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Abstract: We studied the nonlinear optical response of metallic amorphous composite layers in terms
of a self-phase-modulated, third-order Kerr nonlinearity. A nonlinear effective medium theory was
used to describe low densities of gold and iridium nanoparticles embedded in an equally nonlinear
host material. The fill fraction strongly influences the effective nonlinear susceptibility of the materials,
increasing it by orders of magnitude in the case of gold due to localized surface plasmonic resonances.
The enhancement of the nonlinear strength in amorphous composites with respect to the bulk material
has an upper limit in metallic composites as dominating absorption effects take over at higher fill factors.
Both saturated and induced absorption in the thin films of amorphous composites were observed
depending on the selected frequency and relative position to the resonant frequency of electron
excitation in the metallic inclusions. We demonstrated the depths to which thin films are affected by
nonlinear enhancement effects.

Keywords: nonlinear optics; nanoparticles; thin films; effective medium theory

1. Introduction

Amorphous composite materials can be obtained from techniques such as atomic layer
deposition (ALD) with a high precision with respect to the final film thickness, composite
density f and surface morphology, with a very low root mean square (rms) randomness of
the obtained surfaces [1,2]. If using metal inclusions, such amorphous layers can be used
for increasing local fields inside the host matrix, allowing for intense near-field interactions
with the host material, e.g., in polymer platforms for photovoltaic devices such as dye-
sensitized and other organic solar cell technologies [3,4]. On the other hand, should the
composite materials exhibit nonlinear optical properties, the total nonlinear output fields
can likewise be enhanced due to the presence of nanoparticles. Ultimately, the design of
nonlinear metasurfaces [5–8] has the potential to add a new dimension to the control of
light fields and enhancement phenomena at the nanoscale.

Amorphous composites of low fill fraction f both in solids and in liquids are typically
studied within Maxwell–Garnett (M-G) [9] and Bruggeman (Br) theories and, accord-
ing to both of them, nonlinear extensions exist [10–12]. The quality of effective medium
theories [13–15] is strongly limited by the approximations used, such as the quasistatic,
non-interacting regime, omitting multiple scattering and coupling effects. In this work, we
studied the thin films of amorphous composites made of gold and iridium nanoparticles
with third-order nonlinear properties embedded in an equally nonlinear host matrix. In
the self-phase modulated (SPM) case for so-called Kerr nonlinearities, we give a detailed
account on the conditions used to observe saturated and induced absorption, [16] as was
discussed in experiments on nanoplanets [17]. Our findings are important for under-
standing the mechanism of Kerr nonlinearity in amorphous composites and nonlinear
enhancement in metallic composites with little losses at low densities. Moreover, our
approach can be used to investigate stacks of amorphous composites building nonlinear
hyperbolic materials.
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We relied on tabulated material data [18,19] for the linear material models. As detailed
below, we used a third-order nonlinear susceptibility from the anharmonic oscillator model,
ascribing the nonlinear optical response to the resonant excitation of the free electron gas,
i.e., collective electron oscillations known as plasmons. To obtain a nonlinear amplitude,
we fitted to experimental data available for gold [20] and to the common low frequency
result from Miller’s rule for gold and iridium, respectively [21,22]. We found the latter to
overestimate the susceptibilities in the resonant regime. The former was in good agreement
with a material model based on temporal electron dynamics using the thermo-modulation
of the nonlinear response [23].

