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Biologically-inspired neuromorphic computing paradigms are computational

platforms that imitate synaptic and neuronal activities in the human brain to

process big data flows in an efficient and cognitive manner. In the past decades,

neuromorphic computing has been widely investigated in various application

fields such as language translation, image recognition, modeling of phase, and

speech recognition, especially in neural networks (NNs) by utilizing emerging

nanotechnologies; due to their inherent miniaturization with low power cost,

they can alleviate the technical barriers of neuromorphic computing by

exploiting traditional silicon technology in practical applications. In this work,

we review recent advances in the development of brain-inspired computing

(BIC) systems with respect to the perspective of a system designer, from the

device technology level and circuit level up to the architecture and system

levels. In particular, we sort out the NN architecture determined by the data

structures centered on big data flows in application scenarios. Finally, the

interactions between the system level with the architecture level and circuit/

device level are discussed. Consequently, this review can serve the future

development and opportunities of the BIC system design.
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1 Introduction

Information processing in the human brain in an analogue and cognitive manner is a

key challenge for a brain-inspired computing (BIC) paradigm. The BIC paradigm aims to

solve problems using working principles in the brain and drive the next wave of computer

engineering (Kendall and Kumar, 2020). The BIC system has been widely used in artificial

intelligence (AI) applications such as object detection and classification (Merolla et al.,

2014; Pei et al., 2019; Roy et al., 2019), accelerators (Chen et al., 2016; Friedmann et al.,
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2016), intelligent robots (Zhang et al., 2016), in-datacenter

performance analysis (Jouppi et al., 2017), LASSO

optimization problems (Davies et al., 2018), and brain drop

(Neckar et al., 2018). All these applications challenge the

performance and system efficiency of each module of the BIC

system.

In the recent years, based on the extensive research, neural

networks (NNs) are considered as efficient methods for the

advent of big data, and the proliferation of data and

information based on the von Neumann architecture and

breakthroughs have been made in terms of improved

availability of big data flows, operating power, and training

methods (Lawrence et al., 1997; LeCun et al., 2015;

Goodfellow et al., 2016). Since 1943, the concept of NNs was

first introduced by McCulloch and Pitts (1943), and later, NNs

have been widely studied and developed. In 1957, a machine that

simulated human perception was proposed by Frank Rosenblatt,

which is known as single-layer perceptron (SLP). The SLP was

the first generation of NNs, with single-feature layers that could

be applied to recognize some letters of the alphabet. In 1985, the

multiple hidden layers were applied in the perceptron to replace

the only single layer by Geoffrey Hinton, which is known as

multilayer perceptron (MLP), and this was the beginning of the

second generation of NNs. As the range of applications for NNs

expands, various NN structures have since emerged, such as the

convolutional neural network (CNN), graph neural network

(GNN), recurrent neural network (RNN), and their various

variants. Despite the existence of numerous types of NNs,

there is still a fundamental challenge to be able to realistically

and accurately emulate the human brain. Thus, the third-

generation NNs represented by the spiking neural network

(SNN) have emerged, which is considered to be the closest to

the synapses and neurons of the human brain.

While exploring the advanced BIC paradigms, some reviews

have been carried out in terms of applied materials (Ko et al., 2020;

Liu et al., 2020) or devices (Kwon et al., 2022; Meier and Selbach,

2022) or neuromorphic computing algorithms (Kumar et al., 2022;

Yang et al., 2022). The two-dimensional (2D) materials were

reviewed to apply for the next-generation computing

technologies (Liu et al., 2020), which is focusing on a broader

application scope in neuromorphic computing, matrix computing,

and logic computing. The reviewwork on emerging neuromorphic

devices by using 2D materials (Ko et al., 2020) comprehensively

explores various 2D materials, especially their prospects for

neuromorphic applications. Furthermore, in the recent years,

the memristors, owing to their non-volatile and reconfigurable

properties, are considered as the promising candidates for BIC

systems. The 2D memristive devices were reviewed for the

applications of neuromorphic computing, and the fabrication

and characterization of neuromorphic memristors were

primarily discussed (Kwon et al., 2022). Moreover, the research

progress on memristors especially as artificial synapses to

neuromorphic systems is reviewed by Yang et al. (2022).

In comparison to aforementioned reviews, in this work, we

overview the recent development of BIC systems, with respect to

the perspective of a system designer. We provide a

comprehensive review on the advances in the device level and

circuit level up to the architecture and system levels for

constructing a reliable BIC system, especially pointing out the

interaction among them. Particularly, in the data-centric era, the

structures of data sets in diverse application scenarios have a

significant influence on the construction of NNs. Hence, the

choice of NN algorithms sorted by data structures is emphasized

in this work. The work is structured as follows: the functional

materials and devices for BIC systems in terms of low-

dimensions including zero-dimension (0D), one-dimension

(1D), and two-dimensions (2D) are reviewed in Section 2.

The artificial synapses and neurons as the building blocks of

the BIC system are discussed in Section 3. NN algorithms and

architectures, which are determined by the data structures in AI

applications, are introduced and discussed in Section 4. Section 5

discusses the interactions among the device, circuit, and

architecture from system level aspects, which include the pros

and cons among the 0D, 1D, and 2Dmaterials in the device level,

the features of artificial synapses and neurons based on

memristors in the circuit level, various neural networks

depending on data structures in the architecture level, and the

current challenges and perspectives at the device/circuit level,

architecture level, and system level, which provide guidance for

future research.

2 Materials and devices for brain-
inspired computing systems

The device level is crucial for the hardware of the BIC system.

Based on different functional materials, diverse devices can be

realized for constructing circuits in the BIC system. Functional

materials exist in many ways according to different functional

requirements and classifications. For example, the main

difference between organic and inorganic materials is that

organic compounds always contain carbon, while most

inorganic compounds do not. The organics [i.e., polymers

(Biesheuvel et al., 2011; Fong et al., 2017; Namsheer and

Rout, 2021), organic molecular crystal (Wang et al., 2011; Lee

et al., 2012) and carbon allotropes (Zestos et al., 2014; Schwerdt

et al., 2018; Xu et al., 2021), and hydrogel composites (Shi et al.,

2014; Kayser and Lipomi, 2019; Pyarasani et al., 2019)], owing to

unique features such as long-term biocompatibility, good

mechanical flexibility, and molecular diversity, have been

explored in neuromorphic devices (Deng et al., 2019;

Tuchman et al., 2020; Go et al., 2022). In addition, various

inorganics with unique advantages are not being ignored (i.e.

metal oxides (Hu et al., 2018; Gao et al., 2022), sulfur compounds

(Knoll et al., 2013; Lu and Seabaugh, 2014; Wu et al., 2017), and

halogenated compounds (Cheng et al., 2021)) in many
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applications. Another way is according to different dimensional

orientation; the materials can be classified as 0D, 1D, and 2D. It

can be referred as 0Dmaterial when it is within a nanoscale range

of (1–100 nm) in three dimensions or if they are composed of

basic units. 1D materials refer to those in which electrons are free

to move in only one nanoscale direction (linear motion), such as

nanowire (NW) junction materials, quantum wires, most

representative carbon nanotubes (CNTs), and polymers. 2D

materials refer to materials in which electrons are free to

move in a planar between 1–100 nm, such as graphene, h-BN,

metal oxides, sulfur compounds, and halogenated compounds. In

this section, we discuss the functional materials and devices for

the BIC system in terms of low-dimensions including 0D, 1D,

and 2D. Table 1 summarizes the reported 0D, 1D, and 2D devices

for neuromorphic computing.

2.1 Zero-dimensional devices

0D devices are composed of the materials based on 0D

structure, such as semiconducting quantum dots (QDs) and

nanoparticles, as demonstrated in Figure 1A. First, 0D

materials are suitable for application in neural morphology-

related photonic systems, owing to its promising optical

properties. Attributing to the fact that 0D photons are not

limited in space and power density during propagation, 0D

photonic devices are used for parallel communication and

super-connectivity. In the context of neuromorphic

computing, 0D materials show great potential in many

applications, such as Ag/Au nanoparticles (Alibart et al., 2010;

Ge et al., 2020), InAs/InGaAs-based QDs (Mesaritakis et al.,

2016), black phosphorus-based QDs (Han et al., 2017), MoS2-

based QDs (Thomas et al., 2020), GaAs-based QDs (Lee et al.,

2009), and CdSe-based QDs (Moreels et al., 2007) as listed in

Figures 1A,D and Table 1. The local gain can be obtained by size-

tunable plasmonic responses from 0D metal nanoparticles.

Attributing to charge-trapping actions, 0D Au nanoparticles

have been exploited in synaptic transistors (Alibart et al.,

2010). The phenomena of dynamic contraction and extension

can be seen with these Au nanoparticles, in which the competing

effects between surface tension and electric field play a role,

which leads to effective learning behavior. In addition, the

synergistic effect between Ag nanoparticles and electrodes can

be applied for flexible neuromorphic networks to enhance

switching properties (Ge et al., 2020) as listed in Table 1.

The excitatory and inhibitory synaptic responses have been

imitated by the InAs/InGaAs-based QDs with explicit energy

levels, in which multi-band emission from QDs enables

operation (Mesaritakis et al., 2016). But a challenge for

integrating QDs and photonic waveguides still remains. The

site-controlled QDs were employed to realize electro-photo-

sensitive devices on GaAs/AlGaAs wafers with tuning

TABLE 1 Summary of the reported 0D, 1D, and 2D devices for neuromorphic computing.

