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Abstract: As the oil and petrochemical products pass through the oil pipeline, the sediment scale
settles, which can cause many problems in the oil fields. Timely detection of the scale inside the pipes
and taking action to solve it prevents problems such as a decrease in the efficiency of oil equipment,
the wastage of energy, and the increase in repair costs. In this research, an accurate detection system
of the scale thickness has been introduced, which its performance is based on the attenuation of
gamma rays. The detection system consists of a dual-energy gamma source (241 Am and 133 Ba
radioisotopes) and a sodium iodide detector. This detection system is placed on both sides of a test
pipe, which is used to simulate a three-phase flow in the stratified regime. The three-phase flow
includes water, gas, and oil, which have been investigated in different volume percentages. An
asymmetrical scale inside the pipe, made of barium sulfate, is simulated in different thicknesses.
After irradiating the gamma-ray to the test pipe and receiving the intensity of the photons by the
detector, time characteristics with the names of sample SSR, sample mean, sample skewness, and
sample kurtosis were extracted from the received signal, and they were introduced as the inputs of a
GMDH neural network. The neural network was able to predict the scale thickness value with an
RMSE of less than 0.2, which is a very low error compared to previous research. In addition, the
feature extraction technique made it possible to predict the scale value with high accuracy using only
one detector.

Keywords: GMDH neural network; data mining; scale thickness; stratified flow regime; oil products

1. Introduction

The presence of scale inside oil pipes causes problems such as reducing the cross-
section of oil pipes, disrupting the performance of oil equipment, increasing the cost and
time of repairs, and even emergency shutdown of the oil field. Using an accurate and non-
invasive diagnostic system to diagnose this problem and take action to fix it can prevent
the above-mentioned problems. In recent years, systems based on gamma-ray attenuation
to determine the parameters of the type of flow regime and volume percentages in three-
phase [1–3] and two-phase [4–6] fluids have received much attention from researchers. In
these researches, different gamma sources have been investigated. Still, the big problem
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of these researches is the use of two or more detectors, which has increased the cost and
complexity of the detection structure. In study [7], researchers proposed a system based on
gamma rays to determine volume percentages and type of flow regimes, whose detection
structure consisted of a cesium source and two sodium iodide detectors. They simulated a
two-phase flow in different volume percentages and three regimes of annular, stratified, and
homogeneous using Monte Carlo N Particle (MCNP) code. In order to increase the accuracy,
they examined several time characteristics and introduced the best time characteristic with
an innovative method. The use of two detectors is the most fundamental gap of this research,
which, in addition to imposing a high cost on system design, has increased the complexity
of the detection system. In [8], researchers investigated the performance of the GMDH
neural network, but the lack of characteristic extraction and the use of raw signals as inputs
of the neural network prevented access to high accuracy. In the following research [9], the
researchers put the temporal characteristics as the inputs of the GMDH neural network.
This neural network has the ability to self-organize and can recognize the network structure
and appropriate inputs automatically. They predicted the type of flow regimes and volume
percentages with high accuracy. Alamoudi et al. [10] proposed an in-pipe scale value
detection system. The proposed detection structure consisted of a dual-energy gamma
source and two detectors placed opposite each other on either side of a test pipe. In the test
pipe, a two-phase flow of oil and gas in different volume percentages was simulated. They
did not check the characteristics of the received signals, which made not only the accuracy
of their proposed system not high, but also the structure of the introduced system was
complex and expensive. The use of radioisotope devices has problems such as the need to
use protective clothing, difficult transportation, inability to turn off, etc.; for this reason,
in recent years, the use of X-ray tubes to determine various parameters of Multiphase
flows has been studied by researchers. In [11], to determine the type of flow regime and
volume percentages in two-phase flows, a system consisting of an X-ray tube and a detector
was introduced. They extracted temporal characteristics from the signals received by the
detector and considered them as inputs of the MLP neural network. Two neural networks
were designed that were responsible for determining the type of flow regimes and the
percentage of void fraction separately. In [12], a three-phase flow was simulated in three
different regimes and different volume percentages. The simulated structure consisted of
an X-ray tube and two sodium iodide detectors. The received signals were processed in
the frequency domain, and four frequency characteristics were considered as the inputs of
the RBF neural network. Three RBF neural networks were trained, two of which had the
task of determining volume percentages, and the other one had the task of determining
the type of flow regimes. The X-ray tube has also been used to determine the type and
amount of product passing through oil pipelines [13,14]. In [13], four petroleum products
were simulated in a two-by-two combination in a test pipe. An X-ray tube was placed on
one side of the pipe, and a sodium iodide detector was placed on the other side of the
pipe directly in front of the source. The signals received from each simulation without any
processing were simultaneously considered as the input of three MLP neural networks,
and the volume ratio of each product was predicted with a mean absolute error of less
than 2.72. In the next research [14], in order to increase the accuracy of the proposed system
in research [14], the received signals were processed using wavelet transform, and the
characteristics of approximate and detailed signals were extracted. They increased the
accuracy of the detection system by about two times.

