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Background: Recovery from coronavirus disease 2019 (COVID-19) can be

impaired by the persistence of symptoms or new-onset health complications,

commonly referred to as Long COVID. In a subset of patients, Long COVID is

associated with immune system perturbations of unknown etiology, which

could be related to compromised immunoregulatory mechanisms.

Objective: The objective of this scoping review was to summarize the existing

literature regarding the frequency and functionality of Tregs in convalescent

COVID-19 patients and to explore indications for their potential involvement in

the development of Long COVID

Design: A systematic search of studies investigating Tregs during COVID-19

convalescence was conducted on MEDLINE (via Pubmed) and Web of Science.

Results: The literature search yielded 17 relevant studies, of which three

included a distinct cohort of patients with Long COVID. The reviewed studies

suggest that the Treg population of COVID-19 patients can reconstitute
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quantitatively and functionally during recovery. However, the comparison

between recovered and seronegative controls revealed that an infection-

induced dysregulation of the Treg compartment can be sustained for at least

several months. The small number of studies investigating Tregs in Long COVID

allowed no firm conclusions to be drawn about their involvement in the

syndrome’s etiology. Yet, even almost one year post-infection Long COVID

patients exhibit significantly altered proportions of Tregs within the CD4+ T cell

population.

Conclusions: Persistent alterations in cell frequency in Long COVID patients

indicate that Treg dysregulation might be linked to immune system-associated

sequelae. Future studies should aim to address the association of Treg

adaptations with different symptom clusters and blood parameters beyond

the sole quantification of cell frequencies while adhering to consensualized

phenotyping strategies.
KEYWORDS

regulatory T cells (T reg), COVID-19, SARS-CoV-2, Long Covid, immune system,
adaptive immunity
1 Introduction

Infections with the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), the pathogen responsible for the

ongoing coronavirus disease 2019 (COVID-19) pandemic,

manifest with varying severity. The clinical spectrum ranges

from asymptomatic/mild disease to severe pneumonia and

respiratory distress syndrome that can ultimately lead to death

(1, 2). Although the majority of patients experience moderate

symptoms such as fever, cough, dyspnea, loss of smell and taste

or sore throat, it has been highlighted that COVID-19 can

include multi-system complications, such as thrombotic

events, vasculitis and myocarditis (3–5). In addition to that,

the clinical spectrum of COVID-19 encompasses acute

immunopathology. Specifically, dysfunctional cellular and

humoral immune responses characterized by exaggerated

cytokine release, lymphopenia and new onset or aggravated

autoimmunity are associated with negative disease outcomes

(1, 6–9).

It is estimated that approximately one in eight patients who

contracted COVID-19 experience symptoms beyond the acute

symptomatic phase, as reported by a recent observational cohort

study (10). The World Health Organization (WHO) defines

these sequelae, by common usage now also referred to as “Long

COVID”, as a post-COVID-19 condition that usually occurs

three months after a confirmed or probable SARS-CoV-2

infection with a set of new-onset, persistent or fluctuating

symptoms that last for at least two months (11). The most

common symptoms in this context are fatigue, exercise
02
intolerance, post-exertional malaise, difficulty breathing,

headache, muscle pain, tachycardia, concentration deficits and

diminished quality of life (12–15). In this context, it bears noting

that the overall prevalence and types of symptoms can vary

depending on the COVID-19 disease severity. Specifically, the

proportion of patients that experience residual symptoms

appears to be higher among previously hospitalized patients

(16–18). In addition, the results of a clustering analysis

conducted as a part of the REACT-2 study suggest that

patients with severe initial symptoms report post-acute

respiratory symptoms more often than those with mild or

asymptomatic COVID-19 whose symptomatology is rather

fatigue-dominant (19). Likewise, recent evidence suggests that

those who had one or multiple reinfections exhibit an increased

risk of experiencing post-acute sequelae compared to those who

were infected once (20).

The pathophysiological mechanisms involved in the

devolvement of Long COVID remain to be elucidated, with a

range of theories currently under discussion. Merad et al. (21),

for instance, postulated that immunopathological processes,

such as chronic inflammation with viral persistence, post-viral

autoimmunity, microbiome dysbiosis and unrepaired tissue

damage might contribute to the pathophysiology of the Long

COVID phenotype. In line with that, it has been documented

that affected patients exhibit a significant elevation of multiple

inflammatory markers compared to recovered subjects,

indicating a dysregulated and overactive immune system (22,

23). Correspondingly, the triad of pro-inflammatory cytokines

IL-1b, IL-6 and TNF-a showed a significant correlation with
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1070994
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Haunhorst et al. 10.3389/fimmu.2022.1070994
persistent symptoms of COVID-19 at an eight-months follow-

up (24). In addition, the discovery of functional autoantibodies

specific to G-protein coupled receptors (25) has been linked to

an autonomic dysregulation and assumed to be a cause of

residual symptoms (26).

Despite this, components of the immune system that

regulate and fine-tune (auto)immune responses, favoring

immune homeostasis, such as regulatory T cells (Tregs), have

only been investigated sparsely in COVID-19 convalescence and

Long COVID. Tregs are a dynamic CD4+ T cell subpopulation

that is characterized by CD25 (IL-2 receptor a-chain)
upregulation, CD127 (IL-7 receptor a-chain) downregulation

and expression of the transcription factor forkhead box P3

(FoxP3) that is considered the master regulator of Treg

development (27–30). It is estimated that 80% of the

peripheral cell repertoire is represented by functionally mature

natural Tregs that develop in the thymus as antigen-primed cells

(31, 32), while peripherally-derived Tregs are induced from
Frontiers in Immunology 03
naïve T cells upon antigen encounter (32–34) (Figure 1).

During self-directed and pathogen-directed immune responses,

activated Tregs exert suppressive effects on effector cells and

antigen-presenting cells, for example, through the secretion of

the inhibitory cytokines IL-10, IL-35 and TGF-b, by limiting the

amount of IL-2 available for conventional T cells or by

stimulating the formation of indoleamine 2, 3-dioxygenase (28,

35) (Figure 1). In this way, Tregs promote self-tolerance and

prevent excessive inflammation, which makes their proper

functioning indispensable for a balanced immune response.

