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ABSTRACT

Benchmarking environmental machine-learning models: Methodological progress and an applica-
tion to forest health

Geospatial machine learning is a versatile approach to analyze environmental data and can help to bet-
ter understand the interactions and current state of our environment. Due to the arti�cial intelligence
of these algorithms, complex relationships can possibly be discovered which might be missed by other
analysis methods. Modeling the interaction of creatures with their environment is referred to as ecolog-
ical modeling, which is a subcategory of environmental modeling. A sub�eld of ecological modeling is
species distribution modeling (SDM), which aims to understand the relation between the presence or ab-
sence of certain species in their environments.

SDM is di�erent from classical mapping/detection analysis. While the latter primarily aim for a visual
representation of a species spatial distribution, the former focuses on using the available data to build
models and interpreting these. �e algorithms, optimization, interpretation and validation approaches
that can be used therefor are manifold. Because no single best option exists and well-performing ones
di�er for each analysis, di�erent settings need to be evaluated and compared against each other.

When conducting such modeling comparisons, which are commonly referred to as benchmarking,
care needs to be taken throughout the analysis steps to achieve meaningful and unbiased results. �ese
steps are composed out of data preprocessing, model optimization and performance assessment. While
these general principles apply to any modeling analysis, their application in an environmental context
o�en requires additional care with respect to data handling, possibly hidden underlying data e�ects and
model selection. To conduct all in a programmatic (and e�cient) way, toolboxes in the form of program-
ming modules or packages are needed. �is work makes methodological contributions which focus on
e�cient, machine-learning based analysis of environmental data. In addition, research so�ware to gener-
alize and simplify the described process has been created throughout this work.

�e describedmethodological techniques were applied in studies analyzing the presence and e�ects of
forest pathogens in northern Spain. Forest pathogens have the potential to cause severe damages to large
forest areas all around the world in a relatively short time. Monoculture tree plots which are infected by
(non-native) pathogens o�en su�er from a partial or complete die back in a relatively short time. Diplo-
dia sapinea and Fusarium circinatum are two invasive pathogens which have seen an increased spread in
southern Europe within the last decade and caused severe economical and environmental damage. To
better understand the preferred living conditions and the current spread of these fungi, a combination of
biological expertise, geographic information system (GIS) techniques and statisticalmodeling can be used.
Statistical and machine learning modeling comes with the promising ability to reveal patterns within data
and provides the option to make predictions into areas which are di�cult to access. Additionally, remote
sensing products can aid pathogen distribution analysis by facilitating the derivation of environmental
variables for large areas which can be used as explanatory variables during modeling. Especially hyper-
spectral remote sensing data inherits high potential for the use in forest health monitoring analyses due
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to the spectral sensitivity of its narrow bands, which are known to help in detecting vegetation-related
changes.

�is work puts a strong focus on reproducible work�ow execution. All steps were executed in a pro-
grammatic way andmade available publicly. �e creation and generalization of (public) research so�ware
can help to execute large benchmark experiments in a controlled and reproducible way. It allows for public
quality checks and adaptation or reuse by other researchers in future studies.

�e �rst study of this work investigates di�erences in predictive performance when applying various
spatial and non-spatial partitioning methods during cross-validation (CV)-based model evaluation. A
special focus is put on evaluating the e�ects of di�erent spatial and non-spatial resampling techniques
during hyperparameter tuning. Diplodia sapinea infections of trees across the Basque Country are mod-
eled using environmental variables. �e learning algorithms boosted regression trees (BRT), weighted k-
nearest neighbor (KNN), support vector machine (SVM), random forest (RF), generalized linear model
(GLM) and generalized additivemodel (GAM) are compared using amodel-based optimization approach.
A large di�erence in predictive performance between models using spatial and non-spatial partitioning
was found, caused by the underlying spatial autocorrelation in the data. Spatial autocorrelation o�en
results in highly similar training and test sets when using non-spatial resampling splits. Spatial resam-
pling in contrast creates partitions which are less a�ected by spatial autocorrelation due to a larger spatial
distance between training and test sets. Results showed that using spatial partitioning during the model
optimization stage of a nested CV setting does not result in reduced model performance compared to the
use of non-spatial methods. While no substantial improvements were found either, some models showed
slightly improved performances when being tuned on spatially distant training and test sets. �e results
indicate that spatial resampling methods should be used for both performance estimation and hyperpa-
rameter optimization in CV settings when analyzing spatial data.

�e second case study analyzes the e�ectiveness of (ensemble) �lter methods on high-dimensional
datasets as an alternative to wrapper feature selection.�e percentage defoliation of trees caused by Fusar-
ium circinatum infection across four plots in the Basque Country is modeled using hyperspectral remote
sensing data. For the analysis, a benchmark matrix of ��� di�erent settings is created composed out of
the learning algorithms RF, extreme gradient boosting (XGBoost), SVM, and penalized regression (L�
and L�), multiple diverse feature sets and various �lter methods. �e goal is to detect which combina-
tion of learner, feature set and �lter method is able to model the high-dimensional, high-collinear data
best. Ensemble �lters, on average, did not improve predictive performance compared to single �lters.
�e overall e�ectiveness of �lters were dependent on the learner and feature set combination. �e fact
that many algorithms favored di�erent �lters highlights the need to test various combinations of algo-
rithms, feature and hyperparameter optimization methods to �nd the best possible setting for the data
at hand. Promising predictive performance increases were found for some �lters which underlines the
general potential of �lters, which is further extended by their computational advantageous application in
contrast to wrapper feature selection. Yet the question of whether �lter methods are generally preferable
over other feature selection approaches remained unresolved. Besides the analysis of �lter methods, vari-
able importance for the hyperspectral bands and vegetation indices feature sets were calculated. Using
permutation-based variable importance, the highest mean decrease in RMSE across permutations was
found for features around the "red edge" of the spectrum (around ��� nm - ��� nm). �is con�rms the
importance of this spectral region for vegetation analysis. However, permutation-based variable impor-
tance might be biased in this setting due to the high correlation among variables. Other approaches such
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as grouped permutation-based variable importance, accumulated local e�ects (ALE) plots or shapley ad-
ditive explanations (SHAP) are less a�ected by high correlation between variables and might result in less
biased estimates.

�e third part of this thesis introduces the R package mlr3spatiotempcvwhich provides an interface
to various spatiotemporal resampling methods within the mlr3 machine learning framework. �e pack-
age aims to simplify the application of spatiotemporal resamplingmethods in combinationwith any learn-
ing algorithm, hyperparameter optimization technique or feature selectionmethod. mlr3spatiotempcv
also includes spatiotemporal visualization functionality for partitioningmethods which can help to better
understand the created data splits and even allows highlighting omitted data points by speci�c resampling
methods.

Emphasis is put on scienti�c reproducibility and the creation and maintenance of research so�ware.
Best practices with respect to reproducible work�ow management are applied and discussed in greater
detail. �e R packages drake and renv are used during all studies of this work to ensure reproducibility
and simpli�ed study recreation. All resources (code, data and metadata) have been made available in
individual public research compendia using the open-access data hoster Zenodo.

�e predictive performance estimates achieved in both pathogen case studies were considered as fair.
�e small number of observationsmight have had a negative in�uence on the generalization capabilities of
the �tted models. Additionally, artifacts in the in situ and remote sensing data might have a�ected model
performances in a negative way. �e collection of more in situ data and the use of additional variables
might help to �t models which are able to achieve better performance estimates in similar studies in the
future.
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ZUSAMMENFASSUNG

Raumbezogenes, maschinelles Lernen ist ein vielseitiger Ansatz zum Modellieren von Umweltdaten und
kann dabei behil�ich sein, die Interaktionen und den aktuellen Zustand unserer Umwelt besser zu ver-
standen. Mit Hilfe der künstlichen Intelligenz dieser Lernalgorithmen können komplexe Beziehungen
entdeckt werden, welche bei der Verwendung anderen Analysemethoden möglicherweise unentdeckt
geblieben wären. Die Modellierung der Interaktionen von Lebewesen mit ihrer natürlichen Umge-
bung wird ökologische Modellierung genannt, eine Unterkategorie der Umweltmodellierung. Wiederum
eine Unterkategorie der ökologischen Modellierung ist die Artverbreitungsmodellierung, welche darauf
abzielt, die Beziehung zwischen der Präsenz oderAbsenz bestimmter Spezies in einembestimmten Leben-
sraum zu verstehen.

Die Artverbreitungsmodellierung hebt sich von reiner Kartierungsmodellierung ab. Während Let-
ztere primär auf eine visuelle Representation der räumlichen Artenverbreitung abzielt, versucht die
Artverbreitungsmodellierung mit Hilfe der vorliegenden Daten Modelle anzupassen und diese zu inter-
pretieren. Die Algorithmen, Optimierungsmethoden, Interpretation - und Validierungsansätze, welche
hierfür verwendet werden können, sind vielfältig. Da es keine Universallösung bei der Auswahl dieser
Methoden gibt und die gut funktionierenden Kombinationen sich in den meisten Analysen unterschei-
den, müssen in jeder Analyse verschiedene Kombinationen gegeneinander evaluiert werden.

Bei der Durchführung solcher Modellierungsvergleiche, welche auch als "benchmarking" bezeichnet
werden, muss innerhalb der einzelnen Teilschritte darauf geachtet werden, dass aussagekrä�ige und un-
verzerrte Ergebnisse erzielt werden. Diese Analyseschritte setzen sich aus der Datenvorprozessierung,
der Modelloptimierung und der Modellvalidierung zusammen. Wenngleich diese Prinzipien auf jede
Modellierungsanalyse zutre�en, so benötigt deren Anwendung im Kontext der Umweltmodellierung o�-
mals zusätzliche Aufmerksamkeit in Bezug auf Datenverarbeitung, möglichen versteckten E�ekten in den
Daten und Modellselektion. Um all diese Analyseschritte in einer programmatischen (und e�zienten)
Weise auszuführen, sind Werkzeugkästen in der Form von So�waremodulen oder Paketen notwendig.
Diese Dissertation liefert methodische Beiträge in diese Richtung mit Fokus auf der e�zienten Analyse
von Umweltdaten unter Zuhilfenahme maschineller Lernmethoden. Zusätzlich wurde im Zuge dieser
Arbeit Forschungsso�ware erstellt mit dem Ziel, die beschriebenen Prozesse zu generalisieren und vere-
infachen.

Die erwähnten methodischen Techniken wurden in Studien angewendet welche die Präsenz und
Auswirkungen von auf Bäumen spezialisierten Krankheitserregern im Norden Spaniens untersucht
haben. Diese spezialisierten Erreger haben das Potential weltweit in relativ kurzer Zeit starke und
groß�ächige Schäden in Waldgebieten zu verursachen. Monokulturelle Baumparzellen, welche von
solchen (nicht einheimischen) Erregern befallenwerden, sehen sich o�malsmit dem teilweisen oder sogar
kompletten Absterben der einzelnen Bäume konfrontiert. Diplodia sapinea und Fusarium circinatum sind
zwei solcher invasiven Krankheitserreger welche sich in der letzten Dekade stark innerhalb Südeuropas
ausgebreitet haben und starke ökonomische und ökologische Schäden nach sich gezogen haben. Um
deren bevorzugte Lebensumstände und aktuelle Verbreitung besser zu verstehen, kann eine Kombination
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aus biologischer Expertise, geographischen Informationssystemen und statistischerModellierung genutzt
werden. Statistische und maschinelle Lernmethoden haben die vielversprechende Eigenscha� Muster
in Daten erkennen zu können und Vorhersagen in Gebiete machen zu können, welche für den Mensch
nur schwierig zu erreichen sind. Zusätzlich können Fernerkundungsprodukte durch die Bereitstellung
von Umweltvariablen für groß�ächige Gebiete die Verteilungsanalyse solcher Krankheitserreger unter-
stützen. Speziell hyperspektrale Fernerkundungsdaten beherbergen großes Potential für die Nutzung in
der Waldgesundheitsüberwachung durch die spektrale Sensitivität ihrer schmalen Bänder, welche dafür
bekannt sind vegetationsbedingte Änderungen erkennbar zu machen.

