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Liquid biopsy, the analysis of body fluids, represents a promising approach for

disease diagnosis and prognosis with minimal intervention. Sequencing cell-

free RNA derived from liquid biopsies has been very promising for the diagnosis

of several diseases. Cancer research, in particular, has emerged as a prominent

candidate since early diagnosis has been shown to be a critical determinant of

disease prognosis. Although high-throughput analysis of liquid biopsies has

uncovered many differentially expressed genes in the context of cancer, the

functional connection between these genes is not investigated in depth. An

important approach to remedy this issue is the construction of gene networks

which describes the correlation patterns between different genes, thereby

allowing to infer their functional organization. In this study, we aimed at

characterizing extracellular transcriptome gene networks of hepatocellular

carcinoma patients compared to healthy controls. Our analysis revealed a

number of genes previously associated with hepatocellular carcinoma and

uncovered their association network in the blood. Our study thus

demonstrates the feasibility of performing gene co-expression network

analysis from cell-free RNA data and its utility in studying hepatocellular

carcinoma. Furthermore, we augmented cell-free RNA network analysis with

single-cell RNA sequencing data which enables the contextualization of the

identified network modules with cell-type specific transcriptomes from the

liver.
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Introduction

Hepatocellular carcinoma (HCC) is the most common form of primary liver

cancer accounting for almost 700,000 deaths worldwide annually, making it one of

the leading causes of cancer-related deaths worldwide (Patel et al., 2015; Black and

Mehta, 2018). Treatment of HCC represents a challenge due to late diagnosis of the

disease (Patel et al., 2015) further increasing the need to improve diagnostic

methods. As direct tissue sampling from the liver is hard to conduct, less
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invasive procedures are needed. Liquid biopsy represents a

promising alternative to invasive tissue biopsies in particular

for cancer diagnosis as it enables the study of cell-free (cf)

nucleic acids in the blood, which includes cfDNA and various

cfRNAs (e.g., protein-coding, lncRNA, microRNA, etc.).

Since the sources of the extracellular transcriptome are not

only blood cells, liquid biopsies represent a way to gain

insights into gene expression changes in solid tissues

without the need for surgical intervention (Vorperian

et al., 2022). In fact, a number of HCC liquid biopsy

studies have already been conducted indicating the

potential of this approach for HCC diagnostics (Qu et al.,

2019; Labgaa et al., 2021; Zhu et al., 2021; Yang et al., 2022).

An underexplored way of analyzing the rich data obtained

from sequencing liquid biopsy-derived cfRNA liquid biopsy

is weighted gene co-expression network analysis (WGCNA).

WGCNA tries to find genes that have correlated expressions

and aims to build sets of such genes which are named

modules. This correlation indicates that linked genes are

likely part of a shared regulatory mechanism in the cell. In

comparison to the frequently used differential gene

expression analysis the approach offers additional insights

by incorporating information about the relationship between

genes detected in a given sample. The study of genes present

in a module can also generate hypotheses about the function

of a previously undescribed gene via the concept of “guilt by

association”. Finally, modules can be correlated with

phenotype traits and by further studying the module with

a high correlation with a trait of interest gain a better

understanding of the molecular underpinnings of the trait

itself.

To date, many studies have focused on WGCNA analysis of

bulk or single-cell RNA (scRNA) sequencing data from tissue

samples. However, WGCNA is only beginning to be applied to

cfRNA data. Hence, we performed WGCNA analysis on cfRNA

data derived from the blood of HCC patients. We have found

cfRNA-derived network modules which strongly correlate with

the disease trait. Pathway analysis was performed to gain further

insights into the biological functions that are associated with the

discovered modules. We further validate the robustness of our

findings in an independent cfRNA dataset from HCC patients.

Lastly, we leveraged single-cell RNA sequencing data to gain

insights into potential cellular sources of cfRNA network

modules.

Materials and methods

Data preprocessing of cell-free RNA
datasets

The liquid biopsy datasets were generated by Zhu et al.

