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Vegetable farms are one of many nitrogen (N) sources adversely affecting Lake Taihu in eastern China.
Given the lack of quantitative “cause and effect” relationships and data relating to these systems, we
developed a conceptual Bayesian network to investigate and demonstrate causal relationships and the
effects of different mitigation strategies on N exports from vegetable farms in the Lake Taihu region.
Structurally, the network comprised one primary transport factor, one primary source factor and three
post-mobilisation strategies, and three output factors.

In general the network suggests that N exports are more sensitive to transport factors (i.e. runoff
volumes) than source factors (i.e. fertiliser application rates) although the cumulative effects of excessive
fertiliser were not considered. Post-mobilisation mitigations such as wetlands and ecoditches appear to
be particularly effective in decreasing N exports however their implementation on a regional scale may
be limited by land availability. While optimising N inputs would be prudent, the network suggests that
better irrigation practice, including improved irrigation scheduling, using less imported water and
optimising rainfall utilisation would be more effective in achieving environmental goals than simply
limiting N supply.

� 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Lake Taihu is in the lower Changjiang (Yangtze) river delta in
eastern China (Fig. 1). As China’s third largest freshwater lake
(2334 km2 and depth of approximately 2 m), Lake Taihu is an
important source of domestic, industrial and agricultural water,
assists water quantity regulation and provides transport, aquacul-
ture and tourism services to one of China’s most developed areas
(Shen et al., 2000). Rapid industrial development and population
growth in the second half of the twentieth century has turned the
once oligotrophic Lake Taihu (Chang, 1995) eutrophic (Luo et al.,
þ61 356242248.
h).
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2007), with seasonal algal blooms limiting public and private
amenity (Qin et al., 2007). Nutrients enter the lake through urban,
industrial and agricultural wastes and wastewaters discharged into
tributaries (Qin et al., 2007) and atmospheric deposition (Luo et al.,
2011, 2007). Recent reductions in industrial inputs to Lake Taihu
have focussed attention on domestic and agricultural sources of
nutrients, particularly nitrogen (N) and phosphorus (P) (Qin et al.,
2007).

Intensive vegetable production is one of many agricultural in-
dustries aiming to mitigate their contribution to the non-point
source pollution, particularly N, entering Lake Taihu. While deter-
ministic models such as SWAT (Gassman et al., 2007), LEACHMN
(Sogbedji et al., 2001), EPIC (Gassman et al., 2004) and DRAINMOD
(Salazar et al., 2009) have been used to simulate N exported from
agricultural systems andminimise nutrient exports, in this instance

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:David.Nash@dpi.vic.gov.au
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.envsoft.2013.03.008&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2013.03.008
http://dx.doi.org/10.1016/j.envsoft.2013.03.008
http://dx.doi.org/10.1016/j.envsoft.2013.03.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. The location of Xingeng Village Farm.
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linking agricultural management to N exports and downstream
effects is particularly difficult. There are few empirical relationships
on which to base a deterministic model of N exports and there is a
general lack of parametric information relating to the site specific
characteristics.

Bayesian Networks (Pearl, 1988) are an alternative to conven-
tional modelling that has been used extensively in natural resource
sciences to examine complex relationships in data poor environ-
ments and for investigating multi-factor problems such as those
associated with resource management (Aguilera et al., 2011;
Alameddine et al., 2011; Ames, 2002; Ames and Neilson, 2001;
Kragt et al., 2011; Nash and Hannah, 2011; Nash et al., 2013; Perez-
Minana et al., 2012; Ticehurst et al., 2011; Varis, 1993, 1997; Varis
and Kuikka, 1999; Young et al., 2011). Bayesian Networks are
well reviewed elsewhere (Jensen and Nielsen, 2007; Korb and
Nicholson, 2004; Pourret et al., 2008). In summary, Bayesian Net-
works provide a graphical representation of “cause and effect” re-
lationships with the strength of the interdependencies (causal
links) represented as conditional probabilities. The “nodes” repre-
sent variables with defined properties called “states” and directed
links (also called arcs which pass from the parent node to the child
node) are used to represent dependencies between variables. De-
pendencies are quantified in a Conditional Probability Table (CPT)
associated with each node which considers all combinations of
parent node states. Note that while variables may be discrete or
continuous, in practice continuous variables are divided into
discrete ranges for computational reasons.

Flexibility in data acquisition is a major benefit of Bayesian
Networks. CPT’s can be populated through direct data analyses (e.g.
for probability of rainfall), elicitation of expert opinion, Monte Carlo
simulations where deterministic relationships are known (i.e.
points are drawn from distributions for inputs), and, where suffi-
cient data are available, machine learning techniques. It is note-
worthy that the method of data acquisition affects the structure of
Bayesian Networks. For example, where expert opinion is used to
populate CPT’s the requirement that each CPT considers all
combinations of the parent nodes and complexity that creates,
places a natural limitation on the number of parent nodes and
states.

The probability distributions defined in the CPT’s are referred to
as prior probabilities and relate to the general properties of the
environment (i.e. region) and system (i.e. type of farm) towhich the
Bayesian Network applies. As evidence of state values is received
for specific nodes (i.e. the attributes of specific farms are identified),
they are added into the network by selecting the appropriate state
value (i.e. giving that state a probability of 100%). The resulting
posterior probability distributions for the remaining nodes in the
network, in particular, for a set of query nodes (i.e. N exports), are
computed based on basic laws of probability. Consequently, as ev-
idence is added to a network in the form of node values (states), the
possible outcomes that the network represents do not change, only
the relative probabilities of those outcomes. The changes in the
relative probabilities of states (and related mean estimates for
nodes with numerical values) before and after evidence of state
values is added to the network, reflect projected differences be-
tween specific systems and the expected “average” for the system
under consideration. These projected differences from “average”
can be used to compare and contrast a range of different scenarios
for both the prognostic and diagnostic analyses. For example,
McDowell et al. (2009) developed a farm scale Bayesian Network
that related P exports to site characteristics and management in a
data poor region of south-eastern Australia. The network was used
to compare current management and best practice to poor man-
agement on three case study farms, demonstrating the utility of
Bayesian Networks for targeting mitigation measures (McDowell
et al., 2009). Nash et al. (2010) developed a field-scale Bayesian
Network for N exports from high rainfall cropping in south-eastern
Australia. The network was used to investigate the importance of
various site factors related to N transport and source factors,
especially fertiliser rates, on N exports (Nash et al., 2010).