Diese Arbeit legt einen starken Fokus auf eine reproduzierbare Ausführung des Arbeitsablaufs. Alle
Einzelschritte wurden in einer programmatischen Weise ausgeführt und ö�entlich zugänglich gemacht.
Die Erstellung und Generalisierung von (ö�entlich verfügbarer) wissenscha�licher So�ware kann dabei
helfen, großeBenchmarkexperimente in einer kontrollierten und reproduzierbarenWeise durchzuführen.
Dieses Vorgehen erlaubt ö�entliche Qualitätstests und die potentielle Adaption oder Weiterverwendung
durch andere Wissenscha�ler in zukün�igen Studien.

Die erste Studie dieser Arbeit untersucht die Unterschiede der Vorhersagegüte bei der Nutzung ver-
schiedener räumlicher und nicht-räumlicher Partitionierungsmethoden innerhalb einer auf Kreuzvali-
dierung basierenden Modellevaluation. Ein besonderer Fokus liegt hierbei auf der Auswertung der Un-
terschiede welche durch die Nutzung der verschiedenen Partitionierungsmethoden während der Hyper-
parameteroptimierung entstehen. Infektionen mit Diplodia sapinea an Bäumen im Baskenland werden
hierfür mit Hilfe von Umweltvariablen modelliert. Die Lernalgorithmen boosted regression trees (BRT),
weighted k-nearest neighbor (KNN), support vectormachine (SVM), random forest (RF), generalized lin-
ear model (GLM) und generalized additive model (GAM) werden hierfür mittels eines modelgestützten
Optimierungsverfahren verglichen. Bedingt durch die unterliegende räumliche Autokorrelation in den
vorliegenden Daten wurde ein grosser Unterschied in der Vorhersagekra� zwischen Modellen gefunden,
welche entweder eine räumliche oder nicht-räumliche Partitionierungsmethode verwendeten. Räumliche
Autokorrelation resultiert o� in sehr ähnlichen Lern- und Evaluierungssätzen, wenn ein nicht-räumliches
Partitioningsverfahren verwendet wird. Im Gegensatz dazu resultiert die Verwendung einer räumlichen
Wiederholungsprobennnahme inPartitionen, dieweniger stark von räumlicherAutokorrelation betro�en
sind, aufgrund einer größeren räumlichen Distanz zwischen den Lern-und Evaluierungssätzen. Die Re-
sultate zeigen, dass die Nutzung räumlicher Partitionierungsmethoden während der Modelloptimierung
einer verschachtelten Modellevaluation die Modellperformanz nicht reduziert, im Vergleich gegenüber
einer nicht-räumlichen Partitionierungsmethode. Wenngleich auch keine substantiellen Verbesserungen
gefunden wurden, zeigten einige Modelle eine leicht verbesserte Leistung, wenn diese auf räumlich dis-
tanzierten Lern- und Evaluierungssätzen optimiert wurden.

Die zweite Fallstudie analysiert die E�ektivität von Ensemble-Filtermethoden als Alternative zu
Wrapper-Variablenselektion auf hochdimensionalen Datensätzen. Hierfür wird die prozentuale Ent-
laubung von Bäumen, hervorgerufen durch eine Infektion mit Fusarium circinatum, mit Hilfe von hyper-
spektralen Fernerkundungsdaten imBaskenlandmodelliert. EineVergleichsmatrixmit ��� verschiedenen
Einstellungen, welche sich aus den Lernalgorithmen RF, XGBoost, SVM und regularisierter Regression
(L� und L�), mehreren diversen Variablensätzen und unterschiedlichen Filtermethoden zusammensetzt,
dient als Grundlage der Studie. Das Ziel ist zu erkennen, welche Kombination aus Lernmethode, Vari-
ablensatz und Filtermethode die hochdimensionalen, hochkollinearenDaten ambesten verarbeiten kann.
Im Mittel konnte die Nutzung von Ensemble-Filtermethoden, verglichen mit einfachen Filtermethoden,
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die Vorhersagegüte nicht verbessern. Die allgemeine E�ektivität von Filtermethoden war abhängig von
der jeweiligen Kombination von Lern-und Filtermethode. Der Umstand, dass die meisten Algorithmen
unterschiedliche Filtermethoden bevorzugten, hebt die Notwendigkeit des Testens verschiedenster Kom-
binationen von Lernalgorithmen, Variablen-und Hyperparameteroptimierungsmethoden hervor um die
bestmögliche Einstellung für die zugrundeliegendenDaten zu �nden. Vielversprechende Verbesserungen
bei der Vorhersagegüte wurden bei der Anwendung einiger Filtermethoden gefunden. Dieser Fund unter-
streicht das generelle Potential von Filtermethoden in solchen Anwendungen. Dies wird weiterhin durch
deren rechentechnisch günstige Anwendung, im Vergleich zu Wrapper-Variablenselektion, unterstützt.
Jedoch blieb die Frage, ob die Nutzung von Filtermethoden gegenüber anderen Variablenselektionsmeth-
oden allgemein präferiert werden sollten, ungelöst. Neben der Analyse von Filtermethoden wurde auch
die Variablenwichtigkeit der hyperspektralen Bänder und Vegetationsindizes berechnet. Unter Zuhilfe-
nahme einer permutationsbasierten Variablenwichtigkeitsanalyse wurde der größte Abfall der Vorher-
sagekra� (gemessen anhand der Wurzel der mittleren Fehlerquadratsumme (RMSE)) für Variablen rund
um die "red edge" des Spektrums (zwischen ��� nm - ��� nm) ausgemacht. Dieses Ergebnis bestätigt die
Wichtigkeit dieser spektralen Region für Vegetationsnanalysen allgemein. Jedoch könnte das Ergebnis
dieser Variablenwichtigkeitsanalyse aufgrund der hohen Korrelation einiger Variablen verzerrt sein. An-
dere Ansätze, wie zum Beispiel gruppierte permutationsbasierte Variablenwichtigkeitsanalyse, ALE plots
oder SHAP, sind weniger stark von hoher Variablenkorrelation betro�en und könnten eventuell weniger
stark verzerrte Ergebnisse erzielen.

Der dritte Teil dieser Arbeit stellt das R Paket mlr3spatiotempcv vor, welches eine Schnittstelle
zu verschiedenen raumzeitlichen Partitionierungsmethoden innerhalb des mlr3 Ökosystems bereitstellt.
Ziel des Paketes ist es, die Anwendung von raumzeitlichen Stichprobenwiederholungen in Kombina-
tion mit Lernalgorithmen und Optimierungsmethoden für Hyperparameter- und/oder Variablenselek-
tion in R zu vereinfachen. Weiterhin enthält mlr3spatiotempcv Funktionen für Visualisierungen von
raumzeitlichen Partitionierungsmethoden, welche dabei helfen können, die Au�eilung des Datensatzes
innerhalb der Stichprobenwiederholungen besser zu verstehen. Diese Funktionalität erlaubt es auch
Datenpunkte, welche in den jeweiligen Au�eilungen weder für den Lern- noch Testsatz verwendet wur-
den gesondert hervorzuheben, soweit dies von der jeweils gewählten Methode unterstützt wird.

Diese Arbeit betont die Wichtigkeit wissenscha�licher Reproduzierbarkeit sowie die Erstellung und
Wartung vonForschungsso�ware. Bewährte Praktiken inBezug auf einen reproduzierbarenArbeitsablauf
werden angewandt und diskutiert. Die R Pakete drake und renv wurden in allen Studien dieser Arbeit
verwendet um wissenscha�liche Reproduzierbarkeit zu gewährleisten und die exakte Nachprüfung der
einzelnen Studien zu vereinfachen. Alle Quellen (Code, Daten, Metadaten) wurden in einem ö�entlich
zugänglichen Forschungskompendium auf der Platform Zenodo verfügbar gemacht.

Die Vorhersagegüte, welche in den beiden Fallstudien erreicht wurde, kann allgemein als ordentlich
bezeichnet werden. Die geringe Anzahl an Beobachtungen hatte mutmaßlich einen negativen E�ekt auf
dieGeneralisierungseigenscha�en derModelle. Weiterhin habenmöglicherweiseArtefakte in den lokalen
sowie in den Fernerkundungsdaten die Modellperformanz beeinträchtigt. Die Erhebung weiterer lokaler
Beobachtungen und die Nutzung zusätzlicher Variablen könnte dabei helfen, Modelle zu erstellen, welche
in zukün�igen ähnlichen Studien in der Lage sind, bessere Vorhersagegüten erzielen zu können.
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INTRODUCTION

�.� Motivation

Environmental modeling is a very general term comprising pretty much any modeling activity that, to
some degree, involves environmental components. As such it covers modeling tasks in di�erent scienti�c
�elds like geo, bio, or social sciences. A modeling subcategory which shares components from both the
geosciences and biosciences is ecological modeling. �is �eld primarily focuses on creating mathematical
representations of ecosystems through modeling, i.e., how living organisms interact with their environ-
ment (Hall & Day, ����). �is includes the description and analysis of (animal) populations and/or their
interaction within a given biome. A sub�eld of such is SDM which focuses on the understanding and
description of certain species, for example manmmals, pathogens, �shes or any other type of living be-
ing. �e living conditions of all creatures are a�ected by climate-change related phenomena like sea level
rise, glacier melting, temperature rise or destructive storms (IPCC, ����), which has increased the impor-
tance of this research �eld throughout the last decades. Analyzing the presence and interactions of animals
within their environment allows to eventually improve the understanding of the ever-changing ecosystem
processes on earth. Such undertakings become evenmore important in periods of rapid climate change to
understand their e�ects on various species. Furthermore, it can help to early-detect changes in behavioral
patterns and apply appropriate guarding measures right in time.

One species type which is known to be sensitive to temperature changes are forest pathogens (Ayres
& Lombardero, ����). While many were historically only present in warmer climates like Australia or
southern America, global warming transformed the (sub-)Mediterranean or western Europe into new
suitable living areas (La Porta et al., ����). �e appearance of pathogens in new areas is o�en followed
by severe damages to existing forest stands as local species have not yet developed resistance strategies
against these (Loo, ����). With respect to the Mediterranean region, timber wood production has been
a major economic mainstay for decades. Due to widespread coverage of many monoculture plots in this
area, the possible spread of (new) pathogens has the potential to cause severe environmental and economic
damages across large regions in a relatively short time (Iturritxa et al., ����).