(2021), Li et al. (2018) and were obtained from NCBI Gene

Expression Omnibus (GEO) under accession numbers

GSE142987 and GSE100207 respectively (Table 1). The

dataset GSE142987 contained RNA sequencing data of plasma

cell-free total RNA (cfRNA) from 30 healthy donors and

35 hepatocellular carcinoma patients (Table 1). The detailed

steps of sample collection, processing and data analysis are

described in the corresponding paper (Zhu et al., 2021). The

final count matrix which served as input for further analysis

containing raw reads of all transcripts not mapping to the rRNA

database was deposited in GEO. After acquiring the count

matrix, the data was prepared for further analysis in

WGCNA. To that end, the read count matrix and the

accompanying metadata file were used to construct a

DESeqDataSet object with the function

“DESeqDataSetFromMatrix” from R (version 4.1.1) (R Core

Team, 2021) package DESeq2 (version 1.34.0) (Love et al.,

2014). Genes with fewer than five normalized reads in 10% of

the samples were filtered out. The data was variance stabilized (as

recommended inWGCNA FAQ) and exported with the function

“getVarianceStabilizedData” from the package DESeq2. The final

dataset consisted of 9,200 genes and 65 samples.

The second cfRNA dataset generated by Li et al. (2018)

contained RNA sequencing data of blood exosomal total RNA

(exoRNA) from 21 hepatocellular cancer patients (Table 1). The

detailed steps of sample collection and processing are detailed in

the corresponding paper. The raw sequencing files (.fastq.gz)

were deposited in GEO and were downloaded using the tool

“fasterq-dump” from the NCBI SRA-Toolkit (version 2.11.0)

(SRA Toolkit Development Team, 2022). Next, the sample files

were mapped to the human reference genome (build GRCh38)

with STAR package (version 2.7.8a) (Dobin et al., 2013) using the

default parameters. The read count matrix was generated by

utilizing the function “featurecounts” from the Subread package

(version 2.0.1) (Liao et al., 2014) with the parameters −p and −s 1.

Next, the data was imported into DESeq2, filtered as already

described and exported after variance stabilization. The final

dataset contained 11,485 genes and 21 samples.

TABLE 1 Overview of the RNA sequencing datasets used in the current study.

Record Data source Platform Healthy samples HCC samples References

GSE142987 Blood (cfRNA) Illumina HiSeq X Ten 30 35 Zhu et al. (2021)

GSE100207 Blood (exoRNA) Illumina HiSeq 2000 — 21 Li et al. (2018)

GSE115469 Liver (scRNA) Illumina HiSeq 2500 5 (8,444 cells) — MacParland et al. (2018)
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Data preprocessing of the single-cell RNA
dataset

The single-cell RNA (scRNA) sequencing of liver tissue

biopsies was carried out by MacParland et al. (2018) and

deposited in GEO under the accession number GSE115469

(Table 1) and contained quality filtered cell-type annotated

single-cell sequencing data containing 8,444 cells obtained

from five healthy human liver donors. The dataset was used

as input for the R (version 4.1.2) package Seurat (version 4.1.0)

(Hao et al., 2021). Subtypes of hepatocyte, T cell, liver sinusoidal

endothelial cell (LSEC) and macrophage were aggregated for

each cell type respectively in order to capture the most complete

transcriptomic landscape of each cell type. Next, the data was

normalized and scaled using the Seurat functions

“NormalizeData” and “ScaleData” respectively. UMAP

dimensional reduction was run with the Seurat function

“RunUMAP” using the 5,000 most variable genes. Afterwards,

the data was prepared for analysis with WGCNA. As WGCNA

was originally developed for the analysis of bulk RNA sequencing

data, the scRNA sequencing data was transformed for single-cell

WGCNA analysis as previously described (Morabito et al., 2021).

Aggregation was carried out on a per cell type basis using the

“construct_metacells” function from the R package scWGCNA

(version 0.0.0.9000) (Morabito et al., 2021). Hepatic stellate cells

were excluded from this step and further downstream analysis

due to very low number of cells. The k parameter of the

“construct_metacells” function was set according to the

number of cells that each cell type contained: eight in the case

of fewer than 300 cells and 20 otherwise. Thus, on average less

than 10% of cells were shared between pairedmetacell constructs.

In the end, the transformed data consisted of 20,007 genes

and 5,266 cells corresponding to 10 cell types: LSECs (355), NK-

like cells (291), cholangiocytes (101), erythroid cells (71),

hepatocytes (2,230), macrophages (704), mature B cells (105),

plasma cells (296), portal endothelial cells (178) and T cells (935).

