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Abstract—Fitness development of elite athletes requires an 
understanding of physiological factors such as athlete energy 
expenditure (EE). For athletes involved in football at the elite 
level, it is necessary to understand the energy demands during 
competition to develop training regimes. By identifying an 
appropriate EE estimator in triaxial accelerometer data, in 
conjunction with identifying sources of inter-athlete variance 
in that estimator, signal processing was developed to extract 
the estimator. In this system, low-power signal processing was 
implemented to extract both the EE estimator and other 
information of physiological and statistical interest. 

I. 

A. 

II. 

INTRODUCTION 
Sports scientists monitoring the EE of elite athletes 

during training rely predominately on athlete self-monitoring 
augmented by monitored training sessions using traditional 
physiological measures such as heart rate. Self-monitoring 
relies on the athlete recording their activities in a diary [1] 
and using a reference table to estimate EE [2]. Estimating 
athlete EE during competition in field sports can be labor 
intensive and involves video monitoring and manual activity 
categorization. Micro-Electro Mechanical Systems (MEMS), 
particularly accelerometers provide an alternative, non-
invasive sensor for use in automatic activity monitoring.  

The purpose of this study was to establish methods for 
estimating the EE of football players in competition and 
training. Accelerometers were chosen as the sensor because 
they are unobtrusive and can provide information pertaining 
to various activities of interest such as walking, running, 
athlete orientation and impact contacts between athletes.  

In most football codes, there is a high intensity of activity 
in the general proximity of the ball, although for the majority 
of the game time, most players are involved in relatively low 
intensity activity. This low intensity activity is interspersed 
with short bursts of high intensity activity followed by a 
recovery interval of variable duration. The predominant 
activities of interest are: stationary, walking, running, 
sprinting, contacts (tackles, hit-ups and other challenges). 
For physiological monitoring, the activity intensity, duration 
and temporal relationship to other activities are important 
determinants of the overall physical load. 

Due to the nature of competitive football, any monitoring 
device must be as small and unobtrusive as possible. With 
the current state of microelectronics and MEMS, the limiting 
factor on size and mass is the power source. By interpreting 
the biomechanical activity as it relates to estimated EE, 
appropriate low-power signal processing algorithms have 
been developed. Simplified signal processing has reduced 
the processor load enabling a reduction in battery size. 

Accelerometers as Energy Estimators 
Montoye et. al. [3] (1983) developed a small portable 

uniaxial accelerometer and undertook a comparison between 
the accelerometer, volume of oxygen (VO2) consumed  and 
mercury switches. Subjects randomly worked through a 
series of physical activities chosen for their similarity to 
daily activities. The accelerometer output proved to be 
highly reproducible and, across the combined activities had 
moderate to high individual and group correlations with VO2 
(n=21, individual r=0.63-0.89, mean r=0.79, group r=0.74).  

Commercial accelerometer based devices became 
available in the 1990's, subsequently the vertically mounted 
uniaxial accelerometer, and more recently the triaxial 
accelerometer, have become widely used in studies of EE in 
free-living subjects [4]. 

While various accelerometry devices are available and 
group results may exhibit correlation with EE, individual 
results can vary widely. For this research, it was originally 
hypothesized that the energy efficiency of a runner's 
technique may be discernable in the kinematic data from a 
triaxial accelerometer platform. Through experiments and 
analysis, we sought to establish whether variations in 
technique are responsible for the inter-subject variability 
shown in the acceleration integral.  

EXPERIMENTAL DESIGN 
Two separate treadmill studies were conducted in this 

project. First, ten male Australian Football players walked 
and ran using their natural cadence at ten speeds on a 
motorized treadmill. These athletes were monitored by a 
triaxial accelerometer system fixed into a semi-elastic belt, 
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fastened around the subjects waist. The accelerometer axes 
were aligned with the vertical, mediolateral and anterior-
posterior axes of the subject. The second study involved ten 
mixed gender recreational athletes and was conducted in a 
similar manner to the first. In this study, the athletes were 
also monitored continuously during exercise for VO2 using 
respiratory gas analysis from an open-circuit calometric 
system. Mass, height and leg length of the athletes were 
recorded at the time of the tests. 

A. 

III. 

A. 

1) 

B. 

Hardware 
Two dual axis, ±2g Analog Devices accelerometers 

(ADXL202E), tested as having an overload in excess of ±7g, 
were mounted to the surface of a data acquisition module 
and aligned perpendicular to each other thereby creating a 
tri-axial accelerometer system. Calibration of the tri-axial 
accelerometer system used an inertial reference calibration 
technique proposed by Lai et al. [5]. The accelerometers 
formed part of a general-purpose sealed athlete monitoring 
system. This system comprised of an Hitachi H8 micro-
controller based acquisition board, a low-power real time 
operating system [6], communications via Infra-Red circuitry 
and a power board with an inductive charging circuit and 
batteries [7]. Accelerometers were sampled at 150Hz using 
the microcontroller's 10-bit analog-to-digital converters with 
data logged to an internal 32-megabyte flash memory card. 
At this sampling rate, the memory was sufficient for 48 
hours of compressed data. The motorized treadmill and the 
respiratory gas open-circuit calometric system were in-house 
custom built systems developed by the Physiology 
Department at the Australian Institute of Sport (AIS).  

