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Abstract

Raman spectroscopy is a promising spec-

troscopic technique for microbiological

diagnostics. In routine diagnostic, the dif-

ferentiation of pathogens of the

Enterobacteriaceae family remain challeng-

ing. In this study, Raman spectroscopy was

applied for the differentiation of 24 clinical

E. coli, Klebsiella pneumoniae and Klebsiella oxytoca isolates. Spectra were col-

lected with two spectroscopic approaches: UV-Resonance Raman spectroscopy

(UVRR) and single-cell Raman microspectroscopy with 532 nm excitation. A

description of the different biochemical profiles provided by the different excita-

tion wavelengths was performed followed by machine-learning models for the

classification at the genus and species levels. UVRR was shown to outperform

532 nm excitation, enabling correct classification at the genus level of 23/24 iso-

lates. Furthermore, for the first time, Klebsiella species were correctly classified at

the species level with 92% accuracy, classifying all three K. oxytoca isolates cor-

rectly. These findings should guide future applicative studies, increasing the scope

of Raman spectroscopy's suitability for clinical applications.
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1 | INTRODUCTION

Enterobacteriaceae are a family of Gram-negative bacteria
that are part of the mammalian microflora, especially in
the gastrointestinal tract.1 In many Enterobacteriaceae

species, pathogenic strains have developed,1–3 causing a
range of clinical conditions ranging from chronic diseases
as irritable bowel syndrome (IBS)4 to acute, life threaten-
ing conditions as bacteremia and sepsis.5 Klebsiella spp.
and Escherichia coli are among the leading causes of hospi-
tal acquired infections.6 Furthermore, these bacteria often
carry resistance genes against antimicrobial therapy, mak-
ing them difficult to treat.2, 7, 8 E. coli is the most common
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cause for hospital acquired infections, in particular it is the
cause of more than 25% of urinary tract infections.9

K. pneumoniae is the most common pathogen of the Kleb-
siella genus, followed by K. oxytoca, an emerging pathogen
that contributes between 13% and 24% of all nosocomial
bacteremia infections.10 In clinical laboratory settings, the
differentiation of Enterobacteriaceae species, for example,
E. coli and Klebsiella spp. remains challenging, as the bac-
teria are closely related both in their genome and pheno-
typic appearance.11 In order to differentiate E. coli from
Klebsiella, an expensive set of 47 biochemical tests is
needed.12 To discriminate K. pneumonia from K. oxytoca
an additional indole reaction is required that is sometimes
difficult to detect and can lead to misclassifications.13

In clinical settings, the detection of the pathogen species
is of high importance for physicians to choose the appropri-
ate antimicrobial treatment as well as for outbreak tracing
and epidemiology.14, 15 The required time and costs of the
microbiological procedures are also important factors. Many
microbiological methods are used for this purpose with the
gold standard being automated platforms which test the
bacteria in a complex set of biochemical reactions for differ-
ent metabolic activities and matches the profile with an
established database.12 However, these methods require
approximately 24 h after the isolation of the pathogen to
provide results and are not very cost effective. Matrix-
assisted laser desorption/ionization time of flight mass spec-
trometry (MALDI-TOF MS) is a spectroscopic method that
has been recently approved for routine clinical laboratory
use and can provide results within several hours.16, 17 Yet,
for the Enterobacteriaceae group limitations are present as
the bacteria are so closely related both in their genome and
phenotypic appearance.18 PCR based methods are also com-
monly used but require expensive consumables.19

Raman spectroscopy has been demonstrated as a rapid,
label-free and robust tool for the classification and identifi-
cation of clinically relevant bacteria.20–22 This method uses
the molecular fingerprint of bacterial cells to identify the
species. The biochemical information is obtained by expos-
ing the bacterial cells to a laser and measuring the
scattered light using a spectrometer. Since microbial spe-
cies differ in their molecular composition, they provide a
distinct spectral fingerprint allowing their identification
and classification with the use of chemometrics and
machine learning algorithms.23–25 Single cell Raman
microspectroscopy (SC-RMS) was used previously to clas-
sify Legionella,26 Mycobacteria,27 Burkholderia28 and other
pathogens.29 The major advantage of using SC-RMS is that
it does not require extensive cultivation steps, for example,
by measuring cells directly isolated from blood, urine and
other body fluids.21, 29, 30 Alternatively, in UV-Resonance
Raman (UVRR) spectroscopy, the bacteria are measured
in bulk, where a large biomass of bacteria is exposed to

