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The study of exoplanetary atmospheres extends the frontiers of astronomy,

astrophysics, and astrochemistry. Moreover, studies of exoplanets as being

linked to the search for extraterrestrial life and other habitable planets are of

interest not only for scientists, but for a much wider public audience. There is

much evidence that clouds exist and are common in the exoplanetary

atmospheres at high temperatures. Their origin can be gas-phase

condensation of silicate materials and other refractory materials. Clouds

have a major impact on the planets’ observable properties. Models

describing atmospheres of exoplanets and brown dwarfs point to the

necessity of including nanometer-to micrometer-sized grains of silicates.

Observational mid-IR spectra have also provided tentative evidence of

silicate grain absorption. Thus, silicates seem to be the first target for future

astronomical observations of cloudy atmospheres and for laboratory studies

supporting these observations. However, high-temperature laboratory studies

of optical and structural properties of refractory materials, including silicates,

and of gas-grain and grain surface chemistry needed for the decoding of

astronomical spectra and for the development of reliable atmospheric

models present practically uncharted territory. The aim of our paper is to

review previous studies of optical and chemical properties of silicate

materials and to emphasize the importance and perspective of high-

temperature measurements of laboratory analogues of atmospheric silicate

grains for exoplanet atmosphere characterization. This is particularly important

in the light of new advanced astronomical instruments, which, as we expect, will

bring comprehensive information on exoplanetary atmospheres.
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Exoplanets and their atmospheres

The Nobel Prize in Physics 2019 was given for the first

discovery of an extrasolar planet crowning the last two decades

during which we progressed from the first exoplanet discovered

to a collection of more than 4000 exoplanets with a great diversity

in their parameters, such as the planetary masses, radii,

temperatures, and orbits. The study of the structure,

composition, and formation history of exoplanets and

physical-chemical processes taking place in their atmospheres

and interiors is one of the most intriguing and quickly developing

research directions.

Exoplanetary atmospheres, whose spectral signatures can be

measured by photometric and spectroscopic methods using

Earth and space observatories, are among the main targets for

recent and future astronomical observations. Such observations

provide comprehensive information on the physical properties of

the atmospheres, such as temperature, pressure, and density; and

chemical ones, such as elemental and molecular composition.

They allow for modelling chemical networks and connect them

to the exoplanetary formation conditions and evolution

processes. The exoplanets, whose atmospheres are available

for characterization, are divided into several groups according

to their mass and effective temperature, such as hot Jupiters (T ~

1300–3000 K), warm gas giants (T ~ 500–1500 K), hot Neptunes

(T ~ 700–1200 K), and temperate super-Earths (T ~ 500 K)

(Madhusudhan et al., 2014). One more set of targets for

extrasolar atmospheric observations is brown dwarfs as their

atmospheres present the best analogs to the atmospheres of

exoplanets due to the similarities in the temperature and mass

leading to likely similar radiative, convective, hydrostatic, and

chemical properties (Madhusudhan et al., 2014).

The observations and properties of exoplanetary

atmospheres are very nicely described in a number of review

papers (Madhusudhan et al., 2014; Crossfield, 2015; Kreidberg

and DeegBelmonte, 2018; Helling, 2019). We refer to these

papers for a detailed overview of the different methodologies

currently available to characterize exoplanetary atmospheres.

These atmospheres can be chemically extremely rich

consisting of various elements, such as H, He, Si, Fe, Mg, O,

C etc., and molecules, such as H2, H2O, CO, CH4, N2, NH3, SiO,

H2S, Fe(OH)2, and Mg(OH)2 (Tsiaras et al., 2018; Helling, 2019;

Roudier et al., 2021). These atoms, molecules and potentially ions

are the starting point for the particle (grain) formation through

gas-phase condensation and the particle formation is a

prerequisite for the formation of atmospheric clouds.