Inspired by previous researches, in current research, an attempt has been made to
implement a system for detecting the amount of scale inside an oil pipe while a three-phase
regime is passing through it. This research has tried to improve two important parameters,
such as increasing accuracy and simplifying the detected system, using time characteristic
extraction techniques. These are the contributions made by this study:

1. Extracting signal features by the use of statistical formulas.
2. Utilizing a single detector reduces expenses and the complexity of the detection

system’s structure.
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3. Improving scale thickness determination accuracy by the extraction of valuable prop-
erties from received signals

4. Determining scale thickness using the GMDH neural network as a self-organizing network.

2. MCNP Simulation Setup

MCNP code has been used to simulate the detection structure. In this simulation, a
dual-energy gamma source, a steel pipe, with an inner diameter of 10 cm and a thickness
of 0.5 cm, and a sodium iodide detector are used. The simulated structure is shown in
Figure 1. The dual-energy source consists of 241 Am and 133 Ba, are capable of emitting
photons with energies of 59 and 356 KeV, respectively. In the test pipe, a three-phase flow
consisting of water, oil, and gas was simulated in a stratified flow regime. Different volume
percentages in the range of 10% to 80% were investigated for each phase. The considered
scale was made of barium sulfate (BaSO4) with a density of 4.5 g · cm−3. Seven different
scale thicknesses, including 0, 0.05, 1, 1.5, 2, 2.5, and 3 cm, were simulated inside the
pipe. The sodium iodide detector with dimensions of 2.54 cm × 2.54 cm was placed at a
distance of 30 cm and directly in front of the gamma source. 252 different simulations were
performed, and all the collected data were labeled for use in the next step. The graph of the
spectrum received by the detector for two scale thicknesses of 0 cm and 1.5 cm is shown
in Figure 2.
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Figure 2. Spectrum received by sodium iodide detector for scale thickness of (a) 0 cm and (b) 1.5 cm.

LamberteBeer’s law is used to determine the attenuation rate when a narrow gamma
ray strikes an object.

I = I0e−µρx (1)

I, I0, µ and ρ denote the intensity of un-collided, the original photons, the mass
attenuation coefficient, and the material density of the absorber, respectively. X denotes
how far the beam travels through the absorber. Equation (1) states that different objects
respond to gamma radiation in different ways. This variation in behavior determines the
kind and amount of a substance in the environment. A 2.54 cm × 2.54 cm NaI detector was
used in this research to capture the photons that were transmitted. The detector was used
to record photon energy spectra using pulse height tally (Tally F8). Previous analyses have
supported the study’s reproductive outcomes [6]. Several research laboratory structures
were used in this review, and the results from the MCNP code were compared with them.
Both were normalized to units to examine exploratory and reenactment data because the
Tally output in the MCNP procedure is per source particle. The disparity between the
simulation results and the lab setup represented the largest relative error at 2.2%.