Attempts to lower the prevalence of pathogens o�en start with the mapping of the current state of
forest health and detection of possible dissemination areas (Sandino et al., ����). For this task the use of
remote sensing data can be of great use (A. R. Huete, ����). �e quality and availability of this data type
increased within the last decade, especially with the launch of the Sentinel satellites in ���� (Showstack,
����). �is development has made the use of this type of data in forest health mapping application more
attractive. To use remote sensing data in pathogen dissemination analyses, the containing environmental
information needs to be linked with pathogen presence. One way how this can be done is by making
use of modeling algorithms. �ese can help to better understand existing relationships and predict the
learned interactions into areas which were not yet populated by pathogens. �is technique is known to be
especially helpful in remote, large or sparsely populated areas (J. Meng et al., ����).

�e usability of machine learning algorithms have greatly improved over the last decade. �e increase
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in computational resources and e�ciency within this time period has helped to cope with the increasing
amount of (remote sensing) data, making it possible to process and analyzemore data in less timewhile be-
ing able to compare di�erent algorithms and optimization strategies (Y.-T. Tsai, ����). When performing
any kind of modeling, the thorough usage of all available building blocks (optimization, feature selection,
validation) is key for producing meaningful and unbiased results (Lantz, ����; Probst, Boulesteix, & Bis-
chl, ����). Modeling spatial data requires additional care as the presence of spatiotemporal e�ects within
the data, e.g., spatiotemporal autocorrelation, can eventually lead to unwanted bias in the results. �is,
combined with the correct handling of non-tabular input data sources, for instance as remote sensing im-
agery, makes environmental modeling a challenging task. Advancing in the (bias-reduced) application of
machine learning algorithms with the combined use of remote sensing data is one of the main research
focuses of this work.

To execute suchlike analyses e�ciently, a programmatic approach is bene�cial in many ways. �is
work makes heavy use of the programming language R, which is one of the most widely used languages
for data analysis and modeling. It’s use allows for the creation of research so�ware which can provide a
comprehensible and reusable framework to conduct case studies and research in general (Osimo & Swit-
ters, ����). Generalized so�ware solutions, e.g., in the form of R packages, (i) simplify execution, (ii)
improve implementation correctness and (iii) allow adaptation by others (Brett et al., ����). Yet o�en this
part of the analysis is treated as an inadvertent side product rather than an essential part of the scienti�c
work�ow (Brett et al., ����). In addition to the machine-learning driven analysis of forest pathogens, this
work also aims to emphasize the importance of research so�ware within the scienti�c work�ow.

�.� Research objectives

�e goal of this thesis is to contribute to the methodological progress in the �eld of SDM by modeling the
e�ects of pathogen infections on trees in northern Spain. Various learning algorithms are benchmarked
with a focus onmethodological aspects such asmodel and hyperparameter optimization, feature selection
and bias-reduced performance estimation. All analyses follow reproducibility best practices including the
public sharing of code and data. �e following research questions are addressed:

�. How does the use of di�erent (spatial) partitioning methods for model optimization and per-
formance evaluation duringCV a�ect the results ofmodelingD. sapinea infections at pine trees
in northern Spain?

Spatial k-fold CV has become more popular to assess model performance in recent years. Yet the
application of spatial partitioning methods during the hyperparameter optimization step within
a nested CV setting has not yet been evaluated in greater detail. On the use case of modeling D.
sapinea-a�ected trees in northern Spain, the magnitude of performance di�erence between spatial
and non-spatial partitioning methods is evaluated.

�e concrete objectives are:

• Quanti�cation and interpretation of di�erences in predictive performance estimates between
spatial and non-spatial partitioning methods.

• Evaluation and inspection of predictive performance estimates across models for di�erent
(inconsistent) combinations of partitioning methods in a nested CV setting.
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�. Does the use of �lter-based feature selection on highly correlated feature sets derived from hy-
perspectral data enhance the predictive performance whenmodeling tree defoliation caused by
F. circinatum?

Hyperspectral remote sensing data is a widely used data source in forest health monitoring. Yet
its use in modeling o�en results in highly correlated and high-dimensional datasets. Filter-based
feature selection is a less known dimension reduction approach which can be combined withmodel
optimization to reduce dimensionality while keeping computational resources relatively low.

�e concrete objectives are:

• Do certain �lter methods result in substantially better performance estimates across feature
sets and algorithms?

• How do ensemble �lters compare to traditional �lter methods?

• Which variables were seen as most important in the respective feature sets for modeling tree
defoliation?

�. How can the process of selecting and applying spatial resampling methods be simpli�ed?

At the start of this thesis, only few options for applying spatial resampling methods on multiple
algorithms, including model optimization and feature selection, were available in R. By collecting
these existing implementations and bundling thosewithin an existingmachine learning framework,
the general application of spatial resampling methods in R should become easier.

�e concrete objectives are:

• Simpli�ed application of spatial resampling methods in CV and nested CV settings in a com-
monly used data science focused programming language, e.g. R.

• Bundling of all currently available spatial resampling methods in a single tool, including ref-
erences to their respective upstream implementations.

�.� �esis Outline

�e organization of this cumulative thesis is as follows. In chapter �, an introduction is provided outlining
the motivation, research questions and study objectives. Next, basic concepts of parametric and non-
parametric modeling are introduced followed by a section about spatial autocorrelation (SAC) and its
in�uence onCVbasedmodel assessment. Last, an introduction into forest pathogens, speci�callyDiplodia
sapinea and Fusarium circinatum, is given.

Chapter � compares multiple learning algorithms using di�erent combinations of spatial cross-
validation (SCV) methods in a nested CV setting. It focuses on evaluating di�erences between various
combinations of resampling methods in the inner and outer loop of a nested CV setting. �is is done on
the use case of modelingDiplodia sapinea-infected trees in northern Spain using environmental variables.

Chapter � evaluates the use of various �lter-based feature selection methods in a high-dimensional
modeling scenario across a variety of modeling algorithms. Tree defoliation caused by Fusarium cir-
cinatum in four pine plots in northern Spain is modeled using hyperspectral remote sensing data. A
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permutation-based variable importance analysis is performed on the best performingmodel-�lter-dataset
combination.

Chapter � introduces the R package mlr3spatiotempcv which aims to simplify the application of
spatiotemporal resampling methods from various sources in a centralized place. It helps to simplify the
execution of studies similar to the ones presented in chapter � and chapter �.

Chapter � discusses the contributions and limitations of this work and chapter � summarizes the main
conclusions.

�.� Model design and construction

In supervised learning, a set of variables is �tted against a target variable, also known as the response
variable. �e explanatory variables are commonly referred to as predictor variables (Hastie et al., ����).
Parametric algorithms describe the underlying relationship between the explanatory variables and the tar-
get variable as amathematical equation.�ey are based on probability distributions, e.g. mean or variance,
and rely on various assumptions about the underlying distribution which must be met for the model to be
valid (Pearce & Derrick, ����). In contrast, non-parametric algorithms are not solely based on such dis-
tributions but allow for unspeci�ed distribution parameters, which in turn relaxes the preliminary model
assumptions (Sprent & Smeeton, ����). �e latter is one reason why machine learning algorithms, which
are non-parametric, became popular in the last decade. In contrast to parametric models, non-parametric
ones require so-called "hyperparameters" to be speci�ed before the model �t (Sprent & Smeeton, ����).
�e model �t and generalization capabilities of a �tted model are highly dependent on the chosen hy-
perparameters (Probst, Boulesteix, & Bischl, ����). �ere can be any number of hyperparameters for a
machine learning algorithm. Yet usually the number of hyperparameters ranges between two and �ve
with only some algorithms, for example XGBoost, exposing ten or more (T. Chen & Guestrin, ����).

Due to their importance on the resulting model and the large amount of possible de�nitions, hyper-
parameters are usually selected by a model optimization algorithm, e.g. Grid Search or Random Search
(Bergstra & Bengio, ����). �e application of these, or even more sophisticated algorithms like Bayesian
optimization, is usually performed in a (nested) CV setting. More detailed information about model per-
formance assessment can be found in section �.�. �e application of model optimization algorithms is
challenging these are not embedded within a machine learning algorithm. Hence, the application of an
optimizationmethod requires additional work and is o�en a time-consuming step, both because of setup-
related tasks and execution time of the actual optimization (Bischl et al., ����). Yet given the potentially
large in�uence on the �nal model �t, the thorough execution is essential for �tting models which aim to
represent the underlying data in the best possible way (Probst, Boulesteix, & Bischl, ����).

�e concepts for the selection of hyperparameters described above apply in a similar way to the selec-
tion of the machine learning algorithms themselves: no qualitative indicators exist which could predeter-
mine the suitability of an algorithm for a speci�c dataset. Hence, multiple algorithm need be compared
against each other in order to determine the best performing one in a "data-driven" manner (Ho�mann
et al., ����). �e process of comparing di�erent algorithms is commonly referred to as "benchmarking".
�e model construction and design points outlined above represent some of the focus areas of this thesis.
�ese are addressed primarily within the case studies of chapter � and chapter �.
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�.� Model interpretability

Model interpretability, also known as model inference, is an important part of the machine learning pro-
cess. �e ability to interpret a model allows to better understand how the underlying data was utilized
to create the resulting predictions (Doshi-Velez & Kim, ����). Due to their mathematical representation
of the variable relationships, parametric models are easier to interpret than nonparametric ones. �e for-
mula resulting from the model �t can be used to inspect which value combinations of all variables are
needed to yield a speci�c value of the response variable and how their mathematical relation to each other
is (e.g., linear, quadratic) (Hastie et al., ����). In contrast, the interpretability of non-parametric models
is more di�cult as these algorithms do not exhibit a interpretable mathematical representation of the un-
derlying variable relationships. Due to this di�erence in interpretability, parametric models are usually
called "white-box" models whereas machine learning ones are referred to as "black box" models (Molnar,
����). To overcome the limited interpretability of machine learningmodels, model-agnostic methods like
partial dependence plots (PDP), functional decomposition, ALE plots or permutation-based variable im-
portance can be used to gain insights into the variable relationships (Molnar et al., ����). �ese methods
are o�en labeled as "global" methods because they describe how a model behaves as a whole when chang-
ing certain parts of the data (Ribeiro et al., ����). Local methods, on the other hand, e.g., local surrogate
models (LIME) or SHAP, aim to explain how individual predictions were estimated. Such insights can be
of interest for local decision making or outlier analysis (Molnar, ����).

In the spatial domain, model interpretability allows for potential insights into the underlying physi-
cal/environmental processes (Elith & Leathwick, ����). Due to their high degree of interpretability the
use of parametric models like GLM or GAM has a longstanding tradition in the ecological modeling �eld
(Goetz et al., ����; Guisan et al., ����, ����). Yet the development of new methods for interpreting non-
parametric machine learning models has made their use more attractive in the last decade. Nevertheless,
care needs to be taken to not overinterpret variable importance results from nonparametric models as
these might be potentially biased due to underlying data e�ects such as autocorrelation (which might also
a�ect model assessment in a negative way, see also section �.�). In the case study presented in chapter �,
permutation-based variable importance is used on the best performing model to estimate the importance
of individual variables on the resulting model performance. �e use of this method and its limitations are
further discussed in subsection �.�.�.

�.� Model validation

Model validation is the process of assessing a model’s predictive performance. In the simplest case, an
independent dataset exists against which the model predictions can be compared to (Hastie et al., ����).
It is important that validation datasets are representative for the actual prediction task the model should
perform (Meyer et al., ����). To reduce variance throughout the assessment, the validation process is
usually executed on multiple test datasets.

