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Abstract

An iterative algorithm for the reconstruction of natural
images given only their contrast map is presented. The so-
lution is neuro-physiologically inspired, where the retinal
cells, for the most part, transfer only the contrast informa-
tion to the cortex, which at some stage performs reconstruc-
tion for perception. We provide an image reconstruction
algorithm based on least squares error minimization us-
ing gradient descent as well as its corresponding Bayesian
framework for the underlying problem. Starting from an
initial image, we compute its contrast map using the Differ-
ence of Gaussians (DoG) operator at each iteration, which
is then compared to the contrast map of the original im-
age generating a contrast error map. This contrast map is
processed by a non-linearity to deal with saturation effects.
Pixel values are then updated proportionally to the resulting
contrast errors. Using a least squares error measure, the re-
sult is a convex error surface with a single minimum, thus
providing consistent convergence. Our experiments show
that the algorithm’s convergence is robust to initial con-
ditions but not the performance. A good initial estimate
results in faster convergence. Finally, an extension of the
algorithm to colour images is presented. We test our algo-
rithm on images from the COREL public image database.
The paper provides a novel approach to manipulating an
image in its contrast domain.

1 Introduction

Image reconstruction or restoration is an inverse prob-
lem which aims to recover the original image from its trans-
formed version. It is an ill-conditioned problem at best and
a singular problem at worst [1]. The transformation of the
image could be the result of unwanted distortion like blur-
ring, aliasing, or noise, or it could be a purposeful operation
like compression, convolution, etc. Similarly, the transfor-
mation function may or may not be known. Furthermore,
the transformation could be information-preserving or non-

preserving. Inverse problems are generally ill-posed in that
they might not have a unique solution or a solution at all.

Colloquially, we often know that interesting informa-
tion lies in the contrast. An image’s contrast map contains
within it everything that is needed for a faithful reconstruc-
tion. Here, we describe a technique which reconstructs an
image given only its contrast map such that all the relative
intensity values are restored. In addition, even the ambient
levels get restored to their original values. But how is that
possible, one may ask, as the mere process of calculating
contrast discards the ambient component of the luminance
in the image? It turns out that even though the ambient com-
ponent is removed, its information gets encoded in the rela-
tive intensity levels as the contrast map of any natural image
is a highly constrained system when computed in an over-
lapping series of image patches. This enables a high fidelity
reconstruction of the images from only their contrast infor-
mation.

2 Motivation and Background

Humans are visual beings. Our visual system is not only
the most elegant example of vision in nature, it is the fore-
most example we have. If it were not for our ability to see,
we would have no idea whatsoever of what actually is a
seeing experience. Hence, the motivation of this research is
derived from discoveries in primate vision in the last fifty
years.

Faced with a load of information, the primate retina with
an approximate 130 million cells has to decide about trans-
mitting the most important information, disregarding those
that are not needed. It turns out that what is transmitted
tells the cortex about changes in the pattern of information
reaching the eye [7]. These changes are either in space,
such as a border between a bright region and a dark one, or
in time, such as a sudden increase or decrease in light in-
tensity. Thus, the retina is primarily a detector of change,
both spatially and temporally. Hence, the main function
of the primate retina, in doing spatial analysis (as we are
concerned), is to extract contrast from the luminance distri-
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Figure 1: (a)Top: Retinal receptive fields. On-centre (left)
and off-centre (right). Middle: Continuous DoG (left) mod-
elling the retinal receptive field approximated by its dis-
cretized version (right). Bottom: a general 3x3 mask (left)
and its on-centre and off-centre weights (centre and right)
(b)Tangent sigmoidal squashing function with α = 1000.
With a mask of (a), the values will be in the range of −2040
to 2040.

bution, thus making the percept largely independent of the
ambient illumination level. This is achieved through a lay-
ered architecture of bipolar and ganglion cells that perform
spatial differentiation (broadly symmetric) on their inputs
using a finite sized, roughly circular, receptive field with
antagonistic centre and surround. Two such types of cells
are found to exist in the retina which are termed as the on-
and the off-centre cells. The on-centre cells are activated
when the centre of their receptive fields are brighter than
their surround and deactivated otherwise. The off-centre
cells work the opposite way by turning on when the sur-
round is brighter than the centre and off otherwise. Together
these two cell types capture all the spatial information that
is available in an image.