Correspondingly, diseases such as type 1 diabetes, multiple

sclerosis, lupus erythematosus and rheumatoid arthritis are

associated with functional deficiencies in the Treg

compartment and altered cell frequencies (36, 37).

Studying COVID-19, previous reviews have already made an

effort to characterize Tregs during the acute phase of a SARS-

CoV-2-infection (38–41). Although evidence exists that

alterations in the Treg compartment might contribute to the
FIGURE 1

Schematic illustration of Treg development, modes of activation and physiological functions. According to an affinity-based model of T cell
development, a fraction of self-reactive T cells with intermediate affinity for self-peptide-MHC complexes differentiates into natural Tregs by
upregulation of FoxP3 and CD25 in response to T cell receptor (TCR) signaling (thymus-derived Tregs; ~80% of peripheral Treg repertoire) (31).
Also, antigenic stimulation of peripheral naïve T cells in the presence of TGF-b, IL-2 and retinoic acid induces their differentiation into FoxP3+
Tregs (peripherally-derived Tregs) (28). Of note, phenotypical transition of Tregs upon activation is not associated with de novo expression of
surface proteins but rather with quantitative shifts in the expression levels of molecules already expressed in a resting state. Specifically, upon
TCR activation, Tregs downregulate CD45RA and upregulate CD45RO, CD25, CTLA-4 and FoxP3 (32, 33). In contrast to other T cell subsets, the
transition of Tregs into a stable memory pool after antigen elimination is still debated and so far, only a few marker candidates such as CD62L
have been proposed for identification of memory Tregs (34). Functionally, Tregs are involved in suppressing immune responses towards self and
non-self-antigens via inhibitory cytokine secretion, granzyme-dependent and cytokine-deprivation-mediated effector cell inhibition as well as
cell-contact-dependent alteration of dendritic cell function and maturation (potential consequences of deficient Treg development or function
are indicated by red lightnings) (35) (created with BioRender.com). CM, central memory; CTLA-4, cytotoxic T lymphocyte antigen 4; DC,
dendritic cell; EM, effector memory; IDO, indoleamine 2,3-dioxygenase; IPEX, Immunodysregulation, polyendocrinopathy, enteropathy, X-linked
syndrome; RA, retinoic acid.
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immunopathology of COVID-19, the literature concerning their

functionality and frequency during the acute illness is

controversial. Nevertheless, a trend toward functional

impairments and decreased levels of circulating Tregs in severe

cases of COVID-19 has been reported previously (38–40). It was

shown that patients dying from COVID-19 exhibited

significantly lower Treg counts and higher Th17/Treg ratio

compared to recovered and healthy controls (42–44) and

that low Treg counts at hospital admission were associated

with clinical worsening and longer duration to discharge

(45, 46). Correspondingly, several studies demonstrated a

downregulation of FoxP3 in severe cases of COVID-19 (44,

47–49).

Given the aforementioned evidence suggesting that an

ongoing inflammatory profile, autoantibody formation,

inflammatory tissue damage, SARS-CoV-2 persistence and viral

reactivation (herpes virus family) likely contribute to the

persistence of symptoms, it is conceivable that Tregs are

involved in the pathophysiology of Long COVID (50). Yet,

there exist uncertainties concerning the longitudinal dynamics

of the Treg population during recovery from COVID-19, and it

remains unclear if Treg dysfunction is involved in the

immunopathology of Long COVID. Therefore, we aimed to

summarize the existing literature on the frequency (e.g.,

absolute counts, relative frequency) and functionality (e.g.,

cytokine secretion, ex vivo suppressive capacity) of Tregs in

convalescent COVID-19 patients with and without persisting

symptoms and to explore indications for their potential

involvement in the development of Long COVID.
2 Methods

A scoping review of the literature was conducted following

the Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) extension for scoping reviews (51).
2.1 Literature search

The literature search was conducted up to July 23, 2022,

using Pubmed and Web of Science with no restriction on

publication date. The search string included controlled

vocabulary, Medical Subject Headings (MeSH) and common

synonyms for the domains COVID-19 and regulatory T cells

while excluding review articles (see Supplementary Material 1).

Furthermore, reference lists of included studies were examined

in order avoid missing any relevant studies.

The titles and abstracts of the records that were identified

through the literature search were independently screened for

their eligibility by two investigators (SH and CP). Subsequently,

full-text articles were retrieved to verify the inclusion decision

that was made based on title and abstract screening (Figure 2).
Frontiers in Immunology 04
2.2 Study selection and eligibility criteria

Eligible studies were selected using the following PICOS

(participants, intervention, comparison, outcomes, and study

design) criteria.

2.2.1 Population
This review targets convalescent COVID-19 patients with

and without persistent symptoms at least four weeks after

confirmed or probable detection of SARS-CoV-2 infection. No

inclusion or exclusion criteria were set for participants’ age

ranges, sex, or severity of infection.

2.2.2 Intervention
Mass or flow cytometric analysis of Treg outcomes.

2.2.3 Comparison
Acute COVID-19 cases sampled at least 14 days after

confirmed COVID-19 infection and seronegative controls, who

were asymptomatic for last four weeks and tested negative for

SARS-CoV-2 by antibody testing or polymerase chain reaction

at time of sampling were accepted as control groups.

2.2.4 Outcomes
Treg counts (absolute cell numbers), proportions (relative

cell numbers) or regulatory function (cytokine secretion, ex vivo

suppressive capacity), and the FoxP3 gene expression were

considered as study outcomes.