The final data was normalized, scaled and used for UMAP

dimensionality reduction as already described. Final plots were

generated using the function “DimPlot” from the package Seurat

and the R package ggplot2 (version 3.3.6) (Hadley, 2016).

Gene co-expression network
construction

Variance stabilized cfRNA dataset (Zhu et al.) was used as

input for WGCNA (version 1.69) (Langfelder and Horvath,

2008). Outlier samples were detected by using the base R stats

package function “hclust” with method = “average” and

WGCNA function “cutTreestatic” with parameters

cutHeight = 100 and minSize = 2. This resulted in the

removal of six samples (three healthy and three cancer).

Ensembl gene IDs were converted to HGNC (HUGO Gene

Nomenclature Committee) symbols using the function

“getBM” from R package biomaRt (version 2.50.0) (Durinck

et al., 2005). A final matrix of 59 samples and 9,038 genes was

used for network construction. Here, to pick a suitable power for

WGCNA analysis the function “pickSoftThreshold” was used

from the package WGCNA with parameter networkType =

“unsigned”. Based on the derived plots generated by R

package ggplot2 (Supplementary Figure S1A) and the

recommendations from the WGCNA manual a power of six

was chosen here where it achieved both scale-free topology and a

suitable number of mean connectivity. The construction of

modules was comprised of the following steps:

• Building an adjacency matrix using the function

“adjacency” from the package WGCNA with parameters

power = 6 and type = “unsigned”,

• Building a Topological Overlap Matrix (TOM) using the

function “TOMsimilairty” from the packageWGCNAwith

parameter TomType = “unsigned”,

• Performing hierarchical clustering using the function

“hclust” from the R base package stats with parameter

method = “average”,

• Identification of modules using the function

“cutreeDynamic” from the package dynamicTreeCut

(version 1.63-1) (Langfelder et al., 2008) with parameter

minClusterSize = 30 and deepSplit = 2,

• Numeric labels were converted into colors using the

function labels2colors from the package WGCNA and

similar modules were merged using the function

“mergeCloseModules” from the package WGCNA with

parameter cutHeight = 0.2.

For the exoRNA dataset (Li et al.) no outlier samples were

detected. The same steps were conducted as already described

with the exception of the parameter: power = 8 (Supplementary

Figure S1B). Plots describing the number of genes in cfRNA and

exoRNA modules were generated using the R package ggplot2.

Gene connectivity per module, defined as the sum of the

adjacency to other genes of the same module, was calculated

using the WGCNA (version 1.71) function “softConnectivity”

with the parameter power set to six for cfRNA and eight for

exoRNA datasets. Top 50 most connected genes per module are

displayed in Supplementary Material S1 (cfRNA) and

Supplementary Material S2 (exoRNA).

Module-trait associations

To calculate the module associations with sample traits, first

cfRNA module eigengenes were computed with the function

“moduleEigengenes” from the package WGCNA. Then Pearson

correlation values were computed between module eigengenes

and sample traits (“age,” “disease_state,” and “gender”) with the
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WGCNA function “cor.” In the case of “disease_state” trait,

healthy samples were denoted as “0” and cancer samples as “1”.

For the trait “gender” male samples were denoted as “0”, while

female samples as “1”. Student asymptotic p-values were

calculated with the function “corPvalueStudent” from the

package WGCNA and corrected for multiple testing using the

base R function “p.adjust” with method = “fdr” (Benjamini and

Hochberg, 1995). Finally, a heatmap was constructed using the R

package ggplot2. Top hub genes were detected by using the

WGCNA function “chooseTopHubInEachModule” with

parameters power = 6 and type = “unsigned”.

In the exoRNA dataset as all the samples originated from

HCC patients, module-trait association was not performed. In

the cfRNA dataset, the grey module which contains unassigned

genes was removed from further analysis with the WGCNA

function “removeGreyME”.

Module membership vs. gene-trait
significance analysis

To generate scatterplots of cfRNA module membership and

gene-trait significance correlation, module membership which

describes the closeness of genes to individual modules, was

calculated by conducting a Pearson correlation of gene

expression values with module eigengenes with WGCNA

function “cor”. Gene-trait significance was calculated by

conducting a Pearson correlation between gene expression

values and the trait “disease_state” with the function “cor”

from the package WGCNA. Scatterplots were generated with

the R package ggplot2.