The aim of this study was to develop a Bayesian Network that
could be used to investigate and demonstrate causal relationships
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and the effects of different mitigation strategies on N exports from
vegetable farms in the Lake Taihu catchment of eastern China using
Xingeng Village farm as a case study. Given the lack of quantitative
“cause and effect” relationships and data relating to these systems a
relatively simple conceptual model and conceptually based math-
ematical equations, rather than experiential data, were used to
populate the CPT’s. This paper outlines; (a) the network develop-
ment process; (b) the network and its attributes; and (c) the po-
tential implications of the network output for Government
initiatives aimed at mitigating N exports from intensive vegetable
production systems and improving water quality in nearby Lake
Taihu.

2. Materials and methods

2.1. Characteristics of vegetable growing areas of Xingeng Village Farm

Xingeng Village is located in Wangting town in the Xiangcheng district, in the
northwest corner of Suzhou city (N 31�260 , E 120�280). Being on the plains east of
Lake Taihu, south of theWangyu River and in a Level 1 protected area (refer Ministry
of Environmental Protection, 2002), this farm is well located for demonstrating non-
point source pollution mitigation measures.

Xingeng Village has a population of 5375 and covers an area of 480 ha, 330 ha of
which is used for agriculture (Xingeng Village farm). The village is a modern agri-
culture demonstration area where the main crops are rice and vegetables. The
village also producesmushrooms and grapes, and there are dairy and pig production
facilities. This project addressed a 6.7 ha area used for organic vegetable production
of which c. 4 ha was covered by poly-film greenhouses, c. 0.7 ha by multi-span
greenhouses and c. 1 ha by insect nets, and c. 1 ha was exposed land.

The average annual temperature in Xingeng Village is 16 �C (the maximum is
38 �C and the minimum is 5 �C below zero) with 230 frost-free days annually (i.e.
minimum temperature >0 �C) and more than 2000 h of non-cloudy weather. The
annual rainfall is c.1200mmwith the period betweenMarch and August accounting
for about 65% of that total. In addition to rainfall, irrigation water sourced from the
Wangyu river (Class 4 refer Ministry of Environmental Protection, 2002) is also used
for growing vegetables.

Soils at Xingeng Village farm are described locally as “yellowmud” and “gleyed”.
Hand texturing suggests that the topsoil is a well-structured light clay/loamy clay c.
200 mm deep which overlies clay subsoils that have a compacted plough layer (Dr J.
Shu, 12-10-11, personal communication). During site inspections there was little
evidence of slaking or dispersion but there was evidence of mottling in soil brought
to the surface through cultivation, suggesting elevated water tables for a substantial
portion of the year. The pH value was reported to be between 7 and 7.5. Unfortu-
nately, there is limited information regarding agronomic measures of soil fertility at
this site. The use of composted organic materials may be contributing to the
reportedly excellent soil structure and reportedly good soil fertility. Intermittent
measurements of tail-water runoff on fifteen (15) occasions suggest drainage from
the vegetable growing areas of Xingeng Village farm have an average total N (TN)
concentration of 19.7 mg N/L (Range 9.6e39.6 mg N/L) and average total P (TP)
concentration of 0.92 mg P/L (Range 0.57e1.85 mg P/L).

The main fertilizers used for agricultural production in Xingeng village are
composted manure, a commercial organic fertilizer, urea and ammonium bicar-
bonate. In total approximately 1670 tons of fertiliser materials are applied to the
farm annually. The vegetable growing area receives c. 650 kg N/ha and c. 220 kg P/ha
annually through applications of composted manures and commercial organic fer-
tilizer (2.2% N, 0.7% P) applied at annual rates of c. 50 and 190 tonnes, respectively.

2.2. Network development process

The process used to develop the Bayesian Network is presented in Fig. 2. The
network development drew heavily on the processes used to develop similar net-
works for other industries (McDowell et al., 2009; Nash et al., 2010) and is consistent
with recent guidelines (Chen and Pollino, 2012). To constrain intra-annual variation
the network was conceptualised using an annual time-step. At Xingeng Village farm
vegetable production areas are surrounded by drainage channels approximately 1m
deep. Consequently, while the network normalises data to the hectare scale, the
network was conceptualised as applying at the “plot” scale, where a plot is defined
as a hydrologically isolated production area. Using this definition plots on Xingeng
Village farm varied between 0.024 and 0.288 ha in size.

Initial knowledge gathering involved two visits to Xingeng Village farm by the
project team and extensive reviews of both Chinese and English literature. To
address the geographical separation of some team members from the project site
and ensure local knowledge was incorporated into project outcomes, a Steering
Committee and a Working Committee were established. The Working Committee
members dealing directly with farmers from Xingeng Village provided information
to the project team at regular (generally bi-weekly) phone conferences. These
knowledge gathering activities yielded limited empirical data and deterministic
relationships on which the initial “cause and effect” diagram could be based.
Consequently, the initial Bayesian Network was conceptualised as having transport
and source factors responsible for nutrient generation, similar to P indices
(Bechmann et al., 2005; Birr and Mulla, 2001; DeLaune et al., 2004a; DeLaune et al.,
2004b; Elliott et al., 2006; Hooda et al., 2000), and post-mobilisationmitigations (i.e.
wetlands, drainage re-use, ecoditches). However, unlike index systems, the Bayesian
Network facilitated the incorporation of more complex “cause and effect”
relationships.

The initial “cause and effect” diagramwas developed using NETICA, version 4.08
(Norsys Software Corp., Vancouver, Canada) software. Where deterministic equa-
tions are used, NETICA uses forward Monte Carlo simulations to generate the
probability distribution for the query nodes (i.e. Total N Exports) andwas used for the
entire model development and interrogation process.

The initial “cause and effect” diagram was reviewed at a specially convened
workshop in Xingeng Village. The workshop was attended by the Steering Com-
mittee and Working Committee members in addition to four (4) farmers from
Xingeng Village. At the workshop the assumptions underlying the diagram were
discussed and evaluated. The workshop commenced with an introduction to “cause
and effect” relationships and progressed to examine vegetable production. The
initial diagram was presented and each node and link was examined in sequence
and in detail. This examination comprised a two step process: (a) determining the
appropriateness or otherwise of the “cause and effect” diagram’s structure; and (b)
collecting information regarding node values and relationships. All discussions were
recorded on an audio tape and by a designated minute secretary.

