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Abstract 

A method is developed to tune and optimise the 
membership functions of Fuzzy Logic 
Controllers (FLC) by using Genetic Algorithms 
(GAS). The set of fuzzy If-Then rules and their 
membership functions of the truck back-upper 
problem is considered. 

1. Introduction 

Filzzy modelling or fuzzy identification, has 
numerous practical applications in control ( 1, 21, 
prediction and inference [3, 41. The majority of 
FLC systems to date have been static and based 
upon knowledge derived from imprecise heuristic 
knowledge of experienced operators, and where 
applicable also upon physical laws that govems 
the dynamics of the process [ I l ,  12, 131. One 
basic aspect of fuzzy modelling which is in need 
of better understanding is the need for effective 
methods for tuning the membership fiuictions 
(MF'S) of FLC so as to minimise the output error 
measure or maximise the performance index of the 
system. 

Nguyen and Widrow [SI first investigated the 
application of artificial neural networks to the 
truck back-upper problem. They used two neural 
networks to build a self-leaming controller to 
emulate and control the hick. . The neliral 
network controller and emulator required a 
significant amount of time to train, learning was 
time consuming, and in some cases the Iwming 
algoritlun did not converge. 

Kosko and Kong [6] studied the truck back-upper 
problem using FLC. They first trained Ilie fuzzy 
logic controller (FLC) by encoding a conunon 
sense Fuzzy Associate Memory (FAM) bank. An 
adaptive l i u y  controller was then developed 

which generated FAM rules directly from mining 
data using a product-space clustering algorithm. 
The extraction of driving knowledge was obtained 
by a comlicated off-line statistical approach. 

Wang and Mendel [7] discussed the same problem 
using methodology similar to Kosko and Kong [6]. 
They also proposed a numerical-fuzzy controller. 
Extraction of knowledge again was obtained in an 
off-line manner. 

Mohammadian and Yu and Smith (8, 91 also 
considered the truck back-upper problem using a 
knowledge acquisition architecture. This 
architecture enabled the extraction of driving 
knowledge to be automated in an on-line manner. 
A statistical learning approach was used which 
eliminated the experts knowledge required by 
Wang and Mendel's model 171. 

In this paper we consider the same problem but 
develop a new architecture which tunes and 
"optimises" the fuzzy membership functions of the 
fuzzy truck back upper system. 

2. Genetic Algorithms 

GAS are algorithms for optimisation based on the 
principle of biological evolution. They 
simultaneously consider many points in the search 
space, and work not with the parameters 
themselves but with string of numbers 
representing the parameter set. Probabilistic rules 
are used to guide their search. By considering 
many points in the search space simultaneously 
the chance of converging to local optima is 
reduccd [lo]. 

GAS diKer fundamentally froin conventional 
search techniques, for instance: 

I .  GAS consider a population of points, not a 
single point. 

2. GAS work directly with strings of 
characters representing the parameter set, 
trot :he parameters theniselves. 
GAS use probabilistic rules to guide their 
search not deterministic rules. 

3. 

These properties that make GAS inviting as a 
technique for selecting high performaice 
membership fwictions for FLC systems. 

3. Implementation of GAS f o r  tuning 
membership functions of FLC 

The design and development of robust and optimal 
FLC systems can be achieved by establishing a 
fkzy rule set and using GAS to find an 'optimal' 
membership function. These membership 
fiinclions can be represented either by triangular 
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or trapezoidal shaped membership functions. In 
this study triangular h z y  membership functions 
are used. These triangles can have variable based 
width and shift along the x-axis freely. Therefore 
each requires the definition of only one point to 
fix it. 

There are two ways to achieve optimal 
membership functions: 

1. Choose the entire membership functions as 
variables to be optiniised. 

2. Choose only the overlaps between 
membership functions as variables to be 
optimised. 

In the first case the entire set of fuzzy membership 
functions for a FLC system must be represented as 
bit strings (of 0 and I).  This can become a 
lengthy and complicated procedure. To do this the 
best choice is to use a method called concatenated 
mapped, unsigned binary coding [IO].  

hi the second case, the overlaps between different 
fuzzy memberships fwiction are considered as the 
parameters to be optimised. Unlike the first case 
all the fuay membership functions are not needed 
to be coded into bit strings. This makes utilisation 
of GAS for fuzzy membership optimisation much 
easier and more eflicient. 