Condensation occurs when gas-phase molecules react,

combine and form solid particles (condensation nucleus) that

may subsequently grow due to further gas-nuclei reactions

(condensation of gas-phase species on nucleus) and collisions

between particles (Helling, 2019; Samra et al., 2022). There is now

much evidence that clouds exist and are common in exoplanet

and brown dwarf atmospheres (Burgasser et al., 2010; Marley

et al., 2012; Mackwell et al., 2013; Manjayacas et al., 2014;

Wakeford and Sing, 2015; Heng, 2016; Pinhas and

Madhusudhan, 2017). They strongly influence the

temperature, atmospheric properties and dynamics of planets

and can present suitable environments for the formation of

complex organic and prebiotic molecules. Thus,

understanding of the formation, composition, optical, and

structural properties, and gas-phase and gas-grain chemistry

of clouds is crucial for developing reliable atmospheric models

and searching for extraterrestrial life.

Grains forming in high-temperature atmospheres of

exoplanets and brown dwarfs may include silicates, such as

SiO2, MgSiO3, Mg2SiO4, MgFeSiO4, Fe2SiO4; metal oxides,

such as TiO2, Al2O3, MgO, FeO; and others, for example, Fe,

CaTiO3, FeS (Helling, 2019). Silicates present one of the most

important groups of materials relevant to exoplanetary

atmospheres. Models describing atmospheres of exoplanets

and brown dwarfs at different temperatures from 500 to

2000 K include grains of silica SiO2, pyroxenes MgxFe1-xSiO3

(with x from 1 to 0), and olivines MgxFe2-xSiO4 (with x from 2 to

0) (Seager and Sasselov, 2000; Helling et al., 2006; Helling et al.,

2008; Burgasser et al., 2010; Visscher et al., 2010; Morley et al.,

2012; Wakeford and Sing, 2015; Molliere et al., 2017; Pinhas and

Madhusudhan, 2017; Kitzmann and Heng, 2018). There is also

tentative evidence of absorption and scattering of silicate grains

in the mid-IR spectra (Cushing et al., 2006; Helling et al., 2006;

Looper et al., 2008) and near-IR spectra (Lecavelier des Etangs

et al., 2008; Looper et al., 2008). Examples of the silicate grains

detection and modelling are shown in Figure 1.

There is an open question—if dust grains present in

exoplanetary atmospheres may originate in and be brought

from the parent (to planetary systems) astrochemical

environments, such as planet-forming disks or prestellar cores.

It would be in principle possible for the first generation of dust

grains. However, as discussed in (Helling, 2019) gravitational

settling should bring grains to the regions of higher temperatures

(closer to the planetary surface) where the grains may change

their material composition and finally evaporate enriching the

upper atmosphere via convection of grain elements and leading

to the in situ formation of the next generation of atmospheric

dust grains.

Optical properties of dust grains

Room and low-temperature optical properties have been

studied for a variety of refractory materials including various

types of silicates (see, e.g., the Heidelberg—Jena–St.

Petersburg–Database of Optical Constants). However, the

temperatures of the majority of known exoplanets are much

higher than room temperature. Citing a recent paper devoted to

optical properties of potential solid-state materials in

exoplanetary atmospheres: “In most cases, however, the
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refractive index has been measured at room temperature or in

environments resembling the cold interstellar medium. Data for

temperatures more related to the atmospheres of brown dwarfs

or extrasolar giant planets are rarely available and measurements

for these cases are strongly required” (Kitzmann and Heng,

2018). The White Paper 2020 describing the needs for

laboratory studies aimed at understanding exoplanetary

atmospheres stresses the importance of measurements of

optical properties of various classes of materials (particles) in

broad temperature, pressure and spectral ranges (Fortney et al.,

2019).

Indeed, there are not many studies of optical properties of

refractory materials at high-temperatures relevant to exoplanet

atmospheres. We can mention the measurements of 1) natural

single crystals of olivine Mg1.8Fe0.2SiO4 in the UV-mid-IR

spectral range at temperatures from 300 to 1700 K (Shankland

et al., 1979) and olivine Mg1.8Fe0.2SiO4 and enstatite MgSiO3 in

the mid-IR range at temperatures from 10 to 973 K (Zeidler et al.,

2015), 2) oxides, such as Al2O3, MgAl2O4, and SiO2, in the mid-

IR range from 300 to 900 K (Zeidler et al., 2013), 3) silicon in the

UV-VIS range from room temperature up to 800 K (Weakliem

and Redfield, 1979; Jellison and Modine, 1994), 4) amorphous

magnesium silicate smokes (Hallenbeck et al., 1998) and

amorphous Mg-rich pyroxene particles (Brucato et al., 1999)

embedded after annealing at temperatures between 1000 and

1300 in KBr pellets and measured ex situ in the mid-IR spectral

range, and crystalline silicates produced by high-temperature

(~1000 K) annealing of amorphous silicates, such as MgSiO3,

Mg2SiO4, and Fe2SiO4 (Fabian et al., 2000; Roskosz et al., 2011;