As data is sparse and mainly aimed for learning purposes, model validation is commonly executed
in a CV setting, i.e., available observations are used for both model training and testing (Efron & Gong,
����; James et al., ����). To reduce variance and increase the generalization of the estimate, the process
is repeated many times (James et al., ����). Prominent characteristics of CV are the use of partitioning
methods which split the training data into equally sized data splits and the unique use of an observation
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within the test set of a CV iteration (Stone, ����). For each training set in a CV, model hyperparameters
are typically optimized, even though this is an optional step. If so, the process is commonly referred to as
"nested CV" as two layers of CV are used to estimate the �nal model performance.

�e terms "validation set" and "test set" in this context are o�en used interchangeably in literature. Yet
most o�en validation set refers to the data part that is withheld to optimize hyperparameters whereas the
test set is used to estimate the �nal performance (James et al., ����). In a nested CV setting, the validation
set is not explicitly declared upfront but dynamically created from a subset of the training set in the inner
loop of the CV.

Besides CV, other commonly used methods for model validation exist: bootstrapping, leave-one-out
cross-validation (LOOCV), holdout, subsampling or in-sample resampling (Bischl et al., ����). When
compared to CV, these methods either allow for the reuse of observations in training and test sets (boot-
strapping, subsampling), only use single observations for validation sets (LOOCV) or do not repeat the
validation process multiple times (holdout).

Various generalized implementations of custom resampling methods were developed in the environ-
mental/ecological modeling �eld during the last decade (e.g., Brenning, ����; Meyer, ����; Valavi et al.,
����). �ey primarily focus on accounting for SAC, which is one inherent data e�ect that might a�ect CV
estimates in a negative way. A more detailed description of SAC, its role in (spatial) model validation and
throughout this thesis, is given in section �.�.

�.� �e role of spatial autocorrelation in environmental modeling

Environmental modeling is usually applied on spatial data. �e spatial relation between data points is
something one must be aware of if unbiased modeling results are desired. One particular phenomenon to
account for is spatial autocorrelation, especially when estimating model performances (Brenning, ����;
Meyer et al., ����; Roberts et al., ����). �e following sections provide a brief general introduction into
(spatial) autocorrelation and a description of its in�uence on CV.

�.�.� Spatial autocorrelation - general

SAC is the observation that the degree of similarity between points in space is a function of their spatial
distance, i.e., two points that are located in a close distance to each other are more likely to be very similar
to each other than two very distant points (Koenig, ����). When performingmodeling, SAC o�en violates
the independence assumption of model residuals, i.e., instead of being randomly distributed the residuals
show a spatial clustering (Dale & Fortin, ����; Liebhold & Sharov, ����). �is is an indicator that bias was
introduced into the modeling process and the results cannot be fully trusted. SAC is known to have an
in�uence on both model coe�cients (Lichstein et al., ����) and inference (Tognelli & Kelt, ����).

To check whether the assumption of independence has been violated, one can plot the residuals of
a �tted model against their Cartesian coordinates (Figure �.�a). In the ideal case of independent model
residuals, the diagnostic plots should show no pattern of grouping between positive or negative residuals.
Figure �.�a shows a dominant grouping which indicates the presence of spatial autocorrelation.

�e creation of an empirical semivariogram based on the model residuals allows for further investi-
gation (Figure �.�b): In a semivariogram, the semi-variance is plotted against distance. �e semi-variance
is de�ned by O’Sullivan and Unwin (����) as:
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(b) Empirical semivariogram of model
residuals: Semi-variance against distance
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Figure �.�: Spatial autocorrelation diagnostic plots. Response and predictors were at random for this ex-
ample and no inferences should be made on their selection. Data source: built-in ’meuse’ dataset from R
package sp (E. J. Pebesma & Bivand, ����).

γ̂(d) = �
n(d) �d i i=d(zi − z j)

� (�.�)

where:
n(d) – pairs of observations per distance d,
zi , z j – observation

With the sum of squares of all observation pairs (zi , z j) for a given distance d being calculated and divided
by their respective observation pair count for this distance (corresponding to the labels in Figure �.�b).�e
resulting semi-variance γ̂ is returned for the respective distance d.

A semivariogram is described by the parameters range, sill and nugget. �e latter name originally goes
back to the goldmining industrywhere it was common to �nd gold nuggets near a locationwhere gold had
already been discovered before. In statistics, "the nugget e�ect" describes the errors ofmeasurement which
are lying under the shortest sampling distance of which the semi-variance was calculated on. It is the semi-
variance at which the �tted function crosses the y-axis (d = �) (O’Sullivan & Unwin, ����). �e range is
de�ned as the distance at which the semivariogram levels o�, i.e., at which distance d the semi-variance
starts to saturate. In the example semivariogram (Figure �.�a), the range is roughly located at a distance
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of ��� m. �e sill is the semi-variance value at which the semi-variance saturates. An omnidirectional
semivariogram as in Figure �.�a assumes the spatial variation to be isotropic (i.e., equal in all directions).
SAC may also only exist in one/multiple direction(s) or with a di�ering behavior for certain directions
(e.g., spherical, Gaussian, exponential) (O’Sullivan & Unwin, ����).

Accounting for such data patterns is essential in statistical model theory; otherwise the �tted model is
not modeling the relationship but rather an underlying trend in the data (Zuur et al., ����). One possible
approach is to describe the existing autocorrelation structure in the data and include it into the model
(Dormann, ����; Dormann et al., ����). Yet this requires an accurate description of the existing auto-
correlation structure and models which are able to make use of these. �is again applies only to a small
number of models which are specialized on spatial data. Hence, alternative approaches to deal with SAC
are required. Currently there are no solutions to explicitly account for SAC in a universal, model-agnostic
way. Yet approaches exists to reduce the (negative) in�uence during di�erent aspects of modeling (e.g.,
model validation).�e following section givesmore information about the in�uence of SAC in CV, which
is also one of the main topics of this thesis.

�.�.� Spatial autocorrelation in cross validation

�e prevalent issue of SAC addressed by this work is its in�uence during performance estimation of mod-
els, speci�cally when using CV (Brenning et al., ����; Ploton et al., ����; Roberts et al., ����). Here, SAC
leads to (very) similar training and test sets due to their (close) spatial distance if random partitioning
is used. �is becomes an issue if the purpose of the model is extrapolation, i.e., prediction into remote
areas. �e more distant in space these prediction areas are to the data used for training and CV, the less
representative the CV estimates become (Meyer et al., ����).

SAC levels o� at a certain distance (referred to as ’range’ in a semivariogram). Beyond this distance,
observations are assumed not to be autocorrelated anymore, i.e., being independent in a spatial context.
However, if CV with random partitioning is performed, many observations in the training and test sets
will be highly a�ected by the underlying spatial autocorrelation, i.e., they show high similarities, primarily
because of their close distance to each other (Valavi et al., ����). �is similarity will most o�en result
in a very high model performance as the �tted model will have a somewhat easy job making accurate
predictions on the test set, which in turns lets the user make the assumption that the model is performing
very well. Yet this only holds true for spatial areas which are located within the data used for the CV, i.e.,
when aiming to use the �tted model for interpolation purposes within the range of the SAC (Meyer &
Pebesma, ����). When predicting to remote areas, data is o�en substantially di�erent from the ones used
within the CV. �is usually results in a substantially worse predictive performance than what has been
estimated in the CV (Ploton et al., ����).

Accounting for SAC by means of (spatial) data partitioning can help to reduce the in�uence of SAC
during CV and result in predictive performances that are eventually closer to an extrapolation scenario,
or, generally phrased, the desired prediction scenario inmost ecological studies (Meyer & Pebesma, ����).
However, spatial data partitioning cannot fully account for SACbut only aim to reduce its in�uence (Meyer
et al., ����). With respect to the selection of a spatial partitioningmethod, no formal guidelines exists.�e
choice depends on the respective dataset at hand and in particular on its spatial distribution and available
variables.

Analyzing the in�uence of SAC in CV plays an important role in this thesis. Speci�cally, di�erent spa-
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tial partitioningmethods are used in both case studies (see chapter � and chapter �) to reduce the in�uence
of SAC during CV. Special focus is put on analyzing the in�uence when using spatial partitioning during
the inner loop of a CV in chapter �. In chapter � the R package mlr3spatiotempcv is presented, which
aims to generalize and simplify the application of spatial partitioning methods. More details on this topic
can also be found in chapter �, speci�cally in section �.�.

�.� Reproducible research and so�ware

�.�.� Reproducible research

�e idea of making research accessible and reproducible can be seen as the academic gold standard (Heil
et al., ����). It establishes trust in the conducted work and allows to reconstruct study experiments. It
is important to distinguish between the terms "reproducibility" and "repeatability" (Plesser, ����). �e
former is associated with "running the same so�ware on the same input data and obtaining the same re-
sults" (Rougier et al., ����) while the latter refers to the idea of copying/adapting a speci�c study setup
and "obtaining results that are similar enough" (Rougier et al., ����). �e �ndability, accessibility, interop-
erability, and reusability (FAIR) principles from the data management �eld focus on data reproducibility
(Wilkinson et al., ����). Only following these principles does not yet make a study reproducible as the
datamanagement part is only one component.�e following enumeration lists additional elements which
are needed to accomplish full reproducibility of a programmatic study in the natural sciences:

�. Availability and reusability of code

�. Availability and reusability of data

�. Metadata information of so�ware libraries used to execute the analysis

�. Order of execution (optional)

Bundling all of these alongside the written analysis part is called a "research compendium" (Gentleman
& Temple Lang, ����). Hereby the �rst two points provide the core reproducibility components of a
study. While those points were intensively discussed and agreed on in various studies (X. Feng et al., ����;
Gundersen et al., ����), the latter two points are less popular. �ese provide information on the used
toolstack: which libraries were used, how the order of code execution needs to be to successfully recreate
all parts of the study. Without this information, reproducibility attempts o�en fail.

Information about the execution order is marked as optional here as it does not block reproducibility
in the�rst place. However, it can highly bene�t reproduction e�orts as itmight prevent possible frustration
related to the correct chaining of analysis steps. Other possible enhancements which could be added to
the list above are the inclusion of hardware requirements coupled with time estimates of possibly long
running analysis steps. �is information can prevent the use of unsuitable hardware for reproduction
purposes and allows for proper time planning.

All articles included in this work claim to be research compendiawhich ensure transparency and study
reproducibility. �e research compendia can be found under the following URLs/DOIs:

• Schratz et al. (����): https://doi.org/10.5281/zenodo.2582969
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• Schratz, Muenchow, et al. (����): https://doi.org/10.5281/zenodo.2635403

• Schratz, Becker, et al. (����): https://github.com/mlr-org/mlr3spatiotempcv

One challenge of this thesis was to �nd sophisticated solutions to points (�) and (�), i.e., simplifying
the description of execution order and dynamically listing all used so�ware libraries and their respective
versions. �e R packages renv (Ushey, ����) and drake (Landau, ����) were eventually chosen for these
tasks. renv allows to create static project environments with a central recording of the used R packages.
�e state is saved in a �le named renv.lock which can be used to recreate the full R project environment
which was used for the original analysis (via renv::restore()).