Type Material Device Endurance
(cycle
#)

Operational
current
(μA)

Operational
voltage
(V)

Retention
(s)

Number
of states

Reference

0D
devices

Quantum
dots

FTO/MoS2-QDs/Al 60 ~16 ±2 103 N/A Thomas et al.
(2020)

RGO/NCQD/graphene N/A ~25 ±2 103 N/A Lin et al. (2020)

Nano
particles

Ag/CιC:Ag/ITO 106 ~90 1/–0.4 104 250 Ge et al. (2020)

1D
devices

Nanowires Pt/ZnO nanowires/Ag 3,000 10 5/–1.5 >103 N/A Milano et al.
(2018a)

Block
polymer

Au/block copolymer
polyacrylamide/poly (acrylic
acid)/Au

N/A 0.01 2.9 N/A N/A Zhitenev et al.
(2007)

CNT Ti/CNT/Al N/A ~5.2 × 10−3 ±6 N/A N/A Kim et al. (2013)

2D
devices

TMCs WSe2 N/A ~0.001 1.2/–0.4 >5×103 60 Zhu et al. (2018)

MoS2 >103 ~0.01 ±4 >7×103 100 Zhu et al. (2019)

MoS2 >103 ~10−4 5/–4 >104 100 Wang H. et al.
(2020)

h-BN h-BN/WSe2 N/A ~10−3 ±0.3 N/A 600 Seo et al. (2018)

Ti/h-BN/Au 500 ~0.01 0.8/–0.7 102 N/A Shi et al. (2018)

Graphene Multi-layer graphene/Dy2O3/
indium tin oxide (ITO)

>102 20 ±0.2 >104 N/A Zhao et al.
(2014)

TaO2-x Pt/A2O5-xTaO2-x/Pt 1012 10/30 2/–1 10 years N/A Lee et al. (2011)
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conductance by electrical/optical pulses (Maier et al., 2015; Maier

et al., 2016). In addition, the metal and QD nanoparticles were

embedded in a matrix manner to obtain resistive random access

memory (ReRAM or RRAM). In particular, the black

phosphorus QDs are sandwiched within polymers (i.e., methyl

methacrylate) with bilayers to print multi-level ReRAM,

presenting high switching ratio up to ~ 107, in which the

filament formation and rupture are achieved by the charge

trapping being similar with Au nanoparticles in QDs (Alibart

et al., 2010). Therefore, the quantum memristor devices can also

obtain opportunities from QDs, especially for Josephson

junction-based devices, in which a state variable can be the

phase difference between quasi-particles (Chua, 2003; Pershin

and Di Ventra, 2011). MoS2 is valuable in QD devices, attributing

to the bob radius of 23 nm, which is very favorable for achieving

size quantization. Thus, after being quantized, MoS2-based QDs

FIGURE 1
Overview on transition from 0D, 1D, and 2D (A,B,C) functional materials to (D,E,F) device level. (A) 0D materials: QDs and nanoparticles (Ge
et al., 2020; Thomas et al., 2020); and (D) 0D devices: InAs QDs FETs (Mokerov et al., 2001), CdSe solar cells (Lee et al., 2009), and Ag nanoparticle
memristor (Ge et al., 2020). (B) 1D functional materials: NWs, CNTs, and long-chain polymer (Zhitenev et al., 2007; Kim et al., 2015b; Milano et al.,
2018a); and (E) 1D devices: ZnO memristor (Milano et al., 2018a), CNT FET (Kim et al., 2015b), and PAm-PAAc flexible brush (Zhitenev et al.,
2007). (C) 2D materials: h-BN, halogenated compounds, and metal oxide (Hu et al., 2018; Shi et al., 2018; Cheng et al., 2021). (F) 2D devices: h-BN
memristor (Shi et al., 2018), CrI3 light helicity detector (Cheng et al., 2021), HfOx memristor (Hu et al., 2018), and TaOy/HfOx memrsitor (Gao et al.,
2022). All images in the diagram are adapted from the corresponding references.
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can then be applied to 0D devices, such as ReRAM, and

quantitative MoS2 can act as top/bottom electrodes in the

QDs neuromorphic devices (Thomas et al., 2020) as listed in

Table 1. This quantitative manipulation of the material can

significantly increase its utilization and expand the range of

applications. In addition, QDs can be used for the realization

of targeted nanostructures, where the electrons in the specific

structure are confined to exhibit specific properties (Mukherjee

et al., 2016). Therefore, it is also used to modulate doped FETs

(MODFETs) as a means of changing their I–V characteristics. It

was found that by embedding InAs-based QDs in GaAs channels

(Figure 1D), MODFETs exhibit high field I–V characteristics

attributed to the electrons in the QDs, and compared to

conventional MODFETs, QD devices exhibited hot-electron

transistors that would be valuable in high-speed applications

(Mokerov et al., 2001). Similarly, CdSe-based QDs (Figure 1D)

are used in solar cell devices, owing to high light absorption

properties in the visible region, replacing the previous Ru

sensitizer, attributing to QDs a higher extinction coefficient

with ~ 105 and quantum confinement effect (Lee et al., 2009).

It is undeniable that these 0D devices can overcome the

traditional defects and improve the switching ratio and speed

of circuits and even systems. The quantum NNs based on QD

array are also proposed. In addition, the electrochemical

neuromorphic organic device presents low energy (< 10 pJ for
103 μm2 devices), and non-volatile conductance states are more

than 500 within the range of ~1 V, and high accuracy can be

acquired in NN applications as listed in Table 1.

2.2 One-dimensional devices

1D devices are composed of the materials based on the 1D

structure, such as nanowires (NWs), carbon nanotubes (CNTs),

and polymers. Early on, 1D materials were extensively studied,

showing that they share a very similar topology with tubular

axon, which is the key to achieving hyperlinkability in the

biological system. As 1D materials are being studied widely,

their diverse properties in both physics and chemistry, solution

processability, and the bottom-up growth feature compared to

0D materials would allow 1D materials to behave more

potentially in BIC systems.

1D semiconductor NWs have been developed worldwide as

low-dimensional single crystals. 1D metal oxide NWs fabricated

using a bottom-up approach are being investigated for the

implementation of resistive switching devices as this method

can achieve device size reduction beyond limitations of

traditional lithography (top-down approach) and can be

considered a good platform for highly localized and

characterized switching events (Nagashima et al., 2011;

Ielmini et al., 2013; Milano et al., 2018a) as listed in

Figures 1B,E and Table 1. For such reasons, such studies have

been carried out not only in NWs (Oka et al., 2009; Nagashima

et al., 2010; He et al., 2011; Nagashima et al., 2011; Yang et al.,

2011; Ielmini et al., 2013; Qi et al., 2013; Liang et al., 2014; O’Kelly

et al., 2014), but also in arrays of NWs (Park et al., 2013; Anoop

et al., 2017; Porro et al., 2017; Xiao et al., 2017; Milano et al.,

2018b), which have become another major material for 1D

devices. However, a non-negligible problem regarding NWs is

the tendency of Joule heating to induce them to melt and lead to

further hardware failures; thus, single devices based on NWs still

suffer from high operating voltages or poor device reliability in

terms of ruggedness and variability (Oka et al., 2009; Nagashima

et al., 2010; He et al., 2011; Nagashima et al., 2011; Yang et al.,

2011; Ielmini et al., 2013; Qi et al., 2013; Liang et al., 2014; O’Kelly

et al., 2014).

The CNT shows many unique properties in addition to those

similar to NWs as listed in Figures 1B,D. It is a graphite cylinder,

which shows semiconductor/metallic behaviors according to its

chiral vector and has been used to construct 1D devices. Single-

walled CNTs have been used in post-silicon digital logic because

of their high charge carrier mobility and scalable properties,

especially in the ultra-short channel limit (i.e., sub-5 nm nodes)

(Cao et al., 2017; Milano et al., 2018b). CNTs have been used in

transistor devices and as models for synaptic circuits (Joshi et al.,

2009; Kim et al., 2015b). However, due to the challenges faced by

individual CNTs in practical applications, such as wafer-level

assembly of CNTs and alignment aspects, efforts are applied to

study CNT networks structured as thin-film transistors (TFTs)

(Milano et al., 2018b). CNTs can be used widely as aligned arrays

(Sanchez Esqueda et al., 2018) and random networks (Kim et al.,

2013; Shen et al., 2013; Kim et al., 2015b; Feng et al., 2017; Kim

et al., 2017; Danesh et al., 2019) as listed in Table 1, which have

also indirectly demonstrated the research potential and value of

synaptic transistors. In addition, these CNT-based 1D devices

have also been applied to neuromorphic circuits for unsupervised

learning in NNs (Sanchez Esqueda et al., 2018). However, the

lack of NVM and the inherent problem of transverse geometry in

CNT-based devices results in the inability to form dense arrays of

horizontal bars.

Furthermore, the hybridization like the ZnO nanowires (1D)

decorated with CeO2-based QDs (0D) were applied in memory

devices (Younis et al., 2013), which were investigated for charge-

trapping mechanisms with the aim of designing more advanced

devices. Similarly, the diffusion of Ag along the ZnO nanowires

after they are in contact is observed (Figure 1D). The diffusion

behavior can produce volatile/non-volatile resistive switching,

which is similar to Ag-SiOx diffusion-based memristor devices

(Wang et al., 2017; Milano et al., 2018a).

In particular, the polymers not only have the characteristics

and research value of organic materials in neuromorphic devices

to boost the properties of devices and broaden the application

areas (c), but they also possess 1D properties. Therefore,

polymers also possess 1D properties that have been exploited

in 1D devices such as memories, organic electrochemical

transistors (OECTs), and nanoscale molecular devices
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(Zhitenev et al., 2007; Waser et al., 2009; Cho et al., 2011; Rivnay

et al., 2018; van De Burgt et al., 2018) as listed in Figures 1B,D and

Table 1. The synaptic transistors can be enabled by combining

polymer electrolytes with planar silicon and lithium-ion battery

materials (Lai et al., 2010; Fuller et al., 2017). In addition, OECTs

show promising conductivity states (> 500) within 1 V range and

low energy consumption (~10 pJ per event) (Van De Burgt et al.,

2017; Fuller et al., 2019).

2.3 Two-dimensional devices

2D devices are composed of the materials based on the 2D

structure, such as graphene, MoS2, TMCs including MX2 (M =

Mo, W; X = S, Se), and hexagonal boron nitride (h-BN)

(Figures 1C,F and Table 1). The widespread use of 2D

materials is due to three unique features: First, the layers in

2D materials are all bonded by covalent bonds, and the van der

Waals forces between adjacent layers are very small, so that layer-

by-layer exfoliation of 2D bulk materials can be achieved. Second,

in the exfoliated ultrathin 2D bulk structure, the electron activity

space is limited, so it can be precisely controlled by the gate

voltage to eliminate the influence of the short channel effect.

Third, the 2D material system is relatively large, and innovation

can be achieved by controlling the energy band structure. In

addition, 2D devices show scaling and integration with planar

wafer technology. The development of new 2D device concepts is

spurred subsequently by realizing neuromorphic functionality in

2D nanomaterials to reveal unexpected mechanisms. Although

2D devices have shown great advantages and value, they are

difficult to prepare in large quantities, have low preparation

efficiency, are prone to defects, are prone to the introduction

of impurities, are difficult to control the composition of the

product and have high environmental requirements, and

preventing large-scale industrialization. This is why materials

with mature preparation processes such as graphene and h-BN

have endured for so long.

