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Abstract: High tibial osteotomy (HTO) represents a sensible treatment option for patients with
moderate unicondylar osteoarthritis of the knee and extraarticular malalignment. The possibility of
a continuously variable correction setting and a surgical approach low in complications has meant
that the medial opening osteotomy has prevailed over the past decades. The objective of the present
study was to determine whether anteromedially positioned small plates are nevertheless forgiving
under biomechanically unfavourable conditions (overcorrection and lateral hinge fracture). In this
study, a simulated HTO was performed on composite tibiae with a 10-mm wedge and fixed-angle
anteromedial osteosynthesis with a small implant. Force was applied axially in a neutral mechanical
axis, a slight and a marked overcorrection into valgus, with and without a lateral hinge fracture in
each case. At the same time, a physiological gait with a dual-peak force profile and a peak load of
2.4 kN was simulated. Interfragmentary motion and rigidity were determined. The rigidity of the
osteosynthesis increased over the cycles investigated. A slight overcorrection into valgus led to the
lowest interfragmentary motion, compared with pronounced valgisation and neutral alignment. A
lateral hinge fracture led to a significant decrease in rigidity and increase in interfragmentary motion.
However, in no case was the limit of 1 mm interfragmentary motion critical for osteotomy healing
exceeded. The degree of correction of the leg axis, and the presence of a lateral hinge fracture, have
an influence on rigidity and interfragmentary motion. From a mechanically neutral axis ranging up
to pronounced overcorrection, the implant investigated offers sufficient stability to allow healing of
the osteotomy, even if a lateral hinge fracture is present.

Keywords: HTO; high tibial osteotomy; opening wedge; lateral hinge fracture; pseudarthrosis;
stiffness; failure; fixation plate; biomechanical study

1. Introduction

Osteoarthritis of the knee represents one of the most common joint diseases in adult-
hood worldwide [1,2] and occurs in the medial joint compartment in around 70% of cases [3].
This is often accompanied by a varus malalignment [4], in which there is a considerably
higher load on the medial compartment in the knee joint [5]. Even with normal leg align-
ment, there is not a strictly half load distribution on the two joint compartments of the
tibiofemoral joint during walking, but rather a predominantly medial load [6–8]. After the
exhaustion of conservative therapeutic measures, an established joint-preserving treatment
option is a medial open wedge high tibial osteotomy (HTO) for medial osteoarthritis caused
by varus malalignments of the knee [9–12], which can be used for symptomatic therapy
as well as to prevent secondary osteoarthritis. The aim of the high valgising medial tibial
osteotomy using an open-wedge technique is to alter precisely this mechanical axis in
the sense of a transfer from the degenerative medial compartment side to the unaffected
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lateral component [11,13]. In the opening valgus procedure, an osteotomy is placed on the
medial surface of the tibia approximately 25 mm below the tibiofemoral articular surface
and carefully, with the insertion of increasing wedges, the osteotomy gap is widened to
the desired correction angle [14]. The main complications, beside overcorrection [15] and
fractures of the lateral contralateral cortical bone (hinge fracture) [16], include non-union of
the osteotomy, as well as often a mechanical contact to the pes anserinus and the medial
collateral ligament [17]. In order to prevent non-union of the osteotomy gap as well as
loss of correction, the extent of interfragmentary motion and the resulting rigidity of the
HTO must be optimised. According to animal experiments conducted by Claes et al.,
an interfragmentary motion of up to 0.5 mm is ideal for the formation of a callus with
maximum mechanical rigidity [18]. Since interfragmentary movements occur upon loading
of the leg, despite the use of different fixation devices, investigations were devised with the
aid of artificial bone (third-generation Sawbones) to measure the interfragmentary motion
and the rigidity of HTO [19]. Here, when axial force was applied to the Fujisawa point at
62% [14,20], a long rigid plate (TomoFix R plate (Synthes, Oberdorf, Switzerland)) showed
the lowest interfragmentary motion and the greatest resilience towards a single loading,
as well as towards cyclic loading [19]. Further implants were tested, and it was found
that the thickness, shape, and rigidity of the plates play a major role in bone healing after
HTO [21–26].