In nanoparticles, the localized surface plasmon resonance (LSPR) is given by the
lowest order electric Mie resonance. In amorphous thin films, this determines the spectral
position of their strongest nonlinear response. It is therefore important to take the particle
size distribution into account, in particular, for a large size spread [24]. Besides the dipole
approximation, the standard Maxwell–Garnett theory [9] uses the quasistatic approximation
to the electric polarizability, a term that should be replaced by its corresponding dipolar
Mie coefficient for larger particle sizes [24] to correctly include radiation losses. For the
thin films that we studied here, we restricted ourselves to metal nanoparticles of 5 nm size,
where the dipolar and quasistatic approximation are valid for both discussed materials, gold
and iridium. Alumina is a standard material used in the ALD fabrication of amorphous
films, and we chose it as the host due to its transparency and stability. In addition, it has
an intrinsic nonlinearity [22] of χ

(3)
h = 3.1× 10−22 m2/V2. The small shift in their LSPR

changing their diameter from 1 to 20 nm is shown in Figure 1a for Al2O3 as the host material.
Figure 1b shows the amorphous structure in mind with metal nanoparticles dispersed in the
nonlinear, transparent host material, and Figure 1c illustrates the concept of homogenization
within effective medium theories, which are introduced step by step in the next sections.
An effective linear permittivity was calculated, as well as an effective nonlinear third-order
susceptibility, which, together, form the nonlinear effective permittivity. This latter quantity
is dependent on the intensity that the material system is exposed to and, thus, ultimately, on
the depth within such an amorphous layer as the intensity drops inside due to absorption.
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Figure 1. (a) Size dependence of the spectral position of the localized surface plasmon resonance
(LSPR) of Ir and Au nanoparticles. (b) Illustration of the setup: Nanoparticles with permittivity εi are
embedded in the nonlinear host material Al2O3 of permittivity εh. (c) The system is treated within the
nonlinear Maxwell–Garnett and Bruggeman theories to arrive at a homogeneous layer with effective

permittivity εeff and effective third-order susceptibility χ
(3)
eff .
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The next section discusses the foundations of the model used and the assumptions made.
We introduce the third-order susceptibility used for gold nanoparticles in Section 2.1 and briefly
revisit Miller’s rule in Section 2.2. The focus is then put on the nonlinear Maxwell–Garnett and
Bruggeman theories in Sections 2.3 and 2.4, respectively. Finally, we discuss how we obtained
the nonlinear optical properties of amorphous thin films in Section 2.5.

2. Methodology

We considered the two metals gold and iridium. While we can rely on their linear
bulk properties being well described by tabulated data (gold [18], iridium [19,25]) obtained
from ellipsometry measurements, a lack of nonlinear optical data over a wide range of
wavelengths makes a simple but consistent model of nonlinear parameters challenging.
For a small number of incident wavelengths, pulse durations and measurement techniques,
available datasets for gold were collected in [20]. In recent work, similar studies were
performed on iridium nanoparticle layers [25]. We used the experimentally available data
to obtain a fit to the anharmonic oscillator model amplitude, as well as Miller’s rule [21] for
a purely theoretical model for the low-frequency limit ω → 0.

2.1. Third-Order Nonlinear Susceptibilities

In general, the anharmonic oscillator model [22] for the ith component
(i ∈ {x, y, z}) of the third-order macroscopic polarization ~P(3) yields

P(3)
i (ωq) =ε0 ∑

jkl
∑
mno

Nbe4

3ε0m3
e

Ej(ωm)Ek(ωn)El(ωo)δ(ωq −ωm −ωn −ωo)

δijδkl + δikδjl + δilδjk

D(ωm + ωn + ωo)D(ωm)D(ωn)D(ωo)
, (1)

where e is the elementary charge of an electron, me the electron mass, ε0 the free space
permittivity, and N the electron density, which can be summarized into the plasmon fre-
quency ωp of the considered material through ω2

p = Ne2/ε0me. Furthermore, b characterizes
the strength of the nonlinearity. The first sum runs over the components of the incident
electric fields Ei at different frequencies. The latter sum over frequencies demands that
ωq = ωm + ωn + ωo. This is reflected in the denominators D(ω) = ω2