2.2.5 Study design
Case‐control studies, cross‐sectional studies, cohort studies,

clinical trials, or case reports published in English or German were

included in this review. Book chapters, congress proceedings, meeting

abstracts, reviews, animal studies, and studies published in languages

other than English or German were deemed ineligible.
2.3 Data extraction and synthesis

The following data items were extracted from the included

studies: sample size, sex, gender, time elapsed since disease onset

and severity of acute disease, markers used for Treg

phenotyping, source of the cell sample, Treg-related outcome

measures and outcome-related findings. Extracted data items are

presented in a tabulated form (Table 1).
3 Results

The literature search yielded a total of 405 potentially

relevant records. After removing duplicates, 268 studies were

screened for their eligibility, of which 17 were ultimately
frontiersin.org
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included in this review. Three studies (69–71) were deemed

potentially relevant but could not be included due to insufficient

characterization of the convalescent cohort in terms of the time

point of blood sampling (Figure 2).
3.2 Subject characteristics and
investigated outcomes

All studies investigated a cohort of patients with a confirmed

or presumed COVID-19 infection at least four weeks and latest

50 weeks after index infection. The total number of participants
Frontiers in Immunology 05
investigated during COVID-19 convalescence was 1367 (range:

14-214). In addition, 13 studies included a cohort of seronegative

controls (371 total participants), and seven included one or more

cohorts of patients sampled during acute COVID-19 illness (375

total participants of which 368 had been admitted to the

hospital). The number of studies characterizing Tregs in a

cohort of patients with Long COVID, in accordance with the

previously mentioned definition by the WHO, was limited to

three, with a total number of 160 participants (Table 1).

Eleven of the included studies did not recruit an exclusive

cohort of patients specifically diagnosed with Long COVID, thus

we must assume that the convalescent patients investigated in
FIGURE 2

Flow diagram illustrating the literature search and study selection.
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TABLE 1 Characteristics and main results of the included studies.

Reference Study pop- Age, Median Time from Proportion of Treg pheno- Sample Treg Outcome-related findings in convalescent group

↔ Total Treg and Treg subset proportion and FoxP3 expression compared
to controls and outpatients

↓ Total Treg (5.7% vs. 7.9%; p=0.01)* and Treg subset proportions
compared to hospitalized patients

↑ Treg proportion compared to severely (7.11% vs. 5.96%; p<0.001)* and
moderately (7.11% vs. 6.47; ns)* ill patients sampled during acute disease

↑ Treg ratio in recovered outpatients compared to recovered hospitalized
patients (0.008 vs. 0.005; p=0.04)*

↔ Treg ratio compared to controls regardless of initial disease severity;

Differential composition of Treg populations depending on initial disease
severity
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ulation (%
male)

(range); Mean
±SD

disease onset
to sampling

convalescent
patients treated
in hospital

typing source outcome
measures

Studies investigating regulatory T cells during COVID-19 convalescence not including an exclusive Long COVID cohort

24 (33)
convalescents

46 (IQR 30-61) CD4+ CD25high

CD127low,
Proportion
(% CD4+
cells),

26 (85)
hospitalized

59 (IQR 45-69) CD4+ CD25high

CD127low PD1+,
Proportion
(% Tregs),

Galván-Peña et al.
(52)

7 (43)
outpatients

29 (IQR 27-31) 42 days (median) 0% CD4+ CD25high

CD127low

KLRG1+,

Cryopreserved
PBMCs

Proportion
(% Tregs),

11 (45) healthy
controls

29 (IQR 26-32) CD4+ CD25high

CD127low Tbet+,
Proportion
(% Tregs),

CD4+ CD25high

CD127low

CD45RA+

Proportion
(% Tregs),

FoxP3
expression

74 (49)
convalescents

56 (IQR 45-67) 8-12 weeks
(range)

100% CD4+ CD25++

CD127-
Whole blood Proportion

(% CD4+
cells)

Garcia-Gasalla
et al. (53)

139 (53)
hospitalized
(58 mild/
moderate,

52 (IQR 43-64)

81 severe/
critical)

Hoffmann et al.
(54)

95 (44)
convalescents

33±8 - 51±17
depending on initial

disease severity

Depending on
initial disease
severity 81-145
days (means)

22% CD4+ CD25+

CD127low CD45+
PBMCs Ratio (Tregs/

CD45+ cells),

5 (0) healthy
controls

39±16 Treg clusters
based on

scRNA-Seq
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TABLE 1 Continued

Reference Study pop-
ulation (%

Age, Median
(range); Mean

Time from
disease onset

Proportion of
convalescent

Treg pheno-
typing

Sample
source

Treg
outcome

Outcome-related findings in convalescent group

↔ Treg proportion (6.8% vs. 6.3%) and Th17/Treg ratio (0.41 vs. 0.47)
compared to controls

↑ Treg proportion (6.8% vs. 5.5%/4.7%) and FoxP3 expression compared
to non-ICU/ICU hospitalized patients

↔ IL-10 production and FoxP3 mRNA expression compared to controls

↔ suppressive function in CFSE assay compared to controls

↓ Treg proportion compared to controls after 2 months (1.87% vs. 2.04%;
ns); further ↓ among convalescents at 8 months follow-up (1.48% vs.

1.87%; p<0.001)

↓ Treg counts and proportions of all subsets compared to controls (e.g.,
CD4+ CD25+ CD127- FoxP3+: 11 vs. 15 x 106 cells/L; p=0.004)

(Continued)
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male) ±SD to sampling patients treated
in hospital

measures

20 (50)
convalescents

56±12 NR
(asymptomatic)

0% CD4+ CD25+

FoxP3+
PBMCs Proportion

(% CD4+
cells),

Khesht et al. (55) 60 (50)
hospitalized
(30 ICU, 30
non-ICU)

ICU: 57±11,non-
ICU: 61±11

Suppressive
function
(effector T

cell
proliferation),

20 (50) healthy
controls

59±11 FoxP3 mRNA
expression,

Cytokine
secretion (IL-

10)

Kostopoulos et al.
(56) (follow-up of
Orologas-Stavrou
et al. (57))

47 (57)
convalescents

49 (37-72) 2 & 8 months
(median)

NR NR Whole blood Proportion
(% CD4+
cells)

10 (60) healthy
controls

47 (45-73)

Proportion
(% CD4+

CD25+

CD127- cells),

CD4+ CD25+

CD127- FoxP3+,
Proportion
(% CD4+

CD25+

CD127- cells),

Kratzer et al. (58) 109 (56)
convalescents

50±14 10 weeks (mean) CD4+ CD25+

CD127- CD39+

FoxP3+,

Whole blood Proportion
(% CD4+

CD25+

CD127- cells),

98 (45) healthy
controls

50±14 7% CD4+ CD25+

CD127- CD73+

FoxP3+,

Proportion
(% CD4+

CD25+

CD127- cells),
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TABLE 1 Continued