the light source. This bulk approach is essential for reduc-
ing the photothermal damage caused by the destructive
UV light and therefore a cultivation step is needed to
obtain the required biomass. The main advantage of using
UVRR on bacterial samples is that Raman signals originat-
ing from nucleic acids and aromatic amino acids are
enhanced via a resonance effect, leading to a higher sig-
nal-to-noise-ratio in the spectra.31–33 UVRR spectroscopy
was used previously to differentiate clinically relevant
yeasts31 and bacteria.34 While both methods have been
used for microbial diagnostics, few studies have been done
to compare their abilities and produce recommendations
for choosing the best tool for Raman-based diagnostics.21

Previous studies on the application of Raman spectros-
copy to Enterobacteriaceae have had limited success. In a
study on the application of SC-RMS with 532 nm excitation
for identification of pathogens in ascetic fluids, all used
Enterobacteriaceae species were represented as a single
group as it was impossible to differentiate them.35 Another
study concluded that the family of Enterobacteriaceae are
particularly difficult to differentiate using phenotypic
methods.11 Few studies have used examples of
Enterobacteriaceae but only a small number of strains were
used.11, 26, 30, 36 Therefore, it remains a challenge to differ-
entiate the members of the Enterobacteriaceae family using
Raman spectroscopy, despite the success shown with other
pathogens. Furthermore, to the best of our knowledge, no
previous study considered the important emerging patho-
gen K. oxytoca in their dataset.

In this study, 24 clinical isolates of the species E. coli,
K. pneumoniae and K. oxytoca were analyzed using
Raman spectroscopy. The diagnostic potential of two dif-
ferent Raman approaches was studied: SC-RMS on single
cells and UVRR spectroscopy on bulk samples. Both
methods were used to describe the biochemical composi-
tion of the different species and the classification of the
isolates at the genus and species level.

2 | MATERIALS AND METHODS

2.1 | Sample preparation

For this study, 24 clinical isolates were collected in the
general University hospital of Larisa, Greece. Identifica-
tion of the isolates was performed using the Vitek-2 sys-
tem (BioMérieux, Marcy l'Etoile, France), according to
the manufacturer's instructions as described before.37

The isolates were identified as 15 strains of Klebsiella
pneumoniae, six strains of Escherichia coli and three
strains of Klebsiella oxytoca.

For Raman measurements, bacteria were cultured
from frozen stock on nutrient agar (NA) (Carl Roth,
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Karlsruhe, Germany) and incubated overnight at 37�C. A
loopful of biomass was then transferred to nutrient broth
(NB) (Carl Roth) and incubated at 37�C with shaking of
120 rpm. Each strain was cultivated in three biological
replicates on different dates for measuring.

For single cell Raman microspectroscopy (SC-RMS)
the cells were grown overnight in 5 mL of NB. The cul-
tures had an optical density of 0.5–1.5 when harvested for
measurement. The samples were prepared by adding
100 μL of bacterial culture to 900 μL of distilled water. To
remove traces of media, samples were washed three times
with deionized water using centrifugation at 5000 g for
5 min. Finally, 10 μL of sample was spotted in 1 μL drop-
lets on a nickel foil disk and allowed to dry at room tem-
perature for 15–60 min. Prior to UV-Resonance Raman
(UVRR) measurements, bacteria were grown for 1 h in
20 mL of NB in order to reach the exponential growth
state. Three replicates of 1.5 mL each of the inoculum
were heat-inactivated at 99�C for 5 min, followed by
washing three consecutive times. The final pellet was
resuspended in 30 μL of distilled water and allowed to
dry on a fused-silica slide at room temperature for 1 h. To
ensure heat inactivation was successful, a small amount
of biomass was plated on NA agar plates, incubated for
24 h in 37�C and examined for no growth.