0 −ω2 − iγω, where
ω0 is the material resonance stemming from the electron motion and γ is the associated
damping due to charge carrier collisions. These are given by the Mie resonances of the
respective materials; see Figure 1a. As we are interested in studying amorphous materials,
it is important to note that the size distribution should be taken into account if the size
range covers multiple resonance frequencies. For the linear regime, this has been addressed
by Battie et al. [24]. As can be seen from Figure 1a, for particle sizes below 10 nm, only
small variations in the resonance position are expected within classical electrodynamics
and, thus, we did not consider a shift in the resonance positions in our thin film calculations.
Here, nonlinear properties were studied purely for the case of self-phase modulation, i.e.,
all fields are monochromatic at the same frequency ±ω, so that a major contribution to
the macroscopic polarization stems from the nonlinear response at the incident frequency.
The anharmonic oscillator model yields the third-order susceptibility at frequency ω as
χ(3)(ω|ω, ω,−ω) = B/(|D(ω)|D(ω))2 for materials with an electronic response.

2.2. Amplitude According to Miller’s Rule

Miller’s empirical rule [21,22] connects the nonlinear strength b to material constants in
the limit ω → 0. This allows for an assessment of the nonlinear amplitude. Here, we relied on
fundamental properties of the solid crystal structure, such as the lattice constant a0, which gives
an estimate of the displacement that an electron in the atomic crystal structure can experience.
The shortest distance between atoms in a face-center cubic (fcc) atomic lattice is a0/

√
2.

For the third order, it implies that b = 2ω2
0/a2

0, yielding the low-frequency limit accord-
ing to Miller’s rule as
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χ
(3)
Miller = χ(3)(ω → 0) =

2ω2
pe2

m2
e ω6

0a2
0
= const. (2)

In this limit, 5 nm gold nanoparticles (a0 = 4.078 Å, γ = 0.13 eV, ωp = 8.9 eV) close to
their Mie resonance ω0 = 2.23 eV have an estimated third-order nonlinear susceptibility
of χ

(3)
Miller, Au = 2.0× 10−15 m2/V2, whereas this yields χ

(3)
Miller, Ir = 2.51× 10−17m2/V2 for

iridium (a0 = 3.839 Å, ω0 = 4.87 eV, γ = 0.18 eV, ωp = 7.2 eV) both in Al2O3. Note that
the environment enters this estimation through the Mie resonances calculated for the
nanoparticles in that specific host material.

The bulk susceptibilities of gold and iridium are compared in Figure 2 for the two
cases using Miller’s rule for Au and Ir and experimental data for Au [20] to find a
nonlinear amplitude. Miller’s rule can support the understanding of the general behaviour
of such systems; however, it shows a strong discrepancy compared to the bulk suscep-
tibility fitted to available experimental values. In general, Miller’s rule overestimates
the nonlinearity of metal structures under resonant conditions [26]. A further factor that
comes into play during experiments is the pulse duration of the incident light field, which
can shift the measured susceptibility by many orders of magnitude as was shown in [20].
The anharmonic oscillator model yields an instantaneous result that corresponds to τ → 0
and does not include the aspect of a finite pulse duration. The density functional theory
(DFT) could take into account the impact of a finite pulse [27–29] and will be discussed in
future work. Finally, it should be noted that, in the case of gold, measurements under both
resonant and off-resonant conditions are available.

Photon energy (eV)

Imaginary Part Real Part

Photon energy (eV) Photon energy (eV)

(a) Miller's rule (Au) (b) Miller's rule (Ir) (c) Fitted (Au)

Figure 2. Third-order bulk susceptibility χ
(3)
i as a function of photon energy E = h̄ω for (a), (c) Au

and (b) Ir using (a), (b) the analytic Miller’s rule, and (c) fitting the nonlinear strength amplitude to
available experimental data [20].

2.3. Nonlinear Maxwell–Garnett Theory

In this work, we compared results for nonlinear gold and iridium nanoparticles in
alumina for different fill fractions f describing the relative volume density of particles in
the host. Within the effective medium theory (EMT), amorphous composites are described
as a homogeneous film with an effective (linear) permittivity [9] and, in its nonlinear
extension, an effective third-order susceptibility as the nanoparticles are assumed to be
centrosymmetric and, thus, do not exhibit a second-order nonlinear response.