Reference Study pop-
ulation (%

Age, Median
(range); Mean

Time from
disease onset

Proportion of
convalescent

Treg pheno-
typing

Sample
source

Treg
outcome

Outcome-related findings in convalescent group

↑ Treg proportion compared to controls (10.4% vs. 5.2%; p<0.05)

↑ Treg proportion in recovered hospitalized patients compared to controls
(2.37% vs. 2.05%; p<0.001) and recovered non-hospitalized

↑ Treg proportion compared to hospitalized

↓ Treg proportion in recovered non-hospitalized patients compared to
controls (1.59% vs. 2.05%; ns

↔ Th17/Treg ratio between recovered hospitalized, non-hospitalized and
controls; ↓ compared to hospitalized patients

↑ Treg proportion compared to controls (2.75% vs. 0.73%; p<0.0001) at
first sampling; Increase more pronounced for children (<15 years)

compared to adults;

↓ Treg proportion from first to second sampling in adults, while children
maintained levels

(Continued)
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CD4+ CD25+

CD127- FoxP3+

HELIOS+,

Proportion
(% CD4+

CD25+

CD127- cells),

CD4+ CD25+

CD127-

CD45RA+

FoxP3+

Counts (x 106

cells/L)

Liu et al. (59) 49 (27)
convalescents

37±NR (Chinese
cohort) or 45±NR
(German cohort)

41 (mean;
German cohort)
or 112 days

(mean; Chinese
cohort)

31% CD4+ FoxP3+ Fresh PBMCs Proportion
(% CD4+
cells)

27 (19) healthy
controls

34±NR (Chinese
cohort) or 46±NR
(German cohort)

74 (54)
convalescents

Between 42 (30-60)
and 59 (37-78)

depending on initial
disease severity

62 days (mean) 32% CD45+ CD3+

CD4+ CD25high

SSClow

Whole blood Proportion
(% CD4+
cells),

Orologas-Stavrou
et al. (57)

11 (73)
hospitalized

61 (40-82) Th17/Treg
ratio

10 (60) healthy
controls

44 (16-82)

152 (49)
convalescents
(55 <15 years)

29 (8-42) 2.8 & 6.1 months
(median)

NR CD4+ CD25+

CD127- FoxP3+
Cryopreserved

PBMCs
Proportion
(% NR)

Petrara et al. (60) 54 (57) healthy
controls

16 (5-42)
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TABLE 1 Continued

Reference Study pop-
ulation (%

Age, Median
(range); Mean

Time from
disease onset

Proportion of
convalescent

Treg pheno-
typing

Sample
source

Treg
outcome

s

Outcome-related findings in convalescent group

n Gradual decrease of Treg proportion over sampling time points in first-
order polynomial model

n ↔ total Treg proportion compared to controls
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Tregs subpopulations returned towards normal at last follow-up
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n ↔ Treg proportion compared to controls and hospitalized patients
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44% CD4+ CD25+

CD127dim

FoxP3+

Whole blood Proportio
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cells)

Ryan et al. (62) 69 (51)
convalescents

58 (23-77) 12, 16 and 24
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58% CD4+ CD25high

CD127low (total
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Proportio
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Outcome-related findings in convalescent group
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NR)
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vs. 0.3%; p<0.01) and patients with severe initial disease and high CD8* T

cell counts (>250/ml) (1.0% vs. 0.4%; p<0.01)

portion
Tregs),

↑ naïve Treg proportions regardless of initial disease severity compared to
controls (especially at second follow-up)

portion
Tregs),

↔ TGF-b production between mild, moderate and severe recovered and
controls; ↑ IL-2 production for all initial disease severities in first

compared to second sampling
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x vivo
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cretion
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↑ Tregs proportion compared to recovered group (9.6% vs. 3.7%;
p=0.0007)*
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Taeschler et al.,
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convalescents

Mild: 36 (29-53),
severe: 64 (57-73)

6 months 100% CD4+ CD25+

FoxP3+
NR Pro

(

173 (53)
hospitalized
(109 mild, 64

severe)

Mild: 34 (28-52),
severe: 67 (57-78)

42 (43) healthy
controls

32 (28-52)

Wiech et al. (65) 59 (100)
convalescents

Between 44 (27-63)
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depending on initial
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Studies investigating regulatory T cells during COVID-19 convalescence including a Long COVID cohort
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on. * Extracted from plotted data using WebPlotDigitizer software (https://automeris.io/WebPlotDigitizer/)

H
au

n
h
o
rst

e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.10

70
9
9
4

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

11
male) ±SD to sampli

20 (45)
recovered

45 (IQR 28-57) 12 weeks

Patterson et al.
(67)

74 (NR) acute NR NR (PASC
least 12 wee

121 (NR)
PASC

NR

29 (NR)
healthy
controls

NR

Utrero-Rico et al.
(68)

9 (11) PASC 42 (30-61) 9 months (m

5 (40)
recovered

44 (25-62)

CFSE= Carboxyfluorescein succinimidyl ester; EM Tregs=effector memory Treg
mononuclear cells; scRNA-Seq=single cell RNA sequencing; SD=standard deviat
n

a
k

e

s
i

https://doi.org/10.3389/fimmu.2022.1070994
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Haunhorst et al. 10.3389/fimmu.2022.1070994
these studies were all recovered from COVID-19 and did not

exhibit any residual symptoms. Wiech et al. (65) assessed Long

COVID symptoms of investigated subjects retrospectively at a

one-year follow-up and reported that 72% of the participants

experienced persistent symptoms (e.g., cognitive dysfunction,

fatigue, dyspnea) for at least three months. Likewise, Ryan et al.

(62) retrospectively assessed that 30% of the participants were

referred to a Long COVID clinic and Shuwa et al. (63) reported

that approximately half of the patients experienced dyspnea at

follow-up sampling. However, since those subjects with

persisting symptoms were analyzed together with recovered

subjects, the results of these studies provide only limited

evidence concerning Treg outcomes in Long COVID.