2D nanomaterials attracted researchers as new building

blocks for the development of memristor-based (Jin et al.,

2015; Lee et al., 2016; Lei et al., 2016; Schmidt et al., 2016; Vu

et al., 2016; Sangwan and Hersam, 2018; Wang T.-Y. et al., 2020;

Chen et al., 2021) and non-memristor-based devices (Geim and

Grigorieva, 2013; Jariwala et al., 2014), which are essential parts

in the BIC system. Here, we refer to 2Dmemristors-based devices

(Bessonov et al., 2015; Cheng et al., 2016; Tian et al., 2017; Huh

et al., 2018; Sangwan et al., 2018; Shi et al., 2018; Jadwiszczak

et al., 2019; Wang L. et al., 2019; Zhang et al., 2019; Zhong et al.,

2020). A typical metal–insulator–metal (MIM) is the structure of

memristor and also includes a 2D insulator as the switching layer.

The reason why 2D materials can be used for artificial synaptic

devices in the field of BIC is attributed to its unique structure,

electronic properties, and mechanical properties (Arnold et al.,

2017; Bao et al., 2019). The Ta/HfOx/Pd memristor is applied to

accelerate computations in the BIC system (Hu et al., 2018) as

listed in Figure 1F. MoS2, as one of promising 2D materials, is

used in a wide range of applications due to its attractive direct

band gap structure, which creates its large conductivity and

electron mobility. Following this, TMCs, including transition

metal dichalcogenides (TMDs) (Kwon et al., 2022), have become

a research hotspot (Fiori et al., 2014). The ultrathin 2D

memristor devices (thickness < 1 nm) based on TMCs

demonstrate high-frequency switches (Lu and Seabaugh, 2014;

Wu et al., 2017), due to the low ON-state resistance (< 10Ω).
The conventional thinking, which asserts the leakage currents

still exist in monolayer 2D semiconductors, has been refuted by

their high switching ratio (> 104) (Wu et al., 2017). The results

indicate the emergence of new switching mechanisms, in which

point defects may be a key (Lu and Seabaugh, 2014). In addition,

the memristor devices with the switching layer of few-layer MoS2
and electrode layers of graphene demonstrate high operating

temperature (340°C) than conventional memristor devices with

metal oxide (200°C) (Kim et al., 2020). The bilayer MoS2 2D

memristor devices with electrode of Cu and Ag present low

switching voltages (~ 0.2 V) (Knoll et al., 2013).

By taking full advantage of the respective fascinating

properties of 2D materials, 2D devices performances can be

boosted. As one of the first 2D materials to be discovered,

graphene is used as a switching layer in devices to improve

their stability. In addition, it is used as a contact material to boost

robust features for memory cells (Jariwala et al., 2014). As a

material with a structure very similar to graphene, h-BN, also

known as white graphene, exhibits properties distinct from those

of graphene, such as high insulating properties, which are

different from graphene (Sangwan and Hersam, 2018). It is

employed as a switching layer in devices, endowing devices

with high endurance and low operating currents (Shi et al.,

2018) as listed in Table 1. 2D memory devices are able to

operate at low operating voltages and therefore have low

energy consumption, which is attributed to one of the

promising features of 2D materials, namely, the ultra-thin

structure (Cheng et al., 2016; Zhang et al., 2019) as listed in

Table 1. Consequently, the matrix computing can be boosted by

potential 2D memory devices with a promising structure in

operating voltage/current, accuracy, etc., which is also a

frequent concern for devices.

One of the most promising performances in matrix

computing is extremely low energy consumption. As can be

seen in Table 1, the different materials form devices with different

levels of operating voltage and current. Generally, the low

operating voltage and ultralow current also mean low power

consumption. Recently, some significant efforts have been made

for reducing the energy consumption, operating current, and

voltage; for example, a memristor crossbar array based on 2D

hafnium diselenide (HfSe2) has been fabricated using the

molecular beam epitaxy technique, which exhibited small

switching voltage with 0.6 V, especially low switching energy
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with 0.82 pJ (Li et al., 2022). In addition, a memristor device was

prepared with h-BN materials through chemical vapor

deposition by Shi et al. (2018) as listed in Figures 1C,F. The

device presented excellent performances with ultralow power

consumption of 0.1 fW, which cannot be obtained without the

role of h-BN. Based on few-layer h-BN as a switching layer, the

bipolar/unipolar resistive switching can be achieved in some 2D

devices (Gandhi et al., 2011; Ganjipour et al., 2012), in which

switching is controlled by controlling the generation of defects

from active Cu/Ag. The MoS2/h-BN/graphene heterostructures

were applied in random access memory devices by Vu et al.

(2016), which demonstrate ultrahigh on/off ratio of 109, low

operating voltage with 6 V, and ultralow off-state current with

10–14.

As aforementioned, the functional 0D, 1D, and 2D materials

play a crucial role in constructing devices for BIC systems. In this

review, we focus onmemristors due to their promising functional

properties for constructing BIC systems in the circuit level,

architecture level, and system level.

3 Circuit level: Artificial synapses and
neurons

In the biological human brain, there are 86 billion neurons

that perform activation functions and transmit information via

around 1,000 trillion synapses, which form the learning

functions, that is, senses such as smelling and listening, in the

human brain. External signals are received and transmitted to

synapses, which in turn are transmitted to neurons. The

activation functions are processed to produce new signals,

which are then transmitted back to the senses in reverse,

producing the so-called “limbic response.” In this section, we

review artificial synapses and neurons in the BIC system. The

characteristics of artificial synapse and neuron devices based on

2D memristors are summarized in Table 2, such as set voltage/

current, memristor structure, functional materials, and their

working principle.

3.1 Artificial synapses

The weight storage and induction protocol unit constitute a

simple synapse, which modifies the weights according to the

pulse signals. In general, the proliferation of plasticity-related

proteins (PRPs) is the main cause of synaptic interactions during

which these proteins are required for synaptic growth between

adjacent synapses (Farris and Dudek, 2015) as listed in Figure 2A.

The synaptic interactions are fundamental and essential in the

neuromorphic systems. In the past, two approaches were

implemented, one through a software-assisted circuit concept

(Sheridan et al., 2017) and the second through a voltage splitter

effect assisted by an external voltage bias (Borghetti et al., 2010).

However, these two approaches do not directly mimic the

internal processes of biological synapses. The ionic coupling

involves the diffusion and exchange of ions between artificial

synaptic devices that can potentially mimic this process. Thus,

the competition and cooperation effects of biological synapses

can be enabled appropriately.

The earliest artificial synapse was achieved with transistors

(which can be called synaptic transistors) by using a floating gate.

The charge of the floating gate (storage or dissipation) can be

controlled by the injection and tunneling from hot electrons,

respectively. Therefore, the threshold voltage and conductivity of

TABLE 2 2D memristive devices applied as artificial neurons and artificial synapses in the BIC system.

Device Working principle Structure (2D switching layer) Set voltage/current Reference

Synapse Conductive filament formation Cu/MoS2/Au 0.1–0.2 V Xu et al. (2019)

Ag/ZrO2/WS2/Pt 0.4 V Yan et al. (2019)

Ni/Au/MoS2/Gr 3 V Ko et al. (2020)

Ni/Au (top), ML-MoS2/1L graphene, and graphene (bottom) 1.5 V Krishnaprasad et al. (2019)

Vacancy migration Pd/WS2/Pt 0.56–0.67 V Yan et al. (2019)

Ag/WO3-x/WSe2/Gr 3 V Huh et al. (2018)

Ag/MoOx/MoS2/Ag 0.15 V Bessonov et al. (2015)

Gr/MoS2−xOx/Gr 3.5 V Wang et al. (2018)

Phase transition Au/MoS2/Au 4 V Zhu et al. (2019)

Neuron Conductive filament formation Ag/MoS2/Ag 0.35–0.4 Dev et al. (2020)

Ag/MoS2/TiW 1.2V/1 μA Hao et al. (2020)

Cu/Mxene/Cu 1V/0.1 μA Chen et al. (2019)

Grain boundary mediated transport Ni (top), ML-MoS2/1L graphene, graphene (bottom) 2.8–2.9 V Kalita et al. (2019)
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FIGURE 2
Working principle of biological synapses and representative memristive artificial synapses. (A) Illustration of functional connection for artificial
neurons and synapses by using MCAs. (B) Configurations of memristive artificial synapses, including 0T1R-, 0T2R-, and 1T1R-synapses (Du et al.,
2021a). Schematics of I–V characteristics of different configurations of memristive artificial synapses (Sangwan and Hersam, 2020). (C) Illustration of
artificial memristive synapse induced by filament formation and rupture. The inset demonstrates the filamentary switching of a single memristor
unit formed by the Ag/SiOx:Ag/TiOx/p

++-Si structure (Zhu et al., 2019; Ilyas et al., 2020; Sangwan and Hersam, 2020). The artificial memristive
synapse whose transconductance is controlled by its structural phase (D,E). (D) Insets demonstrate local transition from the 1T′ phase (LRS) to the 2H
phase (HRS) in Li+-MoS2, which is related with Li+ ion migration and controlled by a voltage bias (Zhu et al., 2019; Sangwan and Hersam, 2020). (E)
Inserts demonstrate phase change by controlling temperature, the CCDW phase at low temperature (left), in the hexagonal NCCDW (middle), and in
the ICCDW phase at high temperature (right) (Yoshida et al., 2015). All images in the diagram are adapted from the corresponding references.
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the transistor are modulated efficiently (Diorio et al., 1996). For

synaptic transistors, the robustness and open channel are critical

advantages, which can lead to spatiotemporal responses that are

achieved by multiple gate terminals (Buonomano and Maass,

2009; Qian et al., 2017). However, it cannot be ignored that the

relatively large footprint is accompanied by lateral geometry from

synaptic transistors, which is suboptimal for obtaining synapses

with high density (Lanza et al., 2019).

Subsequently, the memristors as a popular emerging device

(Figure 2B top), which possess a smaller size (Yu and Chen, 2016;

Pi et al., 2019), enable 3D stacked memory (Seok et al., 2014), and

combine both an induction protocol and memory into a single

device (Jeong et al., 2016), become a suitable alternative in terms

of the application of artificial synapses (as listed in Table 2).The

functional materials and operating mechanisms used in

memristive devices have been reviewed extensively (Waser

et al., 2009; Pershin and Di Ventra, 2011; Kuzum et al., 2013;

Yang et al., 2013; Tan et al., 2015).