3. Time-Domain Feature Extraction

The signals collected in the previous section had many dimensions, and their interpre-
tation was a very complicated and time-consuming task. For this purpose, to simplify and
separate the available data, an attempt was made to extract time characteristics. Four time-
characteristics with the names of sample mean, sample of summation of square root (SSR),
sample skewness, and sample kurtosis were extracted from the signals recorded by the
NaI detector. These features have been used to improve the accuracy and structure of the
scale thickness detection system since they were first introduced as helpful characteristics
in earlier study [7,9,11]. The equations of these features are given below:

• Sample mean:

m =
1
N

N

∑
n=1

x(n) (2)

• Sample of summation of square root (SSR):

SSR =
N

∑
n=1

(x(n))0.5 (3)



Processes 2022, 10, 1866 5 of 15

• Sample skewness:

Skewness =
m3

σ3 , m3 =
1
N

N

∑
n=1

[x(n)− m]3 (4)

• Sample kurtosis:

Kurtosis =
m4

σ4 , m4 =
1
N

N

∑
n=1

[x(n)− m]4 (5)

Here n is the dataset’s values, N denotes the total data number, and x(n) represents
the principal signal in the time domain.

The diagram of these four characteristics in terms of volume percentage of gas and
oil is shown in Figure 3. As it is clear from this figure, the amount of scale thickness can
be separated into different volume percentages. These characteristics have been used to
train the GMDH neural network. As mentioned in the previous section, 252 different simu-
lations have been performed, and four time characteristics have been extracted from the
signal received from each simulation. Therefore, the available matrix contains 4 rows and
252 columns. The output of the neural network is also the value of the thickness of the scale
inside the pipe in centimeters.
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4. GMDH Neural Network

In 1968, a Ukrainian mathematician named M.G. Ivakhnenko presented a mathemati-
cal model to solve prediction and classification problems and called it Group Method of
Data Handling (GMDH) [15]. The model proposed by Ivakhnenko has self-organization
capability so that the network structure, effective inputs, number of hidden layers, and
number of neurons of hidden layers are automatically selected. In this neural network, the
relationship between input and output is described by the Kolmogorov-Gabor polynomial,
which is described below.

y = a0 +
m

∑
i=1

aixi +
m

∑
i=1

m

∑
j=1

aijxixj +
m

∑
i=1

m

∑
j=1

m

∑
k=1

aijkxixjxk + . . . (6)

where a (a1, a2, . . . , am) are weights or coefficients of vector, X (x1, x2, . . . , xm) are also
vector inputs or the same extracted features, and y is the output of the network. GMDH
neural network is implemented in 5 steps, which are as follows.

1. All neural network inputs (extracted characteristics) two at the time and for each(
m
2

)
admixture are fitted to the quadratic polynomial given in Equation (7). The

purpose of this step is to calculate the C coefficients that are obtained with the least
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squares algorithm. The output of each quadratic polynomial predicts the desired
output value. The task of calculating these polynomials is assigned to the neurons of
the neural network.

Z = c1 + c2xi + c3xj + c4x2
i + c5x2

j + c6xixj (7)

2. The neurons with the most error in predicting the desired output are removed.
3. The neurons selected in the previous step are considered quadratic polynomial inputs

described in step one. In this step, polynomials are produced from polynomials,
producing a polynomial with a higher order.

4. The second step is repeated, and neurons with high errors are removed. This repetition
of the steps and generation of polynomials from polynomials are repeated until the
desired error value is obtained.

5. Checking network performance with test data. In the design of neural networks,
the major of the data (about 70%) are used for training the neural network, and the
rest of the data are used for the final test of the network. The correct performance
of the neural network against these data sets ensures that the designed network can
show acceptable performance in operational conditions. In order to identify various
characteristics in many scientific domains, several studies have employed intelligent
computer systems [16–37].