All studies measured the relative cell frequency as the central

Treg-related outcome, whereas only one study reported absolute cell

counts (58). In addition to that, the expression level of the FoxP3

transcription factor was investigated in two studies (52, 55) and

domains of Treg functioning like suppressive function and cytokine

production in one (55) and two (55, 65) studies, respectively. Studies

analyzed whole blood or peripheral blood mononuclear cells using

flow cytometry and mass cytometry. The markers used for Treg

phenotyping differed markedly between the studies and are detailed

in Table 1 together with the study and subject characteristics.
3.2 Tregs during COVID-19 convalescence

3.2.1 In comparison to acutely ill patients
Although no study compared blood samples obtained from

the same cohort of patients both during acute illness and
Frontiers in Immunology 12
convalescence, six studies compared Treg parameters between

recovered and acute cases of different severity (Figure 3). A

significant difference in peripheral Treg frequency in relation to

recovering patients could only be demonstrated for acutely

hospitalized patients, whereas non-hospitalized patients

exhibited no different Treg proportions. Garcia-Gasalla et al.

(53) investigated 74 patients between eight and 12 weeks after

hospital discharge and compared their immune profiles to

patients that were sampled within the first 48 hours after

hospital admission with different disease severity. Accordingly,

the recovered patients exhibited greater relative Treg frequencies

compared to severe/critical (p<0.001) and mild/moderate (not

significant) cases that were hospitalized for COVID-19 (53).

This is in line with other studies that demonstrated an expansion

of the Treg population and also a decreased Th17/Treg ratio

compared to severely ill patients, albeit the investigated

convalescent patients mostly recovered from mild or

asymptomatic diseases (55, 57). On the other hand, only one

study documented a decrease in the Treg frequency in

convalescent compared to hospitalized COVID-19 patients at

a median follow-up of 42 days after mild infection (p=0.01) (52).

This change could however not be observed in comparison to

outpatients (52). Likewise, another study found no change

between patients recovering from severe COVID-19 and

acutely ill patients, regardless of their disease severity (63).

Adding to this body of literature, several studies assessed

parameters of Treg functionality in relation to acute cases.

Specifically, Galván-Peña et al. (52) reported that Tregs from

severe acute cases showed overlaps with tumor-infiltrating

Tregs. Specifically, the analysis of the transcriptional signature
FIGURE 3

Total Treg frequency in convalescent COVID-19 patients compared to other cohorts (references in brackets). The upwards arrow (↑) indicates a
significant increase at p<0.05, the downwards arrow (↓) a significant decrease at p<0.05 and the left-right arrow (↔) not significantly different
relative Treg proportions in convalescent patients (created with BioRender.com).
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revealed for example an acute enrichment of hypoxia-induced

transcripts that was not present in healthy donors and only

scarcely in recovered patients. Furthermore, the expression of

FoxP3, IL-10 production and the suppressive function on

effector T cell proliferation has been reported to be higher in

recovered compared to severely ill patients (55, 67). However, it

bears noting that all patients that were investigated for Treg

functioning during convalescence recovered from mild disease.

3.2.2 In comparison to seronegative controls
The comparison between recovered patients and

seronegative controls produced ambiguous results. While five

studies found no significant difference in frequencies of total

Tregs between patients post-COVID-19 and patients without

history of COVID-19 (52, 54, 55, 62, 63), two studies reported a

lower (56, 58) and four reported a greater peripheral Treg

frequency in recovered patients (57, 59, 60, 65) (Figure 3).

However, this discrepancy did not seem to be attributable to

differences in initial disease severity or the time elapsed since

diagnosis. A study of 49 individuals recovering from COVID-19

in two different countries, of which approximately one-third

were hospitalized, showed that the COVID-19 group exhibited

significantly higher Treg frequencies than healthy controls at a

mean follow-up of 41 or 112 days (p<0.05) (59). In line with that,

Petrara et al. (60) demonstrated greater Treg proportions

in patients several months after index infection compared

to uninfected controls (p<0.0001), with that difference being

even greater in the pediatric (<15 years) population. By

contrast, Kratzer et al. (58) reported lower total Treg cell

frequencies in individuals recovering from predominantly

mild infections (p=0.004), which was further accompanied

by lower proportions of several Treg subsets compared to

controls (p<0.006).

A more detailed analysis of Treg subsets in a cohort of

convalescent patients that did not exhibit significantly different

total Treg proportions compared to controls showed that subsets

in different maturation statuses differed significantly between

investigated groups. Accordingly, naïve Tregs (CD4+ CD25high

CD127low CD45RA+ CD62L+) and effector memory Tregs

expressing CD45RA (TEMRA; CD4+ CD25high CD127low

CD45RA+ CD62L-) were more frequent, whereas central

memory (CD4+ CD25high CD127low CD45RA- CD62L+) and

effector memory (CD4+ CD25high CD127low CD45RA- CD62L-)

Tregs were lower in patients 12 weeks post-infection (62).

Consistent with this, Wiech et al. (65) documented increased

proportions of naïve cells among Tregs compared to

healthy donors.

One study assessing the cytokine release of Tregs in

seronegative controls reported that there was no significant

difference in IL-10, IL-17 production and suppressive function

compared to previously asymptomatic patients (55).
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3.2.3 Comparison between convalescent
patients recovering from diseases with
different severity

Five studies compared Treg outcomes among recovered

patients with different initial disease severities, reaching

equivocal results (54, 57, 62, 64, 65). A study that followed-up

subjects that were hospitalized for mild and severe courses of

COVID-19 found out that six months post-discharge there were

patients with severe illness that presented with persistently low

CD8+ T cell counts (<250/ml) (64). Those subjects exhibited a

higher Treg frequency than severely ill who were categorized as

having high CD8+ T cell counts (>250/ml) and patients with

mild initial disease (64). Two other studies that investigated total

Treg frequencies documented both higher and lower

proportions in convalescent outpatients compared to those

who were hospitalized (54, 62) (Figure 3). Similarly as

heterogeneous were the results of the studies that investigated

Treg subsets. While Ryan et al. (62) found no considerable

difference between patients recovering from mild and severe

initial disease for naïve, central memory, effector memory or

TEMRA subsets, another study reported lower effector Treg

populations and lower FoxP3 expression levels in previously

hospitalized patients (54). At the same time, single-cell RNA

sequencing analysis revealed that relative to all other severity

groups, patients recovering from an asymptomatic infection

exhibited an expansion of the Treg population with high

expression of class II HLA molecules that are suggested to

exert high contact-mediated suppression of T helper cell

responses (54).