The Maxwell–Garnett (M-G) theory—see a detailed tutorial for the linear proper-
ties [9]—assumes spherical inclusions of a material i with permittivity εi arbitrarily dis-
tributed in a host material h with permittivity εh. The volume fraction f = Vi/Vh =
N4πR3

av/3Vh for N inclusions of average size Rav has to be small, so that we can exclude
interactions between them with distances larger than the wavelength. Moreover, assuming
sufficiently small spherical inclusions allows us to work in the dipolar regime and electro-
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static approximation [30], where the polarization of a single nanoparticle becomes ~p = αE
1
~E

with the (electric) polarizability given by

αE
1 = R3 εi(ω)− εh(ω)

εi(ω) + 2εh(ω)
≡ R3 η(ω). (3)

In this approximation, the effective permittivity is

εeff = εh(ω)
1 + 2η(ω) f
1− η(ω) f

. (4)

For larger particle sizes or a large particle size variance, the quasistatic polarizability
should be replaced by the lowest order Mie coefficient [24] to account for radiation losses
and other size effects, such as a size-dependent shift in the resonance position.

The effective third-order susceptibility for nonlinear nanoparticle inclusions χ
(3)
i (ω)

reads [10–12]

χ
(3)
eff = f µ2|µ|2χ

(3)
i , (5)

with the well-known enhancement factor from the linear response of a nanoparticle in
quasistatic approximation

µ =
εeff(ω) + 2εh(ω)

εi(ω) + 2εh(ω)
(6)

and the effect of a nonlinear host material χ
(3)
h (ω) can be included as well, though its

impact is rather small with metallic inclusions.

2.4. Nonlinear Bruggeman Theory

For high concentrations, i.e., larger volume fractions f , and more homogeneous
mixtures, the Bruggeman (Br) model for the effective permittivities is preferred [10]. The
general equation describing the mixture of two materials is given by

f
εi − εeff

εeff + g(εi − εeff)
+ (1− f )

εh − εeff
εeff + g(εh − εeff)

= 0. (7)

Note that no difference between a host and an inclusion material is made and, thus,
there are no restrictions to the shape of the inclusions. Both constituents are treated on equal
footing and the resulting differences to the Maxwell–Garnett theory can be striking [14,31].
The geometrical factor g depends on the shape of the inclusions and is typically set to 1

3
for three-dimensional inclusions (used in this work) and 1

2 for two-dimensional inclusions.
This equation results in two explicit solutions from a quadratic equation, one of which
is physical

εeff =
−c±

√
c2 + 4(1− g)gεhεi
2(1− g)

with c = (g− (1− f ))εh + (g− f )εi. (8)

To determine the physical branch, the condition Im(εeff(ω)) > 0 needs to be ful-
filled. The effective degenerate third-order susceptibility in the case of weakly nonlinear
composites [32] is

χ
(3)
eff =

1
1− f

∣∣∣∣∂εeff
∂εh

∣∣∣∣(∂εeff
∂εh

)
χ
(3)
h +

1
f

∣∣∣∣∂εeff
∂εi

∣∣∣∣(∂εeff
∂εi

)
χ
(3)
i ,

where, in the case of two constituent materials, the derivatives can be determined analyti-
cally to read
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∂εeff
∂εh

=
g + f − 1
2(g− 1)

− (1− f − g)A(ω)− 2(g− 1)gεi

2(g− 1)
√

A(ω)2 − 4(g− 1)gεhεi
,

∂εeff
∂εi

=
g− f

2(g− 1)
− ( f − g)A(ω)− 2(g− 1)gεi

2(g− 1)
√

A(ω)2 − 4(g− 1)gεhεi
,

with A(ω) = εi( f − g) + εh(1− f − g). (9)

The susceptibilities clearly have two separable contributions from the host and from
the inclusion material and are easily reduced to the case of only one component being
nonlinear. We assumed the host to be nonlinear with constant [22] χ

(3)
h = 3.1× 10−22m2/V2,

which has little effect on the overall properties of the films at low fill factors. We denoted
the absolute values of the prefactors f µ2|µ|2 to χ

(3)
i in the Maxwell–Garnett EMT and

1
f

∣∣∣ ∂εeff
∂εi

∣∣∣( ∂εeff
∂εi

)
, in the Bruggeman EMT, the corresponding nonlinear local field factors.