The different configurations of memristor-based artificial

synapses are listed at the bottom of Figure 2B. Memristors

with 0T1R configuration (T is the transistor, and R is the

memristor) have been applied to implement artificial synapses

(Krestinskaya et al., 2017; Zhang Y. et al., 2017; Du et al., 2021b),

and such synaptic devices are very efficient in terms of density

and power consumption. In addition, the non-volatile resistive

switching will occur in the memristors with distinct resistance

states with zero bias (Yang et al., 2008); however, the common

leaky path problems of memristive crossbar arrays (MCAs)

cannot be ignored. A transistor in series with the memristors

might be a good method for this (Yao et al., 2017), but it is not as

good as a 0T1R configuration in terms of density. Another

popular configuration for implementing artificial synapses

consist of two memristors (i.e., 0T2R) (Alibart et al., 2013;

Hasan and Taha, 2014), which have the advantage of being

able to double the area size and to apply the negative synaptic

weights required in an NN. Voltage stimulation signals generated

from neurons (word-lines) and the current signal can be

generated from each bit line. In unipolar switching, only at

the same bias polarity, the switching events can occur,

whereas the devices can be operated to on- and off-states by

reverse bias in the bipolar resistive switching (Yang et al., 2008;

Chang et al., 2009). Therefore, by connecting the two bipolar

switches back-to-back, this results in a complementary resistive

switch (Linn et al., 2010).

The 1T1R is the third configuration besides 0T1R and 0T2R,

which has been studied for artificial neurons and synapses

(Figure 2B bottom). The chips with 1T1R configurations have

been widely used (James et al., 2017; Schuman et al., 2017;

Krestinskaya et al., 2019), and almost all of them employed

crossbar arrays to address individual synapse nodes. In 1T1R

configuration, the leakage current can be reduced in the 1T1R

configuration, which is attributed to the use of the transistor as a

selector. Two memristive elements are included in the

memtransistor, in addition to the pinched hysteresis loop,

which can be modulated by the gate terminals (Mouttet, 2010;

Sangwan et al., 2015; Sangwan et al., 2018; Wang L. et al., 2019;

Yang et al., 2019). Memristor devices are often complex in both

structural design and preparation, but this is also the main reason

for the simplicity of the circuit when they are applied to circuits

(Chua and Kang, 1976; Pershin and Di Ventra, 2011; Xia et al.,

2011; Abdelouahab et al., 2014; Kim et al., 2015a). Thus, for 1T1R

configuration, not only do transistors and memristors combine

their respective characteristics into one device, but they also

exhibit unique features in terms of applications such as spike-

timing-dependent plasticity (STDP) and bio-realistic hyper-

connectivity (Bi and Poo, 1998; Caporale and Dan, 2008;

Sangwan et al., 2018). Precisely, the conversion mechanism of

the memristor corresponds well to biological synapses, which can

be generated by the formation and rupture of filaments

(Figure 2C up) or by modulation of the Schottky barrier by

defects or migration of ionic species.

The Ag/SiOx:Ag/TiOx/p
++-Si memristor devices have been

reported by Ilyas et al. (2020), and the devices present analog

switching behaviors. The schematic diagram of the device is

shown in Figure 2C. In such a simple device, the SiOx:Ag and

TiOx thin layers serve as the transition layer, and the Ag TE and

p++-Si BE serve as the electrodes, respectively. The Ag/SiOx:Ag

serves as the presynaptic membrane, and the TiOx/p
++-Si as the

postsynaptic membrane in the Ag/SiOx:Ag/TiOx/p
++-Si memory

device. The ions from the synaptic weights are released between

the presynaptic and postsynaptic membranes, thus causing a

change in synaptic weights when it receives a neural pulse. The

Ag ions migrate in response to the voltage pulse, thus causing the

conductivity of the Ag/SiOx:Ag/TiOx/p
++-Si memory device to be

modulated. The physical model is shown in Figure 2C, and the

switching mechanisms of the SiOx:Ag- and SiOx:Ag/TiOx-based

memristor devices are similarly explained.

Phase-change memristor devices show a metal-to-insulator

transition by local heating and rapid quenching (Figure 2D). The

schematic illustration describing the phase transition is shown in

Figure 2D, in which electrode A can drive migration of Li+ ions.

The 1T’ phase will produce as the increase of Li+ concentration;

conversely, the 2H phase can be brought forth by the decreasing

of Li+ concentration. The high-resolution transmission electron

microscopy images demonstrate LixMoS2 film have been

switched to the high-resistance state (HRS) and low-resistance

state (LRS), respectively, as listed in Figure 2D. The MoS2 lattice

fringes can be observed with uniform interlayer spacing (~

0.62 nm) in the HRS sample. However, the distorted MoS2
lattice fringes with interlayer spacing (for example, 0.91 and

0.71 nm at the two positions) (Zhu et al., 2019) can be observed in

Figure 2D. The phase transition of molybdenum ditelluride

(MoTe2) was deployed by Wang et al. (2019b), and another

example of polymorphic TMD (Cho et al., 2015) demonstrates

that the phase change resistive memory devices were devised. The

phase transitions for MoTe2 occurred by the electric field, in
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which the electronic characteristics can be found between both

phases.

Figure 2E illustrates schematic illustration of quantum phase

transition memristors. Yoshida et al. (2015) show that

polymorphic memory non-volatile switching consisting of 1T-

TaS2 with first-order charge density wave (CDW) phase

transitions (Sipos et al., 2008; Stojchevska et al., 2014), which

presents the first-order CDW phase transition (Figure 2E). It can

be seen that the phase switching occurred from incommensurate

CDW (ICCDW) to a nearly commensurate CDW (NCCDW)

between 100 and 220 K, with relationship of temperature sweep

direction in as-prepared few-layer 1T-TaS2. The memristive I–V

characteristics and hysteretic current–temperature curves can be

caused by these phase transitions. It can be seen from Figure 2E

FIGURE 3
Working principle of biological neurons and their classification of memristive artificial neurons. (A) Structure of the biological neuron. (B)
Membrane potential change of the neuron depending on the excitatory and inhibitory potentials (Lee et al., 2021). (C) Realizations of artificial
neurons, including I-F neuron circuit and summing/thresholding neuron models for 1R-synapse and 2R-synapse (Du et al., 2021a). (D) Conceptual
representation of the v-MoS2/graphene memristor-based artificial neuron; schematic of a v-MoS2/graphene TSM; and optical image of the
MoS2/graphene TSM (Kalita et al., 2019). (E) Artificial spiking somatosensory system, consisting of amechanical sensor and an artificial spiking afferent
nerve (ASAN) made of a resistor and an NbOx memristor. The spiking frequency shows a similar trend to that seen in its biological counterpart.
Scanning electron micrograph cross-sectional image of the NbOx device (Zhang et al., 2020). All images in the diagram are adapted from the
corresponding references.
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that 13 Ta atoms form a large satellite cluster in the CCDW

phase, as zoomed-in in the inset. The adjacent NCCDW phase

has a hexagonal arrangement originating from the CCDW

domain, which is transformed into the ICCDW phase after

further heating.

3.2 Artificial neurons

Neurons, consisting of cell bodies, axons, and dendrites, are

the basic structural and functional units that transmit biological

signals in the human body (Abbott and Nelson, 2000; Gerstner

and Kistler, 2002) as listed in Figure 3A. A neuron receives

signals from the anterior neuron via the dendrites and then

transmits them to the posterior neuron via the axon. The cell

body of a neuron determines its electrical response (i.e., the

opening/closing of ion channels) according to the signal of

excitatory or inhibitory potentials. Figure 3B shows the

membrane potential in neurons with an excitatory or

inhibitory potential. When the membrane potential is greater

than the threshold, the ion channel opens and an action potential

(spike) is generated. The generated action potential causes a

continuous potential difference in the neuron so that the signal is

transmitted to the axon and the neuron releases ions externally,

returning to its initial state (resting state). When the membrane

potential is less than the threshold potential, no action potential

is generated and the signal charge escapes and returns to the

initial state (Bear et al., 2016).

Mimicking this set of behaviors of biological neurons is a key

for implementing artificial neurons (Zhang X. et al., 2017).

Various models, such as Hodgkin–Huxley, Izhikevich, and

integrate-and-fire models, have been proposed to explain the

behavior of neurons and to implement artificial neurons

(Sangwan et al., 2018; Wang et al., 2019a; Chen et al., 2019;

Yin et al., 2019; Lee et al., 2020; Li et al., 2020; Wang H. et al.,

2020). The leaky integration emission (LIF) model is the most

widely used of these models (Figure 3C left), which assumes that

the sub-threshold membrane potential dynamics of a neuronal

membrane potential is similar to that of a resistor connected in

parallel with a capacitor. The LIF model describes the behavior of

the spiking nervous system very well (Yang et al., 2020). In

particular, the LIF model, made from a leaky capacitor, adds the

current from the synapse to the leaky current, helping to bring

the neuron to a resting state. However, the excessive size of the

capacitor increases the size of the neuron devices and its high

power consumption severely limits its application.

The transistor circuits including comparators, summing

amplifiers, and Schmitt triggers are employed in neuron

models to achieve spiking behaviors efficiently. The right side

of Figure 3C presents the configuration for the conventional

summing and thresholding neuron (Chowdhury et al., 2017;

Jiang et al., 2018), where the input current is accumulated and the

corresponding voltage signal is sourced to the comparator by the

summing amplifier. If the output voltage of the amplifier is higher

than the threshold (Du et al., 2021a), then the comparator will

generate a voltage spike to the next layer of neurons. Despite the

improvement over the previous one, it still suffers from size and

energy consumption, so memristors have been suggested for the

realization of artificial neurons (Tang et al., 2019).

The memristor design can be an alternative approach for

artificial neurons (as listed in Table 2). The first amplifier with a

memristor is not only to scale the output voltage, but also to

implement the sigmoid activation function, in which the

reconfigurable resistor of the memory is used to control the

feedback gain, and the second amplifier is used to invert the

output. Although memristors based on 2D materials have been

used to implement neurons, the limitations in the preparation of

volatile threshold switching devices mean that neuron devices

have been less studied than synapse devices. The inherent

characteristics (such as diffusive dynamics and the interfacial

energy of the metal/vacancy species) (Valov et al., 2011) of

component materials contribute to the performance of

memristors, which operated with the filamentary mechanism.