ANALYSIS PHASES 
Analysis of the collected data occurred in distinctive 

phases. Initial processing was performed to collect basic data 
and confirm the operation of the system. The second phase 
identified sources of individual variation. The final analysis 
phase identified anthropometric or biomechanical correlates 
of the variation in accelerometry output.  

Initial Processing 
Post-processing of logged raw data was used to: confirm 

the functioning of the system, identify the factors that 
impacted the accelerometer signal and to exploit the signal 
subsequently obtained. VO2 processing was performed as 
outlined in Saunders et al. [8]. 

Using a 0.9Hz Hamming Windowed Finite Impulse 
Response (FIR-H) filter, the triaxial acceleration signal was 
split into orientation (low pass output) and ambulatory 
signals (high pass output). The ambulatory signal was used 
to generate EE estimators referred to as 'Accelerometer 
Counts'. Uniaxial accelerometer counts were calculated from 
the integral of the square of the vertical acceleration, the 
triaxial accelerometer counts used the integral of the sum of 
the squares from the triaxial acceleration. The integral was 
taken as a ten second average from a period of steady state 
walking or running at each speed. Step frequency was 

automatically estimated using a count of samples between 
successive positive zero crossings in the vertical 
acceleration. Step frequency was also manually calculated by 
counting the cycles in the vertical acceleration in the ten-
second segment used for the above process.  

System Confirmation Results 
Results were in line with results from other studies, 

regression analysis of speed vs. EE estimates from VO2 
(corrected for the subject's mass), gave a correlation 
coefficient of R2=0.96. Triaxial and uniaxial accelerometer 
counts correlated with walking speed (R2=0.83, R2=0.62). 
Uniaxial accelerometer counts for running varied widely and 
gave no useful correlation with speed (Fig.2(a)). Triaxial 
accelerometer counts for running gave a range of correlations 
with substantial inter-subject variation (Figs.2(a) & (b)). Step 
frequency had strong correlation with speed (individual 
R2=0.90-1.00, Group R2=0.48) (Fig.1). For individuals, step 
frequency also correlated highly with mass-adjusted VO2 EE 
estimates  (R2=0.80-0.99). In contrast, the group results were 
weaker (R2=0.29). 

Analysis of Sources of Variance 
From Fig.2(b), individual variations in both slope and 

magnitude were observed. As vertical acceleration was the 
predominant source of signal power, this signal was 
investigated. An FIR-H filter was used to remove signal 
above twice the step frequency, multiple left/right step pairs 
were averaged at each speed, and gait cycle normalization 
used to compare signals from different step frequencies. The 
output of this processing (Fig.2(c)), identified characteristics 
of the vertical acceleration that corresponded with the slope 
of the accelerometer counts of Fig.2(b). Athletes 1 & 7 
exhibited relatively flat accelerometer counts (Fig.2(b)) and 
consistent vertical acceleration across all running speeds 
(Fig.2(c)). Athletes 4 & 9 exhibited both increased vertical 
acceleration and increased accelerometer counts as running 
speed increased. The slope of the Fig.2(b) regression lines 
was therefore an indicator of this characteristic.  

Fourier analysis of the running signal identified that for 
most test subjects, almost the entire signal from the vertical 
channel was located at the step frequency. Assuming the 
signal was approximately sinusoidal, acceleration and 

Figure 1.  Step frequency for  walking and running, with ± 1SD bars.
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Figure 2. (a) Vertical-Uniaxial and Triaxial accelerometer counts for walking and running with ± 1SD bars. (b) Individual results for athletes with the
highest and lowest triaxial accelerometer counts. Dashed trend lines are included in the figure. (c) Gait Cycle normalized, multi-speed, vertical acceleration
signal for the four athletes in (b) (left foot only). X-axis degrees indicate the proportion of stride cycle (complete left/right step combination = 360 degrees).
The arrows indicate the change in the acceleration as running speed increased (athletes 4 & 9 only).

accelerometer counts were functionally related to the 
physical displacement of the athlete's body and the step 
frequency. Accelerometer counts for 9kmh-1, the lowest 
common running speed, were normalized using the average 
9kmh-1 step frequency to give an estimated relative 
displacement factor (Fig.3(a)). This result indicated that the 
acceleration counts were proportional to a factor other than 
step-frequency. A comparison of the average magnitude of 
the 9-21kmh-1 triaxial accelerometer counts of Fig.2(b) to the 
9kmh-1 step frequency appears in Fig.3(d). This indicated a 
strong relationship between the 9kmh-1 step frequency and 
the overall accelerometer count magnitude. 

C. 

D. 

Anthropometric and Biomechanical Analysis 
From regression analysis, body mass did not appear to 

affect the 9kmh-1 step frequency, relative displacement, or 
the slope of the accelerometer count regression line. Mass 
did affect the slope of the step-frequency vs. speed 
regression lines with a correlation coefficient of r = 0.57. 

