string, representing a set of fuzzy rules, is 
calculated by averaging the sum total of the 
distances between the robots for each iteration, 
during movement from their initial configurations 
to the target. If the robots collide then a penalty 
value is included in the fitness evaluation. This 
learning is seen to be performed quickly and 
automatically with no need for operational 
guidance other than the fitness values supplied to it 
by the AFLC. 

4. Simulation Results 

We have trained the system from the following 
initial points for robot 2, (10,10), (30,10), (70, I O )  
with heading angles of -90°, 50°, 90°, 1 4 5 O ,  180°, 
270°, and robot 1 from initial point (90, I O )  with 
heading angle -90°, 5Q0, 90°, 1 4 5 O ,  270°. The 
following fuzzy knowledge base was obtained 
using fuzzy amalgamation, cf [ 1 1. 

With this limited training data the simulation results 
show that the proposed architecture is capable of 
generating fuzzy rules for the second layer of the 
AFLC system. The system is seemingly robust and 
it can guide the robots from surprisingly many 
initial positions in the work space to the target 
whilst avoiding each other. We present in Figure 4 
two diagrams showing the trajectory of each robot 
from different initial states. In (a) robot one starts 
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from position (90,20) with heading angle 90°, and 
robot 2 starts from position (lO,20) with heading 
angle 90°. Robot 2 reaches the target before robot 
1 and it does not collide with robot 1 at any time. 
In (b) robot one starts from position (80,20) with 
heading angle -9OO. and robot 2 starts from position 
(80,lO) with heading angle 90°. The robots are 
initially close and are heading towards each other. 
Here robot 1 reaches the target first and does not 
collide with robot 2 at any time. 

far from the target, and with a variety of heading 
angles. 

A number of parameters influence the speed of 
convergence of the CiA. These include the size of 
the populations, and the crossover and mutation 
probabilities. Research is currently being 
undertaken to examine how these parameters may 
be tuned to improve the performance of the 
integrated system. 

Figure 4 Trajectories of robots 1 and 2 using AFLC 

Good results have been obtained from these initial 
configurations. This outcome is not true from all 
initial configurations, for consider those 
configurations set high in the upper right and left 
quadrants. Because of the limited number of grid 
points used in the learning process the GA will 
possibly have not learnt any appropriate rules in 
these areas. Increasing the number of test grid 
points used for learning the rules, will improve the 
ability of the architecture to learn the rules more 
effectively across the entire plane. This comes at a 
computational cost in increased GA learning and a 
significant increase in calculations in the 
amalgamation process. Such cost needs to be offset 
against the simplicity of the above construction and 
its computational cost to achieve reasonably good 
results. It is indeed surprising to observe that the 
fuzzy rules in the second layer work rather well 
from many configurations in the plane. This may 
be attributed to the fact that the initial grid selection 
consisted of points spread across the y = 1 0  level, 

5. Conclusion 

An adaptive two llayer Fuzzy Logic Control 
architecture is applied to the control of a multi 
robot system. A genetic algorithm was used to 
learn the second layer rule base and so expand an 
existing fuzzy knowledge control base in the first 
layer, making the system capable of adapting to a 
changing environment. The simulation results 
show that the architecture is seemingly robust. 
Further more : 

The system proposed here can be used in 
processes where a valid model is not available. 

The speed of learning using GAS is increased 
and the system can be modified if necessary 
later, by changing one of the knowledge bases 
or adding another layer to the system. 
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