2.2 | Raman measurements

SC-RMS spectra were collected from single cells using a
Raman microscope (BioParticleExplorer, MicrobioID 0.5,
RapID). The microscope was connected to a 532 nm fre-
quency-doubled solid-state Nd:YAG diode pumped laser
(LCM-S-111, Laser-Export Company Ltd.). The laser
beam was focused with an �100 magnification objective
(MPLFLN �100, NA: 0.9, Olympus Corporation) onto the
sample with approximately 16 mW leading to approxi-
mately 3.5 mW on the cells. Backscattered Raman light
was focused to a single stage monochromator (HE 532,
Horiba Jobin Yvon) equipped with a 920 lines/mm grat-
ing. The light was then collected with a thermoelectrically
cooled CCD camera (DV401A-BV, Andor Technology).
The spectral resolution was approximately 10 cm�1. For
each bacterial cell, two consecutive Raman spectra were
measured at the same position, which were afterward
combined. Integration time was 15 s for each bacterial
cell. For each replicate, 50–70 spectra were collected. A
total of >4000 spectra were obtained from three biological
replications, with an average of 180 spectra per isolate.

UVRR spectra were collected using a Raman setup
(HR800, Horiba/Jobin-Yvon) with a focal length of
800 mm. A 244 nm frequency-doubled argon-ion laser
(Innova 300, FReD) was used to excite the sample. The

laser was focused with an �40 antireflection-coated
objective (LMU, NA: 0.5, UVB). Backscattered Raman
light was collected through a 400 μm slit into a 2400
lines/mm grating and detected by a nitrogen-cooled CCD
camera. The spectral resolution was 2 cm�1. For each
spectrum measured, 15 s of illumination time, and a
maximum laser output power of 18 mW was used leading
to about 0.5 mW on the sample. During measurement,
the sample stage was rotated constantly on a spiral path
to reduce sample burning. In each measurement, 10 spec-
tra were obtained and averaged to reduce noise. A total
of 25 measurements for each replicate were obtained. A
total of >1800 measurements were collected from three
biological replications, with an average 75 per isolate.

2.3 | Data analysis

Preprocessing and data analysis were done using the
RAMANMETRIX software (Version 0.3.4, Leibniz Institute
of Photonic Technology). In order to prepare the data for
further analysis, several preprocessing steps were taken.
First the spectra were de-spiked as described before.38 Then,
the spectra were wavenumber calibrated, and background
corrected using a Sensitive Nonlinear Iterative Peak (SNIP)
algorithm with 40 iterations. Lastly, spectra were vector
normalized and truncated to the relevant range (500–
1900 cm�1 for UVRR spectra and 400–3050 cm�1 for SC-
RMS data). Also, for the SC-RMS data, the silent region
(1850–2750 cm�1) was removed to reduce noise.

Wavenumber calibration was done with a polyno-
mial fit function. It was based on 4-acetamidophenol
and polystyrene spectra for SC-RMS and UVRR data,
respectively. The polynomial degree was 3 for the 4-
acetamidophenol standard spectra and 2 for the poly-
styrene standard spectra. A new reference spectrum
was used on each measurement date.