�e drake R package uses a make�le-based, domain-speci�c language approach to de�ne the execu-
tion order of a project. �is makes it possible to rerun an analysis without requiring speci�c knowledge
on how individual analysis parts are connected internally. �e connections are de�ned using R code and
then read and interpreted by drake. During execution, drake takes care of resolving the individual com-
ponents in the correct order, optionally in parallel. Additionally, already executed parts are cached to
avoid redundant execution of already computed objects. If an analysis part is modi�ed a�er execution,
the subsequent components of the analysis which make use of this respective part get invalidated and will
be recomputed. �is is not only useful for reproduction purposes but also helps for general project man-
agement as it ensures that all downstream dependencies are getting recreated when a particular object in
the analysis has changed, which is a known challenge in large projects.

�.�.� Research so�ware and code generalization in science

�is thesis emphasizes the importance of research so�ware to supplement scienti�c analyses and it’s last-
ing value for the (research) community. Chapter � presents the R package mlr3spatiotempcv, which is
an example of research so�ware that was created to complement other analyses of this work (see studies
in chapter � and chapter �). It stands exemplarily for all research so�ware contributions that were done
throughout this work. Various code and documentation contributions were submitted tomultiple R pack-
ages which were used in di�erent analysis parts of this thesis (e.g., the mlr R package (Lang et al., ����))
�e overall incentive was to let a larger audience bene�t from the undertaken e�orts. A comprehensive list
of all project contributions is le� out on purpose as it would only add minor value to the overall scope of
this work. �e main point is to highlight the importance of code generalization through research so�ware
and its increasingly important role within data-driven analyses in academic research.

�.� Forest pathogens

A large variety of fungal agents exist on the globe which can cause severe damage to pine trees: Diplodia
sapinea, Fusarium circinatum, Armillaria mellea,Heterobasidion annosum, Lecanosticta acicola andDoth-
isthroma septosporum are just a few which have been discussed in the literature in the past years (Aegerter
& Gordon, ����; Luchi et al., ����; Mesanza et al., ����, ����; Watt et al., ����). Besides the impact on the
forest ecosystem itself, damages caused by these fungi also have an economic impact as pine trees are o�en
grown in plantations to serve an economic purpose (e.g., timber production) (Iturritxa et al., ����; Mead,
����). In Europe, this applies especially to the north of Spain, more speci�cally to the Basque Country,
which is the area this work focuses on.
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Two of themost problematic fungi present in the Basque Country are Fusarium circinatum andDiplo-
dia sapinea which will be introduced in greater detail in the following (Nirenberg & O’Donnell, ����).
Both are referred to as F. circinatum and D. sapinea from here onwards. �e case studies make use of in
situ data related to the presence ofD. sapinea (chapter �) and observed defoliation caused by F. circinatum
(chapter �).

According to an European Food Safety Authority (EFSA) report from ����, over �� million hectares
of European pine forests are at risk by F. circinatum infection and its consequences. Due to the lack of
an e�ective and environmentally friendly fungicide, most e�orts focus on avoiding the dispersal of F.
circinatum into disease-free countries and areas. Hence, great e�orts have been undertaken in recent
years to control the main pathways of spreading (EFSA, ����). F. circinatum infections come with great
economic losses due to the dieback of trees (Dwinell et al., ����; Ganley et al., ����; Wing�eld et al., ����).

Even thoughD. sapinea is known and being studied since the early ��s (Palmer et al., ����; Paulpieters-
burg, ����), the pathogen is still actively spreading across the globe. WhileD. sapinea does not necessarily
cause the dieback of a�ected trees, it is able to put a tree under severe stress by causing shoot blight, stem
cankers or blue stain (Iturritxa et al., ����). �e severe drought in ���� substantially supported the epi-
demic spread of the pathogen in most of Europe (Blaschke & Cech, ����). According to Chou (����);
Pérez-Sierra et al. (����); Swart et al. (����), the general range of D. sapinea susceptibility to various pine
types is quite large, with a very high susceptibility to P. Radiata, which is also the most prevalent tree
species in the Basque Country. With respect to economic damage potential, D. sapinea is roughly equiv-
alent to F. circinatum. D. sapinea is likely to be released from its quiescent stage when a tree gets under
water stress (Stanosz et al., ����). With the ongoing climate change and it’s temperature increase (IPCC,
����), trees are more o�en facing water stress, favoring the release of this pathogen. �e link to tempera-
ture, and climatic and environmental variables in general, was used as a starting point for the analysis of
the pathogen in the �rst study (chapter �) of this work: Linking the presence of D. sapinea against vari-
ous environmental variables such as temperature, precipitation, soil type or pH to better understand the
favorable living conditions of the fungus.

�.�.� Historic origin and spread ofD. sapinea and F. circinatum in Europe

Both D. sapinea and F. circinatum most likely originated in Chile and New Zealand. New Zealand’s �.�
million hectares of forest plantations are composed of ��� by P. radiata. �e tree type is actually native
in California, USA, and hence its presence in Europe can be classi�ed as invasive (Holmes et al., ����).
Due to unmet production goals in Europe, infected P. radiata seeds were imported from Chile and New
Zealand which most likely led to the biological expansion of these fungi in the early ����’s (Manzanos,
Aragonés, & Iturritxa, ����; Michel, ����). Various studies reported outbreaks and detection ofD. sapinea
in (northern) Europe starting in the early ��st century: Brodde et al. (����) reported the �rst sights of D.
sapinea presence at single trees in Sweden in ���� with the �rst large outbreak being reported in ����.
Even thoughD. sapinea presence was occasionally reported in Italy since the early ����s, larger outbreaks
in the Alpine region were observed at the beginning of the ��st century (Luchi et al., ����). Müller et al.
(����) reportedD. sapinea sightings in Estonia (����) and Finland (����). Later in ����, fungus presence
was con�rmed even further East in Russia (Adamson et al., ����), which demonstrated the ability of the
fungus to survive under northeast-European climate conditions.
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�.�.� Diseases caused by F. circinatum andD. sapinea

D. sapinea causes shoot blight, which results in brown needles and mainly a�ects shoots. On stressed
trees, the infection may spread from shoots into older branches, causing resinous cankers which are able
to kill mature branches (Iturritxa et al., ����). Other e�ects are the damping of seedlings, development of
stem cankers and eventually the origination of blue stain (Paulpietersburg, ����; Sinclair & Lyon, ����).
While according to Brodde et al. (����), D. sapinea mainly a�ects the late wood growth, it may "kill the
leader shoot(s), disrupt the shape of the growing crown, and decrease the quality of the stem." D. sapinea
is one of the most common and widely distributed conifer pathogen worldwide (Whitehill et al., ����).
According to Manzanos, Stanosz, et al. (����), D. sapinea was detected in ��� of dead tissue and at ���
of all survey points in their study.

(a) (b) (c)

Figure �.�: Exemplary tree damages caused by D. sapinea: (a) shoot blight of seedlings, (b) blue stain, (c)
patch of trees a�ected by shoot blight. Image copyright: E. Iturritxa

F. circinatum causes pine pitch canker (PPC) which was �rst mentioned in the literature in ���� as a
threat to pines in North Carolina, United States (Hepting & Roth, ����). �e �rst detection of the fungi
in Spain, in Galicia, dates back to ���� with additional �ndings in northern Spain in ���� (Devey et al.,
����). �e fungus causes primarily damage to P. radiata but is able to infect over �� di�erent pine species
(Iturritxa et al., ����). PPC causes "heavy exudation of resin" (Iturritxa et al., ����), impacts tree growth
and may also lead to tree death. Additional e�ects are "reduced seed germination, seedling blight, [and]
canopy dieback" (Iturritxa et al., ����). To infect a tree in the �rst place, F. circinatum needs open wounds
(T. R. Gordon et al., ����; Martín-García et al., ����). �ese can have di�erent origins; for example, from
insect or weather damage (e.g., hail) (Schratz, ����). F. circinatum can be present in seedlings without
signs of infection. �is involves the risk of introducing the fungi into new plantations (Martín-García et
al., ����).

�.�.� Empirical and biological assessment of forest damage

�is thesis analyzes forest damage caused by the forest pathogens F. circinatum and D. sapinea. How
can forest damage be measured and quanti�ed in the �rst place? To be able to address forest damage
quanti�cation, it helps to de�ne the term "forest health". O’Laughlin et al. (����) de�ne forest health as
"forest ecosystem health," i.e., the status of the forest ecosystem as a whole. Trees and tree health are
just parts of such. �e authors state that a comparison to human health is limited, yet both are complex
systems and failing elements are able to potentially collapse the complete system. Forest health ismeasured
by comparing quantitative indicators across time and other forests. Yet O’Laughlin et al. (����) also state
that indicators are o�en subjective (e.g., the presence of a root disease might be seen positively by people
aiming for an increasing biodiversity). �eir importance might highly di�er between forest stands (e.g.,
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(a) (b) (c)

Figure �.�: Examples of pine pitch canker (PPC) caused by F. circinatum infections as observed in the �eld.
Image copyright: E. Iturritxa

the importance of the presence of a speci�c soil type with respect to the respective species). �erefore
indicators cannot easily be transferred to other forest stands, which limits their usefulness. However, they
can be used for historic change detections of individual plots.

On the quantitative side, damages are o�en split into two categories: elemental damage and damage
caused by insects or pathogens. Even though the data quality, especially the spatial resolution, was still
quite low in the ����s, studies aimed to make use of remote sensing imagery to assess forest health in a
quantitative way (Entcheva et al., ����; Royle & Lathrop, ����; Treitz & Howarth, ����). Elemental dam-
ages can be quanti�ed relatively well using remote sensing data because of their widespread appearance
on trees at roughly the same time (Chehata et al., ����; Šimić Milas et al., ����). Pathogen damage, on
the other hand, happens below the tree crown level and causes damage which manifests slowly over an
extended period and possible intensi�es itself during the process, making damage assessments more di�-
cult (Lovett et al., ����). Nevertheless, remote sensing is a data source which can also be of help assessing
pathogen damage. �e underlying assumption is that damaged trees show symptoms of a disease which
can be observed and identi�ed remotely (G. Chen & Meentemeyer, ����). �ese symptoms might allow
for drawing inferences about the underlying sickness of the tree, which again allows for speculation about
a potential pathogen infection. �e data acquired from remote sensing imagery can be used in statisti-
cal models, thresholding or change detection approaches to help map the current state of a forest stand
(G. Chen&Meentemeyer, ����).�e target variable in suchlikemodeling analyses is primarily defoliation
(Adelabu et al., ����; de Beurs & Townsend, ����). Yet studies also aimed to model tree mortality caused
by insect damage (Verbesselt et al., ����) or used mixed-e�ect models to account for environmental un-
certainties (Rullán-Silva et al., ����) during the modeling process. A thorough coverage of (high-risk)
areas might allow for an early detection of pathogen infections and the possibility to apply adequate mea-
sures which prevent the active spread of a disease (G. Chen & Meentemeyer, ����).

Besides the quantitative measurement of forest damage, biological measures are conducted to better
understand the root cause of existing damage and identify the responsible pathogen species (Iturritxa et
al., ����; Manzanos, Aragonés, & Iturritxa, ����). �ese can be categorized into morphological, molecular
and inoculation methods. All methods require the extraction of isolates from needles, or roots of possibly
a�ected trees. Morphological methods use microscopes to analyze the isolates, e.g., by inspecting the size
and overall shape of the spores Iturritxa et al. (����). �ese are combined with molecular analyses which
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extract DNS sequences from the isolates and compare such with an existing DNS database (Pfenning et
al., ����). Last, pathogenic tests following the "Koch postulates" (Evans, ����) are used in which healthy
trees or seedlings are inoculated with extracted isolates in controlled greenhouse environments to observe
their e�ects over time (Iturritxa et al., ����; Mesanza et al., ����).