The “cause and effect” diagram was modified to reflect comments from the
Steering and Working Committees and farmers. While some of the suggested
changes were cosmetic (i.e. name changes) there were some significant changes. For
example, atmospheric N inputs to the farm had not been included in the cause and
effect diagram. The final “cause and effect” diagram comprised one transport factor,
one source factor and three post-mobilisation mitigation strategies (a) ecoditches;
(b) wetlands; and (c) reuse of drainage water, and three output factors (a) Nitrogen
Concentration (mg/L) (i.e. the N concentration of runoff from the plot); (b) Export
Efficiency (%) (i.e. load of N leaving the plot relative to the Potential N Load); and (c)
Total N Exports (kg/ha/y) (i.e. effective output from that area allowing for the effects
of post-plot mitigations).

The first step in quantifying the network was to define the states. A full
description of each node, its states and the sources of data used for compiling,
calculating or estimating values used in the CPT’s are presented in the
Supplementary documentation accompanying this paper. For most nodes, states
were represented as ranges rather than discrete numbers allowing for the uncer-
tainty contained in a particular estimate to be included in the analyses (Fig. 3).

To develop the Bayesian Network, the relationships between parent (indepen-
dent) and child (dependent) nodes and their states were documented in the CPT’s
that underpin the Bayesian Network structure (i.e. given each set of conditions in the
parent nodes, what are the chances of each condition occurring in the child node?)
(Cain, 2001). Where possible, quantitative data (i.e. rainfall records) and deter-
ministic equations (i.e. generally derived from conservation of mass), were used.
Deterministic equations were converted by the NETICA software to conditional
probability tables and it was assumed that therewas no uncertainty due to sampling
(i.e. the sampling error was assumed to be part of the overall error of estimates).
Runoffwas estimated using standard methods (Allen et al., 1998) and the Potential N
Load was estimated as the sum of Total N Additions (the sum of fertiliser and irri-
gation N inputs), Carry Over N and Reapplied N in Reuse Water minus Gaseous
Emissions and Crop N Removal (Fig. 3).

Three important deterministic equations, not based on the “conservation of
mass”, related to Wetland Efficiency, Gaseous Emissions and Nitrogen Concentration.
TheWetland Efficiency estimation is based on an equation adapted from Kadlec and
Knight (1996) (Kadlec et al., 2000; Kadlec and Knight, 1996) for total Kjeldahl N
with modification for local data (Lu et al., 2009). In the absence of sufficient data to
develop statistical relationships, bothNitrogen Concentration and Gaseous Emissions
estimations were conceptualised by technical specialists based on the “expected”
rather than measured interactions between factors (Equation 1). Runoff and Po-
tential N Loadwere the independent variables in the case of Nitrogen Concentration,
and Runoff and nitrogen load (estimated as the sum of Total N Additions, Carry Over
N and Reapplied N in Reuse Water, less Crop N Removal) in the case of Gaseous
Emissions.

y ¼ K1 þ K2=ð1þ expð � hÞÞ (1)

where y ¼ Gaseous Emissions, Nitrogen Concentration (dependant variable);
K1 ¼ Minimum value; K2 ¼ Maximum value; h ¼ K3*(Runoff � K4) þ K5* (x � K6),
K3 ¼ Estimated parameter; Runoff ¼ Runoff (independent variable); K4 ¼ Estimated
parameter; K5 ¼ Estimated parameter; K6 ¼ Estimated parameter; x ¼ Potential N
Load or nitrogen additions (independent variable).

Potential N Load and Runoff were assumed to be positively and negatively
correlated to Nitrogen Concentrationwith the rate of change adjusted at the margins.
As there was considerable uncertainty regarding parameter estimates and in view of
the importance of the equation, the networkwas structured to enable changes in the



Fig. 2. Methodology for development of a conceptual model to describe nitrogen exports from the vegetable growing areas of Xingeng Village Farm (adapted from Nash et al., 2010).
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equation parameters to be varied in order to assess the likely sensitivity of the
outcomes to these factors. The upper and lower values were based on literature
estimates of N concentration. Gaseous Emissions estimation was based on the “ex-
pected” relationship between Runoff (used as a surrogate estimate for soil water
content) and nitrogen additions (estimated as the sum of Total N additions, Carry
Over N and Reapplied N in ReuseWater, less Crop N Removal). Having a similar form to
Eq. (1), Runoff and N additions were assumed to be positively correlated to deni-
trification and again the maxima and minima were based on literature estimates
with input from a technical specialist (Prof. Deli Chen, 9-11-11, pers. comm.).
Where deterministic equations were used to derive conditional probability ta-
bles, the numerical ranges assigned to states potentially distorted subsequent
probability distributions. For example, the NETICA software assumes that all values
within a state (defined by upper and lower values) are equally likely to occur when
in fact for non-linear equations values closer to the overall mean for that node may
have a higher probability of occurrence. To accommodate the use of non-linear
deterministic equations in the final network the number of states was often
expanded in child nodes and the numerical ranges assigned to states were not
uniform. The number of states and numerical ranges assigned to nodes depended on



Annual Rainfall (mm)

850 to 900
900 to 950
950 to 1000
1000 to 1050
1050 to 1100
1100 to 1150
1150 to 1200
1200 to 1250
1250 to 1300

0.67
3.62
11.9
23.5
28.2
20.4
8.96
2.37
0.38

1068 ± 71

Open Water Evaporation (mm)

800 to 850
850 to 900
900 to 950
950 to 1000
1000 to 1050
1050 to 1100
1100 to 1150

0.74
7.90
29.6
39.5
18.8
3.17
0.19

964 ± 51

Crop Factor

0.85 to 0.9
0.8 to 0.85
0.7 to 0.8
0.6 to 0.7

35.0
35.0
25.0
5.00

0.815 ± 0.064

Imported Water (mm)

0
0 to 175
175 to 350
350 to 450
450 to 550
550 to 650

0.10
0.10
0.80
14.0
75.0
10.0

493 ± 64

TRANSPORT COMPONENT

Export Efficiency (%)

Extreme
Very High
High
Medium
Medium Low
Low
Very Low

0.63
0.30
0.50
1.58
2.96
35.3
58.7

19.8 ± 15

Nitrogen Concentration (mg/l)