This, then, brings up an interesting question as to how
we perceive surfaces with uniform illumination - where the
contrast is zero, as nothing apparently is being sent to the
brain about the brightness levels of those regions (spatially
speaking only, ignoring time effects) [7][4][14]. For this the
brain must somehow and in some way perform reconstruc-
tion to get the relative brightness values of different regions
of the image. Although we don’t know what the internal
representation of the reconstructed image in the brain is, we
know that it must be done for providing us proper percep-
tion. The current research reports results and algorithms
that we developed to perform an image reconstruction from
just those contrast maps. We are, however, not suggesting
that the brain does this in a similar way.

3 Related Work

The term image reconstruction as it appears in the liter-
ature has generally been used to imply some form of image

Figure 2: (Top,left): Original image (top,right): Reconstruc-
tion using our algorithm (mid-left&right): Its on & off centre
map (bot,left): A 50x scaled error image of our reconstruc-
tion giving a PSNR of 48.82db (bot,right): Reconstruction
using Wiener filter deconvolution.

filteration or reverse filtration to retrieve a denoised ver-
sion of it. Deconvolution is usually performed for image
restoration in many applications. Andrews and Hunt [1] de-
scribe in detail the linear algebraic restoration methods that
include inverse filters, least-squares or Wiener filters, con-
strained least-squared filters and maximum entropy filters.
Bates and McDonnell [3] describe these in terms of mul-
tiplicative and subtractive deconvolutions and other such
techniques. In all these the point spread function (PSF)
function is assumed to be known a priori. In cases where
a PSF is unknown, attempts are made to restore the orig-
inal image without the knowledge of the underlying noise
function - a technique called blind deconvolution [2, 8].
However, central to all deconvolution methods is the un-
derlying assumption that the image at hand is a blurred and
noised image and so they majorly aim at performing de-
blurring and denoising. Besides, the selection of an appro-
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priate technique depends upon the form and extent of the
PSF, the nature of the original image and the extent of dis-
tortions in it [3]. Furthermore, as [3] points out that in order
to apply standard deconvolution methods effectively, it is
almost always necessary to preprocess the given image in
some way including enhancement, sectioning, windowing
etc. We show a comparison of our algorithm in Fig. 2 with
that of the Wiener filter deconvolution. As can be seen, the
deconvolutional output does not restore the brightness lev-
els and introduces additional noise. In addition, the non-
blind and blind versions of Richardson-Lucy deconvolution
failed to reconstruct the image at all.

Some authors have mentioned image reconstruction
from contrast information as an interesting issue in their
work without providing any solution. Hubel, for one, raises
this question in his book [7] in which he wonders how we
are able to see uniformly lit surfaces when all that our cells
respond to is the local intensity differences. However, with-
out proposing any answers to it, he quickly disposes off the
topic by supposing that the centre-surround architecture re-
sults in it somehow.

Other related work is perhaps the work of Land and Mc-
Cann on Retinex Theory [9] which was followed up by
that of Horn [6] and Marr [12]. The same are also cited
by Palmer [14] when discussing the importance of inten-
sity edges and luminance ratios. Retinex theory is a the-
ory of colour constancy and brightness constancy in which
luminance ratios are taken at edges and integrated across
the visual field. Land [9] mostly talks about colour con-
stancy and about intensity calculations in one dimension.
Horn [6] takes it to two dimensions but mentions that since
the component related to ambient light is differentiated out,
there would be no way of calculating the brightness values
of uniformly illuminated surfaces, while Marr [12] focuses
mostly on the primate retina.

Sadr et al. [15] investigate local ordinal encoding and
constraints. The authors show that such an approach can
encode the most stable characteristics of an image and that
it is neurally plausible, while [16] takes the neurophysiolog-
ical data recorded from the lateral geniculate nucleus (LGN)
of cats and attempts to reconstruct the image to some extent
with the motivation of unveiling the coded information in
the action potentials of neurons.