5. Results

A GMDH neural network with four inputs and one output was trained. The inputs
of this network were the extracted temporal characteristics, and the network’s output
was the value of the scale thickness inside the pipe in centimeters. 252 samples were
available for the implementation of this network, of which 176 samples were assigned
to the training data, and the remaining samples were used for the final test of the neural
network. The selection of these samples was done randomly so that the neural network
could be trained with all the range of data. According to the self-organizing capability of
the GMDH neural network, the structure that had the best accuracy is shown in Figure 4.
This network has 3 hidden layers, and the number of selected neurons in these layers was
4, 4, and 2, respectively. A regression diagram and error diagram have been used to show
the performance of the designed neural network. In the regression diagram, the yellow line
shows the desired output, and the green circles represent the output of the neural network.
The closer the yellow line and the green circle are to each other, the more accurate the
designed neural network is. The error diagram shows the difference between the network
output and the desired output for each sample. The regression and error graphs for the
training and testing datasets are shown in Figure 5. In order to obtain the error value, two
widely used criteria named Mean Square Error (MSE) and Root Mean Square Error (RMSE)
were calculated with the following equations:

MSE =
∑N

j=1
(
Xj(Exp)− Xj(Pred)

)2

N
(8)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(9)

In which N indicates data number, ‘X (Exp)’, and ‘X (Pred)’ illustrate the experimental
and predicted (ANN) values, respectively.
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The comparison table of the output of the neural network with the desired output
is given in Table 1. To show the accuracy of the implemented system, Table 2 shows a
comparison between the accuracy of current research and previous research. Extracting
the appropriate features from the received signals has not only improved the accuracy of
the presented system, but also reduced the number of detectors. Reducing the number of
detectors, along with reducing the complexity of the system, will significantly reduce the
implementation cost of the detection system.

Table 1. Comparison of target values with neural network outputs.

Data Number Train Targets Train Outputs Test Targets Test Outputs
1 0.5000 0.8364 1.5000 1.3493
2 1.0000 1.2139 2.5000 2.6387
3 1.0000 1.0764 1.0000 0.9995
4 3.0000 2.8872 2.0000 1.8995
5 1.5000 1.7345 0 −0.1932
6 1.0000 0.7840 0.5000 0.5605
7 0 0.1079 0.5000 0.6024
8 0 0.0893 2.5000 2.3590
9 2.5000 2.3907 2.0000 1.9970

10 1.0000 0.8268 2.0000 1.5573
11 0 0.0608 2.0000 2.1318
12 1.0000 1.2595 2.5000 2.5019
13 1.0000 1.1938 0 0.2556
14 2.5000 2.4362 2.5000 2.5553
15 0.5000 0.6588 0 0.0966
16 2.5000 2.6227 1.5000 1.4977
17 3.0000 2.8169 3.0000 2.9088
18 3.0000 2.9739 1.0000 1.2369
19 2.5000 2.6138 2.0000 1.7970
20 2.0000 2.3813 2.5000 2.2073
21 2.0000 2.2872 3.0000 2.9807
22 0 0.0054 3.0000 3.0354
23 0.5000 0.5838 1.5000 1.0813
24 1.5000 1.7266 0.5000 0.8614
25 0 0.1918 3.0000 3.0631
26 2.0000 1.7102 0 0.3922
27 0 0.0498 0 0.1574
28 1.5000 1.8249 1.0000 1.0251
29 2.5000 2.0919 0 0.0212
30 2.5000 2.3027 2.0000 2.1242
31 0 −0.1304 2.5000 2.2996
32 2.5000 2.6107 3.0000 3.0133
33 0.5000 0.6473 1.0000 0.8878
34 3.0000 3.0209 1.0000 0.9709
35 0.5000 0.8172 2.0000 1.8204
36 0 0.0083 1.5000 1.7240
37 0.5000 0.5213 0.5000 0.6903
38 1.5000 1.2158 2.5000 2.3593
39 1.5000 1.8909 0 0.0223
40 2.0000 2.0860 1.5000 1.3002
41 2.0000 2.2205 1.5000 1.5859
42 1.0000 0.9735 3.0000 3.0234
43 0 0.1812 1.5000 1.1938
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Table 1. Cont.