Module preservation analysis

To calculate the preservation statistics of cfRNA modules

(reference data) in the exoRNA dataset (test data) the function

“modulePreservation” from the package WGCNA was

employed. The function by random permutation of module

assignments in the test data calculates a composite Zsum

statistic which itself is composed of Zconnectivity and

Zdensity statistics, denoting the preservation of

interconnectedness of module nodes and preservation of

module connectivity patterns. A detailed description of the

method is available in the corresponding paper (Langfelder

et al., 2011). The function was used with the parameters

nPermutations = 100, randomSeed = 1, quickcor = 0,

maxModuleSize = 5,000, and maxGoldModuleSize =

5,000 where the value 5,000 was chosen based on the largest

module of the reference data. The same steps were taken to

calculate module preservation statistics of exoRNA modules in

cfRNA dataset with maxModuleSize = 5,500 and

maxGoldModuleSize = 5,500. The grey (unassigned genes)

and gold (random sample of network genes) modules were

left out of the visualization. The results were visualized with

the R package ggplot2. For better visualization, values were

pseudo-log transformed.

For module preservation analysis of cfRNA modules in cell-

type specific scRNA datasets, the WGCNA function

“modulePreservation” was employed as already described with

maxModuleSize and maxGoldModuleSize set to 5,000. The

analysis was conducted with 5,000 most variable genes of each

cell-type specific dataset which were computed as already

described. The grey and gold modules were left out of the

visualization since they are not informative as described

above. Same steps were taken to calculate the preservation of

exoRNA modules in cell-type specific scRNA datasets with the

parameters maxModuleSize = 5,500 and maxGoldModuleSize =

5,500. Results were visualized using R package ggplot2.

Module visualization

In order to visualize the identified modules, the function

“exportNetworkToCytoscape” from package WGCNA was used

with parameter threshold = 0.1 to export the modules consisting

of 30 genes with the highest intramodular connectivity and filter

out genes with adjacency threshold smaller than 0.1. Next, the

exported modules were visualized with the software Cytoscape

(version 3.9.1) (Shannon et al., 2003). In Cytoscape the degree of

opacity of connections between genes (nodes) was set according

to the weights of the connections (edges) as calculated by

WGCNA. The top hub genes of each module, which were

generated as already described, were also highlighted.

Functional pathway enrichment analysis

Finally, the genes of cfRNA and exoRNA modules (cf-blue, cf-

turquoise, cf-purple, cf-yellow, exo-brown) were used for Reactome

(a manually curated database of functional pathways (Gillespie et al.,

2022)) pathway enrichment analysis with the R (version 4.1.2)

package ReactomePA (version 1.38.0) (Yu and He, 2016). For

compatibility with the ReactomePA package, gene symbols were

converted to Entrez gene IDs with the function “select” from the R

package AnnotationDbi (version 1.54.1) (Pagès et al.). The

enrichment analysis was carried out by using the ReactomePA

function “enrichPathway” with parameters readable = “T” and

pvalueCutoff = 0.05.

Pathway enrichment analysis of the same cfRNA and

exoRNA modules was also carried out with the KEGG (Kyoto

Encyclopedia of Genes and Genomes (Kanehisa et al., 2021)) and

WikiPathways (Martens et al., 2021) databases using the

functions “enrichKEGG” and “enrichWP” of R package

clusterProfiler (version 4.2.2) (Wu et al., 2021) respectively.

The results were visualized with the R package ggplot2.
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For all cfRNA and exoRNA modules pathway enrichment

analysis was carried out using the “Biological Process” ontology

of GO (Gene Ontology) database (Gene Ontology Consortium,

2021) with the function “enrichGO” from the R package

clusterProfiler where the parameter “ont” was set to “BP.” Up

to five most significant results are displayed in Supplementary

Material S3 and Supplementary Material S4 for cfRNA and

exoRNA modules respectively.

Results

Construction and visualization of
weighted gene co-expression network
analysis modules from hepatocellular
carcinoma cfRNA

We performed WGCNA analysis, in order to probe the gene

co-expression network of extracellular transcriptomes from the

blood of healthy control donors as well as HCC patients. The

analysis resulted in the identification of eight modules describing

gene networks (Supplementary Figure S2A). The resulting

modules varied greatly in size, containing between 158 (cf-

purple module) and 4,620 (cf-turquoise module) genes

(Supplementary Figure S2A).