Sabri et al., 2014). Having in mind possible carbon-rich

exoplanetary atmospheres (Helling et al., 2017), it is worth to

mention also high-temperature measurements of carbonaceous

species, such as hydrogenated amorphous carbon films (Chou,

1992), diamond-like carbon films (Akkerman et al., 1996; Cheng

et al., 1997), and nano-crystalline carbon in silicon oxycarbide

(Rosenburg et al., 2018).

Thus, as the reader can see, the ranges of the measured

species and temperatures are very limited. Silicate samples

studied include a few types of natural single crystals, silicate

grains mixed with KBr and measured ex situ and crystalline

silicates. There is only a handful of in situ high-temperature (up

to about 1000 K) measurements of spectra for crystalline silicate

grains, the most reliable analogs of atmospheric siliceous

particles. Regarding ex situ analysis, it may lead to unexpected

and “undesirable” chemical reactions in the sample with the

ambient environment after exposing the sample to air. These

reactions may change the composition and structure of the

sample and harm the analysis.

As shown by experimental and theoretical studies, optical

properties are clearly a function of temperature due to structural

and chemical changes in refractory materials (see, e.g.,

(Hallenbeck et al., 1998; Jäger et al., 1998; Zeidler et al., 2013;

Sabri et al., 2014; Zeidler et al., 2015; Zamirri et al., 2019; Guiu

et al., 2021)). As an example, in Figure 2 we present the

temperature-dependent reflection spectra of an enstatite

sample from (Zeidler et al., 2015) and the IR spectra of

amorphous (room temperature) and crystalline (annealed at

1150 K) magnesium silicate grains from (Sabri et al., 2014),

where spectral changes are clearly visible. Temperature-

dependent effects include, in general, appearance/

FIGURE 1
(A) IR Spitzer spectra of various exoplanetary atmospheres. The gray box indicates the wavelength range of the silicate absorption (Si-O
stretching, 9–11 μm) and objects that exhibit the plateau. Reproducedwith permission from (Cushing et al., 2006) © AAS. (B) Absorption transmission
spectrum for the model with (solid line) and without (dashed line) formation of SiO2. Reproduced with permission from (Helling et al., 2006) © ESO.
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disappearance and shift and broadening of spectral lines and

changes in the general slopes of spectra. Thus, the usage of room

temperature optical data can lead to crucial uncertainties and

incorrect results for models describing exoplanetary

atmospheres.

As silicates seem to be the first target for future astronomical

observations of cloudy atmospheres, we suppose that future

laboratory measurements should focus, first of all, on the

main types of silicate grains included into models, such as

MgSiO3, Mg2SiO4, MgFeSiO4, and Fe2SiO4. The temperature

range (limit) is defined by the possibility of creating high-

temperature experimental conditions and by the vaporization

temperatures of silicate materials of about 2000 K (Ben Younes

et al., 1999; Costa et al., 2017; Davies et al., 2020) (depending on

the composition of the material). Thus, the desired temperature

range for potential studies would be 300–2000 K. As the next

steps, we would consider a broader look at silicate types with

varying Mg/Fe ratio, such as pyroxenes MgxFe1−xSiO3 and

olivines Mg2xFe2−2xSiO4, studies of metal oxides, such as TiO2

and Al2O3, and studies of carbon grains. Having the optical

properties of these “simple” species known, we may think about

studying their mixtures, going step by step from simple to more

complex samples.