The characteristics of volatile resistive switching are usually

required for most neurons based on memristive materials.

Hao et al. (2020) verified that volatile resistive switching is

possible in MoS2-based neural components as listed in

Table 2. In the case of CVD-grown MoS2 in contact with Ag

and W electrodes, the channel width of MoS2 was 1.5 nm. Since

both Ag and W electrodes are connected to the switching layer,

the device only achieved stable volatile switching behavior by

continuously adjusting the channel width of MoS2 to 500 nm. In

a vertical memory consisting of Ag/MoS2/Au (Dev et al., 2019,

2020) as listed in Table 2, volatile/non-volatile properties were

shown to be thickness-dependent. Thicker MoS2 exhibits

volatility threshold switching behavior, suggesting that thicker

MoS2 (~ 20 nm) can be used as a neural component. Here, this

critical behavior of a medium-frequency artificial neuron firing as

a function of the potential formed on it is implemented with the

v-MoS2/graphene threshold switching memristor (TSM) (Kalita

et al., 2019) as listed in Table 2, and the conceptual scheme is

listed on left of Figure 3D. The v-MoS2/graphene neuron

integrates the received input signals with the help of a

capacitor. The capacitor consolidates the charge, and once the

voltage across the capacitor increases above the TSM threshold,

the neuron kicks in and produces an output spike. The schematic

diagram of the v-MoS2/graphene device is shown on the right of

Figure 3D. It consists of CVD-grown monolayers of graphene,

wet transferred onto a Si/SiO2 substrate (Chan et al., 2012), and

then patterned on graphene to grow v-MoS2. Nickel contacts are

deposited on graphene and v-MoS2. An optical image of the

device is shown on the right of Figure 3D.

Zhang et al. (2020) have designed a memristor-based

artificial spiking somatosensory system (on the left of

Figure 3E), which is a two-terminal sensor device and a

compact oscillator, in which the special oscillator serves as the
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artificial spiking afferent nerve (ASAN) and contains two passive

components: a resistor and a niobium oxide (NbOx) memristor.

In biological systems, the firing rate of afferent nerves increases

with increasing input intensity whenever the intensity of the

input stimulus exceeds the threshold of the afferent nerve

(Sivaramakrishnan et al., 2004; Lin et al., 2006). However,

when the stimulus intensity is very high, the firing rate

decreases due to protective inhibition of neuronal cells to

prevent neuronal death (Stetler et al., 2009). In this working

artificial body sensing system, the analogue input voltage signal is

generated by the sensor device and NbOx ASAN can convert the

voltage intensity into the corresponding spike frequency. The

generated spikes will then be transmitted to NNs for further

processing. The device has a titanium nitride (TiN) top electrode,

a NbOx switch layer, and a polysilicon bottom electrode. Here,

the polysilicon bottom electrode with its low thermal

conductivity is specifically designed to reduce the threshold

current. Cross-sectional transmission electron micrograph

(TEM) of the device structure is shown on the right of

Figure 3E. A circular region of NbO2 crystals with a diameter

of approximately 8 nm can be observed in the channel region at a

close range (on the right of Figure 3E).

3.3 Vector–matrix multiplication

As a row-by-row vector generation process, vector–matrix

multiplication (VMM) aims to generate new vectors using

existing vectors, where each element of the new vector is

generated by weighting and summing each row of the matrix

using the elements of the vector as coefficients. In the BIC system,

VMM is the basis for NN algorithms, which can be imitated by

hardware-based NNs for efficient learning processes. For NNs,

hidden layers are used to interconnect input layers (which can be

pixel points or data values in the image) and output layers (as

shown in Figure 4A), and each layer is interconnected with nodes

to complete the information transfer. Therefore, the NN relying

on VMM can be applied for inference or prediction as well as

learning. The connectivity of nodes, that is, synaptic weights, can

be modulated.

FIGURE 4
VMM (I) and VMM (R) can be efficiently imitated using hardware-based crossbar topologies. (A) VMM structure performed ym � ∑

n
wm,nxn . (B)

Conventional memory crossbar array (standard crossbar array with current-sum columns) to perform analogue VMM (I) is imitated via

current–voltage operations as Im � ∑
n
Gm,nVn , where Gm,n is the conductance of the neuromorphic device at the m, n node, Vn is applied voltage at

the n input, and Im is the read-out current at the m output. (C) Conventional memory crossbar array (standard crossbar array with current-sum

columns) to perform digital VMM (R) is imitated via resistance–voltage operations with resistance-sum columns. (D) For VMM (R), each bit cell

consists of two FET switches and two magnetic tunnel junctions, and these bit cells are connected in series to form a column in the crossbar array

(Jung et al., 2022). All images in the diagram are adapted from the corresponding references.
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In terms of hardware, VMM based on crossbar arrays can be

effectively implemented in synaptic devices using Ohm’s law and

Kirchhoff’s law. However, since the conductivity of a synaptic

device is always a positive value, the negative weight cannot be

effectively implemented. In a typical approach, the conductance

values of the two synaptic devices are subtracted to express a

negative weight (Burr et al., 2015; Choi et al., 2019). Another

method is weight shifting, where the median of the weight values

is shifted from zero to a positive region so that all weight values

become positive. Based on positive weight values, this can be

expressed directly in terms of the conductivity of the synaptic

apparatus (wij) (Han et al., 2021). The VMM performed with

ym � ∑
n
wm,nxn (Figure 4A) is imitated. Input signals (e.g.,

voltage vector) are delivered to each junction of different

conductance, where a current as the multiplication result is

generated according to Ohm’s law (I = VG, where G is

conductance). The current at each column follows Kirchhoff’s

current law, which allows one to obtain the summation of the

multiplications (currents of each junction) by measuring the total

current out of each column (Ij � ∑
i
ViGi,j) (Figure 4B). The

abovementioned is the main mechanism of conventional

crossbar arrays with current-sum columns. But in some

applications, such as magnetoresistive random access memory

crossbar arrays, due to small low resistance and high resistance,

the conventional approach would consume considerable power

(Xia and Yang, 2019).

In these cases, the resistance-sum columns have been

introduced into the crossbar array, still with the aim of

obtaining dot products (Figure 4C). The architecture starts

with a new bit cell design (a bit cell is an element at a

row–column intersection). Each bit cell connects two paths in

parallel, each consisting of an MTJ and a field effect transistor

(FET) switch in series (Figure 4D). The FET gates in the left path

are driven by the binary input voltage IN (VL = 0 V, or VH =

1.8 V), while the FET gates in the right path are driven by a

voltage complementary to IN. The MTJ–FET path on the left

FIGURE 5
(A) Data analysis in biological brains and artificial neural networks and comparison of synapses and neurons. Overview on memristive NNs
developed for the analysis of different data structures: (B) CNN (Yao et al., 2020), (C) GNN (Huang et al., 2019), (D) RNN (Nikam et al., 2021), and (E)
SNN (Duan et al., 2020) for computing image/pattern, graph, sequence, and spiking data structures, respectively. All images in the diagram are
adapted from the corresponding references.
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stores a synaptic weight W (RL or RH; each is the sum of the MTJ

and FET switching resistances), while the MTJ–FET path on the

right stores a weight complementary to W. Then, the left or right

path can be selected by IN, generating the resistance (RL or RH) of

the selected path as a bit cell output (Jung et al., 2022).

4 Architecture level: Neural networks
determined by data structure

In the data-centric era, NNs are applied to solve different data

structures for different application-specific scenarios. The

network architectures in BIC and layer configurations are

subsequently tailored, depending on the data structures.

Inspired by the biology of the human brain, NNs have been

constructed and applied to imitate the biological properties of the

human brain (Figure 5A). As aforementioned, the artificial

synapses correspond to the neuronal ties between the layers of

the NN and serve to enable the transmission of signals between

layers, while the artificial neurons correspond to the blue units in

every layer of the NN (Figure 5A).

4.1 Neural networks

From architecture point of view, the input layer and the

output layer are indispensable in the NN, between which are the

hidden layers. One typical structure of the hidden layer is the full

connection (FC) layer as shown in Figure 5A. The N neurons

connected to the inputs are arranged vertically in a single line as

the first layer (input layer), the same number of neurons are

arranged vertically in a single line as the second layer (first hidden

layer), and similarly there are M neurons arranged horizontally

in a single line as the third layer (i.e., as the second hidden layer),

and the last layer is the output layer. Each input neuron in the

first layer and the corresponding output neuron in the second

layer are connected to each other by synapses. It can be referred

to as the SLP with only one hidden layer or the MLP with

multiple hidden layers. The DNN is used for specifying the

machine learning (ML) in general based on the previously

described NN architectures with multiple hidden layers. In

addition to the FC layers, different layer constructions can

serve as hidden layers for diverse application scenarios. In this

subsection, we discuss the following four representative NN

architectures for BIC systems: CNN, GNN, RNN, and SNN.

4.1.1 Convolutional neural network
A feed-forward NN consisting of one or more convolutional

layers and pooling layers is termed as the CNN, which responds

to surrounding units in the coverage area. The CNN is excellent

for processing image/pattern data structures. In addition, the

input layer, activation function layer, associated weights, and FC

layer are indispensable for building a complete CNN (Figure 5B).

For the hardware implementation of CNN architecture, the

input layer consists of the same number of neurons as the pixels

of the input image/pattern. N different convolution kernel groups

form the convolution layer, and the size and number of which

also depend on the input image/pattern. The convolution kernel

can be shared during data processing, which is useful for the

small size of NN, and the input image can still retain the original

positional relationship through the convolution operation. All

the neurons are formed by synaptic connections between them.

First, the images in the data set are sorted and numbered. The

convolution operation is then performed by sliding continuously

with a fixed step size and computing the sum of weights between

the shared local kernel and the input blocks generated by the

input layer. The output is the first convolution layer, which is

then sub-sampled by the first pooling layer, at which point the

first round of convolution operations is complete. The

subsampling result from the subsequent pooling operation

becomes the input data for the second convolution operation,

and then loops the structure above. The number of convolution

layers depends on the size of the input data. For memristors

crossbar computing architecture, the VMM is the basic

algorithmic operation in the convolution procedure. The

convolution needs mapped into VMM by converting high-

dimensional convolution into low-dimensional VMM. Then,

the low-dimensional convolution can be implemented using

matrix multiplication by converting kernels (Zhang and Hu,

2018). Then, a kernel is mapped throughout to the corresponding

positive and negative weight rows, the later pooling layers are

expanded and then these are expanded into vectors. Thus, the

input of highly dimensional and complex data is effectively

implemented as dimensional compression, that is,

dimensionality reduction. Then, the data with reduced

dimensionality can be transferred to the final FC layers. Then,

the value of the weight summation is fed as the input of the soft-

max function to calculate classification probability. This is the

complete execution process of a CNN. The convolution

operation based on memristor crossbar has two

implementation methods. One is that the input feature maps

in turn are input into sliding windows based on compact

memristor crossbar to obtain the output feature map

(Yakopcic et al., 2016). The other is that an entire feature

map is input to a sparse crossbar (Yakopcic et al., 2017), but

lots of redundant memristors may exist and it is challenging to

make the conductance of the same convolution kernel uniform.