In order to test which of the derived modules correlates with

patient traits, we performed a module-trait association analysis of

cfRNAmodules (Figure 1A).While using the age, gender and disease

state (cancer vs. healthy) as traits, we found that half of the detected

modules show a strong and significant positive correlation with the

disease state while two modules show a significant negative

correlation (Figure 1A). Next, we further examined the two

modules which displayed the highest (positive and negative)

correlation with the disease state of the patient in detail. When

we examined the relationship between how strongly a gene is

connected to a module (module membership) and its strength of

correlation with the disease state (Figures 1B,C), we saw a very high

correlation for both, the cf-blue as well as the cf-turquoise module.

This indicates that for example in the case of the cf-turquoisemodule,

genes with a high module membership are also very strongly

associated with HCC in the blood of patients.

Next, we investigated which biological pathways the cf-blue

and cf-turquoise modules are associated with. The cf-blue

module was enriched for pathways involved in gene

FIGURE 1
WGCNA analysis of HCC cfRNA sequencing data. (A) Pearson correlation results of module eigengenes and sample traits. The color scale
reflects the strength of the correlation and the size of the point is proportional to the −log10 transformed corrected p-values. Modules are sorted
based on correlation strength with the trait “disease state.” Scatterplot of cfRNAmodules cf-blue (B) and cf-turquoise (C) gene module membership
and gene significance for the trait “disease state.” Gene module membership refers to Pearson correlation of gene expression values and
module eigengene; gene significance for the trait “disease state” refers to Pearson correlation of gene expression values and sample trait “disease
state”. The red line refers to linear regression fit.
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translation (Figures 2A,C, Supplementary Figures S3A,B). In

contrast the cf-turquoise module displays, besides enrichment

for RHO GTPase activity, pathways related to immune cell

activation such as neutrophil degranulation or platelet

activation (Figures 2B,D, Supplementary Figures S3C,D).

Strong module preservation across
datasets

Next, we wanted to test whether and to what degree the

modules identified in the cfRNA dataset (reference network)

were reproducible in another liquid biopsy (test network). Hence,

we performed a module preservation analysis of the cfRNA

modules in an independent dataset (Li et al., 2018). In this

dataset, RNA from blood exosomes derived from HCC

patients was isolated and sequenced (hereafter referred to as

exoRNA). Interestingly, the results of cfRNA module

preservation analysis in the exoRNA dataset showed strong

evidence of overall preservation (Zsum > 10) of almost all (7/

8) tested modules (Figure 3A). Only the cf-yellow cfRNAmodule

had weak to moderate overall preservation (Zsum > 2). As Zsum

is a composite statistic, we also visualized its main

components—Zdensity (density preservation) and

FIGURE 2
Visualization and pathway enrichment analysis of cfRNA modules cf-blue and cf-turquoise. Visualization of 30 most connected genes in
modules cf-blue (A) and cf-turquoise (B); degree of the opacity of connections is proportional to the weight of the connections; top hub gene of
each module is colored in yellow. Dot plot of pathway enrichment analysis results of cfRNA modules cf-blue (C) and cf-turquoise (D); point size
denotes the number of genes in each pathway; the color scale is proportional to the −log10 transformed adjusted p-value; GeneRatio describes
the proportion of genes found in each pathway relative to the total number of input genes found in the database.
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Zconnectivity (connectivity preservation) (Figure 3B). Zdensity

describes the interconnectedness of the module nodes in the test

network while Zconnectivity denotes the similarity of the

connectivity patterns of module nodes in the test network

compared with the reference network. The cf-turquoise

module from the cfRNA dataset showed strong evidence of

density (Zdensity > 10) and connectivity (Zconnectivity > 10)

preservation, while most other modules revealed stronger

evidence of preservation of the connectivity compared to the

density of the modules (Figure 3B). We also tested the module

preservation of the exoRNA modules (Supplementary Figure

S2B) in the cfRNA dataset by performing the reverse analysis

(Supplementary Figure S4). We again observed strong overall

preservation (Zsum > 10) of most (4/6) exoRNA modules in the

cfRNA dataset, indicating high reproducibility of gene network

modules obtained from liquid biopsies of HCC patients

(Supplementary Figure S3).