The work presented here differs from the rest as we put
forward a non-linear method of reconstruction given only
the contrast maps of an image. This opens up avenues
whereby images can be transformed to the contrast domain,
manipulated and then transformed back. Calculating the
contrast of an image significantly loses information and the
contrast map does not lend itself to such enhancement tech-
niques as needed to make it suitable to apply classical de-
convolutional methods. Furthermore, our approach differs
from [15] and [16] in that through the use of an iterative,

non-linear technique we are able to reconstruct the image to
a higher fidelity which in a small number of iterations pro-
duces an image which is visually indifferentiable to that of
the original. Furthermore, we have developed a Bayesian
framework for our method. Bayesian Inferencing has be-
come a popular tool lately in image processing and com-
puter vision, partially because vision [5] now is believed by
some to be a Bayesian inferencing process [11].

4 The Algorithm

We compute on- and off-centre contrast maps from the
original image. If M represents the mask and I the image,
then a contrast map is given by

C = M ∗ I (1)

where ∗ is the convolution operator and C is the composite
contrast map combining values from both on- and off-centre
maps. This composite map without any additive noise is
used in the algorithm for reconstruction. Algorithm 1 de-
picts the step-by-step reconstruction procedure. The fol-
lowing sections a detailed description of the algorithm.

Algorithm 1 Image Reconstruction From Contrast Infor-
mation

1: img in← input
2: rf ← receptive field mask
3: contr d← compute image contr(img in, rf)
4: eta← 0.8
5: img out← initial value
6: while stopping condition 6= true do
7: for all [x, y] in img out do
8: contr a← compute pixel contr(x, y, rf)
9: contr e← contr d[x, y]− contr a

10: if contr e 6= 0 then
11: img out[x, y]← img out[x, y] + eta ∗ contr e
12: if img out[x, y] < 0 then
13: img out[x, y]← 0
14: end if
15: if img out[x, y] > 255 then
16: img out[x, y]← 255
17: end if
18: end if
19: end for
20: end while

5 Least Squares Error Minimisation

Using two 2D Gaussians with zero means,

Gσ1(u, v) = 1√
2πσ2

1

e
− (u2+v2)

2σ2
1

Gσ2(u, v) = 1√
2πσ2

2

e
− (u2+v2)

2σ2
2

(2)
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we define our centre-surround receptive field R as a Differ-
ence of Gaussians (DoG) at any point (u, v) as

R(u, v) = Gσ1(u, v)−Gσ2(u, v) . (3)

We define the contrast at any pixel i at location (x, y) as a
convolution of the receptive field R with the image intensi-
ties I in the neighbourhood of the pixel (x, y)

C(x, y) = I(x, y) ∗R(u, v) (4)

C(x, y) =
∫

v

∫
u

I(x− u, y − v)R(u, v) du dv (5)

For the discrete case, the receptive field R(u, v) is approx-
imated by the mask M(u, v) and the convolution then be-
comes

C(x, y) =
∑

v

∑
u

I(x− u, y − v)M(u, v) (6)

where u, v range for the size of the mask. However, be-
cause the combined input representing the entire neighbour-
hood influence can exceed limits, one must also specify
a squashing function to keep resultants within reasonable
range. We use a tangent sigmoidal non-linearity (Fig. 1(b))
as a squashing function

y(x) =
1− e−2x/α

1 + e−2x/α
(7)

where α is the constant for range adjustment and is depen-
dent on a mask of particular size and weights. In certain
applications, α could be made to vary as a function of local
contrast serving as a dynamic range adjustment factor. Our
cost function is defined as

CSE(x, y) =
1
2
[CD(x, y)− CA(x, y)]2 . (8)

We call the original image contrast map our desired con-
trast CD and the contrast of the reconstructed image as the
actual contrast CA which is evaluated at every iteration and
their squared difference is the squared contrast error mea-
sure CSE at any pixel (x, y). Based on this error measure
,we update the actual pixel intensities until CA converges to
CD.

The gradient of this error w.r.t. the actual pixel intensity
IA at (x, y) is

∂CSE(x, y)
∂IA(x, y)

= −[CD(x, y)− CA(x, y)]
∂CA(x, y)
∂IA(x, y)

(9)

so that,
∂CA(x, y)
∂IA(x, y)

= R(0, 0) . (10)

But R(0, 0) ≈ M(0, 0) = w00 for a mask of finite size,
giving us the following error expression

∂CSE(x, y)
∂IA(x, y)

= −[CD(x, y)− CA(x, y)]w00 . (11)

Using gradient descent, the update rule then becomes

∆IA(x, y) = ηw00CE(x, y) (12)

where η is the update constant and CE(x, y) = [CD(x, y)−
CA(x, y)] is the contrast error at pixel (x, y). Starting with
an initial image, local changes are performed using this
pixel update rule until some convergence criterion is met.