Extremely High
Very High
High
Medium High
Medium
Medium Low
Low Medium
Low

.006

.034

.071
0.35
1.35
2.39
7.53
88.3

14.8 ± 9.1

EQUATION PARAMETERS

Runoff Modifier 

High
Medium
Low

.050
99.9
.050

150 ± 29

Total N Additions (kg/ha/y)

Extreme 
Very_High
High
Medium
Medium_Low
Low
Minimal

4.90
41.1
34.4
12.7
5.45
0.97
0.44

973 ± 250

Potential N Load (kg/ha/y)

Extreme
Very High
High
Medium High
Medium
Medium Low
Low
Very Low

0.14
1.74
13.6
37.7
34.4
11.5
0.79
0.20

615 ± 200

Total N Exports (kg/ha/y)

Excessive
Extremely High
Very High
High
Medium High
Medium
Medium Low
Low
Very Low
Extremely Low

 0 +
 0 +
0.10
0.54
0.83
2.65
14.3
35.0
37.5
9.08

110 ± 55

Compost Fertiliser Rates (kg N/ha/y)

Very High
High
Medium
Medium Low
Low
None

 1.0
4.00
15.0
50.0
25.0
5.00

9.98 ± 12

OUTPUT 
NODES

Inorganic/Organic Fertiliser Rates (kg N/...

Extreme
Very High
High
Medium
Medium Low
Low
None

12.0
37.0
35.0
10.0
5.00
0.90
0.10

875 ± 220

AFTER MOBILISATION MITIGATIONS

Reapplied N in Reuse Water (kg/ha/y)

Extreme
Very High
High
Medium
Medium Low
Low
None

.003

.003

.011

.032
0.10
0.35
99.5

12.7 ± 7.9

Crop N Removal (kg/ha/y)

Extreme
Very High
High
Medium
Medium Low
Low
None

 1.0
4.00
45.0
30.0
15.0
4.90
0.10

191 ± 52

Reuse Concentration (mg N/L)

Very_High
High
Medium
Medium_Low
Low
Minimal

7.09
8.71
11.1
14.8
21.5
36.8

30.5 ± 16

Ecoditch Length (m/ha)

Long
Medium
Short
None

0.20
0.40
0.40
99.0

1.95 ± 23

Reuse Proportion (%)

Very_High
High
Medium
Medium_Low
Low
None

0.01
0.01
.080
0.40
1.50
98.0

0.163 ± 1.5

Wetland Efficiency (kg N/h/y)

Extremely High
Very High
High
Medium
Low
Very Low
Not Applicable

 0 +
.006
.038
0.21
0.56
0.19
99.0

9.93 ± 120

Runoff (mm)

0
0 to 100
100 to 200
200 to 300
300 to 400
400 to 500
500 to 600
600 to 700
700 to 800
800 to 900
900 to 1000
1000 to 1100
1100 to 1200
1200 to 1300
1300 to 1450

 0 +
.004
.025
.067
0.17
0.95
5.66
19.3
32.3
26.6
11.5
2.95
0.42
.028
 0 +

776 ± 130

Carry Over N (kg/ha)

Very High
High
Medium
Medium Low
Low

 1.0
24.0
70.0
4.99
0.01

272 ± 68

Ecoditch Efficiency (g N/m/y)

Very High
High
Medium
Low
Very Low

2.00
20.0
45.0
28.0
5.00

53.8 ± 27

Gaseous Emissions (kg N/ha/y)

Very_High
High
Medium-High
Medium
Medium_Low
Low
Very_Low

.010
6.27
56.8
24.8
6.72
2.83
2.53

453 ± 200

SOURCE COMPONENT
Atmospheric Inputs (kg N/ha/y)

High
Medium_High
Medium
Low
Minimal

0.10
0.90
9.00
89.0
1.00

8.31 ± 3.3

Irrigation Water Quality (mg N/L)

High
Medium
Low

10.0
70.0
20.0

14 ± 6.1

Runoff Exponential Multiplier

High
Medium
Low

17.5
25.2
57.3

-0.00731 ± 0.0025

Load Exponential Multiplier

High
Medium
Low

.090
99.9
0.01

0.0015 ± 0.00029

Wetland /Land Ratio (%)

Very High
High
Medium High
Medium
Low
None

0.01
.010
0.38
0.10
0.50
99.0

0.0386 ± 0.43

N Load Modifier 

High
Medium
Low
Very Low

.020
99.9
.040
.040

600 ± 29

Fig. 3. A Bayesian Network of nitrogen exports from vegetable production on the Xingeng Village Farm.
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the forms of the equations (i.e. log-normal) and the influence of the range choice on
the estimated mean for the node.

The final network is presented in Fig. 3. In NETICA, the state descriptor for each
node and the probabilities of each state can be represented both numerically and by
the horizontal column graph. For continuous distributions, a mean estimate for that
node, calculated as the sum of products of the mid points of the ranges and prob-
abilities, is presented below the column graph along with the standard deviation. As
noted above, the reliability of these estimates will depend on the form of the rele-
vant distribution. As there was no comprehensive data set that could be used for
formal validation, the network was assessed by examining a limited number of case
studies, and comparing the network output with the expectations of experts familiar
with these systems.

“Sensitivity to Findings” function of the NETICA software was used extensively
as part of this quasi-validation process to examine specific relationships within the
network and compare those with observed data and the assumptions used in their
development (Korb and Nicholson, 2004).
3. Results and discussion

3.1. Network analyses and application

The primary network (i.e. with no specified posterior probabil-
ities, Fig. 3) represents the “average” expectations for vegetable
farms in the Lake Taihu region. The network suggests that Total N
Exports, Nitrogen Concentrations and Export Efficiency are respec-
tively (mean � standard deviation), Medium-Low (110 � 55), Low
(15 � 9) and Very-Low (20 � 15) for those farms. The standard
deviation being �50% of the estimated mean values for output, and
many other key nodes, suggests that care needs to be taken when
using the network. Importantly, the lack of quantitative informa-
tion that could be used to develop the network, in addition to the
error estimates, suggest that the network should be used primarily
for analyses of general trends rather than absolute predictions of
nodal values, especially at the margins (Nash and Hannah, 2011).