cfRNA module preservation across
transcriptomes of liver cell types

The composition of cfRNA in the blood represents a pool of

RNAs derived from several tissues and cell types (Vorperian et al.,

2022). Hence, changes in cfRNA between healthy and HCC patients

could reflect transcriptomic changes in several cell types. In order to

gain insights into the cellular sources of modules from cfRNA which

distinguish between healthy and diseased patients, we aimed at

leveraging single-cell sequencing data to test to which extent

cfRNA modules are preserved in different cell types of the liver.

We chose a dataset containing single-cell sequencing data derived

from healthy livers in order to detect cell-type specific transcriptomic

changes as a consequence of the disease (Supplementary Figure S6A)

(MacParland et al., 2018). Filtering out cell types with an insufficient

number of cells (Materials and Methods) resulted in the retention of

10 cell types which were robustly detected in the dataset (Figure 4A).

In order to test associations of cfRNAmodules, particularly modules

displaying strong differentiating ability between healthy and HCC

samples, with transcriptomic profiles of cell types found in the

human liver, we performed module preservation analysis using

modules identified in the previous analysis.

The results of module preservation analysis (Figure 4B)

showed strong overall preservation of the modules cf-blue, cf-

turquoise and cf-black in several cell types. Interestingly, the

module cf-blue, which showed high disease association, was

highly preserved in hepatocytes and LSECs. We also noticed

that the modules cf-purple and cf-yellow showed

preservation exclusively in hepatocytes and hence were

analyzed further by pathway enrichment analysis (Figures

4C,D, Supplementary Figure S5). We found an enrichment of

pathways related to fatty acid metabolism and mRNA

processing in module cf-purple and pathways related to

unfolded protein and heat shock response, antigen

presentation and interferon signaling in module cf-yellow,

indicating cellular stress likely related to pathological

alterations of the cells (Figures 4C,D).

FIGURE 3
Module preservation analysis of cfRNA modules in exoRNA dataset. (A) Scatter plot of overall preservation statistic (Zsum) of cfRNA modules in
exoRNA dataset and cfRNA module sizes. Red and green vertical lines represent weak to moderate (Zsum > 2) and strong (Zsum > 10) evidence of
module preservation respectively. Axes have been pseudo-log transformed. (B) Scatter plot of density (Zdensity) and connectivity (Zconnectivity)
preservation of cfRNA modules in exoRNA dataset. Red and green vertical lines represent weak to moderate (Zdensity > 2) and strong
(Zdensity > 10) evidence of module density preservation. Axes have been pseudo-log transformed. Red and green horizontal lines represent weak to
moderate (Zconnectivity > 2) and strong (Zconnectivity > 10) evidence of module connectivity preservation.
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In order to validate the module preservation in liver cell

types, we conducted the same analysis using exoRNA dataset

(Supplementary Figure S6B). Similar to the previously analyzed

dataset, we found an exoRNA module displaying high

preservation in particular in hepatocytes and LSECs which is

also enriched for RNA translation related pathways

(Supplementary Figures S6C–E). Thus, the combination of

WGCNA with single cell sequencing data was able to detect

strong liver-derived signals in the form of network modules with

high differentiating ability between healthy and HCC patients

and link these to certain cell types found in the liver.

Discussion

Early diagnostics of HCC is crucial for the management of its

progression and liquid biopsy is a promising tool for HCC

diagnostics. In order to better characterize HCC liquid biopsy

data, we conducted a weighted gene co-expression network

analysis (WGCNA). We were able to find modules and genes

of interest which could play a role in HCC liquid biopsy

diagnostics. In addition, we found that the results of our

study were reproducible in a second HCC liquid biopsy

data—further indicating the potential of liquid biopsy for

robust diagnostics. Furthermore, we augmented our study

with HCC liver single-cell RNA sequencing data which

augments traditional WGCNA analysis by linking gene

network modules to cell-type specific transcriptomes.