�.�.� Measures taken againstD. sapinea and F. circinatum

Even though various laboratory studies exist analyzing the living conditions and infection processes of F.
circinatum andD. sapinea, Iturritxa et al. (����) claims that theremight be a substantial di�erence between
laboratory results (e.g., infection rates) compared to the ones observed in the�eld and that only few studies
conducted analyses on this topic so far. Given the complicated and expensive actions that would need to
be taken to actively treat infected plantations, the consensus seems to be to reduce the impact and spread
of the fungi rather than trying to eradicate these (Aegerter & Gordon, ����).

Although fungicides exist for both pathogens, their use in European forests is forbidden for environ-
mental reasons (Directive ����/���/EC) and more environmentally friendly approaches are encouraged
(Martín-García et al., ����). Examples are tebuconazole, oxycarbozin or debacarb which are injected into
"small, shallow holes in the outer xylem of the root �are" (Hartman et al., ����). According to Martín-
García et al. (����), long-term actions, which focus on prevention rather than eradication, are composed
out of (�) biological control, (�) thermotherapy and atmospheric pressure non-thermal plasma treatments,
(�) inducers of resistance, and (�) genetic resistance.�e understanding of the term "biological control" (�)
changed throughout the last decades within the scienti�c community from "any control achieved through
a living system with the exception of man" (Cook & Baker, ����) to "the use of microbial antagonists to
suppress diseases, including natural products extracted or fermented from various sources" (Gardener &
Fravel, ����). �e thermotherapy approach (�) follows the idea of eradicating the fungi from the seeds or
shoots by ensuring a constant temperature over several weeks which would kill the fungi without damag-
ing the shoots or seeds (Wang et al., ����). �e idea of induced resistance (�) "represents a physiological
state of enhanced plant defensive capacity stimulated by biotic or abiotic elicitors, whereby innate defenses
are enhanced against subsequent challenges" (Martín-García et al., ����) whereas genetic resistance (�)
aims to utilize the natural resistance of certain species or populations. �e approach of hybridization (i.e.,
combining a resistant species with a susceptible one) has shown promising results (Kanzler et al., ����).
However, due to the promising native resistance of some species, Iturritxa et al. (����) recommends to in-
crease the planting of such species instead, i.e., P. pinea, Pseudotsuga menziesii, P. nigra (resistance against
F. circinatum) and Pseudotsuga menziesii P. halepensis (resistance against D. sapinea).

�.�.� Forest stand key �gures of Spain

�is section provides brief metadata information about forests in the Basque Country, Spain, which is the
main study area of this thesis. In Spain, ��� of all forest area is occupied with pine trees. In the year ����,
��� of all P. radiata grew in the Basque Country. Fundazioa (����) reported that as of ���� ��� of all P.
radiata plantations of Spain were located in the Basque Country of which ��.��� is forest area and ��.��
of such are composed out of P. radiata (������ ha), respectively.

�ere are no detailed current or historic assessments on the number of infected trees by F. circinatum
or D. sapinea on the country level as usually only individual outbreaks and detections are recorded, e.g.,
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for Europe in the European andmediterranean plant protection organization (EPPO) database (European
and Mediterranean Plant Protection Organization, ����), (Drenkhan et al., ����).
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Abstract

While the application of machine-learning algorithms has been highly simpli�ed in the last years due
to their well-documented integration in commonly used statistical programming languages (such as
R or Python), there are several practical challenges in the �eld of ecological modeling related to unbi-
ased performance estimation. One is the in�uence of spatial autocorrelation in both hyperparameter
tuning and performance estimation. Grouped CV strategies have been proposed in recent years in
environmental as well as medical contexts to reduce bias in predictive performance. In this study
we show the e�ects of spatial autocorrelation on hyperparameter tuning and performance estimation
by comparing several widely used machine-learning algorithms such as Boosted Regression Trees
(BRT), k-Nearest Neighbor (KNN), Random Forest (RF) and Support Vector Machine (SVM) with
traditional parametric algorithms such as logistic regression (GLM) and semi-parametric ones like
Generalized Additive Models (GAM) in terms of predictive performance. Spatial and non-spatial
CV methods were used to evaluate model performances aiming to obtain bias-reduced performance
estimates. A detailed analysis on the sensitivity of hyperparameter tuning when using di�erent resam-
pling methods (spatial/non-spatial) was performed. As a case study the spatial distribution of forest
disease (Diplodia sapinea) in the Basque Country (Spain) was investigated using common environ-
mental variables such as temperature, precipitation, soil and lithology as predictors. Random Forest
(mean Brier score estimate of �.���) outperformed all other methods with regard to predictive accu-
racy.�ough the sensitivity to hyperparameter tuning di�ered between theML algorithms, there were
in most cases no substantial di�erences between spatial and non-spatial partitioning for hyperparam-
eter tuning. However, spatial hyperparameter tuning maintains consistency with spatial estimation
of classi�er performance and should be favored over non-spatial hyperparameter optimization. High
performance di�erences (up to ���) between the bias-reduced (SCV) and overoptimistic (non-spatial
CV) CV settings showed the high need to account for the in�uence of spatial autocorrelation. Overop-
timistic performance estimatesmay lead to false actions in ecological decisionmaking based on biased
model predictions.

�.� Introduction

Spatial predictions are of great importance in a wide variety of �elds including hydrology (Naghibi et
al., ����), epidemiology (W. Adler et al., ����), geomorphology (Brenning et al., ����), remote sensing
(Stelmaszczuk-Górska et al., ����), climatology (Voyant et al., ����), soil sciences (Hengl et al., ����) and
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ecology (Baasch et al., ����; Muenchow et al., ����; Murase et al., ����; Vorpahl et al., ����). Ecological
applications range from species distributionmodels (Halvorsen et al., ����; Quillfeldt et al., ����; Wieland
et al., ����) over plant disease and soil type modeling (Brungard et al., ����; Heim et al., ����) to resource
selection (Baasch et al., ����).

A typical example for a spatial prediction approach in ecology is the detection of fungi infection on
Monterey pines (Iturritxa et al., ����). Fungal species such as Diplodia sapinea in�ict severe damages to
Pinus radiata trees which are then subjected to environmental stress (Wing�eld et al., ����). Infected
forest stands cause economic as well as ecological damages worldwide (Ganley et al., ����). In Spain,
where timber production is regionally an important economic factor, about ��� of the timber produc-
tion stems from Monterrey pine (Pinus radiata) plantations in northern Spain, and here mostly from the
Basque Country (Iturritxa et al., ����). Consequently, the early detection and subsequent containment of
fungal diseases is of great importance. Statistical and machine-learning models can help in this process
by mapping the current infection state and exploring relations between the pathogens and environmental
variables. �ese �ndings can then be used for spatially predicting the risk of future outbreaks.

�.�.� �e special role of spatial autocorrelation in predictive modeling

All of the previously mentioned scienti�c �elds have one thing in common: �e observations inherit spa-
tial information. One of themain challenges that comes with this information is the accounting for the in-
�uence of spatial autocorrelation in the data (Legendre, ����). Cross-validation and bootstrapping are two
widely used performance estimation techniques (Efron & Gong, ����; A. D. Gordon et al., ����; Kohavi,
����). However, in the presence of spatial autocorrelation, estimates obtained using regular (non-spatial)
random resampling maybe biased and overoptimistic. �is has led to the adoption of spatial resampling
in CV and bootstrapping for bias reduction. �e mentioned bias inherits from the fact that training and
test observations are located close to each other (in a geographical space) if a random sampling is used in
CV (Legendre, ����). Random sampling in CV leads to the selection of test observations that are spatially
close to training observations. According to the �rst law of geography, close observations are frequently
more similar to each other than observations further apart. �is violates the fundamental assumption of
independence in CV. Hence, algorithms �tted on the training data o�en achieve very good performance
results, simply because the characteristics of the evaluation set are very similar to the training data.

One approach to solve this, which has been applied in various studies in the last decade, builds upon
the idea to spatially disjoin training and test set in CV.�e naming of this concept varies with the scienti�c
�eld in which it is applied: (Burman et al., ����; Roberts et al., ����; Shao, ����) label it "Block cross-
validation", (Brenning, ����) as "spatial cross-validation", (Pohjankukka et al., ����) "spatial k-fold cross-
validation" and (Meyer et al., ����) "Leave-location-out cross-validation". In this work we use the term
"spatial cross-validation" because it is the most generic wording to label this concept and hope that this
naming convention will prevail.

Although the importance of bias-reduced spatial resamplingmethods for performance estimation has
been emphasized repeatedly in recent years (Geiß et al., ����; Meyer et al., ����; Wenger & Olden, ����),
unfortunately many studies have been published in recent years that did not account for this problem (Bui
et al., ����; Smoliński & Radtke, ����; Wollan et al., ����; Youssef et al., ����).
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�.�.� Parametric vs. non-parametric algorithms

Supervised learning techniques can be broadly divided into parametric and non-parametricmodels. Para-
metric models can be written as mathematical equations involving model coe�cients. �is enables ecol-
ogists to interpret relationships between the response and its predictors. Choosing the best performing
algorithm for a speci�c dataset is an essential step in ecological modeling tomaximize predictive accuracy.
In this context, model interpretability should certainly be an important criterion in the selection process
when the aim is to make inference on the modeled relationship (Johnson & Omland, ����). While the
most commonly used statistical models such as generalized linear mixed models (GLMMs) are paramet-
ric, especially machine-learning techniques o�er a non-parametric approach to spatial modeling in ecol-
ogy (De’ath, ����). Even though recently a lot of e�ort has been put into improving the interpretability of
machine-learning algorithms, their ability to make inference is still limited compared to parametric ones
(P. Adler et al., ����; Henelius et al., ����). �e former gained in popularity due to their ability to handle
high-dimensional and highly correlated data and their less important model assumptions.

�.�.� �e importance of hyperparameter optimization

To reach robust performance results with non-parametric models, their respective hyperparameters must
be optimized. Default hyperparameter settings can not guarantee an optimal performance of machine-
learning techniques and additional attention should be directed to this critical step. When performance
estimation techniques such as CV are used in this step, the adequacy of non-spatial partitioning tech-
niques for spatial datasets can be questioned. Although spatial resampling methods have been used in
studies that deal with spatial data for quite some time now (Geiß et al., ����; Iturritxa et al., ����; Meyer
et al., ����), there is no analysis of the e�ect and meaningfulness of using spatial resampling techniques
for hyperparameter tuning. �is study aims to check if optimizing hyperparameters using a non-spatial
sampling may potentially lead to non-optimal performance estimates.

�.�.� Main objectives

Overall, the intention of this work is to emphasize the need for spatial CV and corresponding hyperparam-
eter tuning in spatial modeling to receive biased-reduced performance estimates.�e following objectives
(and hypotheses) are addressed:

• Comparison of the predictive performance of spatial and non-spatial partitioning methods. We
expect that non-spatial partitioning methods will yield over-optimistic results in the presence of
spatial autocorrelation.

• Exploring the e�ects of (spatial) hyperparameter tuning for commonly used algorithms in the �eld
of ecological modeling. We propose that optimal hyperparameter tuning has a substantial e�ect on
model performance.