Importance of the porosity of dust
grains

As we know from the analysis of cometary dust particles

(Harmon et al., 1997; Fulle et al., 2000; Hörz et al., 2006; Fulle and

Blum, 2017), models (Ossenkopf, 1993; Suyama et al., 2008;

Wada et al., 2009; Kataoka et al., 2013; Tazaki et al., 2016), and

laboratory experiments (Wurm and Blum, 1998; Krause and

Blum, 2004; Jäger et al., 2008; Sabri et al., 2014; Jäger et al., 2015;

Blum, 2018) dust grains in interstellar and circumstellar media

form grain aggregates having a very high porosity (up to 90%). As

for exoplanetary atmospheres, it was shown that the micro-

porosity of cloud particles arising from the organization of

grain monomers affects the structure and material

composition of clouds and has to be taken into account by

modelling clouds (Samra et al., 2020).

High porosity means the existence of a very large surface of

grain aggregates (Potapov et al., 2020a). To demonstrate high

porosity and large surface of grain aggregates, we show in

Figure 3 the structure of a numerically simulated dust

aggregate and a high-resolution electron microscopy image of

amorphous MgSiO3 grain aggregates produced in the laboratory.

According to the laboratory experiments, high porosity is a

characteristic of both major studied types of dust particles,

FIGURE 2
(A) Temperature-dependent reflection spectra of the enstatite sample. Reproduced with permission from (Zeidler et al., 2015) © AAS. (B) IR
spectra of amorphous and crystalline (annealed at 1150 K) magnesium silicate grains. Reproduced with permission from (Sabri et al., 2014) © AAS.

FIGURE 3
(A) Numerically simulated dust aggregate. Reproduced with
permission from (Wada et al., 2009) © AAS. (B) High-resolution
electron microscopy image of MgSiO3 grain aggregates produced
by gas-phase condensation of nm-sized grains and their
subsequent deposition onto a substrate. Reproduced with
permission from (Potapov et al., 2019) © AAS. The aggregates are
characterized by high porosity and large surface area.
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siliceous and carbonaceous grains. Regarding atmospheric

particles, it was discussed that a large surface area of porous

particles leads them to efficiently grow higher in the atmosphere

as compared to compact particles and influences the spectral

characteristics of clouds in exoplanetary atmospheres (Samra

et al., 2020).

Surface properties influence (and in some cases define)

desorption, adsorption, mobility, and reactivity of volatile

atomic and molecular species on grains [see (Potapov and

McCoustra, 2021) for a review]. The catalytic role of dust

grain surfaces is discussed in the next section. The main point

of the porosity is that high porosity means fluffiness of the dust

and existence of a large surface area of dust grains. Fluffiness

leads to a more efficient growth of grain aggregates as compared

to compact particles. Large surface area provides more sites (as

compared to the smaller surface area in the case of non-porous

compact dust grains) for adsorption of gas-phase species, their

subsequent reactions between each other and with surface atoms

and functional groups, and catalysis of these reactions.

Thus, the other uncertainties for atmospheric models include

the effect of the porosity and a corresponding large surface area of

grains on the optical properties, gas-grain interactions, and

surface chemistry. To understand the real physical-chemical

picture of planetary atmospheres, laboratory experiments and

models have to deal with reliable dust grain analogues, such as

porous grain aggregates presented in Figure 3.

The fractal growth of particles, such as silica particles, various

types of amorphous silicate grains (pyroxenes and olivines),

amorphous hydrogenated and non-hydrogenated carbon

grains, into highly porous aggregates in low-temperature

environments have been demonstrated by the laboratory

experiments (see the references at the beginning of this

section). However, regarding exoplanet atmospheres an

important point is the growth of grains at high temperatures.

Open questions are—what is the influence of the temperature on

the porosity of grain aggregates? Would grain monomers tend to

aggregate producing more compact or less compact particles as

compared to low-temperature conditions? Only high-

temperature in situ studies may answer these questions. This

is exactly what could be done in the laboratory—deposition of

nm-sized grain monomers on a substrate at high temperatures

and comparison of the structure of high- and-low temperature

deposits (see Section 5 for laboratory experimental techniques).