Most cfRNA WGCNA modules showed a strong and

significant correlation with the disease state of samples,

implying that liquid biopsy modules can be quite informative

about the health of the donor and the patient. Some modules also

displayed weaker and less significant correlations with age and

gender, in particular there was an inverse correlation between age

and disease state, gender and disease state. This can be explained

by the characteristics of the donors and patients that were

FIGURE 4
Module preservation analysis of cfRNA modules in scRNA data. (A) UMAP plot of scRNA metacells after aggregation of similar cells colored by
cell type. (B) Heatmap of cfRNA module preservation in cell-type specific transcriptomes; the color scale indicates the value of Zsum preservation
statistic. Pathway enrichment analysis ofmodules cf-yellow (C) and cf-purple (D). Point size denotes the number of genes in each pathway; the color
scale is proportional to the −log10 transformed adjusted p-value; GeneRatio describes the proportion of genes found in each pathway relative
to the total number of input genes found in the database.
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sampled in the original study (Zhu et al., 2021) wherein the

healthy controls had a higher mean age than HCC patients.

Similarly, we found that there were more male participants in the

HCC group compared to the healthy control group. When we

analyzed themost interconnected and highly correlatedmembers

of the modules which highly correlated with disease state, we

found numerous genes with known association with HCC,

including IMPDH2 (He et al., 2018), COL24A1 (Yan et al.,

2020), RACK1 (Cao et al., 2019), SNRPD2 (Liu et al., 2022)

and the hub genes RPL5 and TLK1 (Segura-Bayona et al., 2020;

Ye et al., 2022). A more comprehensive list of such genes can be

found in Supplementary Table S1.

Beyond providing lists of genes, WGCNA’s ability to uncover

relationships between detected genes is crucial for construction of

networks and pathways facilitating insights into biological functions.

Pathway enrichment analysis of the modules that correlated most

with the disease trait (cf-blue and cf-turquoise modules) revealed

enrichment of pathways generally involved with HCC progression.

This is exemplified by the enrichment of L13a mediated silencing of

ceruloplasmin expression in the cf-blue module. Ceruloplasmin is a

protein that is important for iron homeostasis and is mainly secreted

into the blood by the liver (Shang et al., 2020). Furthermore, it has

been reported to have a protective role inHCC (Shang et al., 2020). It

is thus noteworthy that although cfRNA in general mostly contains

blood cell derived RNA (Larson et al., 2021), WGCNA analysis is

able to detect signals derived from the liver. Module cf-blue was

enriched for pathways related to RNA translation which is known to

be dysregulated in HCC (Drozdov et al., 2012; Zou et al., 2019).

Another noteworthy pathway enriched in the cf-blue module was

“Viral mRNA translation” which may point towards hepatitis-B

virus (HBV) or hepatitis-C virus (HCV) infection in HCC patients.

The cf-turquoise module was most prominently enriched for

pathways involving Rho family GTPases as well as neutrophil

degranulation. Rho family GTPases regulate various cellular

functions (Xue et al., 2006) and play an important role in

HCC carcinogenesis and metastasis (Wang et al., 2013),

particularly GTPase RAC1 (Xue et al., 2006; Yang et al., 2010;

Wu et al., 2011; Wang et al., 2013; Bayo et al., 2021). Neutrophil

degranulation describes a process in which neutrophils release

granules that promote inflammation and immune response

(Othman et al., 2021). Neutrophils and their immune

activation through degranulation and release of neutrophil

extracellular traps (NETs) in the context of HCC is currently

an area of intense investigation since neutrophils present a

potential therapeutic target in HCC (Tang et al., 2021; Geh

et al., 2022). Our data indicate that neutrophils might not

only present a promising therapeutic target but also be an

important component for cfRNA diagnostics through liquid

biopsies.

As there is a high degree of both technical and biological

variability between blood liquid biopsy samples,

reproducibility of results remains an important

consideration (Yeri et al., 2017; Murillo et al., 2019;

Geeurickx and Hendrix, 2020; Tong et al., 2020). To that

end, we performed module preservation analysis to test if the

modules identified in the cfRNA dataset of Zhu et al. can also

be identified in the exoRNA dataset of Li et al. The results

showed evidence of preservation for all cfRNA modules, most

showing strong evidence of module preservation. A similar

analysis of exoRNA modules in cfRNA dataset again revealed

evidence of module preservation for all exoRNA modules

indicating the robustness of WGCNA based cfRNA analysis.