4.1.2 Graph neural network
The GNN is an NN that acts directly on the graph, which

consists of an input layer, a hidden layer, and an output layer

(Figure 5C). The GNN is capable of processing graph data

structures. First, given a graph, the nodes were initially

converted into recurrent units and the edges, into feed-

forward NNs. For example, we defined the features for any

social network graph, where the features could be age, gender,
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address, dress, etc. The nodes connected by each edge may have

similar characteristics. This reflects some kind of correlation or

relationship between these nodes. Then, the nodes are labeled, all

nodes are converted into recurrent units, and all edges contain

simple feed-forward NNs. At this point, the node and edge

transformations are complete, and the graph can pass

messages between the nodes. Then, n times nearest neighbor

aggregation (i.e., message passing) is performed for all nodes.

This is because it involves pushing messages (i.e., embedding)

from surrounding nodes via directed edges around a given node.

For a single reference node, the nearest neighbor nodes pass their

messages (embedding) to the recurrent units on the reference

node through the edge NN. The new embedding update with

reference to the cyclic unit is based on using the cyclic function

on the sum of the output of the edge NN, with cyclic embedding

and nearest neighbor node embedding. Then, the embedding

vectors of all nodes are summed up to obtain the graph

characterization parametrization. Last, one can skip H

altogether and go directly to higher levels or use the

parametrization to characterize the unique properties of the

graph as well. Most GNNs will choose “convolutional” layers,

as those in CNNs (Yujia et al., 2016; Hamilton et al., 2017). The

“convolution” operation in GNN can be roughly divided into two

phases (Yan et al., 2020). The aggregation phase aggregates

nodes’ information from their multi-hop neighbors by

pointer-chasing operations. This phase incurs intensive

random memory accesses. The handling phase feeds the

aggregated features into an NN to generate new features. Both

computation and aggregation are regular in this phase. This

process is executed in parallel on all nodes in the network, since

the embedding of the L+1 layer depends on the embedding of the

L layer. Therefore, there is no need to “move” from one node to

another to pass messages. It happens that the GNN directly

propagates the graph structure rather than treating it as a feature

and maintains a state that can represent information from a

human-specified depth.

4.1.3 Recurrent neural network
NNs that can process sequential data using recurrent

processing units are called RNNs, which consist of an input

layer, a hidden layer (containing recurrent kernels), and an

output layer. The RNN is capable of processing time

sequences and image/pattern data structures. The hidden layer

of a conventional RNN is a tangent function that acts as a

memory unit for the activation function, while the output W

at moment t-1 is re-weighted as input and re-entered into the

neuronal activation function to jointly act on the output result at

the current moment t. As the time step increases, the values

within the early memory gradually increase to astronomical

numbers, which can lead to the more long-term memory

having a greater impact on subsequent output, while short-

term memory is rather less influential, and such a structure

can cause gradient disappearance and explosion problems. Later,

a special type of RNNs emerged, namely, the long–short term

memory network (LTSM). The LSTM consists mainly of an

oblivion gate, an input gate, an output gate, and amemory cell. Its

hidden layer is a self-connected linear cell, also known as a

constant error carousel (CEC). CEC protects RNNs from

vanishing and exploding gradient problems of the

traditional RNN.

For the hardware implementation, all the neurons between

the layers in the hidden layer are interconnected, but the neurons

between the same layers are not. Each neuron in the hidden layer

of an RNN introduces a recurrent synapse that stores the

neuron’s output at moment t as its own input at moment t+1,

and similarly, the output at moment t+1 will serve as input at

moment t+2, and so on. The RNN achieve information transfer

through it (as shown in Figure 5D). The structure of RNN is an

iterative process and the weights are shared, that is, the input x at

different moments uses the same weight matrix for each part each

time, which can reduce the number of parameters and thus the

complexity of the computation. The key point is the recurrent

kernel, which remembers the features of the last hidden layer

output and passes it to the next input. Each of the inputs and

outputs can be of indefinite and unequal length. RNNs are very

effective for data with sequential properties, which can mine the

temporal information as well as semantic information in the data.

This ability of RNNs to process sequential data recursively is

exploited to make a breakthrough in deep learning models for

solving problems in natural language processing (NLP) fields

such as speech recognition, language modeling, machine

translation, and temporal analysis.

4.1.4 Spiking neural network
The SNN is one of the third-generation NNs, which is to

process the data in a more biological fashion in comparison to

other aforementioned NNs. The structural units for transforming

data into spiking sequences are included in addition to the input,

hidden, and output layers (Figure 5E). The SNN is capable of

processing spike sequence data structures.

SNNs process information using the timing of signals

(pulses). In contrast to actual physiological mechanisms,

SNNs almost universally use an idealized pulse generation

mechanism. First, a number of pulse spike sequences are fed

to the neuron, and then these spike trains are fed into the

memristor crossbar and converted into weighted current sums

through the columns. A row of transimpedance amplifiers can be

used to amplify and convert the currents to analog voltages of

(–2 and 2 V). The neurons can then integrate the analog voltages

and generate spikes when reaching the firing threshold, which

propagate to the next layer for similar processes. At last, the

spiking numbers of output neurons are counted, and the index of

most frequently spiking neuron is taken as the prediction result.

In the brain, communication between neurons is accomplished

by propagating sequences of action potentials (also called pulse

sequences transmitted to downstream neurons). What it
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enhances is the ability to process data in spatiotemporal, spatial

meaning that neurons only connect with nearby neurons so that

they can process input blocks separately. Temporal means that

pulse training occurs over time so that information lost in the

binary encoding can be regained in the temporal information of

the pulse, which allows to process temporal data naturally; and

SNN can handle time series data without additional complexity.

The neuronal units in SNNs are active only when spikes are

received or sent, thus making them energy efficient. It is therefore

event-driven, thus allowing it to save energy.

4.2 Data structures

In this section, we discuss five representative data structures

in application-oriented scenarios applied to BIC systems: image/

pattern data structure, graph data structure, sequence data

structure, spiking sequence data structure, and discrete data

structure.

4.2.1 Image/pattern data structure
Image/pattern data are a collection of grayscale values for

each pixel expressed as a numerical value and are a type of

structured data, also known as Euclidean data, and the data

structure is high-dimensional, complex. In the practical

application of the BIC system, there are many image/pattern

data structures being expected to be processed by suitable NNs.

In addition, there are also many other data types that cannot be

processed into image/pattern data types, such as photonic devices

that have freeform geometries, and these data cannot be

parameterized by a few discrete variables. But it is possible to

convert these data into 2D/3D images/patterns. It will be traded

off with other performance metrics to realize all the features of

the input (full connection), so each neuron is connected to only

one local region of the input data, called the receptive field, and

the size of the connection is equal to the depth of the input

quantity in the depth direction. Image data types are effectively

processed using a set of convolutional layers in series that can

extract and process spatial features (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2014; Szegedy et al., 2015; Szegedy

et al., 2017). The CNN can extract a large number of local close

features and combine them into high-order features. For this

high-dimensional and complex image data, the downscaling of

image data is achieved through 2–3 layers of convolutional

operations by kernel sharing and convolutional operation in

the CNN, and finally the classification probability is calculated

for low-dimensional data operations. Therefore, image/pattern

data structure is regarded to be more suitable for CNN

architecture to process (as listed in Table 3).

The CNN with five layers, which contains two convolutional

layers, two pooling layers, and one FC layer was applied for

recognition of the MNIST (LeCun et al., 1998) digit images (Yao

et al., 2020). The max-pooling and rectified linear unit (ReLU)

activation functions are employed and obtained the accuracy of

TABLE 3 Summary of the features in data structures which determine the application of NNs.

Data type Data
feature

Time-
relatedness

Neural
network

Optimization Application Data
analysis

Unstructured
data

Discrete
data
structure

Discrete (discrete
domain)

Same data
set with
different
sizes

No MLP Several local
optimization

For example, robotic
controls; drug discovery;
language translation; and
signal integrity problem

Parallel
(synapse
depends on
data types)

Non-
Euclidean
data
structure

Graph (graph
domain)

Differed
data set
with
different
sizes

No GNN
(graphic NN)

Global optimization For example, auto
random image
recognition; molecular
drug discovery; molecular
fingerprint analysis; and
phase transitions in
glasses

Parallel
(synapse
depends on
nodes)

Structured
data

Euclidean
data
structure

Image/pattern
(image domain)

Same data
set with
same size

No MLP, CNN,
and RNN

Local (MLP, CNN),
global
(RNN, CNN)/

For example, recognition
cat and dog

Parallel
(synapse
depends on
pixel)

Sequential
data
structure

Sequential (time
domain)

Same data
set with
different
sizes

Yes RNN
(recurrent
NN), training
among somas

Global optimization For example, stock
market, relationships
among stocks A/B/C
matters

Serial

Binary pulse
sequence
(spatiotemporal
domain)

Same data
set with
different
sizes

Yes SNN, event
sequence is
important

Local/global
optimization

For example, associated
learning process

Serial
(synapse
depends on
data types)
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96.19%. The results show that more than two orders of

magnitude has better power efficiency and one order of

magnitude has better performance density compared with

Tesla V100 GPU. The CNN architecture for the model was

employed to recognize the image data (LeCun et al., 2015; He

et al., 2016). In addition, image-processing-related tasks, such as

image segmentation and object detection (Ren et al., 2015), image

classification (Simonyan and Zisserman, 2014), video tracking

(Fan et al., 2010), and NLP (Karpathy and Fei-Fei, 2015) are also

still inseparable from CNN architecture.