We considered the nonlinear local field factor from the M-G theory in Figure 3a for gold
and Figure 3b for iridium and, with it, the expected nonlinear enhancement of the third-
order susceptibility max

∣∣∣χ(3)
eff (ω)

∣∣∣/max
∣∣∣χ(3)

i (ω)
∣∣∣ of different amorphous composites in Figure 3c

with gold and Figure 3d with iridium nanoparticle inclusions compared to the bulk case.
Figure 3a underlines that, for gold, strong enhancement factors are expected both for the
linear and the nonlinear material parameters, while it can be seen in Figure 3b that iridium
yields enhancement factors of around unity. Considering the maximum of the total effective
susceptibility for increasing the metal load of the transparent, nonlinear host material in
Figure 3c,d, we found an optimum nanoparticle density with a maximum enhancement factor
with respect to the bulk case before absorption processes started to dominate the material response.
Furthermore, the increase in the nonlinear response from Ir remains moderate, which could
be expected already from comparing the Ir results in Figures 1 and 2, which showed minor
changes. These findings are, however, contrary to the observations with the Bruggeman
theory, where the values are well below unity (and thus not shown in Figure 3a,b). Here, in
Figure 3c, the largest relative nonlinear coefficient for amorphous gold/Al2O3 composites
is found for smallest fill fractions. With an increasing metal load and absorption, it drops
from the beginning. On the other hand, the predictions for Ir follow a similar path.

The real and imaginary part of the effective third-order susceptibilities of the amor-
phous mixture in the two considered EMTs are shown in Figure 4, varying the fill fraction.
The Bruggeman theory in the upper panel and Maxwell–Garnett theory in the lower panel
agree on the resonance position at low fill factors, but differ by two to three orders of
magnitude in the predicted amplitudes of the amorphous composite. For the M-G theory
in the lower panel, a typical redshift of resonances is observed with an increasing fill factor
for gold, but this is not yet seen for iridium at low fill factors. Both the linear and nonlinear
local field factors yield a strong increase in the effective susceptibilities with respect to
their bulk counterparts for gold, but have little impact on iridium, as they are close to
unity. This means that amorphous films are expected to show a stronger nonlinear response
than bulk materials, which is reflected in the collected experimental data in [20]. The large
susceptibilities observed around the resonance for the M-G theory strongly overestimate
the nonlinear response of weakly metallic films, as it would allow for strong alterations in
the material properties at moderate incident intensities. We will, therefore, concentrate on
further evaluating the impact of the effective nonlinear material parameters predicted by
the Bruggeman theory.
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Figure 3. Absolute values of the (a,b) local field enhancement factors for (a) gold and (b) iridium in the
Maxwell–Garnett theory for the nonlinear coefficients compared to the single particle enhancement
factor |η| in the linear case. (c,d) Enhancement of the nonlinear coefficient comparing the amorphous
structures relative to the bulk case for increasing fill factors f for both effective medium theories
discussed (M-G grey, Br blue), comparing the prediction from Miller’s rule (light color) with the one
fitted to experimental values (dark color).

2.5. Nonlinear Amorphous Thin Films

We considered planar thin films with p-polarized incident light. The total optical
response, including third-order polarization effects stemming from Kerr nonlinearities
at frequency ω and third harmonic generation (THG) at frequency 3ω, can be described
through the electric displacement vector in frequency space

~D(ω,~r) =ε0~E(ω,~r) + ε0χ(1)(ω)~E(ω,~r) (10)

+ ε0χ(3)(ω|ω, ω,−ω)|~E(ω,~r)|2~E(ω,~r)

+ ε0χ(3)(3ω|ω, ω, ω)~E3(ω,~r) = ε0εNLO~E.