The different classification models were calculated
using RAMANMETRIX software. A Principal Compo-
nent Analysis combined with Support Vector Machine
(PCA-SVM) approach was used for all models and the
number of principal components used was optimized
based on the results of a leave-one-strain-out cross valida-
tion (LOSOCV) as described by Guo et al.39 This valida-
tion method calculated a model repeatedly based on a
dataset, excluding one strain, which is then predicted by
the constructed model. For all SVM models, a Radial
Basis Function (RBF) kernel was used, the model cost
was set to 10 and gamma defined as 1 divided by number
of variables (PCs). For the UVRR data, the PCA-SVM
model was calculated, based on four PCs. For SC-RMS
data, a PCA-SVM model was calculated, based on 20 PCs.
In addition, burned SC-RMS spectra were removed
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automatically from the SC-RMS dataset using an in-
house R script.40 Moreover, the data was cleansed by a
correlation filter to remove any remaining outliers. This
filter discards any spectra which have <0.9 correlation
with the mean preprocessed spectrum of the entire
dataset. More than 99.5% of spectra passed the filter.
Once the classification models were calculated, a major-
ity vote was taken to classify each strain individually. This
was done to reduce in-sample heterogeneity, which causes
some spectra to classify incorrectly. A “vote” is conducted
within each isolate, and the class which has the majority of
spectra is chosen as the “decided class.” Balanced accuracy
was calculated as the sum of the model sensitivity and spec-
ificity divided by 2. The spectra were visualized using Origin
(Pro), version 2018b (OriginLab Corporation, Northamp-
ton). For further investigation of the intra-replicate varia-
tions, the results for the “vote” within each replicate (three
per isolate) were produced (see Tables S3–S6).

For the classification a two-step approach was used in
order to produce an algorithm suitable for decision-mak-
ing. First a classification of the genera was generated in
order to differentiate E. coli from Klebsiella spp. (Klebsi-
ella pneumoniae and Klebsiella oxytoca). Then, in a sec-
ond model was trained, with the same parameters in
order to differentiate Klebsiella pneumoniae form Klebsi-
ella oxytoca at the species level. This multi-level approach
has been used before26, 41 and provides models which are
complementary, as they can be run one after the other,
and fine-tuned to the specific classes.

3 | RESULTS AND DISCUSSION

3.1 | Descriptive analysis of the bacteria
using Raman spectroscopy

In this study, we collected Raman spectra of 24 different
clinical Enterobacteriaceae of the species E. coli,
K. pneumoniae and K. oxytoca from the Larissa University
hospital, Greece. Two different approaches were used to col-
lect Raman spectra: Single cell Raman microspectroscopy
(SC-RMS) and UV-Resonance Raman (UVRR) spectroscopy
on bulk samples. The two different approaches were used
because they highlight different elements of the bacterial
cell. In SC-RMS, we expect a holistic view of the cell com-
ponents, with signals coming from proteins, lipids, nucleic
acids and carbohydrates. On the other hand, we expect
UVRR spectroscopy to enhance the signals originating from
nucleic acids and aromatic amino acids, providing a less
comprehensive signal, but also a less noisy one. Since the
methods provide different information, we were interested
to find out which one has more diagnostic potential for dif-
ferentiating the different species. The mean spectra of each

species are presented in Figure 1. In Figure 1A, the spectra
collected from bulk samples with 244 nm excitation
(UVRR), and in Figure 1B the spectra from SC-RMS excited
with 532 nm are shown. The standard deviation of each
mean spectrum was also calculated and is highlighted.

The mean spectra shown in Figure 1 display known
spectral fingerprints of bacteria.21, 22 The UVRR spectra
are dominated by bands enhanced with the resonance
effect of excitation with 244 nm light. The bands at 787,
1242, 1335, 1362, 1485, 1533 and 1578 cm�1 are resonant
bands from nucleic acids (i.e., DNA and RNA).42–44 The
bands at 762, 831, 857, 1014 and 1620 cm�1 are resonant
bands derived from different aromatic amino acids: tryp-
tophan, tyrosine and phenylalanine, which are essentially
protein signals.42, 43, 45 In addition, the band at
1176 cm�1 is a mixed band that can be assigned to both
nucleic acids and proteins. A detailed table of band
assignment can be found in the supplementary material
(Table S1).