4.2.2 Graph data structure
In computer science, a graph is a data structure consisting

of two parts: vertices and edges. A graph can be described by the

set of vertices and the edges it contains, which is a data structure

that models the relationship between nodes and nodes. Graph

data consist of nodes and undirected edges with label

information, which are also the only non-Euclidean data in

ML. Graph is the disorder, and can express starting and ending

points without clear information. Graphs can represent many

things—social networks, molecules, etc. Nodes can represent

users/products/atoms, and edges represent connections

between them, such as following/usually buying/keying at

the same time as the connected product. A social network

graph may look like this, where the nodes are users and the

edges are connections. There are two main types of graphs:

directed graphs and undirected graphs. In a directed graph,

there is a direction of connections between nodes; in an

undirected graph, the order of connections does not matter.

A directed graph can be either unidirectional or bidirectional

(as listed in Table 3).

Therefore, graph data structures are suitably processed in

GNNs (Henaff et al., 2015; Niepert et al., 2016; Veličković et al.,

2017), which analyze and operate on aggregated information

between neighboring nodes in each layer. The node classification

is a typical application with GNN architecture, each node in the

graph is associated with a label and we are required to predict the

label of unlabeled nodes. GNNs have been applied to broad

aspects, including the modeling of molecular drug discovery

(Torng and Altman, 2019), molecular fingerprint analysis

(Duvenaud et al., 2015), and phase transitions in glasses

(Bapst et al., 2020). In addition, graph network architectures

are highly specialized depending on the actual application, such

as graph generative networks (Ma et al., 2018), graph recurrent

networks (Li et al., 2015), and graph attention networks

(Veličković et al., 2017).

4.2.3 Sequence data structure
In addition to discrete data and images/patterns data, there

are also large-volume sequential data structure and sequential

problems. Sequence data are the data collected at different points

in time and reflect the state or extent of change of a thing,

phenomenon, etc. over time, such as time series data structures

and text sequences, but there is a temporal correlation between

data and a dependency between, before, and after for series data.

In addition, there are variables and responses among

mathematics and physics, for example, in dynamic

electromagnetic systems; when the discrete time steps are

small enough, these continuous electromagnetic change

phenomena can be represented by discrete time series without

going general. Moreover, both the input and output signals are

time series, and the output at a given time depends not only on

the input at the current moment, but also on the state of the

device at the previous time step (i.e., the electromagnetic

variation of the device).

For example, the rise and fall of a stock requires prediction

of the data at the next moment, so the output depends not only

on the input, but also on the memory (that is, the output at the

previous moment can act on itself again). RNNs feed the

network outputs back into the input layer, maintaining a

memory that accounts for the past state of the system, which

makes them ideally suited to model time-sequential systems

(Graves, 2013; Weston et al., 2014; Luong et al., 2015) as listed

in Table 3.

4.2.4 Spiking sequence data structure
Spiking sequence data structures are discrete spike signals

containing both spatial data information between layers and

temporal data information, that is, spatiotemporal data. In the

human brain, when any of the body’s senses are stimulated, the

neurons in the human brain produce an impulse signal

containing action information. There are two forms of

impulse signals, one is directly spiking sequence data, and the

other is the signals collected from the environment, which are

usually in the continuous and analog domain, and need to be

transformed into spiking sequence data first to serve as the inputs

to SNNs. These individual pulses are temporally sparse, each with

a high information content and approximately uniform

amplitude. Thereafter, the spiking sequence data structures are

well-suited to be processed by SNN architecture as listed in

Table 3.

In 1997, the SNN has been proposed as the third-generation

NN (Maass, 1997), and the SNN has been widely studied. A

million spiking neuron into circuit with a scalable

communication network and interface were integrated to

achieve multi-object detection and classification tasks

(Merolla et al., 2014). The Loihi chip was applied to solve

LASSO optimization problems with over three orders of

magnitude superior energy-delay product compared to

conventional solvers running on a CPU iso-process/voltage/

area (Davies et al., 2018). This provides an unambiguous

example of spike-based computation, outperforming all

known conventional solutions. SNNs have become the focus

of many recent applications in many areas of pattern

recognition, such as vision processing, speech recognition,

and medical diagnostics.
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4.2.5 Discrete data structure
Discrete data are a class of countable data that are

numerically independent and specific in nature for certain

specific values and lack correlation between the data. Typical

discrete parameters are, for instance, the device geometry such as

the height, the width and the period, or the permittivity and

permeability of a material. In addition, there are also many

properties of devices/objects described as discrete parameters,

which include device efficiency, quality factor, band gap, and

spectral response sampled at discrete points. Owing to lacking

correlation, they cannot be effectively studied by partial or related

parameter analysis and feature extraction. Discrete data

structures naturally interface with MLP (as listed in Table 3).

DNN was applied for the signal integrity problem. The

characters in signals are classified by a large-scale memristor-

based DNN in Shin et al. (2020), and a three-layer NN was

constructed and presented the classification accuracy of 99.4% by

using ReLU as the activation function. Using DNN training and

real measurements, the magnitude of the impact of

interconnection parasitic of memristor arrays problems (e.g.,

IR drop, crosstalk or ringing) on signal integrity was

determined. Similar research works have been carried out

(Chen et al., 2015; Lee and Kim, 2019). In addition, research

works on robotic controls (Abbeel et al., 2010) and drug

discovery (Lavecchia, 2015) to image classification (Krizhevsky

et al., 2012; Liu et al., 2016; Adam et al., 2018; Tang et al., 2020;

Liu and Zeng, 2022) and language translation (Wu et al., 2016)

have also been performed. These algorithms will only get more

powerful, particularly given the recent explosive growth of the

field of data science. The memristor-based DNNs can be applied

for XOR operation and digit recognition on the MNIST

(Modified National Institute of Standards and Technology)

(LeCun et al., 1998) data set. The classification accuracy is up

to 96.42% (Liu and Zeng, 2022).

5 Discussion (system level aspect)

The development and implementation of the BIC system is

an interdisciplinary work, which is determined by the design in

the device level, circuit level, up to architecture level and system

level as demonstrated in Figure 6. Upon the systematic review

on the aforementioned design levels, in this section, the

interactions between the system level and device/circuit level

and between the system level and architecture level are

discussed.

5.1 Cross-comparison on the device/
circuit level

For the BIC system design, the choice of materials and

devices in the integrated circuit significantly influences the

construction in the architecture and system levels, especially

in terms of power consumption, area density, computing

speed, and system accuracy.

FIGURE 6
Interaction among material/device, circuit, architecture, and system levels for the BIC system.
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In the device level, the ideal functional material for integrated

devices in BIC possesses the features with easy fabrication

possibility, excellent optical/electrical properties, high stability,

microstructural tunability, and controlled charge and promising

innovation. As reviewed in Section 2, the 0D materials have

excellent optical properties and can be fully valued in photonic

systems, but their stability is poor and the selection is narrow, so

the variety of 0D devices are also limited. Inevitably, 0D devices

face the context of fabrication challenges, especially among 0D

QDs, where there are obvious difficulties in obtaining quantum

coherence. Furthermore, in high-mobility semiconductors, the

number of quantum states is critical (Altaisky et al., 2016). An

important point of 1D materials is the general bottom-up growth

characteristics, with metal or semiconductor behavior, which

depends on its chiral vector, but single 1D materials have always

been a challenge in application and alignment. So, it is limited to

application in promising 1D materials with the lack of NVM

characteristics and preventing the inherent transverse geometry

of the dense cross switch array. The 2D materials present the

following unique features: first, the layer-by-layer exfoliation of

2D bulk materials can be achieved due to weak van der Waals

forces between adjacent layers; second, the charges can be

precisely controlled by the gate voltage to eliminate influences;

and third, the promising innovation can be achieved by

controlling the energy band structure. For instance, the 2D

memristor devices with excellent properties as shown in

Figure 6 can be served as ideal device candidates in the circuit

level in the BIC system. Furthermore, the integration of low-

dimensional materials (0D–1D, 0D–2D, and 1D–2D) (Sangwan

and Hersam, 2020) is regarded as an efficient method to avoid its

own problems.

In the circuit level, 2D memristor devices are considered as

an example; the ideal memristive devices for mimicking the

functional behavior of synapses and neurons in the NN

should possess low switching energy, small feature size, high

device conversion speed, low device variability (high

reproducibility), high endurance, and symmetrically

programmable conductance states (for possible linear weight

training), especially with the ability of VMM as demonstrated

in Figure 6. Particularly, the device reliability demonstrates a

strong impact on accuracy in BIC. For example, the artificial

neurons and artificial synapses are needed for processing and

transmitting the signals in the BIC system. Taking 2D

memristors as an example, as reviewed and illustrated in

Table 2 in Section 2, the 2D memristors have many options

for implementing synapse devices, but very few for neuron

devices, which is closely linked to the choice of functional

materials used as the switching layers. It proves that the

working principle of devices cannot be separated from the

structure and properties of the material. The application of

the same materials to devices with different working

principles results in very different sets of voltages and

currents, which also determine the magnitude of power

consumption. Therefore, the role of functional materials is

indispensable for the design of different types and switching

mechanisms of the memristive devices. It is the excellent

characteristics of the devices themselves that enable the

possible functional properties of the artificial neuronal circuits.

Note that, despite in general, the longer retention time is favored

in memory devices, the requirements of retention time can be

strongly dependent on the targeted building blocks in the BIC

system. The artificial synaptic devices based on 2D MoS2/

graphene memristors were constructed and exhibited essential

synaptic behaviors, especially excellent retention characteristics

of 104 s (Krishnaprasad et al., 2019), which is attributed to the fact

that synapses present long data retention after electrical

stimulation. However, as for the artificial neuron based on a

diffusive memristor, after generating the signal, it quickly

resumes its initial state to wait to respond to the next signal.

Thus, a shorter retention performance should be presented

(Wang et al., 2018; Du et al., 2021b).

The energy cost is crucial in the performance evaluation of

the BIC system, especially the energy consumption generated per

synaptic events. In numerous reports, the energy consumption of

CMOS-based artificial synapses is at ~nJ per event level (Painkras

et al., 2013). However, it is easy for memristive artificial synapses

to reach several ~pJ per synaptic event (Yu et al., 2011; Jackson

et al., 2013; Li et al., 2022), or even several hundreds of ~fJ (Xiong

et al., 2011; Pickett andWilliams, 2012), which is close to those of

the biological brain. As reviewed in Section 2, the application of

different materials to the devices shows different energy

consumptions, which is due to the properties of the materials

themselves. Particularly with 2D materials, which are used in

memristor devices, very low energy consumptions can be

obtained consistently [h-BN (Vu et al., 2016; Shi et al., 2018),

MoS2 (Knoll et al., 2013), HfSe2 (Li et al., 2022)]. Therefore, for

memristor devices, the choice of switching layer material has an

inestimable impact on the energy consumption of the device and

is also a potential direction. In addition to the devices category,

considering the huge number of synapses in the Mem–BIC

system, such as 105 synapses in the application (Kornijcuk

et al., 2016), the energy consumption of memristive synaptic

operations has been significantly reduced by several orders of

magnitude compared to conventional CMOS technology.