Leg-length had a negative correlation to 9kmh-1 step 
frequency (r = -0.67, Fig.3(b)) and to the slope of the 
accelerometer count regression line for running (r = -0.76). 
Conversely, leg length had a positive correlation to estimated 

9kmh-1 relative displacement (r =0.51, Fig.3(c)). Presumably, 
longer legs tend to reduce step-frequency and at the same 
time increase displacement. The overall magnitude of the 
triaxial acceleration counts of Fig.2(b) appeared to 
influenced by initial step frequency and hence leg-length. 

Considering the influence of leg-length on various 
biomechanical factors and the effect of mass on VO2 EE 
estimates and step-frequency, various predictor equations 
were tested. A simple linear predictor incorporating leg-
length, step-frequency and mass resulted in a strong group 
correlation with the VO2 EE estimate. This predictor gave a 
group correlation coefficient for running of R2=0.81 (Fig.4.), 
a large improvement from R2=0.29.  

Summary of Physiological, Biomechanical, 
Anthropometric and Accelerometer Signal Analysis. 
For ambulatory activity, leg-length, mass and natural step 

frequency combined to generate a good sub-maximal energy 
estimator. As two of these factors are constants, signal 
processing only needs to determine step frequency. Since 
accelerometer counts have been shown to give a linear EE 
estimate for low intensity activities, a combined approach to 
signal processing is possible, as indicated in Table 1.  

 
Figure 3. Scatter plots and regression analysis for: (a) relative estimated vertical displacements at 9kmh-1 (after normalising for step frequency) vs.
accelerometer counts, (b) step frequency at 9kmh-1 vs. leg-length, (c) relative vertical displacement at 9kmh-1 (after normalising for step frequency) vs. leg-
length and (d) step frequency at 9kmh-1 vs average running accelerometer counts. 
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IV. EMBEDDED SYSTEM SIGNAL PROCESSING 
While the foregoing discussion deals specifically with 

extracting the energy estimator, the total system incorporates 
additional functionality such as contact/tackle and orientation 
information. Orientation was derived using a comparison of 
the output of the 0.9Hz low pass filter and the 'steady state' 
orientation generated from a long duration first order lag 
function. Accelerometer counts in conjunction with athlete 
orientation indicate activities such as jumping, hard contact, 
and player on the ground. This processing is an extension of 
the table driven approach and is indicated in Table 1.  

To reduce processing load, less computationally intensive 
filters at lower sampling rates were assessed with outputs 
compared to those previously obtained. Step frequency 
calculation was modified to perform linear interpolation to 
determine zero crossing timing.  

Figure 4. Normalized leg-length adjusted step rate vs. normalized
mass adjusted energy, with correlation coefficients and trend lines.

TABLE I.  ENERGY ESTIMATION AND ACTIVITY CLASSIFICATION  

Activity Type Triaxial 
Accelerometer 

Counts Stationary Walking Running Othera 

Below walking band X   Check 
angleb 

Walking Band  Use Acc. 
Counts   

Running Band   
Measure 
Step 
Frequency 

 

Above Running Band    Check 
angleb 

a. Other includes various football code specific activities such as tackles, marks, jumping etc. 

b. Orientation combines with activity intensity to determine activity type.  

A. 

B. Results 

V. 

Complete Embedded Processing System 
The complete EE estimate signal processing, comprises 

three accelerometers sampled at 24 Hz with data stored in a 
three-channel circular buffer. The buffer holds 
approximately 1.9s of data and forms the basis of a 
rectangular FIR orientation filter (FIR-R). Processing occurs 
with an inbuilt 0.9s latency. The delayed triaxial sample 
value is used to generate or detect: (1) steady state triaxial 
orientation using a long duration first order lag, (2) current 
dynamic acceleration by subtracting the orientation filter 
value, (3) triaxial accelerometer counts and (4) negative to 
positive zero crossings on the vertical axis. 

Accelerometer counts are summed in blocks and 
compared to threshold values stored in a table. Angle is 
monitored on the vertical channel by comparing the FIR-R 
output to the steady state first order lag output. Angles are 
only calculated if the accelerometer counts or the vertical 
orientation signal exceeds preset thresholds. Step-frequency 
is calculated if indicated by the triaxial accelerometer counts.   

With no comparable system performing the same 
analysis, results have been assessed using comparisons to 
manually categorized football data, video data, and treadmill 
and track data. Generated step frequencies from different 

activities matched those calculated manually. Discrepancies 
between system output and manually categorized data were 
identified and attributed to a variety of operator related 
causes.  

This signal processing is considerably less intensive than 
the original system allowing the operating frequency of the 
microprocessor to be dropped to a few hundred kilohertz 
with a subsequent reduction in current draw. 

CONCLUSION 
The investigation and analysis of the variance of 

accelerometer-count based energy estimates identified 
mechanical, biomechanical and anthropometrical influences.  
By modifying the signal processing, EE estimators can be 
collected at lower cost with a higher immunity to detrimental 
influences and which, when combined with anthropometric 
measures, greatly improve the EE estimates gathered. 
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