Unlike the UVRR spectra, SC-RMS spectra do not
show a strong resonance effect. The wide band at
2933 cm�1 represents C–H stretching vibrations and the
band at 1448 cm�1 represents CH2/CH3 deformation
vibrations. These bands are common in many biomole-
cules, especially lipids and carbohydrates.22, 46 In addi-
tion, bands at 1667 and 1241 cm�1 can be assigned to
amide I and amide III vibrations, respectively, and
relate to the protein backbone. The bands at 1004 and
852 cm�1 (phenylalanine and tyrosine ring breathing
vibrations, respectively) also represent the proteins in

FIGURE 1 Mean Raman spectra of different bacterial species:

(a) E. coli, (b) K. oxytoca and (c) K. pneumoniae. (A) Spectra from

UVRR spectroscopy (B) spectra from SC-RMS. Standard deviations

are shown as shades around each spectrum. All spectra are

normalized and offset vertically for visualization purposes
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the cell. Finally, nucleic acids can be observed at 1574,
1331, 1103, 782 and 725 cm�1.45, 47–51 As expected, the
nonresonant Raman spectrum produces a more compre-
hensive look into the biochemistry of the bacterial cell,
including information from lipids and carbohydrates.
More detailed assignments are given in the supplemen-
tary material (Table S2).

For both methods, no clear differences can be observed
between the species from the mean spectra. This is not sur-
prising, the similarity of all Enterobacteriaceae species, and
particularly of E. coli and Klebsiella spp. is well docu-
mented.1, 52 This finding stresses the challenge of classifying
these genera both with standard methods and with Raman
spectroscopy. The chemical makeup of all three species in
overall proteins, lipids, nucleic acids and carbohydrates is
almost identical and they share major parts of their core
genome.1, 52

3.2 | Classification of E. coli and
Klebsiella spp. at the genus level

As a first step, a classification of the genera was per-
formed in order to differentiate between E. coli and Kleb-
siella spp. (K. pneumoniae and K. oxytoca combined).

Principal Component Analysis (PCA) was followed by a
Support Vector Machine (SVM), where the number of
principal components was optimized based on a leave-
one-strain-out cross validation. After the classification
model was calculated we used a majority voting approach
to provide a classification for each isolate, in order to
both remove any heterogeneity within a sample and to
produce a clinically relevant decision. The results of clas-
sification based on SC-RMS with a 532 nm laser before
and after majority voting are presented in Table 1 and
those of UVRR spectroscopy in Table 2. For the SC-RMS
data, the spectra were not classified accurately, achieving
59% balanced accuracy for spectra and only 67% balanced
accuracy per isolate after majority voting. On the other
hand, for the UVRR data, the spectra were classified with
78% balanced accuracy, and after using majority voting,
isolates were correctly identified with 96% accuracy
(23/24 strains correctly identified). Even when corrected
for the imbalance of the dataset, the accuracy remains
high, with 92% balanced accuracy.

These results demonstrate the importance of choosing
the right Raman spectroscopic approach in order to
achieve the best possible differentiation. In a previous
study aiming to discriminate multi-drug resistant and
susceptible E. coli strains, the same two Raman

TABLE 1 Summary of the first classification step for differentiation at the genus level using SC-RMS

SC-RMS Reference Balanced accuracy/%

Results per spectrum Escherichia Klebsiella

Prediction Escherichia 421 614 59

Klebsiella 709 2488

SC-RMS Reference Balanced accuracy/%

Results per isolate Escherichia Klebsiella

Prediction Escherichia 2 0 67

Klebsiella 4 18

Note: The top part presents the results per spectrum, that is, before majority voting. The bottom part presents the results per isolate, that is, after majority
voting. The true labels are shown by column and the predicted classes by row.

TABLE 2 Summary of the first classification step for differentiation at the genus level using UVRR

UVRR spectroscopy Reference Balanced accuracy/%

Results per spectrum Escherichia Klebsiella

Prediction Escherichia 315 134 78

Klebsiella 168 1229

UVRR spectroscopy Reference Balanced accuracy/%

Results per isolate Escherichia Klebsiella

Prediction Escherichia 5 0 92

Klebsiella 1 18

Note: The top part presents the results per spectrum, that is, before majority voting. The bottom part presents the results per isolate, that is, after majority

voting. The true labels are shown by column and the predicted classes by row.
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spectroscopy approaches were compared. Results showed
similar classification performance of SC-RMS and UVRR
spectroscopy.42, 53 Considering the high similarities pre-
sent in the different strains of the same species, it is not
surprising that UVRR was not sensitive enough to cap-
ture the very small differences present in their genome.
In this study, the genotypic differences between the dif-
ferent species are significantly larger and could be cap-
tured by UVRR, leading to a classification accuracy
of 92%.