The only constraint placed on ‘the individual 
triangles of membership functions is that the 
triangles bordering the extreme limits of the 
action or coiitrol must not be changed. This is 
because for almost all applications of FLC 
systems, the membership fuictions have two 
extreme limits (ie. upper bound and lower bound 
of the fuzzy membership functions). 

Figure I shows the overlap bctween fuzzy 
membership fimctions of a FLC systcm. 

LC CE nc 

0vcrlappmg Repons 

Figure 1 Overlapping regions of hzzy membership 
functions of B FLC 

Therefore modification of the bordering triangle of 
the membership fiuictions cmi not exceed these 
two values. Figure 2 shows a set of membership 
functions of a FLC system and indicates the 
bordering triangle bf Uie membership functions. 
As shown in Figure 2, the two bordering triangles 
LC and RC have the upper and lower bounds of 

(30.50) and (50,70) respectively. Now let us 
assume that the membership functions in Figure 2, 
are the membership functions of a output variable 
of a FLC. Then the values of the output variables 
of this FLC can only be between 30 and 70. 

LC CE RC 

30 40 50 60 70 

Flgure 2 A set of membership hnctions of a F E  with 
bordering iriangle of the membership functions 

Triangles not bordering the extreme limits of the 
control variables can change their variable base 
and shiA along the x-axis. Hence only one point or 
base of such a triangle can shift along the x-axis, 
whereas other triangles not bordering the extreme 
limits can shiA any or both their bases along the x- 
axis. 
We call the extreme bordering triangles, comer 
triangles and the triangles between the two 
extreme bordering triangles, inner triangles. Ench 
comer triangle needs the definition of only one 
point to determine it, while each inner triangle 
needs the definition of two points to determine it. 

For optimisation of membership functions of a 
FLC we need only to code the overlaps between 
fuzzy membership functions into bit strings. The 
bit strings representing the overlapping 
parameters then inust be judged and assigned a 
fitness value, which is a score representing the 
degree to which they accomplished the goal of 
definiiig high performance. The sqwed-error 
term can be evaluated to determine the fitness of 
the strings in a population. This error could be 
the distance between the set point and the state of 
the system. However the definition of fitness 
function that enables the GAS to locate high 
performance and eflicient membership functions is 
application dependent. 

4. Application to truck back upper 
problem 

Backing a truck to dock is difficult for all but Uie 
most skilled truck drivers. Normal driving 
instincts lead to erroneous movements, and much 
practice is needed to get it right. The truck back 
upper problem is a typical control problem about 
the determination of a global strategy for guiding a 
truck backing into a parking dock. The only 
available information is a knowledge of local 
conditioils. 
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We first specify the docking work-space and the 
truck. Figure 3 shows a simulated truck and 
loading zone [6] .  The FLC of truck back upper 
system has only two inputs, the x position and 
azimuth #. The output is ~ i e  steering angle B. 
We assume that there exists enough clearance 
between truck and the loading dock for the y 
coordinate to be ignored., The variables X and 4 
determine the truck position and angle of the truck 
with the horizontal. The goal is to make the truck 
arrive at the loading dock at a right angle 
(4,=90") and to align the position (X,y) ofthe 
truck with the desired loading dock ( X d , Y d ) .  In 
this study only backing up is considered, that is 
the tnick moves backwards by some fixed distance 
at every stage. 

The linguistic fuzzy subsets for x, 4 and 8, and the 
membership hnctions associated with the subsets 
for x, 4, w e  the same as used in [6] .  But the 
membership hnctions associated with subsets for 
9 are set to have no overlaps. 