Gas-grain and grain surface
chemistry: Catalytic formation of
molecules on silicate surfaces

Gas-phase chemical processes at physical conditions relevant

to the exoplanetary atmospheres have been studied by a number

of groups (Gavilan et al., 2018; Hörst et al., 2018; Venot et al.,

2018; Fleury et al., 2019; He et al., 2019). Regarding gas-grain and

grain surface chemical studies relevant to high-temperature

atmospheres, this direction of research presents practically

uncharted territory.

The catalytic role of dust grains except being a meeting place

for reactants includes dissipation of energy excess released in

molecular bond formation, lowering of diffusion and reaction

activation barriers, and direct participation of grain atoms or

functional groups in surface reactions. There are a number of

low-temperature studies on the formation of molecules on

silicate and carbon surfaces: H2 (Pirronello et al., 1997a;

Pirronello et al., 1997b; Katz et al., 1999; Pirronello et al.,

1999; Perets et al., 2007; Vidali et al., 2007; Lemaire et al.,

2010; Gavilan et al., 2012; Gavilan et al., 2014; Wakelam et al.,

2017), H2O (Jing et al., 2011; Dulieu et al., 2013; He and Vidali,

2014), CO and CO2 (Mennella et al., 2004; Mennella et al., 2006;

Raut et al., 2012; Fulvio et al., 2014; Sabri et al., 2015; Shi et al.,

2015), H2CO (Potapov et al., 2017), and NH4
+NH2COO

−

(Potapov et al., 2019; Potapov et al., 2020b). In all these

studies, the catalytic effect of the grain surface has been

clearly shown.

There is also a handful of high-temperature chemical studies

involving silicate grain surfaces. The catalytic role of olivines

MgxFe2-xSiO4 with different Mg/Fe ratios in the high-

temperature (160°C) formation of purines and pyrimidines

from formamide was studied (Saladino et al., 2005). It was

demonstrated that olivines favour formamide conversion into

various pyrimidine derivatives including two nucleobases, uracil

and cytosine. The synthesis of methane, water, and ammonia,

and also complex organic molecules of prebiotic interest, such as

methylamine and acetonitrile, from CO, N2, and H2 was studied

on the surface of amorphous silicates at 500–900 K (Hill and

Nuth, 2003) demonstrating a great catalytic efficiency of silicates.

These results provide examples of possible synthesis of prebiotic

molecules in high-temperature environments. It is worth

mentioning the study of the role of porous silica

environments in prebiotic organic transformations, especially

from amino acids to peptides to proteins, on the early Earth

(Navrotsky et al., 2021) and studies of the formation of organic

compounds in meteorites (acting as catalysts) at high

temperatures (Anders et al., 1973; Rotelli et al., 2016). There

are also chemical applications of the catalytic properties of

silicate materials at high temperatures (e.g., (Fazlinia and

Sheikh, 2018; Ramanathan and Subramaniam, 2018; Bawaked

and Narasimharao, 2020)). However, their relation to

astrochemical processes is not always direct and needs careful

investigation.

Thus, high-temperature gas-grain and grain surface

chemistry involving silicate grains may provide routes to

complex molecular species including prebiotic molecules. In

addition, energetic processing (e.g., UV photons and high-

energy electrons) may considerably change the composition

and structure of the atmosphere [e.g., formation of

atmospheric hazes through photochemistry (Hörst et al.,
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2018)] and may trigger gas-grain and grain surface reactions,

resulting in the formation of more complex species [as it is well-

know from low-temperature studies, see, e.g., (Arumainayagam

et al., 2019) for a review].

Such processes are of great relevance to the processes taking

place in the atmospheres of exoplanets and have to be studied in

detail using reliable laboratory analogues of atmospheric dust

particles, such as porous silicate grains described above. We need

to investigate gas-grain and grain surface chemistry involving

silicate grains and various gas-phase molecules, at the first step,

molecules detected in exoplanet atmospheres (McGuire, 2022),

such as OH, CO, TiO, H2O, HCN, CO2, NH3, C2H2, and CH4, as

well as their mixtures. These studies will also lead to a better

understanding of the grain growth/dissipation and depletion of

elements.