However, it is important to note that the number of available

cfRNA datasets for HCC is still small at this point. Thus, it

will be crucial to extend this analysis towards more datasets in

the future.

To gain more insight into the results obtained from the

WGCNA analysis, we leveraged the advantages of single-cell

RNA sequencing data such as the ability to decipher cell type

specific transcriptomes. We conducted a preservation

analysis of cfRNA modules in a scRNA sequencing dataset.

Our results indicate the highest preservation of cfRNA and

exoRNA modules in hepatocytes which can be explained by

the high prevalence of hepatocytes in the liver (Bogdanos

et al., 2013). Two cfRNA modules also showed preservation

only in hepatocytes and one of the modules was enriched for

pathways participating in fatty acid metabolism-a well

described characteristic of hepatocytes (Alhazzaa et al.,

2013; Alves-Bezerra and Cohen, 2017). While the other

module was enriched for pathways indicating cellular

stress and perhaps pointing towards viral infection, in

particular with the hepatitis-B virus (Seo et al., 2018; Li

et al., 2019; Baudi et al., 2021)—a known contributor to

the development of hepatocellular carcinoma (Maucort-

Boulch et al., 2018). Lipid metabolism and particularly

fatty acid metabolism dysregulation is a well described

characteristic of different cancers, including HCC

(Fernández et al., 2020; Hu et al., 2020). Specifically,

changes to lipid metabolism pathways involved in fatty

acid desaturation or generation of phosphatidylcholine are

associated with proliferating hepatocytes in HCC (Hall et al.,

2021). Finally, considering that cf-yellow and cf-purple

modules showed strong positive and negative correlation

with HCC respectively (Figure 1A) it is possible that

WGCNA was able to capture bidirectional gene expression

changes associated with HCC.

Interestingly we also detected a noticeable preservation signal

in liver sinusoidal endothelial cells (LSECs) in both cfRNA and

exoRNA modules. In both cases the modules with high LSEC

preservation were enriched for pathways relating to RNA

translation which was previously described as characteristic of

LSECs (MacParland et al., 2018). LSECs play a significant role in

HCC progression (Wilkinson et al., 2020; Yang and Zhang,

2021), produce extracellular vesicles (Azparren-Angulo et al.,

2021), are very permeable and in direct contact with the

bloodstream due to their endothelial nature (Shetty et al.,
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2018). Hence, while hepatocytes are understandably the main

focus of study in HCC, LSECs and the extracellular vesicles they

produce can represent a promising cell type for further

investigation as their transcriptomic changes in HCC

development might hold important diagnostic insights which

could be leveraged by liquid biopsy.

A crucial advantage of combining WGCNA with scRNA

sequencing is the ability to query liquid biopsy samples without

the need to rely on few disease markers which can be lowly

expressed and hence not detected in cfRNA. With the growing

accuracy and depth of various gene pathway databases, the

modules identified by WGCNA will become more informative

and specific, thus increasing the future potential of the method

for diagnostics. In general, relying on signatures and pathways

related to biological functions as identified through WGCNA

modules likely leads to more reliable diagnostics compared to

marker genes which might be sporadically detected.

In the future, we envision utilization of already widely

available scRNA datasets of healthy and malignant tissues

facilitating the diagnosis of liquid biopsy samples. Modules

can be detected in liquid biopsy samples and later linked to

cellular origins through preservation analysis which can then

motivate further directed medical examination. Still, much work

needs to be done, in order to improve cfRNA detection for

diagnostics. In particular, the amount of cancer-derived cfRNA

in the blood of patients might represent a potential bottleneck, in

particular for solid tumors. Here, technical improvements for

higher sensitivity of RNA detection e.g. from the field of scRNA

sequencing will likely benefit the cfRNA sequencing field.

Moreover, it should be noted that among all solid tissues,

liver is one of the most significant cfRNA contributing tissues,

suggesting that cfRNA diagnostics might be of particular interest

for detection of liver-related diseases (Larson et al., 2021).

In conclusion, in this study we showed cfRNA network

analysis provides an additional layer of information which can

be obtained through liquid biopsy. The combination of cfRNA

and scRNA analysis will further open new avenues of research

and our results show the great potential of scRNA sequencing

data for both cfRNA and network studies.
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