6 Bayesian Framework

Let us now develop a Bayesian framework for the least-
squares error minimisation of Section 4. Given the desired
contrast map (of the original image) CD, the posterior dis-
tribution of the reconstructed image at each iteration, given
Bayes’ rule, is

p(IA|CD, M) =
p(CD|IA, M)p(IA, M)

p(CD|M)
. (13)

The term p(CD|IA, M) is the probability distribution of ob-
taining the desired contrast map from the reconstructed im-
age at any iteration. Since the contrast at any pixel i depends
only on the image intensities at i and its defined neighbour-
hood and is independent of contrasts calculated at any other
pixel, the likelihood, as well, at every pixel is independent
of the others, hence

p(CD|IA, M) =
∏

i

p(CDi |IAiεN
, M) . (14)

where IA is the image pixel intensity, M is the mask ap-
proximating the DoG (Eq. 3), CDi

is the desired contrast
at any pixel i, IAi

is the actual intensity at pixel i and iεN
represents the pixels in the neighborhood N of i. The con-
trast error at the i-th pixel, defined in terms of the desired
contrast (CDi) and the actual contrast (CAi), is

CEi
= CDi

− CAi
(15)

having a probability distribution function given by a normal
distribution with zero mean p(CEi

|σ2) = N(0, σ2), so that

p(CDi |IAiεN
, M) = N(CAi , σ

2) (16)

p(CD|IA, M) =
∏

i

1√
2πσ2

e−
(CDi

−CAi
)2

2σ2 . (17)

Using a normal distribution here could, theoretically, cause
pixel values to cross the valid range of 0 − 255 because it
is unbounded while an image is a strictly bounded system.
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Figure 3: Reconstructed images in the top row with their corresponding initial images in the bottom row.

Although other distributions exist, like the beta distribution
that may be more appropriate in such circumstances, they
are generally harder to manipulate. However, we impose the
desired boundedness algorithmically by limiting all pixels
to 0 on the low side and to 255 on the high side.

Since we do not have any prior information about what
the reconstructed image will look like, the best prior, in this
case, would be a uniform random distribution in the range
of 0− 255

p(I) =
∏

i

p(IAi) (18)

where

p(IAi) =

 0 for x < 0
1

256 for 0 6 x 6 255
0 for x > 255

(19)

Now, maximising p(CD|IA, M) is the same as minimis-
ing the negative log likelihood

−log [p(CD|IA, M)] =
N

2
log(2πσ2)+

1
2σ2

N∑
i=1

(CDi
−CAi

)2

(20)
The first term in Eq. 20 is independent of the pixel intensity
and so the second term is the sum of squared error for the
entire image and for a single pixel, minimising the squared
error would maximise the log likelihood

−log [p(CDi
|IAi

, M)] =
1

2σ2
(CDi

− CAi
)2 . (21)

This is essentially a least squares expression. For the
case when the probability distribution function is normal

and there is no prior information available, the Bayesian
paradigm reduces to the maximum likelihood which gives
the same result as the least-squares method.

7 Implementation

7.1 Initialisation Values

The algorithm works by starting from some initial val-
ues for the pixels and progressively modifying them until
converging to an image with the same contrast map as the
given one. While the choice of initial values does not in-
fluence the final convergence result, a good initial guess can
help in reducing the number of iterations needed for conver-
gence. We experimented with a few different initialisations.
As shown in Fig. 3, these were all black pixels, all white
pixels, all mid-level gray pixels and pixel values from a uni-
form random distribution in the range 0 to 255. It turned out
that our algorithm converges relatively faster when an ini-
tial image comprising of pixels from all mid-level gray or
uniform random distribution is chosen.