Laboratory experimental techniques

Cosmic dust analogues are typically produced using gas-

phase condensation techniques, which mimic astrophysical

condensation processes of dust grains (Colangeli et al., 1995;

Jäger et al., 2008; Mate et al., 2014; Sabri et al., 2014; Martinez

et al., 2018; Martinez et al., 2020). To perform the experimental

studies discussed above, an experimental setup allowing

simultaneous deposition and in situ measurements of dust

grains and gas-phase molecules has to be developed. It can be

similar to that used in the experiments simulating the formation

of porous cosmic dust grains in the Laboratory Astrophysics

Group of the Max Planck Institute for Astronomy in Jena (Jäger

et al., 2003; Jäger et al., 2008; Jäger et al., 2009; Sabri et al., 2014;

Jäger et al., 2016; Potapov et al., 2018a; Potapov et al., 2018b). In

the laboratory in Jena, laser ablation of targets, such as graphite,

MgSi, FeSi or MgFeSi, in quenching atmospheres of He/H2 or

He/O2 is used to produce nanometre-sized carbon and silicate

grains. These grains are extracted from the ablation chamber,

deposited in a separate chamber onto a substrate fixed on a

cryocooler (for low-temperature studies) and probed in situ by

Fourier transform infrared (FTIR) spectroscopy. The grains

aggregate on the substrate forming a layer of porous fractal

particles. An additional gas dosing line connected on one side to

the deposition chamber and on the other side to a gas inlet system

allows for deposition of mixtures of gases or (if required) for

filling the chamber with gas mixtures at different pressures.

Following the schematic of the setup in Jena, a setup for

exoplanetary dust studies should include a system of vacuum

chambers to produce and deposit nanoparticles, a laser for laser

ablation, an FTIR spectrometer for detection of species in the

solid-state, a mass spectrometer for detection of species in the

gas-phase, a UV source and an electron gun for triggering the

solid-state chemistry, and a gas inlet system. A deposition

chamber should allow for high-temperature measurements of

solid-state samples. Closed-cycle cryocoolers allowing for

measurements in the temperature range from 3 to 1000 K

exist. Using such a cryocooler would be the easiest way for

many laboratories to switch from low-temperature to high-

temperature measurements.

However, to go beyond 1000 K, development of a deposition

chamber with a heater instead of a cryocooler is needed. The

following requirements for the chamber could be imagined:

water cooling of the chamber walls due to the temperature

limits of chamber optical windows, and an access to the

substrate from two or three sides to be able to perform

spectroscopic measurements in the reflection mode (as

thermally stable metal substrates should be used) and to

control the deposit thickness. Additional question is the grain

formation, deposition and measurements at high pressures of

gases (a few to a few tens of bar) relevant to exoplanet

atmospheres. It makes sense to make both the deposition and

ablation chambers suitable for such experiments.

Such a setup will allow for spectral measurements of solid

deposits and for gas-grain and grain surface studies discussed in

the sections above. It would be also possible to study the gas-

phase condensation of grain monomers in atmospheres of

different gases consisting of aforementioned detected

molecules and their mixtures and influence of the quenching

atmosphere composition on the grain growth process at high

temperatures.

To study the porosity of dust aggregates deposited at high

temperature (see Section 3), ex situ techniques providing

structural characterization of samples, such as transmission

electron microscopy (TEM) and scanning electron microscopy

(SEM), should be also used. An example of a high-resolution

TEM image of grain aggregates produced by gas-phase

condensation of nm-sized grains and their subsequent

deposition onto a substrate is presented in the right part of

Figure 3.

Observations

The astronomical and astrophysical societies expect that

newly developed and future advanced instruments, such as the

James Webb Space Telescope (Gardner et al., 2006) (JWST)

launched on 25th of December 2021, the European Extremely

Large Telescope (Brandl et al., 2008; Davies et al., 2010) (EELT)

planned to be in exploitation from 2027, the Atmospheric

Remote-sensing Infrared Exoplanet Large-survey (Pascale

et al., 2018) (Ariel) to be delivered for launch in 2029, and

the Origins Space Telescope (Wiedner et al., 2021) proposed for

2035, will bring comprehensive information about the physics

and chemistry of exoplanet atmospheres. In the following, we will

focus on JWST as its first observational data are expected from

the second half of 2022 onward. In the first year of operation

JWST will be used to study the atmospheres of more than

50 exoplanets (Birkmann et al., 2022).
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JWST will provide the first high signal-to-noise near- and