As a first step to examining the properties of the network, the
sensitivity of the two primary Output nodes, Nitrogen Concentration
Table 1
Sensitivity analyses of the Nitrogen Concentration and Total N Exports nodes of the vegeta

Nitrogen Concentration
ecnairaVedoNredrO

Reductionb
Percent Belief 

Variancec
drO

0 Nitrogen Concentration 64.5 100 0.1170 0
1 Total  N Exports 39.5 61.2 0.0219 1
2 Runoff 30.2 46.9 0.0170 2
3 Imported Water 12.2 18.9 0.0038 3
4 Potential N Load 9.4 14.6 0.0077 4
5 Annual Rainfall 4.1 6.4 0.0057 5
6 Export Efficiency 4.1 6.3 0.0070 6
7 Gaseous Emissions 3.1 4.9 0.0027 7
8 Runoff Exponential Modifier 3.0 4.6 0.0077 8
9 Crop Factor 1.5 2.3 0.0029 9
10 Open Water Evaporation 1.3 2.0 0.0020 10
11 Wetland Efficiency 0.3 0.5 0.0001 11
12 Inorganic/Organic Fertiliser Rates   0.2 0.3 0.0003 12
13 Total N Additions 0.1 0.2 0.0003 13
14 Carry Over N 0.0 0.0 0.0000 14
15 Crop N Removal 0.0 0.0 0.0000 15
16 Runoff Modifier 0.0 0.0 0.0000 16
17 Reapplied N in Reuse Water 0.0 0.0 0.0000 17
18 Irrigation Water Quality 0.0 0.0 0.0000 18
19 N Load Modifier 0.0 0.0 0.0000 19
20 Load Exponential Multiplier 0.0 0.0 0.0000 20
21 Compost Fertiliser Rates 0.0 0.0 0.0000 21
22 Atmospheric Inputs 0.0 0.0 0.0000 22
23 Ecoditch Length 0.0 0.0 0.0000 23
24 Ecoditch Efficiency 0.0 0.0 0.0000 24
25 Reuse Proportion 0.0 0.0 0.0000 25
26 Wetland/Land Ratio 0.0 0.0 0.0000 26
27 Reuse Concentration 0 0.0 0.0000 27
a For colour scheme refer Fig. 3.  
b “Variance Reduction” is the average reduction in the variance of the target node (Nitrogen C
c The “Belief Variance” measures the corresponding change in the target node distribution  
and Total N Exports, to other nodes, were investigated. The primary
measure used to compare the sensitivity of the Output nodes to
Transport, and Source nodes and After Mobilisation Mitigation
nodes was variance reduction. The Output nodes are quantitative
and have an initial distribution. When information is supplied
about the state of a parent (e.g., Runoff or Potential N Load) node,
this may shrink the Output node distribution towards more prob-
able values, reducing its variance. The variance reduction then is
simply the difference between the variances of the Output node
distribution computed before and after informationwas supplied. A
second metric, Belief variance, can also be used. Belief variance
measures the expected squared change in class probabilities in the
Output node distribution when information is supplied about the
state of a parent. The variance reduction and belief variance are
each averaged appropriately over the range of the parent node
values. Both these metrics can be automatically computed from
within the NETICA software. The sensitivity analyses are presented
in Table 1.

Nitrogen Concentration was most sensitive to Total N Exports
and visa versa reflecting the computational relationship between
the two. Runoff and Imported Water were the next most important
factors, presumably reflecting the direct relationship between
transport factors and Nitrogen Concentration. The observation that
Potential N Load, which was a parent node, had less effect on the
Nitrogen Concentration than Imported Water, is important from a
management perspective. It implies that management of im-
ported water is the best way to optimise nitrogen concentrations
given that Annual Rainfall, Crop Factor and OpenWater Evaporation,
which were the fifth, ninth and tenth most important factors
affecting Nitrogen Concentration, are generally not amenable to
management intervention. Potential N Load was the fourth and
Gaseous Emissions the seventh most important factors affecting
Nitrogen Concentration. In part the lower importance of source
related factors can be attributed to their distance from the target
ble Bayesian Network.a

Total N Exports
ecnairaVedoNre

Reduction 
Percent Belief 

Variance 
Total N Exports 2845 100 0.5141
Nitrogen Concentration 1144 40.2 0.0134
Runoff 219 7.7 0.0043
Export Efficiency  203 7.1 0.0016
Potential N Load 127 4.5 0.0007
Runoff Exponential Multiplier 113 4.0 0.0011
Imported Water  41 1.4 0.0003
Annual Rainfall 17 0.6 0.0005
Wetland Efficiency 14 0.5 0.0003
Wetland/Land Ratio 11 0.4 0.0002
Total N Additions 8 0.3 0.0000
Inorganic/Organic Fertiliser Rates 7 0.2 0.0000
Crop Factor 6 0.2 0.0003
Gaseous Emissions  3 0.1 0.0002
Reuse proportion 3 0.1 0.0000
Open Water Evaporation 2 0.1 0.0001
Ecoditch Length 2 0.1 0.0000
Reapplied N in Reuse Water 2 0.0 0.0000
Ecoditch Efficiency  1 0.0 0.0001
Carry Over N 1 0.0 0.0000
Crop N Removal 1 0.0 0.0000
Runoff Exponential Multiplier 0 0.0 0.0000
Irrigation Water Quality 0 0.0 0.0000
N Load Modifier 0 0.0 0.0000
Load Exponential Multiplier 0 0.0 0.0000
Compost Fertiliser Rates 0 0.0 0.0000
Atmospheric Inputs 0 0.0 0.0000
Reuse Concentration 0 0.0 0.0000

oncentration or Total N Exports) distribution when the state of parent/ancestor is known.  
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node. However, the low sensitivity of Nitrogen Concentration to
Total N Additions compared to Gaseous Emissions highlights the
potential importance of denitrification in these systems and
warrants further investigation. As expected After Mobilisation
Mitigations had negligible effect on the Nitrogen Concentration
which is estimated at the plot scale.