3.2.4 Longitudinal assessment in
convalescent patients

Six studies obtained blood samples at multiple time points

during COVID-19 convalescence (54, 56, 60–62, 65). The

longitudinal analysis conducted by Kostopoulos et al. (56)

showed that the relative frequency of total Tregs that was

decreased two months post-infection continued to decrease at

the eight-month follow-up (p<0.001). Similarly, Wiech et al. (65)

reported that naïve Tregs further increased from first (14-90

days post-infection) to second (91-180 days post-infection)

follow-up regardless of the patients’ initial disease severity,

whereas central memory Tregs decreased. Additionally, the in

vitro production of IL-2 decreased significantly over time, while

the TGF-b production did not change (65). Another three

studies demonstrated that Treg frequency and parameters of

Treg functioning that were up- or downregulated earlier in the

recovery period, returned to an equilibrium point (54, 60, 62).

Accordingly, Ryan et al. (62)documented that naïve and

TEMRA subsets that were greater as well as effector memory

and central memory subsets that were lower in recovered

subjects 12 weeks post-infection, decreased or increased
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towards the values exhibited by seronegative controls at the 16-

and 24-weeks follow-ups.

3.2.5 Tregs in patients with Long COVID
Three studies investigated the proportion of Tregs among

CD4+ cells in patients that exhibit residual symptoms of

COVID-19 and compared them to seronegative controls and

individuals that recovered from COVID-19 (66–68) (Figure 3).

The symptoms experienced by the patients in the Long COVID

group covered a broad spectrum, including concentration and

memory impairments, headaches, palpitations, insomnia,

myalgia, fatigue and shortness of breath. The two studies that

sampled patients with lingering symptoms almost one year post-

infection reported contradictory results. While Galán et al. (66)

documented a 2.5-fold greater Treg frequency in Long COVID

patients compared to subjects that recovered completely

(p=0.0007), Utrero-Rico et al. (68) found a change in the

opposite direction (p<0.001). Likewise, 121 Long COVID

patients exhibited significantly lower proportions of FoxP3-

expressing CD4+ cells compared to seronegative controls (67).

None of the studies investigated parameters of Treg functioning

such as cytokine secretion or suppressive capacity in

Long COVID.
4 Discussion

The objective of this scoping review was to summarize the

existing literature regarding the frequency and functionality of

Tregs in convalescent COVID-19 patients and to explore

indications for their potential involvement in the development

of Long COVID. Owing to the fact that none of the studies

investigating a cohort of convalescent COVID-19 patients

obtained baseline blood samples during the acute phase of the

disease, the exact longitudinal dynamics of Tregs after infection

with SARS-CoV-2 remain elusive. However, the comparisons of

separate cohorts of patients sampled during severe acute disease

and recovery showed increased systemic frequency of Tregs and

greater suppressive function in recovering subjects, which points

towards a possible restoration of Treg frequency and function

(53, 55, 57).

Earlier studies investigating patients during acute illness

revealed that COVID-19 can induce alterations in lymphocyte

frequency and functioning that are associated with disease

severity and prognosis (2, 45, 72–74). In severe cases, a loss of

CD4+ lymphocytes, including Tregs is a prominent clinical

feature that, together with an enhanced myelopoiesis,

contributes to an expansion of neutrophils, dendritic cells and

macrophages, favoring immunopathology, excessive tissue

infiltration and acute respiratory distress syndrome (45, 46,

75–78). Of note, the decrease of Tregs in severe COVID-19

patients is not only a reflection of diminished absolute cell

counts in the context of lymphopenia but is also linked to
Frontiers in Immunology 14
altered relative cell frequencies, as a result of Th17 cell

expansion (79).

The trend towards a quantitative reconstitution of Tregs was

supported by five studies investigating patients recovering from

diseases of different severity (52, 54, 55, 62, 63). The fact that the

studies were not able to find significant differences in Treg

frequency between recovering subjects and seronegative

controls suggests that the peripheral Treg population was

either unaffected by the initial disease or returned to normal

values within the first six weeks following mild disease (52, 54,

55) or four months following severe disease (54, 62). Further

illustrating this, three studies that obtained multiple blood

samples during recovery from COVID-19 showed that the

Treg frequency exhibited by subjects at the second and third

follow-ups was closer to the frequency of seronegative controls

than during the first follow-up (60, 62, 65). Beyond that, the

expression of the Treg-defining transcription factor FoxP3 has

been described to be significantly higher in convalescent patients

(55). Yet, the significance of this finding is unclear, as the

recruited subjects recovered from asymptomatic infections,

which might induce less pronounced Treg perturbations in the

first place, as it has been indicated by previous reviews (38, 40).

Correspondingly, in comparison to acute non-hospitalized

patients, recovered patients did not show significantly different

Treg levels (52, 53, 63).

Nevertheless, it also became apparent that infection-induced

adaptations in the Treg compartment are heterogeneous and

that Treg dysregulation can persist for at least several months

post-infection. Correspondingly, several of the reviewed studies

found that compared to seronegative controls, recovering

subjects exhibited significantly different Treg frequencies (56–

60). Kostopoulos et al. (56), for example, reported that even eight

months after disease onset the proportion of Tregs had not

returned to normal. Beyond that, Shuwa et al.’s (63) findings

showed that the range of the Treg frequency, as well as the

deviation from the mean within the recovering group was

considerably greater than what would be expected based on

the data from seronegative controls, which indicates that SARS-

CoV-2 might induce Treg adaptations that are highly individual

and dependent on factors like age, gender, co-morbidities,

training status or immunological homeostasis and epigenetic

landscape (80–82).

Still, the studies reviewed here did not allow to draw any firm

conclusions on how alterations in Treg frequency or function are

associated with initial disease severity and time since disease onset.

It is therefore yet unsolved what the mechanisms behind

persistent dysregulations of the Treg compartment are and what

factors determine if the immunological homeostasis is reinstated.