Furthermore, 2D memristor devices optimize the performance

of parallel VMM computing in terms of power consumption

(include operating current/voltage), and number of states,

providing a superior platform for the future BIC system.

5.2 Cross-comparison on the architecture
level

In addition to the device and circuit levels, the architecture

level plays a crucial role in the BIC system as the NN architecture

is a direct reflection of the processing requirements in big data
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flow. Despite the optimized energy cost per switching event or

synaptic event in the device/circuit level, more significant power

gain can be found in the architecture level in NN architectures

with comparable data size/representation. Note that the overhead

design for controlling memory blocks, that is, the circuit design

for data movement will further influence the energy dissipation

in the architecture level.

Table 3 summarizes the features of data structures for mostly

applied data sets in different application scenarios. For

unstructured data, limited NN structures can be used to

process it directly, showing inconsistencies in the data set and

data size. Specifically, discrete data structures lack tight

correlation between data and have no timeline. In the field of

neuromorphic computing, the graph is the only non-Euclidean

data structure, which presents different data sets and data sizes.

For structured data, there are strong correlations between data,

such as image/pattern with positional correlations, and

sequential data and pulse sequences with temporal and logical

correlations. Therefore, it is possible to capture the main features

of the data while processing this type of data, thus reducing the

dimensionality of the data and simplified NN to obtain an

efficient system. In particular, the types of data associated

with time are becoming more and more abundant (such as

brain signals, stock data, gross domestic product data, and

business cycles), and the requirements for NNs will also increase.

Based on the aforementioned summary of different data

structures and characteristics, MLP is suitable for discrete data

lacking correlation between data and having no timeline in

unstructured data. All outputs from the last layer are inputs

to the next layer, and all data information has a logical

relationship with adjacent layers. GNNs may belong to a class

of NN architectures, especially tailored for this purpose, and thus

are widely employed to process the graph, which is the only non-

Euclidean data structure in the field of neuromorphic computing.

CNN, RNN, and SNN can be applied for processing structured

data, including image/pattern with positional correlations,

sequential data, and pulse sequences, with temporal and

logical correlations. CNNs include unique internally sharable

volume and pooling layers, which reduce the dimensionality of

the data and simplify the NN. For RNNs, the unique feature is the

temporal correlation, where the output of the previous moment

can be fed back and applied to the current moment, which works

well for data with strong temporal correlation (such as brain

signals, stock data, gross domestic product data, and business

cycles). The most obvious feature of the SNN is that it most

closely resembles human brain signaling and processing and is

ideally suited to impulse signals similar to those of the human

brain. It is clear from Table 4 that structured data such as images/

patterns are common in practice. There is also more than one

type of NN used to process these data, including CNNs, RNNs,

and their variants, while for discrete data and graph data, there

are very few practical applications of BIC based on memristors.

After specifying NNmodels based on different data types, the

desired behaviors for artificial synapses and neurons deserve

more attention. The ideal memristive devices for artificial

synapses and neurons should possess low switching energy,

small feature size, high device conversion speed, low device

variability (high reproducibility), high endurance, and

symmetrically programmable conductance states. For distinct

NN architecture models, which in general also correspond to

different data structures, there are significant differences in

architectures. Not only does the data input require more pre-

processing units, but the structure is also adjusted to the

complexity of the data during processing, which inevitably

causes latency in the processing of the data. As NN

requirements increase and structures become more complex, it

TABLE 4 Comparison of performances (accuracy and power consumption) of different NNs (different sizes) depending on different data structures.

Data structure NN Accuracy (%) Power (mW) Size (no.
layer)

Application Reference

Image CNN 96.2 7.44 7 MNIST image recognition Yao et al. (2020)

Pattern CNN 94.6 306.70 4 Image classification Cai et al. (2019)

Pattern MLP (DNN) 96.5 2.180 4 Pattern recognition Liu and Zeng (2022)

Image MLP (DNN) 94.6 100.60 5 Pattern recognition Liu et al. (2016)

Discrete sequences MLP (DNN) 99.4 N/A 5 Signal integrity Shin et al. (2020)

Pattern RNN (LSTM) 96.1 312.40 3 Pattern recognition Smagulova et al. (2018)

Pattern RNN (LSTM) 99.0 255.80 3 Pattern recognition Adam et al. (2018)

Time sequences RNN (LSTM) 95.0 105.90 3 Forecasting problem based on the Keras model Smagulova et al. (2019)

Time sequences RNN (RC) 99.6 0.05 3 Temporal signal processing Zhong et al. (2021)

Time sequences RNN (RC) 99.2 0.30 3 Temporal data classification and forecasting Moon et al. (2019)

Spike sequences SNN 89.1 N/A 4 MNIST classification Kim et al. (2021)

Spike sequences SNN 90.0 2.90 3 Handwritten digit recognition Nowshin et al. (2022)
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is inevitable that devices and circuits are added to the processing

unit module, which directly challenges their feature size, device

conversion speed, and device variability. For the same

architecture, the data type is fixed, but the volume of data

varies, so the number of NN layers is not the same. Latency

will occur as data are processed in layers and passed between

layers. The trade-off with other performances for devices and

circuits naturally occurs. Consequently, NN models with distinct

complexity and the volume of data should be considered with the

desired behaviors for artificial synapses and neurons.

Furthermore, the BIC system is designed for dealing with the

data-centric computing tasks. The ideal BIC system should

demonstrate one or more excellent performance metrics such

as high accuracy, low power consumption, low latency, and

miniaturization to complete computing tasks. This requires a

high level of system integration, minimal area, and high

computational speed, which also implies good parallelism and

depends directly on the design and requirements of the device

and circuit levels. With short computation latency, the data flow

should be transmitted in a very timely manner during system

operation. Accuracy cannot be ignored in the practical

application of BIC systems, as any other parameter that is

well-maintained will serve the requirements of the final

application, which places high demands on the reliability,

retention, endurance, and uniformity of the circuit level and

device level.

Table 4 summarizes the performances, including accuracy

and power consumption, of the various applications using

different sizes of NN for different data types. The accuracy

based on CNN architecture is significantly the highest when

dealing with the same data structure among them, which is due to

the convolution and pooling operations in the structure, which

drastically reduce the complexity of the data, thus guaranteeing

high accuracy and low power consumption. However, the MLP

itself is weak in terms of accuracy due to the structure of fully

connected layers, which results in a large and complex amount of

data, and its size (number of layers) is generally large. Little has

been reported in terms of power consumption, which may be

attributed to its structure and the amount of data that inevitably

leads to excessive power consumption. It is worth noting that

RNNs have relatively low accuracy when dealing with the pattern

data structure, and the size of NNs is small, but the energy

consumption is very large compared to that of CNNs and MLP.

However, it is clear that when RNNs process time sequence data

structures, the accuracy is high, the power consumption is small,

and the size is also small. As the third-generation NN, the SNN

has apparently the lowest accuracy in processing the spike

sequence data structure, and little has been reported about

power consumption; a recent study on it reported that energy

consumption is very low and the size is the same as that of the

RNN. Therefore, it has to be said that for the choice of NN in the

architecture level, the input data structure plays a key role in the

BIC system. In other words, the architecture level can improve

the efficiency of the system by determining the NN structure of

the system through the type of data structure, but there is limited

scope for optimizing the efficiency of the system in this way.

The area is an important efficiency metric of the system and

depends on both the device and circuit levels, as well as on the

NN architecture structure and the number of layers in the NN.

The different devices such as transistors, memristors, or

memtransistors directly determine the size of the area in

design and production. Numerous studies have shown that

due to their structure and characteristics, memristors can

achieve better properties in smaller area sizes than

transistors. Therefore, the same effect naturally exists for the

circuit level consisting of devices. In addition, the area size of

the circuit also depends on the functionality that the

architecture is trying to achieve and the number of modules

increases or decreases to a greater or lesser extent. As the

architecture depends on the data structure, complex data

structures naturally require more complex architectures and

more layers of NNs, and the area is naturally larger. On the

other hand, for smaller and simpler data structures, no complex

architecture and NN numbers are required, and the area size is

naturally reduced.

5.3 Challenges and perspectives

First, taking the advantages of layered controllable

structures, charge, and energy level controllability, 2D

materials will offer many opportunities and possibilities in

current neuromorphic computing and next-generation neural

network computing. However, there are challenges with high-

quality two-dimensional films and their further stable

modification by doping. So, 2D material preparation

methods and more efficient doping are the promising

direction. Aiming for high-performance 2D devices, small

sizing and excessive drive currents due to high interfacial

resistance are still challenging issues at present, as well as

difficulties in the preparation of heterojunction arrays. There

are therefore many opportunities for the control of multiple

aspects of device structure contact surfaces and packaging,

phase engineering, or self-alignment techniques and

heterogeneous 3D and 2D structures. In the circuit level,

these challenges and opportunities are also presented,

where minimal size and low energy consumption due to

low operating currents and voltages have always been the

focus of our efforts. In the architecture level, although a

variety of NN architectures exist for different data types,

there are still significant challenges and opportunities for

efficient execution of operations. At the system level, good

energy efficiency and area are always important, but there are

still many challenges based on the different levels mentioned

earlier, which result in high energy consumption, low area

efficiency, and low throughput. Consequently, these
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challenges exist so that more opportunities are given to us to

commit to them for the sake of optimizing with energy

efficiency, minimal size, area, etc.

6 Conclusion

Consequently, the advances for the development of BIC

systems with respect to the perspective of a system designer are

reviewed in this work. For the four levels from the device

technology level and circuit level, up to architecture and

system levels, not only are the interactions among them

discussed but the challenges and perspectives of each level

are also elaborated in the end. Particularly, the NN

architecture determined by the data structures centered on

big data flows in application scenarios are sorted out

meaningfully. This review can serve in the future for further

development of the optimization of the BIC system design.
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