Data Number Train Targets Train Outputs Test Targets Test Outputs
44 0.5000 0.9019 2.0000 2.0133
45 2.0000 2.0582 1.5000 1.2607
46 0 0.2109 3.0000 3.0214
47 1.5000 1.6819 1.0000 1.1423
48 2.0000 2.3901 0 −0.1317
49 0 0.0807 1.0000 0.9227
50 2.0000 1.3950 3.0000 2.6769
51 2.5000 2.6330 3.0000 2.9334
52 2.5000 2.3719 2.5000 2.1041
53 1.5000 1.3983 2.0000 1.8912
54 1.0000 1.1618 1.5000 1.4685
55 0.5000 0.4591 2.0000 1.5945
56 2.5000 2.3568 2.0000 1.7184
57 2.5000 2.5199 3.0000 2.8049
58 3.0000 2.7633 3.0000 2.7848
59 1.0000 1.1078 0.5000 0.2380
60 0 0.1705 3.0000 2.9187
61 1.0000 0.8614 2.5000 2.3903
62 1.0000 0.9309 3.0000 3.0254
63 1.5000 1.4250 1.0000 0.9684
64 0.5000 0.8160 2.0000 2.2965
65 2.0000 2.4583 2.0000 2.3671
66 0.5000 0.5069 0 0.0096
67 0.5000 0.7269 1.0000 0.9977
68 2.5000 2.3730 2.0000 2.1213
69 1.5000 1.3851 0.5000 0.7948
70 3.0000 3.0613 1.5000 1.5571
71 1.0000 1.0067 2.0000 2.0093
72 1.0000 0.6657 1.5000 1.2935
73 1.0000 0.7362 0 0.0936
74 1.0000 1.0683 0.5000 0.6893
75 0 0.1252 2.0000 1.5044
76 1.5000 1.2048 3.0000 2.7268
77 2.0000 2.1610 - -
78 0.5000 0.3873 - -
79 0.5000 0.6288 - -
80 1.5000 1.2658 - -
81 1.5000 1.3239 - -
82 0.5000 0.3186 - -
83 1.0000 0.9420 - -
84 1.5000 1.4139 - -
85 3.0000 3.0394 - -
86 3.0000 2.9834 - -
87 0 0.0517 - -
88 3.0000 2.6107 - -
89 1.0000 0.9446 - -
90 0.5000 0.5613 - -
91 0 −0.0763 - -
92 0 −0.1754 - -
93 3.0000 3.0456 - -
94 3.0000 2.7840 - -
95 2.5000 2.3713 - -
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Table 1. Cont.

Data Number Train Targets Train Outputs Test Targets Test Outputs
96 0.5000 0.7758 - -
97 2.0000 2.4267 - -
98 2.0000 1.8703 - -
99 1.0000 1.1189 - -

100 1.0000 1.2409 - -
101 1.0000 1.0213 - -
102 2.0000 2.0038 - -
103 0 −0.1516 - -
104 1.5000 1.5227 - -
105 3.0000 2.7891 - -
106 1.5000 1.4973 - -
107 2.0000 2.3414 - -
108 3.0000 2.9899 - -
109 2.0000 1.7173 - -
110 0.5000 0.8231 - -
111 1.5000 1.6692 - -
112 0.5000 0.6473 - -
113 0 −0.0318 - -
114 1.0000 1.1917 - -
115 0.5000 0.3629 - -
116 0.5000 0.4943 - -
117 0 −0.1362 - -
118 3.0000 3.0185 - -
119 2.5000 2.1735 - -
120 2.5000 2.1380 - -
121 0 0.0072 - -
122 2.0000 1.9919 - -
123 2.5000 2.3027 - -
124 0 0.0226 - -
125 1.5000 1.6830 - -
126 0 −0.0423 - -
127 0.5000 0.7433 - -
128 0.5000 0.7383 - -
129 0 0.1972 - -
130 3.0000 3.0329 - -
131 2.5000 2.4056 - -
132 3.0000 3.0404 - -
133 2.5000 2.4958 - -
134 3.0000 3.0254 - -
135 0 0.0398 - -
136 3.0000 2.8249 - -
137 2.5000 2.6042 - -
138 2.5000 2.4641 - -
139 0.5000 0.7573 - -
140 2.0000 1.4576 - -
141 1.5000 1.7930 - -
142 2.5000 2.5810 - -
143 1.5000 1.1687 - -
144 1.0000 1.1215 - -
145 3.0000 3.0252 - -
146 0.5000 0.4367 - -
147 2.5000 2.2581 - -
148 0.5000 0.6105 - -
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Table 1. Cont.