Figure 3 Diagram of simulated truck and loading zone 

They are defined as follows: 

NB t) [-30, -201 NM t) [-20, -7.5) 
NS t) [-7.5, -2.51 ZE H [-2.5, 2.51 
PS t) 12.5, 7.51 PM t) 17.5, 201 
PB t) [20,30] 

The reason for setting overlap to zero is {hat we do 
not know in advance what overlap will give good 
results. The amount of overlaps will be used as 
the parameter for optimisation by GAS. 

Suppose we have the following fuzzy rules that are 
obtained by an analysis of the truck system and 
using the operators' knowledge. It is possible that 
we can not obtain all the fuzzy rules for the system 
correctly. There is also a lack of knowledge of 
what is the best setting of the membership 
fiuictions of fuzzy regions and their corresponding 
overlap. The following f m y  sets in Figure 4 and 
fuzzy rule in Table, 1 have been chosen for this 
problem. We have used the fuzzy rules of Table 1, 
and a GA to optimise the underlying fuzzy 

membership functions of the fuzzy rules. We are 
interested to finding an optimised backing strategy 
that guides the truck to the dock, and wllich 
minimises the docking error. 

A number of fuzzy rules in Table 1 do not give 
good performance. For example consider the two 
trajectories obtained by the FL controller in 
Figures 5 (a) and (b). 

.A RB nu nv M LV UI LB 

1 

PB NB NM NI ZE PS PM 

Figure 4 Fuzzy regions and the corresponding membership 
functions of U,, u2 and y 

U2 

RB 
RU 
RV 
VE 
LV 
LU 
LB 

Table 1 Fuzzy rules of Lhe truck back upper problem 

This is because some of the fuzzy rules obtained 
by an analysis of the buck system and using the 
operators' knowledge are not correct. The fuzzy 
membership functions for 0 are also not tuned, 
and the overlap between fuzzy membership 
fuictions that was arbitrarily set, is not good. 

Let Uie docking error of the truck back upper 
system be defined by Uie following fonnula: 
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where DE stands for the Docking Error of the 
truck. x,,y,and+, correspond to the final 
position and final angle of the truck respectively. 
x d ,  yd aild 4d correspond to desired position and 
angle of tlie truck respectively. x d ,  yd and +d are 
fixed numbers taken to be given as: 
Xd = 50, yd = 100. +d = 90" 

Figure 5 Trajectory obtaiiied by using fuzzy rules ill Table 
1 from initial condition (a) x = 7 0 , ~  = Io,# = 30" and 

(b) x = 70, y = IO, # = 90" with 20% overlap 

The fuzzy membership functions can be divided 
into tiwy membership fuictions of input variables 
and fkzy membership functions of Uie output 
variable. To code the fuzzy membership functions, 
tluec different approaches are suggested: 

I .  To code the entire inputloutput set of 
membership functions necessary to drive 
tlie truck back upper system as a bit string. 

2. To d e  the entire overlap of tlie 
inputloutput membership functions 
necessary to drive tlie truck back upper 
system as a bit string. 
To code the overlap between of the output 
membership functions of the truck back 
upper system, not the output membership 
functions parameters. 

3. 

We have chosen the,third case, iisunely to code the 
overlap of the output membership functions. This 
is more efficient than the first and the second 

-_ I 

choice. We need only to code and optimise the 
overlap between different output membership 
functions. 'Hie output membership functions of the 
truck back upper system in fact are Uie 
consequents of the fuzzy rules of the FLC. They 
determine the signal or control actions that must 
be taken, given the conditions of the rules that 
correspond to them, are satisfied. As mentioned, 
it is assumed that initially the overlap between the 
output membership functions of FLC of the truck 
back upper system is zero. In fact it is very 
difficult and unrealistic to determine tlie overlap 
of the membership functions in many real world 
applikations, such as the truck back upper system. 

We did not have to encode the output membership 
function parameters. Instead we need only encode 
the overlap between Uie membership functions. In 
this way the complex task of encoding and 
decoding of all output membership functions are 
eliminated. By optimising the underlying output 
(that is, control), membership functions of the 
truck back upper system, we reduce the docking 
error. A GA is used to optimise the overlapping 
area of the output membership functions. 1liis 
method is similar to choosing all the points of Uie 
triangles of tlie output membership functions and 
move lhesc points around on Uie x-axis until 
efficient and effective membership functions are 
found; without having to dccode and encode all 
the base poults of Uie fuzzy membersliip triangles. 
Figure 6 shows the output f m y  membership 
functions of the truck back upper system. 