Several mechanisms have been proposed to which the acute

reduction of Tregs, especially in severely ill patients, might be

attributable. The surge of IL-6 caused by an exaggerated innate

immune response for example might selectively antagonize the

generation of Tregs and FoxP3 induction while promoting a pro-
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inflammatory Th17 cell profile (83, 84). Supporting this point, a

positive correlation between IL-6 and Th17, a greater Th17/Treg

ratio, as well as an inverse correlation between neutrophil and

lymphocyte numbers have been documented in severe cases of

COVID-19 (85). Additionally, other factors that are important for

Treg development, such as dehydroepiandrosterone sulfate,

which inhibits IL-6 and activates Tregs as well as retinoic acid,

which is essential for Treg differentiation are depleted in patients

with COVID-19 (86, 87). Finally, Treg extravasation and

compartmentalization into inflamed tissues and an increased

apoptosis rate could be responsible for low peripheral Treg

levels in a subset of patients (40).

The scarcity of studies investigating Tregs in this specific

cohort allows no firm conclusions to be drawn about the nature

of Treg adaptations in Long COVID. Still, the reviewed studies

indicated that Long COVID patients exhibit Treg dysregulations

long after their initial infection with SARS-CoV-2. Two studies

that were comparable in terms of the time elapsed from disease

onset to follow-up sampling, markers used for cell phenotyping

and the subjects investigated, found both a significantly greater

and lower proportion of Tregs among CD4+ cells in patients

with residual symptoms compared to recovered subjects (66, 68).

A decreased Treg frequency compared to seronegative controls

was reported in a study of 121 subjects with post-acute sequelae

of COVID-19 (67).
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When interpreting these results, it must be kept in mind that

Long COVID constitutes a heterogenous and multifaceted

syndrome, presenting diverse clinical manifestations (88, 89).

Previous research has proposed that several phenotypes and

distinct sub-diagnoses might exist under the umbrella of Long

COVID, some of which with little immunological contribution

(19, 90, 91). Since the post-acute sequelae of COVID-19 can

most certainly not be attributed to a single pathophysiological

mechanism (18), it is conceivable that a Treg dysregulation

contributes to a Long COVID-associated immunopathology in

multiple ways (Figure 4), as it has also been suggested in other

viral infections. For instance, the investigation of patients

infected with hepatitis C virus (HCV) showed that those with

chronic infections and HCV persistence exhibited higher Treg

levels than recovered subjects (92, 93). By contrast, chronically

infected patients that developed autoimmune complications

exhibited significant reductions in Treg levels compared to

those who did not and to healthy controls (93, 94).

Post-viral autoimmunity is also one of the main hypotheses

discussed with regard to the development of Long COVID

(Figure 4). Functional autoantibodies against a wide array of

cell components and messenger molecules have been identified

in patients with persistent symptoms (25, 95–97). Clinically, the

formation of vasoactive autoantibodies directed against G-

protein-coupled receptors (GPCR), for example, might
FIGURE 4

Commonly suggested theories for the non-exclusive pathophysiological mechanisms involved in Long COVID (1–4) and how they might be
related to Treg dysregulation (created with BioRender.com). GPCR, G-protein coupled receptor.
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consequently impede vascular tone and autonomic functions.

Correspondingly, the treatment with a DNA aptamer drug

neutralizing autoantibodies targeting GPCR improved retinal

capillary microcirculation and led to the disappearance of Long

COVID symptoms (98). If Long COVID patients with latent

autoimmunity also exhibit low levels or dysfunctional Tregs

warrants further investigation.

On the other hand, an increase in the number and function

Tregs can result in a suppression of effector immune responses,

ultimately favoring deficient viral clearance and persistent

infections that cause cyclical symptoms flare-ups (93)

(Figure 4). The persistence of SARS-CoV-2 RNA and infected

cells in certain tissue reservoirs, such as the olfactory mucosa or

the gastrointestinal tract is a common observation that seems to

be facilitated by immunosuppression (99–102). Persistent

detection of viral RNA in plasma, stool and cerebrospinal fluid

has further been reported in patients with Long COVID (103–

105). Whether viral persistence in these patients is a reflection of

perturbed Treg dynamics or rather the virus’ own capability to

evade immune responses and to shield its RNA from

degradation remains to be delineated. A study that examined

molecular features of 50 patients with long and short duration of

viral shedding found that Treg frequency was significantly

higher in those with long duration shedding, accompanied by

a general immunosuppressive status (106). Likewise, other

studies demonstrated that the total Treg frequency was

associated with prolonged SARS-CoV-2 positivity and RNA

shedding (107, 108), collectively suggesting that high Treg

levels constitute one factor that might favor viral persistence.

Furthermore, Taeschler et al. (64) provided evidence that

persistently low levels of CD8+ T cells six months post-

discharge were associated with a higher Treg frequency.

However, it bears noting that an increased Treg frequency is not

necessarily a reflection of a greater regulatory capacity within the

cell population (30). The studies reviewed here did not specifically

investigate aspects of Treg function in Long COVID, but some

reports raise the possibility that pathophysiological mechanisms

that are associated with Long COVID could also adversely affect

Treg functions. It has, for example, been shown that the integrity of

specific intracellular metabolic processes is essential for the

maintenance of Treg suppressive function and that the reliance

on mitochondrial metabolism is greater relative to other cells of the

CD4 lineage (109, 110). Evidence indicating a mitochondrial

dysfunction in Long COVID that compromises this metabolic

integrity comes from studies that reported a loss of mitochondrial

membrane potential (111), greater glycolysis rates (112, 113) or

oxidative stress (114) in Long COVID. Additionally, persistently

high systemic and tissue-level concentrations of inflammatory

cytokines like IL-6 and TNF could subvert the Tregs’ regulatory

capacity (115). For future studies, it would therefore be desirable to

get further in-depth insights into Treg functional aspects in Long

COVID and COVID-19 convalescence in general. In this context, it

might also be important to consider themigratory capacity of Tregs,
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since the selective expression of adhesion molecules and chemokine

receptors is a major determinant of their regulatory function (116).

As Tregs play a decisive role in resolving tissue injuries (117, 118), it

might also be worthwhile to investigate them in tissue samples from

sites in which persistent inflammation and damage to the organ

infrastructure have been documented throughout the post-acute

phase, such as the lungs, myocardium or intestines (119–122).