Similar studies have been performed previously to clas-
sify Enterobacteriaceae using Raman spectroscopy with
532 nm excitation, however only a limited number of iso-
lates were used.26, 30 In the present study, a large dataset
of isolates was collected leading to more robust conclu-
sions. In another study, using SC-RMS with a 532 nm exci-
tation the Enterobacteriaceae could not be differentiated
and were therefore classified as a single group.35 This is in
accordance with the findings of the present study where
SC-RMS provided poor classification abilities. Similarly, in
a large study of pathogenic bacteria using an excitation
wavelength of 633 nm, while most species were classified
with high accuracy, the Enterobacteriaceae were classified
with only 69% accuracy and were therefore analyzed as a
group rather than different species.23 This highlights again
the importance of the resonant Raman spectra collected
with UV excitation, as even at different wavelengths the
classification remains difficult. Lastly, several studies using
785 nm excitation on bulk samples were performed suc-
cessfully in clinical wards to link clonal isolates of E. coli
and K. pneumoniae.54–57 Yet, these studies have only con-
sidered clonality (the direct similarity of one strain to
another) and would therefore not be relevant for identify-
ing new strains evolved in a clinical setting. Taken
together this shows the limited performance of SC-RMS
and the high potential of UVRR in classification of
Enterobacteriaceae.

3.3 | Classification of Klebsiella oxytoca
and Klebsiella pneumoniae at the species
level

As a next step, classification of K. pneumoniae and
K. oxytoca at species level was performed. The spectra
obtained for the Klebsiella genus group were used and
analyzed for the classification of K. pneumoniae or
K. oxytoca. Results are presented in Tables 3 and 4. In
Table 3, it can be seen that again SC-RMS performed
poorly, providing a balanced accuracy of 50% after
majority voting, a result with no discrimination abili-
ties. This is expected, as the two species are almost
identical from a biochemical perspective. It is well

known that K. pneumoniae and K. oxytoca share a large
part of their core genes and exchange virulence factor
often.10, 58 Even using biochemical methods, the two
species are very difficult to differentiate.13

For the UVRR, however, the model produced a bal-
anced accuracy of nearly 70% for spectra and 90% for iso-
lates. This result is of great importance, showing that the
resonance effect of nucleic acids and aromatic amino
acids present in UVRR spectra improves signal-to-noise
ratio and captures the small differences between the two
species in their genome and their overall protein compo-
sition. It also shows that by reducing the sample's hetero-
geneity through majority voting we improve the model's
accuracy dramatically, as can be seen by the correct clas-
sification of all 3 K. oxytoca isolates. K. oxytoca are known
to be exceptionally difficult to differentiate from
K. pneumoniae, are often misclassified and are a great
cause of hospital acquired infections.10, 13 To the best of
our knowledge, this is the first time the differentiation of
K. oxytoca and K. pneumoniae was performed using
Raman spectroscopy. These findings are of great impor-
tance and stress the versatility and applicability of Raman
spectroscopy in clinical laboratory settings.

Put together with the earlier results at the genus level,
we can assert that:

1. UVRR spectroscopy significantly outperforms SC-
RMS for the task of classifying E. coli and Klebsiella
spp. isolates at the genus level.

2. UVRR spectroscopy can likely be used not only to dif-
ferentiate clinical isolates at the genus level, but even
to discriminate the cases of K. oxytoca from
K. pneumoniae infections.

While this study shows great potential for Raman-based
microbial diagnostics, it is important to note some of its
limitations. First, since the dataset was collected in a clin-
ical environment, it is unbalanced and is dominated by
K. pneumoniae isolates. This is important as only a lim-
ited number of K. oxytoca isolates were used and the
study's conclusions should therefore be considered care-
fully. Although the unbalanced data sets may introduce
bias in the SVM models, it is notable that all 3 K. oxytoca
isolates were classified correctly, showing that the fine
differences present in these two species were successfully
captured by UVRR spectroscopy.