Runoff was the second most important factor affecting Total N
Exports with the other transport related factors Imported Water,
Annual Rainfall, Crop Factor and Open Water Evaporation sixth,
seventh, twelfth and fifteenth. Potential N Loadwas the fourth most
important factor affecting Total N Exportswith Total N Additions and
Inorganic/Organic Fertiliser Rates and Gaseous Emissions, tenth,
eleventh and thirteenth, respectively. While, Total N Exports was
sensitive to wetland properties (i.e.Wetland Efficiency andWetland/
Land Ratio were the eighth and ninth most important factors), the
effects of reuse (Reuse Proportion was the fourteenth most impor-
tant factor) and ecoditches (Ecoditch Length and Ecoditch Efficiency
were the sixteenth and eighteenth most important factors) were a
little surprising. The low sensitivity of Total N Exports to the After
Mobilisation Mitigation nodes compared to Source and Transport
nodes results from them not being used on the majority of farms in
the target region and that observation being reflected in the prior
probabilities of the respective nodes (i.e. if a mitigation strategy
only applies to a limited number of farms, regional scale N exports
are relatively insensitive to that mitigation strategy). The Belief
Variance results were generally consistent with the Variance
Reduction results.

In the absence of alternative data, the Xingeng Village farm
was used as a basis for a series of case studies to investigate the
properties of the network and the effects of different farming
systems, including potential mitigation measures. The results of
those investigations are presented in Table 2. The network sug-
gests that generally, water exiting plots on Xingeng Village farm
has a Low-Medium Nitrogen Concentration (32 � 9), the farm has
Low Export Efficiency (25 � 11), and Very-Low Total N Exports
(47 � 33) at the whole of farm scale (i.e. where After Mobilisation
Mitigations are included). These figures are generally consistent
with snapshot monitoring (mean 19.7 mg N/L mean and range of
9.6e39.6 mg N/L) while Total N Exports in particular compares
favourably with other farms in the region (Table 2, No. 0). The
conceptual equation relating Runoff and Potential N Load to Ni-
trogen Concentration also affects the performance of the network.
Comparing current practice with the upper and lower limits that
might be expected (Table 2, Nos. 1a, 1c and 1d) for a system
similar to Xingeng Village farm suggests that the equation pa-
rameters have relatively minor effects on the states of the Output
nodes.

Investigating the effects of mitigation strategies using a
Bayesian Network is somewhat more difficult than with conven-
tional process models. The relationships defined in the CPT’s, which
enable diagnostic as well as prognostic analyses, can easily lead to
misinterpretation where the posterior probabilities of more than
just the target node vary. Based on the CPT’s, the network estimates
the most probable combination of factors leading the particular
state values entered. Consequently, it is important to check when
comparing mitigation strategies by giving a particular state of a
node a probability of 100% that only target node is altered. For
example, comparing current practice on Xingeng Village farm with
(Table 2, No. 1a) and without specifying a state value for Wetland
Efficiency (Table 2, No 1b) counter-intuitively suggests that lower
wetland efficiency may be associated with lower N exports (Total N
Exports 47 � 33 and 42 � 33 respectively). The network specifies
that Wetland Efficiency depends on hydraulic retention time, which
is affected by the runoff volume. Consequently, specifying the state
of the Wetland Efficiency node affects the posterior probabilities of
other nodes including Runoff, Gaseous Emissions and Potential N
Load. In such cases the comparison is between two farming systems
(and combinations of climatic factors) rather than two mitigation
strategies. Similarly, the network suggests that increasing the size
of a wetland by 150% is likely to be associated with only marginally
reduced Total N Exports (Table 2, No. 2a) and probably increases
Total N Exports if that change is accompanied by improvedWetland
Efficiency (Table 2, No. 2b). Again, specifying the state of the
Wetland Efficiency node affects the posterior probabilities of other
nodes. For an increasing area of wetlands, a more appropriate
comparison is between current practice and the prior probability
distribution of Wetland Efficiency. That comparison (Table 2, Nos.
1b and 2b) suggests, as one might expect, that increasing the
proportional area of wetlands does not affect plot scale N Con-
centration but decreases farm scale Total N Exports from 47 � 33
to 34 � 27. When appropriately compared, the incremental re-
ductions in Total N Exports attributable to higher Wetland/Land
Ratio are similar to that which occurs with higher Ecoditch
Efficiency (Table 2, No. 3).

Compared to current practice, the network suggests that an
absence of After Mobilisation Mitigations (Table 2, No. 4) is likely
to be associated with similar Nitrogen Concentration and Export
Efficiency, but significantly increased Total N Exports (i.e. Medium-
Low compared with Very-Low). The network suggests that 40e
50% drainage reuse does not compensate for the loss of the other
mitigations as there would probably be an increase in Total N
Exports compared to current practice (i.e. Low rather than Very-
Low, see Table 2, No. 5). The observation that the changes to To-
tal N Exports were in proportion to the Reuse Proportion suggests
that the additional N in reuse water has little overall impact on N
exports. The network also suggests that a maximal Wetland/Land
Ratio (10%) (Table 2, No. 6) has a similar effect on Total N Exports to
50% drainage reuse. This appears reasonable given that the reuse
water is assumed on average to have a Low to Medium-Low N
concentration (c. 30 mg N/L). Overall, the network suggests that
ecoditches are the most effective of the After Mobilisation Miti-
gations (Table 2, No. 7). Ecoditches appear to be capable of
achieving similar results to the current suite of reuse, wetland and
ecoditch mitigations.

Source management is an alternative strategy that can be used
to mitigate N exports. The network suggests that for farms similar
to the Xingeng Village farm, reducing fertiliser applications from
Medium (500e700 kg N/ha) to Low (0e300 kg N/ha) has a small
effect on Nitrogen Concentration (i.e. Low as compared to Low-
Medium, Table 2, No. 8) but is probably less effective than the Af-
ter Mobilisation Mitigations in lowering Total N Exports (i.e. Low as
compared to Very-Low). This is consistent with the relative
insensitivity in the short term of the Output nodes to Source nodes
as identified in the sensitivity analyses. However, being based on an
annual time-step, it is noteworthy that this network does not
consider the cumulative effects of nutrient inputs.

In complex farming systems it is rare to change only one aspect
of the system. To demonstrate the utility of the Bayesian Network
for assessing the cumulative impacts of management changes the
combined effects of higher than usual Inorganic/Organic Fertiliser
Rates, Compost Fertiliser Rates, Carry Over N and Imported Water
were compared (Table 2, No. 9). The network suggests that these
interventions will have little effect on Total N Exports but lower
Nitrogen Concentration and Export Efficiency compared to the cur-
rent situation. Again this could be considered counterintuitive but
it is in keeping with the sensitivity analyses. The suggested out-
comes are likely in years when there is increased Runoff (880
compared to 550 mm) which leads to dilution and increased
Gaseous Emissions (Very-High compared to Low) as a result of
increased N availability and water-logging. If Gaseous Emissions are



Table 2
Case studies of the vegetable Bayesian Network.