Studies investigating fatal cases of COVID-19 found a profound

dysfunction of Tregs in the lungs and pulmonary draining lymph

nodes of autopsied patients, as indicated by lower FoxP3 expression,

limited IL-10 production, and a paucity of FoxP3+ Tregs compared

to surviving and non-COVID-19 controls (123, 124). Beyond that, a

case study of four intubated patients showed that the T cell profile in

the tissue and blood compartment can be profoundly different, as

the Treg proportion for instance was higher in the bronchoalveolar

lavage fluid than in blood (125). Still, publications investigating

tissue resident Tregs are biased towards severe or critical cases of

COVID-19 with a lack of studies recruiting outpatients

and convalescents.

Owing to the relative novelty of the research area, the studies

reviewed in this scoping review had several limitations that need

to be considered when interpreting their results, which could be

harnessed to improve future research efforts in this area. A general

issue that can limit the comparability of study results is the

identification and isolation of Tregs. An extensive list of

potential Treg marker candidates has been proposed (126).

However, the fact that Tregs represent a highly dynamic cell

population and that none of the markers is exclusively expressed

by Tregs makes their characterization a complicated task (35). To

facilitate standardized and reliable isolation procedures across

studies, Santegoets et al. (127) published a consensus on

essential markers for the detection and functional analysis of

Tegs. They concluded that basal phenotyping should minimally

include staining for CD4, CD25, CD127 and FoxP3, a

recommendation that only three studies (58, 60, 61) sufficiently

adhered to. Moreover, the studies included here used five different

marker sets to identify total Treg frequencies, which might

account for the broad range of Treg proportions across studies

that was also present among seronegative controls.

None of the studies reviewed here explicitly stated which

SARS-CoV-2 variant the included subjects contracted. Twelve

studies conducted participant recruitment before the alpha variant

was designated a variant of concern in December 2020. Therefore,

it can be assumed that participants in these studies contracted the

wild type. Four studies did not specify the date of sampling (52, 54,

55, 67)andWiech et al. (65) reported that during sampling in early

2021 the alpha variant became dominant in Poland. Given that

participant recruitment was carried out relatively early after the

global emergence of SARS-CoV-2, it is also likely that most

subjects have only been infected once. Furthermore, as the

widespread rollout of vaccination campaigns in Europe and

the United States began in early 2021, subjects investigated in

the included studies were most certainly unvaccinated. While this
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homogeneity between studies in terms of the stage of viral

evolution and lack of population immunity at the time of

infection might enhance the comparability of results, it also

leads to the circumstance that the presented data provide a

temporary snapshot that is not necessarily representative of the

current clinical situation. Over the last two years, several new

variants have emerged that can effectively evade immunity

acquired through vaccination or natural infection (128). The

latest omicron variant encodes 37 amino acid substitutions in

the spike protein, 15 of which are in the receptor binding domain,

resulting in an antigenic variation that subverts innate and

adaptive immunity and enhances cell entry (129, 130). Besides

that, previous research has also indicated that many pathogens

have developed mechanisms to use immune regulatory networks

for their advantage, for example by upregulating the expression of

IL-10 or TGF-b and by dampening effector cell responses (93).

Preliminary evidence showed that in vitro stimulation with

omicron variant peptide induced significantly greater FoxP3

expression in draining lymph node cells than with the wild-

type, which was interpreted as an indication that the variant

peptide might induce a switch in T cell function from an effector

to a regulatory program (131). In this context, it is also important

to mention that none of the included studies investigated Tregs

with regard to their antigen specificity. Taking these

considerations into account, it should be further investigated if

Treg adaptations are affected by the variant contracted and if they

are altered in individuals that already had some level of SARS-

CoV-2 specific immunity. Furthermore, the investigation of

SARS-CoV-2-specific Tregs would provide deeper insights into

the virally induced landscape.

Beyond that, it becomes more and more apparent that Long

COVID cannot be regarded as a single diagnosis but that it

encompasses several diagnoses with distinct pathophysiological

mechanisms. It can therefore be assumed that given the range of

symptoms exhibited by the included patients, the three studies

investigating Long COVID portrayed a mix of different

pathologies. For future studies, it would be intriguing to

investigate if Treg frequencies and Th17/Treg ratio correlate

with specific symptom clusters like they were previously

proposed or with laboratory parameters such as serological

status, cytokine levels or (auto)antibody titers.
5 Conclusions and perspectives

COVID-19 is associated with perturbations in the Treg

homeostasis, albeit reports about exact changes in cell number

remain controversial. The studies reviewed here indicated that

dysregulation in the Treg compartment can persist for at least

several months post-infection. Also, the results of the three studies

included in this review, accompanied by previously postulated

hypotheses regarding the development of Long COVID suggest

that Treg dysregulation might be involved in the post-acute
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persistence of symptoms. However, the methodological

heterogeneity of the included studies with respect to the subjects

recruited, the phenotyping strategies and the sampling at different

stages of the recovery makes it difficult to delineate what factors

determine the reinstatement of immunological homeostasis.

Collectively, it became apparent that despite plausible connections

to the pathophysiology of COVID-19 and its associated sequelae, to

this day, Tregs have received little scientific attention that goes

beyond the quantification of cell numbers. Correspondingly, several

aspects, such as alterations in Treg functionality need further

investigation. Others like the influence of new variants,

vaccination status and previous infections remained completely

unaddressed in the included studies and should be considered for

future research efforts.
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SARS-CoV-2 RNA in the cerebrospinal fluid of a patient with long COVID. Ther
Adv Infect Dis (2021) 8:20499361211048572. doi: 10.1177/20499361211048572

106. Yang B, Fan J, Huang J, Guo E, Fu Y, Liu S, et al. Clinical and molecular
characteristics of COVID-19 patients with persistent SARS-CoV-2 infection. Nat
Commun (2021) 12:3501. doi: 10.1038/s41467-021-23621-y

107. Yang J, Zhong M, Hong K, Yang Q, Zhang E, Zhou D, et al. Characteristics
of T-cell responses in COVID-19 patients with prolonged SARS-CoV-2 positivity –
a cohort study. Clin Transl Immunol (2021) 10:e1259. doi: 10.1002/cti2.1259

108. Tang X, Sun R, Ge W, Mao T, Qian L, Huang C, et al. Enhanced
inflammation and suppressed adaptive immunity in COVID-19 with prolonged
RNA shedding. Cell Discovery (2022) 8:70. doi: 10.1038/s41421-022-00441-y

109. Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martıńez-
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