Note that we have already taken advantage of the fact that spherical metal nanopar-
ticles exhibit a vanishing second-order nonlinear response. The contribution from the
THG term is negligible for frequencies around the incident frequency ω, and third-order
nonlinear effects can be considered separately.
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For thin film calculations, we determined an effective permittivity εNLO from linear
calculations [11] in a first step

εNLO(z, ω) = εeff(ω) + χ
(3)
eff (ω)|~E(z, ω)|2. (11)

and—as it is dependent on the incident, local field—iterated the input fields until we ob-
tained a self-consistent result exploiting the scattering matrix scheme for several hundreds
of subdivisions of the nonlinear amorphous layer.

Photon energy (eV)

f=0.05 f=0.1 f=0.15 f=0.2

Photon energy (eV) Photon energy (eV)

(b) Miller's rule (Au)(a) Fitted (Au)

Solid (Real), Dashed (Imaginary)

Bruggeman Theory

Maxwell Garnett Theory

(e) Miller's rule (Au)(d) Fitted (Au)

(c) Miller's rule (Ir)

(f) Miller's rule (Ir)

Figure 4. Real (solid) and imaginary (dashed) parts of the third-order effective susceptibility χ
(3)
eff

for nonlinear (upper panel) Br theory and (lower panel) M-G theory as a function of photon energy
E = h̄ω for (a,b,d,e) Au and (c,f) Ir using (a,d) fitting the nonlinear strength amplitude to available
experiments [20] and (b,c,e,f) the analytic Miller’s rule.

3. Results and Discussion

Within the composite thin films, the incident light is absorbed by the present metal
nanoparticles and we overall expect a typical absorption curve within the homogenized layers.
The local intensity modifies the local permittivity depending on the nonlinear coefficients
and the depth inside the thin film, which was iterated until a stable output field at each
position along the layer was found. In the first step, we present in Figure 5 the modified
nonlinear permittivity as a function of both the frequency ω of the incident light wave
and the varying fill fraction f independent from the film thickness, as different depths
will be exposed to different light intensities. We concentrated on the case of gold with
parameters fitted to experimentally available values [20], and show in Figure 5a the results
for Bruggeman and in Figure 5b the corresponding results for the Maxwell–Garnett theory
of the nonlinear permittivity. Due to the nature of the effective susceptibility, we observed
spectral regions with an increased or decreased total permittivity depending on the sign of
the effective susceptibility around the Mie resonance of the considered nanoparticle. Quali-
tatively, this is the same result for different metallic materials, where the main contribution
to the susceptibility in the anharmonic oscillator model stems from the electronic excitation.
Increasing the fill factor increases the overall absorption, with a critical value depending on
the material, as depicted in Figure 3c for gold, and overall shifts the position of the maxima
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and minima observed. Here, again, the large local field factors in the M-G theory strongly
overestimate the nonlinear response of the amorphous films, leading to the prediction of
strong changes in the modified permittivity that are several orders of magnitude larger
than Bruggeman. This is in contradiction to observations made on nonlinear properties of
thin films, and we restricted our further considerations to the Bruggeman theory.
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Figure 5. Imaginary part of the modified nonlinear permittivity, Equation (11), relative to the linear
case for gold using the data fitted to available experimental data [20]. Results for (a) Bruggeman and
(b) Maxwell–Garnett theory for varying fill fractions as a function of incident photon energy are compared.
The incident field is |~E|2 = 7× 1014 V2/m2. Note the strong difference in predicted changes in the
local permittivity.