No. Description Imported
water
(mm)

Rainfall
(mm)

Runoff
(mm)

Compost
fertiliser
rate
(kg/ha/y)

Inorganic/
organic
fertiliser
rate (kg/ha/y)

Gaseous
emissions
(kg N/ha/y)

Carry over
N (kg/ha)

Wetland/
land
ratio (%)

Wetland
efficiency
(kg N/ha/y)

Ecoditch
length (m)

Ecoditch
efficiency
(g N/m/y)

Reuse
proportion
(%)

Nitrogen conc.
(mg/L)

Export
efficiency
(%)

Total N
exports
(kg/ha/y)

Regional estimates
0 Prior probabilities

only
493 � 64a 1068 � 71 776 � 130 Medium-

low
(10 � 12)

High
(875 � 220)

High
(453 � 200)

Medium
(272 � 68)

(0.04 � 0.4) (9.9 � 120) (2.0 � 23) (54 � 27) (0.2 � 1.5) Low (15 � 9) Very low
(20 � 15)

Medium-low
(110 � 55)

Xingeng Village Farm
1(a) Current practice 175e350b 1050e1100 527 � 93 Medium

(10e30)c
Medium
(500e700)d

Low (78 � 75) Medium
(200e300)e

Medium
(4)e

Medium
(1250e2000)e

Long
(300e450)e

Medium
(40e70)e

Medium
(20e30)f

Medium-low
(32 � 9)

Low (25 � 11) Very-low
(47 � 33)

1(b) Current practice
Wetland Efficiency
not specified

175e350 1050e1100 552 � 100 Medium Medium Low (96 � 91) Mediume Medium Low 1240 � 740 Long Medium Medium Medium-low
(25 � 17)

Low (20 � 13) Very-low
(42 � 34)

1(c) Current practice
lower limitg

175e350 1050e1100 765 � 110 Medium Medium Medium-low
270 � 120

Medium Medium Medium Long Medium Medium Low (13 � 6) Very-low/low
(20 � 14)

Very-low
(25 � 17)

1(d) Current practice
upper limith

175e350 1050e1100 649 � 76 Medium Medium Medium-low
168 � 110

Medium Medium Medium Long Medium Medium Medium-low
(30 � 8)

Low (35 � 12) Low (62 � 38)

2(a) Current practicei (1a)
larger wetland

175e350 1050e1100 474 � 73 Medium Medium Low (50 � 44) Medium Very-high
(10)

Medium Long Medium Medium Medium
(57 � 14)

Low (35 � 10) Very-low
(43 � 36)

2(b) Current practice
Larger Wetland
Wetland Efficiency
not specified

175e350 1050e1100 552 � 100 Medium Medium Low (96 � 91) Medium Very-high Low 711 � 480 Long Medium Medium Medium-low
(25 � 17)

Very-low/low
(20 � 13)

Very-low
(34 � 27)

3 Optimum Ecoditch
Efficiency
Wetland Efficiency
not specified

175e350 1050e1100 552 � 100 Medium Medium Low Medium Medium Low 1240 � 740 Long Medium Medium Medium-low
(25 � 17)

Very-low/low
(20 � 13)

Very-low
(31 � 25)

4 No after mobilisation
mitigations

175e350 1050e1100 552 � 100 Medium Medium Low (84 � 80) Medium None (0) Not-applicable None
(0e0)

Medium None
(0e0)

Low-medium
(25 � 17)

Very-low/low
(20 � 13)

Medium-low
(128 � 77)

5 Single reuse effect
Wetland Efficiency
not specified

175e350 1050e1100 552 � 100 Medium Medium Medium-low
(112 � 100)

Medium None Not-applicable None Medium Very-high Low-medium
(26 � 18)

Very-low
(19 � 13)

Low (73 � 48)

6 Single wetland effect
Wetland Efficiency
not specified

175e350 1050e1100 552 � 100 Medium Medium Medium-low
(84 � 80)

Medium Very-high 700 � 470 None Medium None Low-medium
(25 � 17)

Very-low/low
(20 � 13)

Low (63 � 48)

7 Single Ecoditch
Effect

175e350 1050e1100 552 � 100 Medium Medium Medium-low
(84 � 80)

Medium None Not-applicable Long Very-high
(100e215)

None Low-medium
(25 � 17)

Very-low/low
(20 � 13)

Very-low
(36 � 32)

8 Single effect of lower
fertiliser
No after mobilisation
mitigations

175e350 1050e1100 552 � 100 Medium Low
(0e300)

Medium-low
(26 � 16)

Medium None Not-applicable None Medium None Low (17 � 10) Medium-low
(42 � 27)

Low (92 � 50)

No after mobilisation mitigations
9 High fertiliser,

carryover N and
imported water

550e650 1068 � 71 883 � 110 Very-high
(60e100)

Very-high
(900e1100)

Very-high
(799 � 140)

Very-high
(400e800)

None Not-applicable None Medium None Low (13 � 6) Low (15 � 11) Medium-low
(117 � 51)

10 High fertiliser and
carryover N
Medium gaseous
emissions

327 � 160 993 � 71 434 � 100 High Very-high Medium
(200e400)

Very-high None Not-applicable None Medium None Medium-low
(64 � 38)

Low (21 � 12) Medium-high
(254 � 130)

Diagnostic analyses
11 Very high

Nitrogen
concentration
No after mobilisation
mitigations

67 � 110 1011 � 66 210 � 81 Medium
(10 � 13)

High
(961 � 170)

Low (56 � 71) 279 � 71 None Not-applicable None Medium None Very-high
(120e160)

Low (27 � 12) Very-high/
high
(300 � 130)

(continued on next page)
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then restricted to Medium (i.e. 200e400 kg N/ha) (see Table 2, No.
10), the network suggests that combination of posterior probabili-
ties is likely to occur in years of significantly less runoff (i.e. 430
compared to 880 mm), that Nitrogen Concentrations and Export Ef-
ficiency will be similar to current practice, and Total N Exports
significantly higher (i.e. Very-Low for current practice compared to
Medium-Low and Medium-High for unrestricted and Medium
Gaseous Emissions, respectively). While these examples demon-
strate the utility of Bayesian Networks for investigating complex
systems, it should be noted that there are artefacts of the dis-
cretisation process, especially at the margins, that may exaggerate
mean estimates (Nash and Hannah, 2011) of states.