7.2 Stopping Condition

Let the following be the images at different iterations:

I0, I1, I2, . . . , In−1, In (22)

and let the absolute differences in these images be defined
by the sequence

|∆I0|, |∆I1|, |∆I2|, . . . , |∆In−1| (23)

230



Figure 4: Original (top), reconstruction (middle) and 30x
scaled error image (bottom) with a PSNR of 34.60db and
38.43db, respectively.

where |∆In−1| = |∆In| − |∆In−1|. Then for some thresh-
old θ, we define the stopping condition as

|∆In−1|
|∆I0|

6 θ (24)

7.3 Convergence

Although the least squares error cost function used here
is non-linear, it is still a convex uni-modal function. In ad-
dition, our choice of α for the squashing function defined in
Eq. 7 constrains most of the allowable values to the quasi-
linear range around the origin, with few values curving off
on the extremes as in Fig. 1(b). Together, these factors con-
strain the system of equations to solve in such a way that a
unique solution is provided and convergence to the solution
is guaranteed.

7.4 Normalised Masks

The pixel update rule in Eq. 12 depends on the centre
weight of the convolution mask. This has the disadvantage
that, if the mask is changed, the update will get severely
affected. To make the update rule independent of such fac-
tors, we can use normalised masks with a centre weight of
unity. This gives us the following update rule

∆IA(x, y) = ηCE(x, y) . (25)

Doing so will require changes in the range adjustment con-
stant α as well that is used in the squashing function (Eq.
7).

7.5 Spectral Analysis

The centre-surround filter acts as a high-pass filter keep-
ing the high frequency components in the contrast infor-
mation while discarding a band of low frequencies. These
low frequency components get reconstructed through a dif-
fusion process. The high frequencies determine the detail of
an image. As the details are already preserved, information
from the contrast diffuses to nearby areas, filling in, thereby
reconstructing the image. Fig. 5 depicts the spectrum of the
first few iterations showing the iterative reconstruction of
low frequencies.

7.6 Results

We performed tests on images from the COREL 1000
image database (Fig. 6), generally used for content-based
image retrieval. Each image was 256x384 pixels in size and
was converted to grayscale before processing. The thresh-
old in the stopping criterion used (Sec. 7.2) during the ex-
periments was θ < 0.5% which generated in a typical mean
square error of less than 100. This resulted in reconstruc-
tions that are visually indifferentiable to the original image.
However the algorithm requires a huge number of iterations
to reconstruct such high fidelity images and typical values
range anywhere from a few hundred iterations to a few thou-
sand. This is due to the fact that there is a kind of diffusion
process in effect where changes diffuse out from areas of
high contrast to those of low or zero contrast. Similarly,
images that are composed of large uniformly illuminated
areas require an unusally high iteration count to produce re-
constructions that are anywhere near the original.

8 Colour Extensions

The above methodology can be naturally extended to
colour images by applying it to each of the three colour
planes individually. Each colour plane of the RGB system
can be treated as a grayscale image in itself. An on-centre
and off-centre map for each plane is computed resulting in
six contrast maps. This approach involves three times more
computations than for grayscale images. We show some ini-
tial results in Fig. 4. It should be noted, however, that this
is not the way a primate brain is known to handle colour
information [10].

9 Conclusion and Future Work

We have presented an algorithm by which images can
be reconstructed given only their contrast information. We
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Figure 5: Reconstructed images and their FFT at iteration 1, 10, 100 and 500 showing the gradual reconstruction of low frequency
components.

start with an initial guess and progressively update it by
comparing its contrast map with that of the original image
and using the difference as a cost function. We took inspi-
ration from biological vision in primates where, by an un-
known process, the brain is performing some kind of recon-
struction internally to perceive not only the relative but to
a large degree the absolute brightness values as well. Even
though our method may be neurophysiologically plausible,
as it uses only local computations, we refrain from making
any such claims and as such use the neurophysiological ap-
proach only for inspiration. Our method can be viewed as
providing a transformation and its inverse by which images
can be transformed into their respective contrast domain,
manipulated in interesting ways, and then transformed back
into the image domain.

One of the potential future applications of the current
work is dynamic range adjustment of images. In this paper,
we have used the sigmoidal non-linearity with the same,
constant parameters for all pixels. By making these pa-
rameters variable for different pixels that vary in accord
with their neighbourhood, contrast values can be selectively
expanded or compressed providing contrast enhancements
and dynamic range adjustments.
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Figure 6: COREL images: (Left): Original, (centre): Their on- & off-centre contrast maps and (Right): Their reconstructions.
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