• Comparison of the predictive performance of parametric (GLM, GAM) and non-parametric al-
gorithms (BRT, RF, SVM, KNN). We expect that the predictive performance of non-parametric
algorithms is substantially higher.
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Figure �.�: Spatial distribution of tree observations within the Basque Country, northern Spain, showing
infection state by Diplodia sapinea.

�.� Data and study area

�.�.� Summary of the prediction task

�is study uses parts of the dataset from (Iturritxa et al., ����). While (Iturritxa et al., ����) focused on the
in�uence of environmental predictors on pathogen probability, the aimof this study is to compare di�erent
algorithms with the focus of exploring the in�uence of spatial autocorrelation on predictive accuracy and
hyperparameter tuning. In the present study we also introduced additional predictors (probability of hail
damage at trees, soil type, lithology type, pH) to possibly enhance the predictive power of the trained
models.

�is particular dataset was chosen because it incorporates attributes of common geospatial modeling
tasks: An uneven distribution of the binary response variable (��/��), presence of spatial autocorrelation
and predictor variables derived from various sources (previous modeling results, remote sensing data,
surveyed information). It is representative for many other ecological datasets in terms of sample size
(n=���), number of variables (n=��) and predictor types (numeric as well as nominal).

�.�.� Variables

�e following (environmental) variables were used as predictors: Mean temperature (March - September),
mean total precipitation (July - September), potential incoming solar radiation (PISR), elevation, slope
(degrees), potential hail damage at trees, tree age, pH value of soil, soil type, lithology type, and the year
when the tree was surveyed. Temperature, precipitation and PISR are long-term averages (���� - ����) of
meteorological stations across the Iberian Peninsula (Ninyerola et al., ����). Tree infection caused by the
fungal pathogenDiplodia sapinea represents the response variable. �e ratio of infected and non-infected
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trees in the sample is roughly �:� (���, ���). Precipitation, temperature and PISR were already attached to
the dataset. All other variables were extracted to the point data from their raw sources.

(Iturritxa et al., ����) showed in their study that the presence or absence of hail damage observed on
trees is an important predictor when modeling pathogen infections of trees in the Basque Country. Be-
cause almost every infected tree byDiplodia sapinea showed hail damage, it was assumed that the pathogen
uses the open wounds caused by the hail damage as an entry point. To make the tree-based hail damage
variable spatially available for the whole Basque country, we spatially predicted hail damage potential (in
probabilities from � - �) as a function of climatic variables using a GAM (Schratz, ����). In the following
we shortly describe the source and modi�cations of the new variables. For the remaining ones, please see
(Iturritxa et al., ����).

Soil type was predicted by (Hengl et al., ����) using approximately ���.��� soil pro�les at a spatial
resolution of ���m. �e age of trees was imputed and trimmed to a value of �� to reduce the in�uence of
outliers. �e ph value was mapped by the (European Commission, ����) using a regression-kriging ap-
proach based on ��.��� soil pHmeasurements from ��di�erent sources. GeoEuskadi provided the lithology
types (GeoEuskadi, ����). �e rock class were aggregated by the respective top level class for magmatic
types and sub-classes for sedimentary rocks (Grotzinger & Jordan, ����) (Table A�).

We removed three observations due to missing information in some variables leaving a total of ���
observations (Table A�). All nominal variables (soil and lithology-type) were dummy-encoded. To avoid
introducing collinearity, the following reference levels of the dummy-encoded variables were removed
from the data: soil type: "soils with clay enriched sub-soils". Lithology type: "surface deposits".

�.�.� Study area

�e Basque country in northern Spain represents the study area (Figure �.�). It has a spatial extent of ����
km�. Precipitation decreases towards the south while the duration of summer drought increases. Between
���� and ����, mean annual precipitation ranged from ��� to ����mm with annual mean temperatures
between � and ��°C (Ganuza & Almendros, ����). �e wooded area covers approximately ��� of the
territory (����.�� km�), which is one of the highest ratios in the EU. Radiata pine is the most abundant
species occupying ��.��� of the total area (Múgica et al., ����).

�.� Methods

In this study we provide an exemplary analysis combining both tuning of hyperparameters (see subsec-
tion �.�.�) using nested CV (see section �.�.�) and the use of spatial CV to assess bias-reduced model per-
formance (see subsection �.�.�). We compared predictive performance using four settings: Non-spatial CV
for performance estimation combined with non-spatial hyperparameter tuning (non-spatial/non-spatial),
spatial CV estimation with spatial hyperparameter tuning (spatial/spatial), spatial CV estimation with
non-spatial hyperparameter tuning (spatial/non-spatial), and spatial CV estimation without hyperparam-
eter tuning (spatial/no tuning). We used the open-source statistical programming language R (R Core
Team, ����). �e algorithm implementations of the following packages have been used: gbm (Ridgeway,
����) (BRT, (Elith et al., ����)), mgcv (Wood, ����) (GAM), kernlab (Karatzoglou et al., ����) (SVM,
(Vapnik, ����)), kknn (Schliep & Hechenbichler, ����) (KNN, (Dudani, ����)), and ranger (Wright &
Ziegler, ����) (RF, (Breiman, ����)). �e spatial partitioning functions of the sperrorest package have
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been integrated into themlr package as part of this work. mlr provides a standardized interface for a wide
variety of statistical andmachine-learningmodels in R simplifying essentialmodeling tasks such as hyper-
parameter tuning, model performance evaluation and parallelization (Bischl et al., ����). �e complete
analysis including data is available as a research compendium at Zenodo (10.5281/zenodo.2582969).

�.�.� Tuning

Determining the optimal (hyperparameter) settings for each model is crucial for the bias-reduced assess-
ment of a model’s predictive power. Hyperparameters of machine-learning algorithms need to be tuned
to achieve optimal performances (Bergstra & Bengio, ����; Duarte &Wainer, ����; Hutter et al., ����). Of-
ten enough, parametric models do not require tuning to achieve optimal performances. However, some
(semi-)parametric algorithms (e.g. GAM, penalized regression methods) can be optimized to possibly
increase their performance.

Parameter vs. hyperparameter

For parametric models the term "parameter" is o�en used to refer to the regression coe�cients of each
predictor of a �tted model. However, for machine-learning algorithms, the terms "parameter" and "hy-
perparameter" both refer to "hyperparameter" as there are no regression coe�cients for these models. In
addition, the term "parameter" is o�en used in programming to refer to an argument of a function. Hy-
perparameters determine how exactly an algorithmwork and they have an in�uence on the �nal outcome.

Hyperparameters cannot be set manually if the best performance of a model is desired. Automatic
optimization is necessary to determine the best setting. �is optimization is done via procedures such
as random search or Bayesian optimization. In contrast, parameters of parametric models are estimated
when �tting them to the data (Kuhn & Johnson, ����).

Table �.�: Hyperparameter ranges and types for each model. Notations of hyperparameters from the re-
spective R packages were used. Note that parameter sp of the GAM is a vector with eight entries (one
entry for each numeric predictor). p is the number of predictors.

Algorithm (package) Hyperparameter Type Start End Default

BRT (gbm)
n.tree integer ��� ����� ���
shrinkage numeric �.��� �.� �.���
interaction.depth integer � �� �

KNN (kknn)
k integer � ��� �
distance integer � ��� �
kernel nominal *

GAM (mgcv) sp numeric � ��� -

RF (ranger)
mtr y integer � �� √p
min.node.size integer � �� �
sample.fraction numeric �.� �.� �

SVM (e����)
cost numeric �−� ��� �
γ numeric �−�� �� �

* triangular, Epanechnikov, biweight, triweight, cos, inv, Gaussian, optimal
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Tuning method

For hyperparameter tuning, we used sequential model-based optimization (SMBO) as implemented in
the mlrMBO package (Bischl et al., ����). At �rst, n hyperparameter settings are randomly chosen from
a user-de�ned search space. Next, they are evaluated on the chosen resampling strategy. Based on the
previous evaluations a regression model is �tted. �e regression model estimates the performance of the
machine learning method for unknown hyperparameter settings. Using these estimates, a new promising
hyperparameter setting is proposed to be evaluated next. �is is continued until a termination criterion
is reached (Hutter et al., ����; Jones et al., ����). In this work we used an initial design of �� randomly
composed hyperparameter settings and a termination criterion of �� iterations, resulting in a total budget
of ��� evaluated settings per fold. �is tuning approach substantially reduces the tuning budget that is
needed to �nd a setting that is close to the global minimum compared to methods that do not use infor-
mation from previous runs such as random search or grid search (Bergstra & Bengio, ����).

Hyperparameter search spaces

�e boundaries of the hyperparameter search spaces were based on the suggestions of the mlrHyperopt
package. In cases when the optimal setting of the folds of a model was close to the speci�ed minimum
or maximum of the tuning space, we extended the limits. We furthermore checked on the �rst �ve inner
folds of the �rst outer fold that the number of tuning iterations set in the SMBO tuning was su�ciently
large (Figure �.�). �is requirement was met if no new local minimum was found in the last �� � of the
iterations of the selected fold.

In addition, allmodels were �tted using their respective default hyperparameter settings, i.e. no tuning
was performed. For SVM we used σ = � and C = � to suppress the automatic tuning that is usually
applied by the kernlab package. �ese are the default settings set by the package before the automatic
tuning is applied. �e GAM implementation used in this work performs by default an internal non-
spatial generalized cross-validation (GCV) to �nd the best smoothing parameter λ for each predictor
(Wood, ����). To make the optimization of models comparable, we tuned λ for each covariate using the
tuning method that was also applied to the machine-learning algorithms. For the "no tuning" setups, we
set λ = � for all predictors. �e basis dimension for all GAM setups was set to k = �� for all variables. �e
search space for λ (� − ���) was determined by examining the results of a prior tuning using the internal
tuning of the GAM.

Spatial vs. non-spatial hyperparameter tuning

Hyperparameters estimated from a non-spatial tuning lead to �ttedmodels which aremore adapted to the
training data than models with hyperparameters estimated from a spatial tuning. In a non-spatial tuning
setting, hyperparameters that lead to a close �t of the algorithm to the data will be favored in the tuning
process due to the presence of spatial autocorrelation.

Models �tted with hyperparameters from a non-spatial tuning can potentially bene�t from the re-
maining spatial autocorrelation in the train/test split (even if a spatial resampling was used) during per-
formance estimation and achieve a better performance than models tuned using a spatial resampling.
However, depending on the dataset structure and closeness of the model �t on the data, the reverse e�ect
might occur andmodels �tted with a spatial tuning settingmight yield better results. In the end it depends

��
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Figure �.�: Comparison of spatial and non-spatial partitioning of the �rst �ve folds in spatial and non-
spatial cross-validation performance estimation. Blue dots represent the training samples and orange dots
the testing sample. "SpCV" stands for spatial cross-validation (spatial sampling of observations) and "CV"
for cross-validation (random sampling of observations).

on whether the training/test di�erence is more similar to a spatial tuning setting (i.e. more heterogeneous
train/test splits) or to a non-spatial tuning setting (i.e. more homogeneous train/test sets).