The Activmotion® osteotomy plate used here (Newclip®, Haute Goulaine, France)
has a length 61,6 mm smaller compared to other implants, such as a TomoFix R plate with
115 mm, and is characterized by an anteromedial positioning to spare the pes anserinus [22]
instead of strictly medial. In addition, proximal fixation with a polyaxial screw allows
for customization of screw location into the subchondral bone. It is unclear to what
extent small size and atypical implant positioning in frontal plane have an influence on
interfragmentary motion, rigidity, and forgivingness towards a lateral hinge fracture. This
was to be elucidated in the present study.

2. Materials and Methods

Five fourth-generation composite tibiae from the company Sawbones (# ERP 3401,
Sawbones Europe AB, Malmö, Sweden), made of epoxy resin and glass fibre, were used to
produce the models. Both the anatomical dimensions and the biomechanical properties
of these artificial bones are roughly equivalent to the values for human bone given in the
literature [27].

The opening high tibial osteotomy was fixed anteromedially, using an anatomically
asymmetrically formed Newclip® Activmotion® osteotomy plate (Haute Goulaine, France)
with a length of 61.6 mm (titanium alloy, reference ATGP1-ST) and six locking screws with
a diameter of 4.5 mm. All measurements were performed on a servohydraulic testing
machine (Instron Prüfsystem 8874H1003, Instron, Darmstadt, Germany) with a biaxial
force transducer for axial and torsional loads (up to 10 kN, up to 100 Nm, precision 0.5%).
The machine was controlled using the software FTStartUP V.7.22 (Fast Track Start UP) and
Instron MAX V.9.2. (Multi axis test controller; INSTRON, Darmstadt, Germany).

In order to achieve a physiological force distribution on the tibial plateau of the model,
a plastic holder was fitted to its surface. This is connected to a round metal disc in which
three cones are incorporated to take up the force transmitter (Figures 1 and 2).

In order to determine the force distribution on the two joint components of the tibial
plateau, a round plastic disc of the metal disc fixed to the fixation device for force trans-
mission was reproduced with the corresponding cylindrical drill holes, and 50% of the
material weight was distributed on two precision laboratory balances. Then, the force
transmitter was placed in each of the three cavities to show the different alignments, and
mean values were determined from seven repetitions. Regular alignment produced a
percentage force distribution of 63% in the medial compartment, compared with 37% in
the lateral compartment. A balanced load distribution of 50% of the load on both joint
segments was measured in the case of moderate valgus alignment (VA1). In the case of
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pronounced valgus alignment (VA2), the load distribution was reversed to a percentage
load share of 38% in the medial and 62% in the lateral compartment. The application
of force via the medial hole corresponds to a loading in normal, regular leg alignment
(RA), over the central hole a moderate valgus alignment (VA1), and over the lateral hole a
pronounced valgus alignment (VA2).
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Five test models consisting of the above-mentioned materials were prepared in the
same way and by the same surgeon. Along previously inserted guide rails made of
Kirschner wires, a medial wedge removal [26] with a 10-mm base was performed with an
oscillating saw. Within the context of preliminary experiments, it was found that spreading
apart the osteotomy gap repeatedly led to failure of the lateral bone bridge, so that excision
of a bone wedge with a base of 10 mm was performed instead of spreading, to enable
comparability with other studies [14,19]. Then, to produce a clinically established biplanar
osteotomy, the tibial tuberosity was sawn around at 130◦ to the first osteotomy [14,28]. This
was followed by the alignment and fixation of the plate with screws in accordance with
the manufacturer’s recommendations and checking of the correct preparation in a CT scan
(Figure 3). After trials, the lateral hinge fracture was sawed in the course of the pre-existing
130◦ osteotomy.
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Figure 3. Showing the test specimen with Activmotion osteotomy plate. (Left) view from the front;
(centre) anterior–posterior radiograph; (right) mediolateral radiograph. The red dashed line shows
the position of the lateral hinge fracture in frontal plane.