mid-IR spectra of exoplanetary atmospheres. In the recent years,

a number of studies of JWST’s capabilities for the

characterization of exoplanets have been presented [e.g.,

(Beichman et al., 2014; Greene et al., 2016; Molliere et al.,

2017; Schlawin et al., 2018) and a review (Madhusudhan,

2019)]. Importantly for the topic of this review is that JWST

will be able to probe the 10- and 20-micron features of silicate

clouds. Figure 4 shows results of simulations demonstrating that

small silicate grains in the atmospheres of hot Jupiters are

detectable with the JWST MIRI [mid-IR instrument (Rieke

et al., 2015)] in planetary transits (Molliere et al., 2017). The

spectral signatures of dust grains at these wavelengths are

strongly dependent on the physical properties of the dust

grains such as porosity, grain shape and size (Samra et al.,

2020). The wide wavelength coverage of the JWST instrument,

covering multiple spectral bands of the same dust species, will be

crucial to correctly identify the different species and to break any

degeneracies, in very much the same way as has been

demonstrated by mid-infrared studies of propoplanetary disks

[e.g., (Juhasz et al., 2010)]. The expected gain in signal-to-noise

and overall wavelength coverage with JWST in comparison to

current ground and space based observatories, will make it

possible to distinguish between different silicate species and

grain shapes and sizes, placing far greater constraints on the

cloud formation and atmospheric dynamics in hot gas giants.

The JWST instruments will also allow for the identification of

molecular species that form in the exoplanetary atmospheres

including those presenting on the surface of dust grains as their

spectral signatures corresponding to vibrational modes lay in the

IR spectral region (Greene et al., 2016).

Using the experimental data discussed in the previous

sections as the basis for the atmospheric chemistry models,

the expected high data quality should allow for a realistic

comparison between laboratory measurements and

observations, which should allow us to place tight constraints

in the physics of cloud formations and chemistry in exoplanet

atmospheres.

Conclusions

With this short review, we would like to stress that

astronomical observations, atmospheric modelling, and

laboratory experimental studies should go hand in hand to

provide us with reliable analysis of observations, predictions

of observables, and understanding of the chemical pathways

to detected species. New laboratory facilities allowing for

high-temperature in situ studies of dust grains relevant to

exoplanetary atmospheres should be developed. The primary

goal of future laboratory studies is to answer two main questions:

1) What are the optical properties of different types of silicate

grains in the near- and mid-IR spectral range (the range of

new advanced telescopes) at high temperatures? To answer

this question, we need high-temperature (300–2000 K)

measurements of optical properties of different types of

silicate grains, such as MgSiO3, Mg2SiO4, MgFeSiO4, and

Fe2SiO4. The main objective in this case will be providing the

exoplanet community with unique sets of experimental

optical data for silicate grains in a broad range of

temperatures and wavelengths.

2) How do dust grains interact with the molecular gas at high

temperatures? To answer this question, we need to investigate

FIGURE 4
Simulated JWST transit observations for the hot Jupiter TrES-
4b. Shown in this figure are 2 models with different silicate cloud
particles and one model without clouds. The dashed box at 10 μm
highlights the silicates cloud features due to Mg2SiO4

resonances for different dust grain models. Also shown in the
figure are current observations with HST and ground based
instruments (see (Molliere et al., 2017) for details and references).
Reproduced with permission from (Molliere et al., 2017) © ESO.
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gas-grain and grain surface chemistry involving silicate grains

and gas-phase molecules detected in exoplanet atmospheres,

such as OH, CO, TiO, H2O, HCN, CO2, NH3, C2H2, and CH4,

and their mixtures. The main objective in this case will be

providing the exoplanet and astrochemistry community with

a list of possible reactions, reaction products, and reaction

networks caused by the gas-grain interaction at the physical

conditions relevant to exoplanetary atmospheres.
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