Note that the signs of the real and imaginary part are opposite in the respective spectral
regions close to the resonance frequency. In total, there are four possible sign combinations,
as seen in Figure 4: (i) Both real and imaginary parts can be positive, and typically close
to but above the resonance frequency; (ii) the real part is negative shortly before reaching
the resonance frequency, whereas the imaginary part is still positive; (iii) far from the
resonance, the real part is negative below and (iv) positive above the resonance; however,
the sign of the imaginary part depends more subtly on the material model due to the local
field factors. These combinations can lead to different behaviors inside the film with an
increasing intensity, which is depicted in Figure 6 for iridium. As the incident intensity
modifies the local permittivity in Equation (11), in turn, it changes the local intensity that
the particles experience. This analytic case based on Miller’s rule and the Bruggeman
theory shows in Figure 6a the change in the total intensity ∆I = INLO − Ilin inside a 300 nm
thick composite film as a function of the position, varying the fill fraction at ω = 4.6 eV.
Including forward and backward scattering contributions leads to visible interference
effects for low fill fractions, where the absorption is still weak. The changes induced by
the nonlinearity are in the range of a few MW/cm2. A self-consistent, iterative scheme was
used to recalculate the local, saturated intensity after reintroducing the modified nonlinear
permittivity several times. This was performed throughout the film to obtain the local
permittivity self-consistently with the scattering matrix scheme for planar systems using a
few hundred subdivisions of the film. The change in the imaginary part of the modified
nonlinear permittivity ∆Im ε = Im εNLO − Im εeff is shown as a function of the depth in
Figure 6b and as a function of the incident power density in Figure 6c, respectively. For
both dependencies, the change induced by the nonlinearity of the amorphous film is of the
order of 10−3 refractive index units tending towards zero further inside the film, where the
local intensity drops towards the linear case. Note that, at the chosen frequency well below
the Mie resonance of iridium, we observed induced absorption as the imaginary part of the
modified total permittivity increases through a positive susceptibility with the intensity
without a bound. Due to that, at approximately TW/cm2, it would reach unity. Closer to the
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resonance of the system, this would further increase, reaching unreasonable values under
resonant conditions.
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Figure 6. For amorphous composites with varying fill factors of iridium inclusions using the analytic
case based on Miller’s rule, the (a) change in total intensity (forward and backward scattering
contributions) ∆I = INLO − Ilin is shown at incident frequency ω = 4.6 eV below the related Mie
resonance. From the intensity, the change in the imaginary part of the local nonlinear permittivity
∆Im ε = Im εNLO − Im εeff is calculated as a function of (b) the position inside a 300 nm film.
The incident power density is 1.6 GW/cm2. In (c), the change in the modified nonlinear permittivity is
studied as a function of incident power, demonstrating induced absorption.

As in Figure 6, we demonstrate in Figure 7 cases for saturated and induced absorption
in amorphous gold/Al2O3 films. For frequencies well below the Mie resonance of the
gold nanoparticles—see Figure 7a–c—the absorption related to the imaginary part of the
nonlinear permittivity decreases for an increasing laser intensity with increasing intensity.
This effect is known as saturated absorption [16] and is observed here under the same
conditions as in Figure 6c, i.e., the effective susceptibility is positive in its imaginary part.
In the Bruggeman theory, the effective susceptibility decreases with the fill factor for gold,
which is why the strongest change in the imaginary part of the permittivity is seen for
smaller fill fractions in contrast to Ir, where the susceptibility does not change as notably
with the fill fraction. In contrast, for frequencies much closer to the Mie resonance as
depicted in Figure 7d–f, this behavior is reversed because the imaginary part of the effective
susceptibility vanishes at the resonance and reverses its sign. The lowest fill factor shows a
weaker saturated absorption as before, whereas the higher fill factors with a larger input
from the small but negative nonlinear susceptibility enter the regime of induced absorption.
This observation is independent of the considered material as it is directly related to the
sign of the susceptibility given by the material-dependent Mie resonance and the overall
position. It is shifted to lower frequencies for the amorphous structures with increasing fill
factors, as was discussed in Figure 3.