A dual-peak force profile during one cycle was programmed (Figure 4), which cor-
responds to the vertical load during the stance phase when walking [29]. The maximum
load that acts in the knee joint during normal walking corresponds to around three times
the body weight [30–32], so a maximum load of 2.4 kN was applied in this study. A total
number of 10,000 cycles with a cycle duration of 1.6 sec was aimed for (a total of 267 min).
This number of cycles is based on the average total number of steps of an adult under
65 years of age per day, with an average of 9797 steps [33].

The three runs of the different alignment tests were initially performed (VA1, RA, VA2)
with an intact lateral bone bridge of 10 mm and then with a fractured bone bridge (VA1*,
RA*, VA2*). All six different test runs followed the same test protocol on five specimens.

The values are stated as mean ± standard error of the mean (SEM). Initially, graphs
were prepared to present the parameters measured over the number of cycles and extreme
values of the interfragmentary motion [in mm] and rigidity [in kN/mm] were calculated.
The rigidity corresponded to the gradient of the best-fit line of the force–distance function
(Figure 5). For statistical analysis with the aid of the program R, the Shapiro–Wilk test
and the Wilcoxon rank sum test for independent samples were performed. As it was
assumed that the data roughly follow a function of the type y = a(log x) + b, a regression
analysis was performed and the coefficient of determination R2 was determined. The level
of significance was set at 0.05.
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3. Results

There were no cases of implant loosening or failure. In one specimen, a lateral hinge
fracture occurred after 1100 cycles.

Interfragmentary motion showed a similar course in all test models (Figure 6). It
decreases over 10,000 cycles, with the greatest change at the beginning of the measurement.
All the measurements performed tended towards a certain small interfragmentary motion
without reaching a complete standstill of the system. Both the level of the means and
the maximum values of the motion at different alignments are significantly different
(p < 0.05). The average interfragmentary motion in RA was 0.668 mm ± 0.098, compared
with 0.409 mm ± 0.046 in VA1 and 0.630 mm ± 0.072 in VA2 (Table 1). In the case of a
“lateral hinge fracture”, in all alignments the interfragmentary motion was significantly
greater than in the case of intact contralateral cortical bone (p < 0.05) (Figure 7).
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Table 1. Showing the interfragmentary motion in [mm] of the cycles 1–10,000.

Min Max MW Median SD

RA 0.503 1.718 0.668 0.683 0.098
RA* 0.545 2.114 0.862 0.871 0.089
VA1 0.382 2.138 0.416 0.409 0.046
VA1* 0.437 1.891 0.518 0.510 0.060
VA2 0.475 2.517 0.630 0.616 0.072
VA2* 0.588 2.586 0.716 0.710 0.080

RA = regular alignment, VA1 = moderate valgus alignment, VA2 = pronounced valgus alignment, * = with lateral
hinge fracture, Min = minimum, Max = maximum, MW = mean, SD = standard deviation.
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The behaviour of rigidity shows a similar course in the different alignments and
defect situations. The graphic presentation showed a great similarity to the function
y = a(log x) + b (Figure 8). Both the level achieved and the mean value for rigidity
are at different levels in the different alignments and defect situations (Table 2). At
4.972 kN/mm ± 0.254, the highest mean rigidity was achieved in VA1, while VA2 at
3.277 kN/mm ± 0.301 and RA at 3.084 kN/mm ± 0.416 showed a lower rigidity. In the
presence of a “lateral hinge fracture”, the rigidities achieved in RA* at an average of
2.278 kN/mm ± 0.188 and in VA1* at 3.918 kN/mm ± 0.360 were significantly lower than
in the test models with intact cortical bone (p < 0.05) (Figure 9).

Table 2. Shows the rigidity of the cycles 1–10,000 in [kN/mm].