Choosing the correct membership fwictions for a 
FLC system can produce eflective and eficient 
systems. FIX systems have most of their powers 
because of the overlapping of their membership 
fimctions. That is FLC system invoke few rules at 
each instant to different degrees. By changing Uie 
overlapping regions between Uie fuzzy 
membership functions we are changing the 
underlying mathematical models of the fuzzy rules 
of Table 1 (ie. we are moving the base points of 
the fuzzy triangular membership functions). 

The encoding and decoding of the overlapping 
regions is much easier thcn the encoding the 
decoding of all the points of all triangles. That is 
by choosing overlapping regions instead of the 
membership functions itself we make the 
convergence of GAS faster and elininate the 
unnecessruy computations, that must be performed 
each time to encode and decode the fuzzy 
membership functions. 

- 359 - 



NB PB 

Jo -10 -7.1 -%I 0 21 7.5 10 30 

t T 

Figure 6 The output finzy membership hnctions of Ihe 
truck back upper system before oplimisalion 

It is assumed that the output namely 0, can only 
assume values in the range (-30,30) degrees. So 
modification of the bordering triangle of the 
membership functions can not exceed these two 
values. Triangles other than Uie bordering 
triangles can freely shin both their bases along the 
x-axis as long as they do not exceed the upper and 
lower limits of the fuzzy membership functions. 
They can change their variable base and shift 
along the x-axis. Therefore for the bordering 
triangles only one point or one base of the triangle 
can shift along the x-axis. Next we use a GA to 
optimise the output fuzzy membership functions of 
the truck back upper system shown in Figure 6. 

The GA is run for a number of generations until 
we find a overlap value which gives satisfactory 
performance. We ,stopped after 10 generations 
were completed as the overlap between the fuzzy 
membership functions of the FL controller gave a 
sinall docking error. The fuzzy membership 
functions for 0 with overlap 20% suggested by the 
GA atkr  IO generations are shown below. 

ND NM N S Z E  P?i PM PB 

-30 -20 -7.5 -2 .9) l .S  7.5 20 30 

Figure 7 ,The' output fuzzy membership functions for 0 
with 20% overlap 

Figures 8 (a) and (b) show the control 
perfonnance of the FL controller using. the fuzzy 
niles with 20% overlap between fuzzy 
membership fuictions for 0 of Table 1. 

Comparing Figures 8 (a) and @) with Figures. 5 
(a) and (b) it is obvious that 20% overlap between 
the membership functions for 8 improves the FLC 
system perfonnance significantly. The docking 
errors of the trajectories in Figures 5 (a) and (b) 
are 20.05, 20.0 respectively, whereas the docking 
errors of the trajectories in Figures 8 (a) and (b) 
are 0.1 and 0.08 respectively. As we can see the 
GA has found the overlap that reduces the docking 
error significantly. 

Figure 8 Trajectory oblained by using fuzzy rules in Table 
1 from initial condition (a) x = 70,y = 10,) = 30' and 

(b) x = 70,y = 10,4 = 90" with 20% overlap 

5. Conclusion 

In this paper we have shown that GAS can serve as 
a basis for tuning of fuzzy membership functions 
for nonlinear and dynamic systems. 

In particular a GA has been used for optimisation 
of single overlap of fuzzy membership functions 
for a FLC system. It is also possible to use GAS to 
tune more than one overlap parameter and 
optimise the performanllce index of PLC systems. 

The main features and advantages of using GAS 
for tuning fuzzy membership functions of FLC 
system can be summarised as: 

1. This architecture provides us with a general 
method for tuning and optimisation of FLC 
systems 
It can be used not only to reduce the mor 
but also minimising or maximising other 
constraint of the system, such as reduction 
of overshoot etc. 

2. 
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