Data Number Train Targets Train Outputs Test Targets Test Outputs
149 2.5000 2.5026 - -
150 2.0000 1.5837 - -
151 3.0000 2.9770 - -
152 1.5000 1.3390 - -
153 2.0000 1.9029 - -
154 1.0000 0.9743 - -
155 1.5000 1.2099 - -
156 1.5000 1.2457 - -
157 2.5000 2.6815 - -
158 2.5000 1.9872 - -
159 2.0000 2.1030 - -
160 0 −0.0921 - -
161 1.0000 1.3085 - -
162 1.5000 1.1887 - -
163 1.5000 1.5302 - -
164 0.5000 0.2263 - -
165 0.5000 0.6759 - -
166 2.5000 2.2218 - -
167 1.5000 1.4478 - -
168 2.5000 2.2561 - -
169 1.0000 1.2136 - -
170 0.5000 0.6492 - -
171 0 −0.1685 - -
172 1.0000 1.0860 - -
173 1.0000 0.8985 - -
174 0.5000 0.6025 - -
175 3.0000 3.0462 - -
176 3.0000 2.9525 - -

Table 2. A comparison of the accuracy of the proposed detection system and previous studies.

Ref Number of
Detectors Source Type Type of Neural

Network Maximum MSE Maximum RMSE

[9] 1 137Cs GMDH 1.24 1.11
[7] 2 137Cs MLP 0.21 0.46
[8] 1 60Co GMDH 7.34 2.71
[38] 2 137Cs MLP 0.67 0.82
[39] 1 X-Ray tube MLP 17.05 4.13
[40] 1 137Cs MLP 2.56 1.6
[41] 1 60Co RBF 37.45 6.12
[42] 2 137Cs MLP 1.08 1.04

[current study] 1 Dual-energy
gamma source GMDH 0.04 0.2

6. Conclusions

The presence of scale inside the oil pipes will cause significant problems such as
reducing the effective diameter of the oil pipes, increasing the energy consumed by the oil
pumps, reducing the efficiency, and increasing the repair costs. Therefore, timely detection
of the amount of scale inside the oil pipes helps to reduce the mentioned damages. In this
research, a non-invasive system based on gamma-ray attenuation was introduced. The
introduced system consisted of a dual-energy source of 241Am and 133Ba, a NaI detector,
and a steel pipe. A three-phase flow was simulated in a stratified regime consisting of
oil, water, and gas in different volume percentages. In all these simulations, the value of
different scales in the range of 0 to 3 cm were examined. All these structures and flows
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passing through the test pipe were simulated by MCNP code. After collecting the received
signals from the detector, the feature extraction operation started in the time domain, and
four time features with the names of sample mean, sample SSR, sample skewness, and
sample kurtosis were extracted from the signals and introduced as the inputs of the GMDH
neural network. The trained neural network predicted the thickness of the scale inside the
pipe with an RMSE of less than 0.2, which is a very low error compared to previous studies.
In addition, the use of feature extraction techniques made it unnecessary to have multiple
detectors, and only one detector is enough to determine the thickness of the scale, which has
significantly saved the implementation costs. One of the major limitations of this research
is that working with radioisotope devices requires the use of protective clothing, and the
transportation of these devices is challenging. The use of feature extraction techniques in
the frequency domain, time-frequency domain, and the investigation of the performance
of other neural networks such as MLP, RBF, and even deep neural networks are highly
recommended to the researchers in this field.
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