Min Max MW Median SD

RA 1.226 3.879 3.084 2.985 0.416
RA* 1.005 3.057 2.278 2.287 0.188
VA1 0.945 5.353 4.972 5.000 0.254
VA1* 1.135 4.452 3.918 4.016 0.360
VA2 0.866 3.723 3.277 3.324 0.301
VA2* 0.864 3.711 2.864 2.860 0.288

RA = regular alignment, VA1 = moderate valgus alignment, VA2 = pronounced valgus alignment, *= with lateral
hinge fracture, Min = minimum, Max = maximum, MW = mean, SD = standard deviation.
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4. Discussion

The main result of the present study is that interfragmentary motion is dependent
upon alignment in the frontal plane after HTO and that a lateral hinge fracture leads to an
increase in this motion.

The ideal degree of correction after HTO is the subject of considerable debate. A
knee aligned in excessive valgus can lead to problems in the patellofemoral joint and to
a rapid degeneration of the lateral joint cartilage, while a neutral alignment may lead to
progression of deformity, pain and early failure [34]. Alignment in the frontal plane is only
part of the important biomechanical factors in planning an HTO. In fact, planning must be
three-dimensional and should include posterior tibial tilt of the knee (slope) [35], patella
position [36], and medial ligament tension [15], among others.

Some studies have already shown that the cartilage pressure in the affected compart-
ment of the knee joint increases as soon as the mechanical axis is displaced [5,32]. The
simplified measurements of the force distribution on the tibial plateau with the aid of two
laboratory balances revealed that, even in regular leg alignment, a strictly fifty–fifty force
distribution on the two components of the tibial plateau does not occur and thus confirm
the results of previous studies [6–8,37]. While in Kumar et al. between 66% and 82% of the
load is carried on the medial compartment when walking [8], in Zhao et al. it is on average
55% [37]. The present study produced a medial load distribution between these two studies
of around 63% in regular alignment (RA). A balanced load distribution was demonstrated
in moderate valgus alignment (VA1), and, in the case of pronounced valgus alignment, the
force redistribution was even reversed to a loading of 62% in the lateral compartment. In
the study of Agneskirchner et al., the force was not applied strictly centrally, but through
the Fujisawa point at 62% of the mediolateral transverse diameter of the tibial head [19],
which corresponds to the model of moderate valgus alignment in the study presented here.

The smallest interfragmentary movements were observed in moderate valgus align-
ment (VA1), followed by a pronounced valgus alignment (VA2) and regular alignment
(RA). A possible mechanism could be derived biomechanically; the stiffness is the quotient
of the change in force to the change in displacement, i.e., in this test the ratio of maximum
cyclic force to interfragmentary motion. Since the applied cyclic force was the same for all
tests (2.4 kN), different stiffness values result in the deformation path, the interfragmentary
motion. As a consequence of indirect proportionality, the stiffness thus increases with
decreasing deformation and vice versa. For the tests, the force application points on the
force transducer were selected in such a way that the test conditions simulated regular,
moderate valgus and severe valgus alignment, which could also be confirmed on the basis
of the preliminary tests using two laboratory balances. The balanced force distribution
in VA1 on the medial and lateral tibial plateau could thus serve as an explanation for the
mechanically most stable alignment with high stiffness and low interfragmentary motion.
An interfragmentary motion of up to 0.5 mm is ideal for the formation of a callus with
maximum mechanical rigidity in animal experiments according to Claes et al. [18]. Only
small interfragmentary movements (approx. 0.2 mm) are necessary for the stimulation of
callus formation, and relatively large interfragmentary movements of up to around 1 mm
can be tolerated [38].