Finally the diagnostic properties of the network were exam-
ined by investigating the combination of factors most likely to
lead to a Very-High Nitrogen Concentration and Extremely-High
Total N Exports (see Table 2, Nos. 11 and 12). The network sug-
gests that Very-High Nitrogen Concentration is most likely to occur
when Runoff is lower (i.e. 210 � 81 mm compared to 776 � 130 for
the “average” farm) due to lower Imported Water (i.e. 67� 110 mm
compared to 493 � 64 mm), and the Potential N Load is higher (i.e.
Very-High compared to Medium-High) due to Low as compared to
High Gaseous Emissions in the primary analyses. The network
suggests that Extremely-High Total N Exportswill occur in years of
less than average Runoff (i.e. 480 � 130 mm compared to
776 � 130 mm), when there is an Extreme Potential N Load as a
result of Very-High or Extreme Inorganic/Organic Fertiliser Rates
and slightly reduced Gaseous Emissions (i.e. Medium compared to
High).

3.2. Concluding discussion

Nitrogen exports from vegetable production systems in the Lake
Taihu region of China are an important local issue. Given the lack of
quantitative “cause and effect” relationships and data relating to
these systems, a Bayesian Network was developed, primarily based
on a relatively simple conceptual model and conceptually based
mathematical equations, rather than experimental or experiential
data. The outputs from the network make sense and, with the
possible exception of Gaseous Emissions, are generally consistent
with the limited literature that is available from the target area
(Table 3). Data regarding Gaseous Emissions is equivocal. Unfortu-
nately, while it is relatively easy to measure nitrogen dioxide and
di-nitrogen oxide, di-nitrogen gas is difficult to measure and can
comprise a considerable portion of denitrification products espe-
cially under waterlogged conditions and at higher soil pH (Simek
and Cooper, 2002; Stevens et al., 1998). Where drainage losses of
N have been estimated (Table 3), conservation of mass would
suggest that losses of gaseous N are significantly greater than that
measured as nitrogen dioxide and di-nitrogen oxide. The concep-
tual equation relating Runoff and Potential N Load to Nitrogen Con-
centration is also important. However, comparing network
estimations using the upper and lower parameter limits that might
be expected (Table 2, Nos. 1a, 1c and 1d), suggests the equation
parameters have relatively minor effects on the states of the Output
nodes.

In terms of resource allocation, this study would suggest that
After Mobilisation Mitigations are particularly effective in
decreasing N exports. Given that water storages exist in many
parts of the target area but there is limited availability of land,
ecoditches and reuse systems appear useful ways to mitigate N
exports and at the village scale may be integrated with wetlands
and/or other agricultural pursuits (i.e. fish farming). However, as
the network amply demonstrates, these are farming systems
where consideration needs to be given to the interactions be-
tween the different components of the system. Factors such as
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water and soil pH, N concentration and N species (i.e. ammonium
concentration) would be important in the development of such
integrated systems.

At the plot scale, limiting N inputs is often seen as the
simplest and easiest way to reduce N concentrations in drainage.
However, the relationships between Runoff and other factors,
especially Gaseous Emissions, and the high N requirements of
vegetable crops suggests that such a simple solution, while
helping mitigate N exports, may not be the best option as it ig-
nores the complex interactions occurring in these systems. Better
irrigation practice including improved irrigation scheduling, us-
ing less imported water and optimising rainfall utilisation, when
coupled with nitrification inhibitors (Cui et al., 2011), may be
more effective than simply limiting N supply in achieving envi-
ronmental goals. This is not to argue that optimising N fertiliser
application rates is unimportant. Rather, it is to argue that these
are farming systems and, as the network suggests, the optimum
combination of mitigation strategies will depend on the farm in
question.

Vegetable production in the Lake Taihu region is not atypical of
such systems elsewhere in China (Ju et al., 2004; Wang et al., 2008)
or other countries (refer for example Wilkinson et al., 2009). A
better understanding of the factors affecting N exports from these
systems is needed to fully assess the potential value of Bayesian
Networks and similar modelling technologies for system optimi-
sation and policy development. That requires data. Based on this
study it is possible to identify some relatively easy and useful data
acquisition activities. Runoff is a key transport parameter. Topog-
raphy in the Lake Taihu region necessitates the use of electric
pumps for irrigation. Recording irrigation times, pump character-
istics and energy consumption can provide useful data on water
use. Water use data, when added to meteorological data, can be
used to estimate evapotranspiration (Allen et al., 1998), estimate
runoff volumes and guide iterative improvements in irrigation
practice. Similarly, input and output data from plots (i.e. fertiliser
rates, produce removed) can be manually recorded and when
coupled with strategic water quality monitoring used to prepare a
simple mass balance. Proprietary or purpose built rising stage
samplers (Hawdon et al., 2007) and proprietary water test kits have
made water testing more accessible and much cheaper. Such data
collection activities can provide in the relatively short term (i.e. <5
years) sufficient data to increase the resolution of models such as
the one developed in this project, particularly in respect to gaseous
emissions.

From a policy perspective the Bayesian Network developed
through this project has a range of potential applications. Firstly,
the network could be used as part of a training programme. The
complex interactions that lead to nutrient exports are not always
intuitively apparent. Bayesian Networks such as the one devel-
oped in this project have been used in participatory learning
programs for both technician and farmer participants (McDowell
et al., 2009; Nash et al., 2010). Appropriate training will be
important if irrigation management is to be considered an envi-
ronmental as well as production issue. Secondly the network
could be used to prioritise farms for mitigation of N exports. Such
an application would require extension staff to visit and assess
individual farms. While this would be time consuming, the data
collected during those visits would be extremely useful in
defining the prior probabilities in the network and therein
regional norms against which individual farms should be
assessed. Finally, an improved network based on better data could
be used to develop individual solutions for specific farming en-
terprises. In so doing the network could potentially be used to
quantitatively estimate the costs and benefits of particular on-
farm solutions.
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