We studied the transmitted power flux of ultra-thin amorphous composite Au/Al2O3
layers in Figure 8a as a function of film thickness using the experimentally available
data [20]. The difference between linear and nonlinear case is notable in the relative
enhancement factor extracted in Figure 8b. For large enough films, the intensity inside the
composite layer drops due to absorption entering the linear regime before reaching the
glass substrate. Nonlinear intensity enhancement effects take place within the first tenth to
hundreds of nanometers in the homogenized film. The enhancement factors are susceptible
to the fill fraction reaching a maximum for different film thicknesses. The detriment of
metallic absorption to the nonlinear enhancement is reflected in the fact that the larger fill
factors show a decreasing nonlinear enhancement compared to smaller particle densities.
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Figure 7. As a function of the position z inside a 300 nm composite film for frequencies below the
Mie resonance of gold nanoparticles, the (a,d) change in total intensity ∆I = INLO − Ilin (forward
and backward scattering) and (b,c,e,f) change in the imaginary part of the nonlinear permittivity
∆Im ε = Im εNLO − Im εeff are shown for gold with input values fitted to available experiments [20].
Cases with saturated and induced absorption are observed. The set frequencies are 2.15 eV in the
upper panel and 2.20 eV in the lower panel. The incident power density is 1.6 GW/cm2.
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Figure 8. Varying the film thickness of amorphous composite films of different fill fractions f ,
(a) the normalized difference in transmitted intensity ∆I = INLO − Ilin, and the (b) relative intensity
enhancement due to nonlinear effects in ultra-thin metallic amorphous films are shown. The incident
power density is 1.6 GW/cm2.
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The limits of effective medium theories, in particular for large nanoparticle densities
and distances that make interaction effects sizable, can be addressed using rigorous meth-
ods, such as multiple scattering from nanoparticles using the nonlinear Mie theory [33–35],
and a comparison with random nanoparticle distributions at increasing fill factors [36],
at the cost of a strongly increased computational effort. A further difficulty with homog-
enization could be waveguiding effects arising in the host material that are suppressed
in EMTs. Another interesting aspect is the influence of finite-size effects in ultra-small
metal nanoparticles, such as a nonlocal optical response, which can be addressed with
semi-classical theories [37–39] and ab initio methods [40,41]. This typically yields shifts
in the LSPR position, directly impacting the nonlinear susceptibility and, in addition, is
accompanied by the nonlocal quenching of the local fields overall reducing local intensities
found in the classical picture.

4. Conclusions

We studied self-phase modulated nonlinear effects in amorphous composites made of
gold and iridium nanoparticles embedded in an equally nonlinear host matrix employing
nonlinear formulations of the Maxwell–Garnett and Bruggeman theory. Effective medium
theories allow for the homogenization of the linear and nonlinear material properties of
amorphous composite layers. The validity is bound to sufficiently low densities, where
interparticle effects are negligible both for the linear and the nonlinear regime. For the
bulk susceptibility, we considered the anharmonic oscillator model and fitted its nonlinear
strength amplitude to both an analytic expression based on Miller’s rule off-resonance and
available experimental data for gold susceptibilities. Such homogenized material properties
can further be implemented in standard frameworks to evaluate the light interaction with
multi-layered systems, such as the scattering matrix theory, reducing the light propagation
problem to one dimension. This was used here in a self-consistent approach, i.e., the thin
films were subdivided into hundreds of layers and, in each, the modified, depth-dependent
nonlinear permittivity was calculated. Moreover, as it is also intensity-dependent, this
was carried out several times, recalculating the local intensity that each layer is exposed
to when nonlinear enhancement is included. This approach is applicable to nonlinear
hyperbolic materials from stacks of amorphous composites and nonlinear enhancement in
metallic composites with few losses at low densities. We evaluated thin films of amorphous
composites, with a focus on achievable nonlinear enhancement and saturated and induced
absorption based on the compositional configuration. Reasonable values were found with
the Bruggeman theory using a nonlinear material model fitted to available experimental data
for gold. In contrast, both Miller’s rule and the Maxwell–Garnett theory tend to strongly
overestimate the nonlinear susceptibility.
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