As expected, the dataset contains some sample-to-
sample heterogeneity. It can be observed that the
improvement in the classification accuracy after majority
voting per biological replicate for the demonstrated clas-
sification models is less prominent (Tables S3–S6) than in
the results obtained per isolate (three replicates com-
bined), discussed in the main text. This is partially due to
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the natural biological variation known to exist among
microorganisms59, 60 and could be addressed by more vig-
orously standardized sample preparation in future
studies.

It has to be noted that the comparison of the reported
results for UVRR and SC-RMS has to be interpreted care-
fully as the sample preparation for single cell and bulk
analysis is different. Moreover, the two methods provide
spectra with different spectral resolution which could
also affect model accuracy. However, the focus of this
study was primarily on examining the diagnostic

potential of each method, with its own specialized sample
preparation method. Future studies should consider both
the spectroscopic setup and the measuring medium (sin-
gle cell or bulk) in their applications.

4 | CONCLUSIONS

This study demonstrates, for the first time, that
Raman spectroscopy allows accurate discrimination
of clinical E. coli and Klebsiella spp. as well as

TABLE 3 Summary of classification step at the species level using SC-RMS

SC-RMS Reference Balanced accuracy/%

Results per isolate K. oxytoca K. pneumoniae

Prediction K. oxytoca 118 387 54.8

K. pneumoniae 374 2318

SC-RMS Reference Balanced accuracy/%

Results per isolate K. oxytoca K. pneumoniae

Prediction K. oxytoca 0 0 50

K. pneumoniae 3 15

Note: The top part presents the results per spectrum, that is, before majority voting. The bottom part presents the results per isolate, that is, after majority
voting. The true labels are shown by column and the predicted classes by row.

TABLE 4 Summary of classification step at the species level using UVRR

UVRR spectroscopy Reference Balanced accuracy/%

Results per spectrum K. oxytoca K. pneumoniae

Prediction K. oxytoca 194 31 67

K. pneumoniae 322 850

UVRR spectroscopy Reference Balanced accuracy/%

Results per isolate K. oxytoca K. pneumoniae

Prediction K. oxytoca 3 3 90

K. pneumoniae 0 12

Note: The top part presents the results per spectrum, that is, before majority voting. The bottom part presents the results per isolate, that is, after majority
voting. The true labels are shown by column and the predicted classes by row.

TABLE 5 Summary of findings and advantages of the different Raman spectroscopy approaches

Parameter UVRR SC-RMS

Wavelength 244 nm 532 nm

Medium Bulk (bacterial biomass) Single Cell

Advantages Enhancement of signals from nucleic
acids and proteins

Does not require extensive cultivation
steps

Differentiation between Klebsiella and
E. coli (balanced accuracy)

92% 67%

Differentiation of Klebsiella species
(balanced accuracy)

90%
3/3 correctly classified
K. oxytoca

50%
0/3 correctly classified K. oxytoca
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K. pneumoniae and K. oxytoca isolates. UVRR spec-
troscopy yielded better accuracy for differentiation
compared with SC-RMS with 532 nm excitation. This
is because the resonance effect of nucleic acids in
this excitation wavelength could capture the differ-
ences present in the genome of the isolates. In addi-
tion, for the first time, Raman spectroscopy was
applied on the emerging pathogen K. oxytoca, show-
ing that UVRR spectroscopy allows correct classifica-
tion of all used isolates from this species. The
advantages of both Raman spectroscopic approaches
used are shown in Table 5.

These findings are indicative of Raman
spectroscopy's potential as a diagnostic tool. This study
has demonstrated the importance of carefully choosing
the experimental parameters. The different wave-
lengths used in this study provided information on the
biochemical composition of the studied genus and spe-
cies. Future studies need to be designed in order to
investigate and optimize these parameters on different
taxonomic levels. In addition, studies toward a better
understanding of the influence of Raman excitation
wavelength need to be established in order to general-
ize the best diagnostic strategy not only for
Enterobacteriaceae but also for other pathogenic
groups. This study is the first step in this direction and
should serve as a guide for the future development of
Raman spectroscopy as a diagnostic tool.
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