In the present study, all alignments, both with and without “lateral hinge fracture”,
had an average interfragmentary motion below the critical level for reliable bone healing. In
all alignments, significantly greater movements occurred in the presence of a “lateral hinge
fracture” than with an intact lateral bone bridge, again without exceeding the critical degree
of 1 mm interfragmentary motion [38]. In the study conducted by Agneskirchner et al.,
the most stable implant showed the lowest interfragmentary movements of below 0.1 mm
medially and below 0.6 mm laterally, although this was only at a semi-physiological force of
1120 N [19]. In all of the plates investigated in the study published by Kim et al., there was
a higher interfragmentary motion of 1.81 mm ± 1.06 to 2.70 mm ± 1.38 at 2000 N axial force
loading in a similar experimental design, but using porcine tibiae and a maximum load of
2000 N [21]. In addition, a dissertation with a similar experimental design at a cyclical load
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of up to a maximum of 1760 N showed that the TomoFix plate had an interfragmentary
motion of up to 0.73 mm medially and 0.96 mm laterally [39]. Here, too, there was an
increase in interfragmentary motion by 1.22–1.53 mm after lateral hinge fracture [39]. In
contrast to this, the plate investigated in the present study also showed an interfragmentary
motion sufficient for bone healing in the case of lateral hinge fracture.

In the study conducted by Maas et al., the rigidity of the osteosynthesis showed a
slight increase as a result of the compaction of the composite material, as also seen in the
present study [25]. The vertical and lateral rigidities were on average 2000 N/mm and
1930 N/mm for the TomoFix plate, compared with 2367 N/mm and 3133 N/mm for the
Contour Lock plate, at a considerably higher number of cycles of at least 60,000, but a lower
maximum force than in the present study and thus a lower rigidity [25].

The study of Stoffel et al. presents the difference in rigidity of the Puddu and TomoFix
plate in the case of intact and fractured lateral contralateral cortical bone of composite tibiae
under static pressure. Here, average values of 1349 N/mm and 1701 N/mm were found
in the case of intact, compared with 462 N/mm and 910 N/mm in the case of fractured
contralateral cortical bone [26], which is considerably lower than in the present study with
at least 3084 N/mm in the case of intact and 2278 N/m in the case of defective contralateral
cortical bone.

Limitations of the present study include the use of composite tibiae. Their biome-
chanical properties and anatomical geometry are roughly consistent with those of human
bones [27], but are more representative of a younger population [26] and less so for patients
with initial osteoarthritis of the knee or even osteoporosis, so that their stability and load-
bearing capacity may be overestimated. On the basis of the consistent material properties
and the associated small interindividual differences [27], the closely specified surgical
technique and the identical surgeon, the osteotomy is highly reproducible and, also due to
a precision of the testing machine of 0.5%, influences of material properties or methodology
can be considered to be minimal. As a whole, the comparison with other studies shows that
there is currently no standardised protocol for the testing of plate systems for corrective
osteotomy on the tibia. In all of the available studies, the number of test cycles, the level
of loading and the position of force application vary. The method used for measuring
interfragmentary motion also differs. This necessarily leads to different results and limits
the comparability of the data. Nakamura et al. show that the anteromedial plating without
filling the gap with the TomoFix plate can lead to more pendular micromotion than a lateral
positioning with bone-substitute insertion [40]. This experimental study was performed
only on the effect of axial force in the fully extended position of the knee, which never
produces the pendular micromotion. The shift from femur to tibia as during walking, stair
climbing or sitting down is not considered. Takeuchi et al. performed mechanical testing of
the TomoFix plate at knee flexion angles of 0◦ and 10◦ and concluded that a medial plate
position is biomechanically superior to an anteromedial position [41]. In conclusion the
selection of plate, filling the gap and plate position should be made critically.

This is an in vitro study, so influences, such as muscle traction or ligament tension,
were not taken into account [26]. In addition, only the force application of normal walking
was considered. Higher force impacts that may possibly occur when standing up or
stumbling over [7] were not investigated. The one-day simulation without pendular
micromotion cannot guarantee long-term durability without stress fractures of the plate
or screws due to pendular micromotion. Moreover, the determination of total rigidity
was performed.

5. Conclusions

In the case of the anteromedially positioned fixed-angle plate investigated here, leg
alignment had a significant influence on interfragmentary motion and rigidity. In all align-
ment situations, a lateral hinge fracture led to an increase in interfragmentary motion as well
as to a decrease in the rigidity measured. However, both values were below the accepted
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limits for sufficient bone healing. Despite its small size and the anteromedial positioning,
the implant investigated here appears to be forgiving with regard to this complication.
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