Practical implementation

Most packages o�ering CV solutions in R o�er only random partitioning methods, assuming indepen-
dence of the observations. Package mlr, which was used as the modeling framework in this work, was
missing spatial partitioning functions but provides a uni�ed framework for modeling and simpli�es hy-
perparameter tuning. Within the works of this study we implemented the spatial partitioning methods of
package sperrorest intomlr.
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�.�.� Estimation of predictive performance

Nested cross-validation

Cross-validation is a resampling-based technique for the estimation of a model’s predictive performance
(James et al., ����). �e basic idea behind CV is to split an existing dataset into training and test sets using
a user-de�ned number of partitions (Figure �.�). First, the dataset is divided into k partitions or folds. �e
training set consists of k − � partitions and the test set of the remaining partition. �e model is trained on
the training set and evaluated on the test partition. A repetition consists of k iterations for which every
time a model is trained on the training set and evaluated on the test set. Each partition serves as a test set
once.

In�uence of spatial autocorrelation in cross-validation

In ecology, observations are o�en spatially dependent (Dormann et al., ����; Legendre & Fortin, ����).
Subsequently, they are a�ected by underlying spatial autocorrelation by a varyingmagnitude (Cli�&Ord,
����; Legendre, ����; Telford & Birks, ����). Model performance estimates are expected to be overopti-
mistic due to the similarity of training and test data in a non-spatial partitioning setup when using any
kind of CV for tuning or validation (Burman et al., ����; Cli� & Ord, ����; Racine, ����). �erefore,
CV approaches that adapt to this problem should be used in any kind of performance evaluation when
spatial data is involved (Meyer et al., ����; Telford & Birks, ����). In this work we use the SCV approach
a�er (Brenning, ����) which uses k-means clustering to reduce the in�uence of spatial autocorrelation.
In contrast to non-spatial CV, spatial CV reduces the in�uence of spatial autocorrelation by partitioning
the data into spatially disjoint subsets (Figure �.�).

A ��� times repeated (to reduce random variability introduced by partitioning) �ve-fold partitioning
setting was chosen for performance estimation (Figure �.�). For hyperparameter tuning, again �ve folds
were used to partition the training set of each fold. Hyperparameter tuning only applied to the machine-
learning algorithms. A sequential model-based optimization approach was used for optimization (see
subsection �.�.�). Model performances of every hyperparameter setting were computed at the tuning level
and averaged across folds. �e hyperparameter setting with the lowest mean Brier score across all tuning
folds was used to train a model on the training set of the respective performance estimation level. �is
model was then evaluated on the test set of the respective fold (performance estimation level).

Cross-Validation settings

Tounderline the crucial need for spatial CVwhen assessing amodel’s performance, and to identify overop-
timistic outcomes when neglecting to do so, we used the following CV setups:

• Nested non-spatial CV which uses random partitioning and non-spatial hyperparameter tuning
(non-spatial/non-spatial)

• Nested spatial CV which uses k-means clustering for partitioning (Brenning, ����) and results
in a spatial grouping of the observations in combination with non-spatial hyperparameter tuning
(spatial/non-spatial)

• Nested spatial CV including spatial hyperparameter tuning (spatial/spatial)
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• Spatial CV without hyperparameter tuning (spatial/no tuning)

• Non-spatial CV without hyperparameter tuning (non-spatial/no tuning)

Setup (non-spatial/non-spatial) was only used to show the overoptimistic results when using non-spatial
CVwith spatial data and setups spatial/non-spatial, spatial/spatial to reveal the di�erences between spatial
and non-spatial hyperparameter tuning. Setup (spatial/spatial) should be used when conducting spatial
modeling with machine learning algorithms that require hyperparameter tuning.

Performance measure

Brier score was selected as a scoring rule to compare the predictive performances of all algorithms (Brier,
����). In contrast to other commonly used measures for binary classi�cation (e.g. the area under the re-
ceiver operating characteristics curve (AUROC)), Brier score classi�es as a proper scoring rule (Byrne,
����; Gneiting & Ra�ery, ����). It is de�ned as the mean quadratic loss between the predicted and ob-
served probabilities. It ranges from � to � with low values indicating a good prediction (Brier, ����).

A note on spatial autocorrelation structures in parametric models

In this work we expect that, on average, the predictive accuracy of parametric models with and without
spatial autocorrelation structures incorporated into themodel is the same. However, there is little research
on this speci�c topic (Dormann, ����; Mets et al., ����) and a detailed analysis goes beyond the scope of
this work. In our view, a possible analysis would need to estimate the spatial autocorrelation structure
of a model for every fold of a CV using a data-driven approach (i.e. automatically estimate the spatial
autocorrelation structure from each training set in the respective CV fold) and compare the results to
the same model �tted without a spatial autocorrelation structure. Since we only focused on predictive
accuracy in this work, we did not use spatial autocorrelation structures during model �tting for GLM and
GAM to reduce runtime.

�.� Results

�.�.� Tuning

Optimization paths

To proof the e�ectiveness of the tuning, the optimization paths of the �rst �ve folds of RF for settings
spatial/spatial and spatial/non-spatial are visualized (Figure �.�). Using ��� SMBO iterations, all shown
folds show decrease in Brier score along the optimization path (Figure �.�). Apart from fold � of setting
spatial/non-spatial, all folds show a saturation of at least �� or more iterations in which no new local min-
imum was found.

Best hyperparameter settings

�ere were notable di�erences in the distribution of the estimated optimal hyperparameters between the
spatial (spatial/spatial) and non-spatial (spatial/non-spatial, non-spatial/non-spatial) tuning settings (Fig-
ure �.�): In the spatial tuning setting, all models besides BRT show a wide range of optimal hyperparame-
ters across folds. By contrast, the range of optimal settings in the non-spatial tuning case is much smaller
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Figure �.�: �eoretical concept of spatial and non-spatial nested CV using �ve folds for hyperparameter
tuning andperformance estimation. Yellow/purple dots represent the training and test set for performance
estimation, respectively.�e tuning sample is based on the respective performance estimation fold sample
and consists again of training (orange) and test set (blue). Although the tuning folds of only one fold are
shown here, the tuning is performed for every fold of the performance estimation level.
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Figure �.�: SMBO optimization paths of the �rst �ve folds of the spatial/spatial and spatial/non-spatial
CV setting for RF. �e dashed line marks the border between the initial design (�� randomly composed
hyperparameter settings) and the sequential optimization part in which each setting was proposed using
information from the prior evaluated settings. Optimization paths of the remaining models can be found
in the appendix. Visualizations for other algorithms can be found in the research compendium of this
study.
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and o�en clusters around a few speci�c settings (e.g. compare the spatial and non-spatial results of the
SVM) (Figure �.�).

For the spatial tuning case of RF, the estimated mtry values mainly ranged between � and � and mtry

of � was most o�en the optimal value. �is stands in strong contrast to the non-spatial tuning setting in
which mtry mainly ranged between � and � and mtry of � was most o�en the optimal choice. Generally,
we observed the tendency that spatially tuned hyperparameters are o�en close to the limits of the search
space especially when compared to their non-spatial counterparts. �e GAM results are not included in
Figure �.� as the estimated hyperparameter (smoothing parameter λ) is a vector of length eight (eight being
the number of non-linear variables in the model formula) which cannot be visualized in two dimensions.

�.�.� Predictive performance

Which models showed the best performance?

For the spatial settings (spatial/spatial and spatial/no tuning), RF showed the best predictive performance
followed by BRT, KNN and GLM (Figure �.�). �e absolute di�erence between the best (RF) and worst
(GAM) performing model in our benchmark comparison is �.��� (mean Brier score (spatial/spatial)).
�e GAM showed a high variance for all spatial settings compared to all other algorithms.

test

Comparison of spatial vs non-spatial tuning

Predictive performance estimates based on non-spatial partitioning (non-spatial/non-spatial or non-
spatial/no tuning) are around �� - ��� higher, i.e. overoptimistic, compared to their spatial equivalents
(spatial/spatial, spatial/no tuning). BRT and RF show the highest di�erences between these two settings
(��� and ���, respectively) while GLM was the least a�ected (���).

E�ect of hyperparameter tuning on predictive performance

�e tuning of hyperparameters resulted in a clear increase of predictive performance for BRT (�.��� (spa-
tial/spatial) vs. �.��� (spatial/no tuning) mean Brier score), GAM (�.��� (spatial/spatial) vs. �.��� (spa-
tial/no tuning) and KNN (�.��� (spatial/spatial) vs �.��� (spatial/no tuning) mean Brier score) (Figure �.�).
No e�ect of hyperparameter tuning on predictive performance was visible for RF and SVM. �e use of
spatial partitioning in hyperparameter tuning (setting (spatial/spatial) had a substantial positive impact
for BRT and a negative one for GAM and KNN (Figure �.�).
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Figure �.�: Best hyperparameter settings by fold (��� total) each estimated from ��� (��/��) SMBO tun-
ing iterations per fold using �ve-fold CV. Split by spatial and non-spatial partitioning setup and model
type. Red crosses indicate the default hyperparameters of the respective model. Black dots represent the
winning hyperparameter setting of each fold. �e labels ranging from one to �ve show the winning hy-
perparameter settings of the �rst �ve folds. Density lines on both axis show the density distribution of the
respective variable. Visualizations for other algorithms can be found in the research compendium of this
study.
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tions for hyperparameter tuning. CV setting refers to performance estimation/hyperparameter tuning of
the respective (nested) CV, e.g. "Spatial/Non-Spatial" means that spatial partitioning was used for perfor-
mance estimation and non-spatial partitioning for hyperparameter tuning.

�.� Discussion

�.�.� Tuning

Tuning methods

�e question on the most e�cient approach of hyperparameter tuning has o�en been discussed (Bengio,
����; Probst, Wright, & Boulesteix, ����; Yang et al., ����). �e goal is to use as few computational re-
sources as possible to �nd a nearly optimal hyperparameter setting of an algorithm for a speci�c dataset. In
this respect, methods like random search are particularly promising in multidimensional hyperparameter
spaces with possibly redundant or insensitive hyperparameters (low e�ective dimensionality; (Bergstra
& Bengio, ����)). Adaptive search algorithms o�er computationally e�cient solutions to these di�cult
global optimization problems in which little prior knowledge on optimal subspaces is available. Ap-
proaches like Bayesian Optimization and F-racing are widely used for optimization of black-box models
(Birattari et al., ����; Bischl et al., ����; Brochu et al., ����; Malkomes et al., ����). In this study, we used
a sequential model-based optimization (Bayesian optimization) method. Other tuning methods would
be expected to yield almost identical results but at the cost of increased computational e�ciency and less
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robustness in terms of �nding the local minimum.

Algorithm sensitivity to tuning

Somemodels (e.g. RF) are known to be relatively insensitive to hyperparameter tuning (Probst, Boulesteix,
& Bischl, ����). However, as the e�ect of hyperparameter tuning also depends on the dataset, hyperpa-
rameters should always be tuned. If no tuning is conducted, it cannot be ensured that the respectivemodel
showed its best possible predictive performance on the dataset.

Hyperparameter search spaces

Computational expense, especially when using tuningmethods like random search, should focus on plau-
sible parameter settings for each model. It should be ensured by visual inspection that the majority of the
obtained optimal hyperparameter settings is not close to the ranges of the tuning space. If the optimal
hyperparameter settings are clustered at the borders of the parameter search space, this implies that opti-
mal hyperparameters may actually lie outside the given range. However, extending the tuning space is not
always possible nor practical as (�) numerical problems within the algorithmmay occur that may prohibit
further extension of the tuning space; (�) some algorithms tend tomainly use the limits of the given search
space although no substantial increase is achieved (e.g. KNN in the spatial/spatial setting).

We encountered exactly these problems in the spatial/spatial setting for BRT, KNN and SVM. For
example, in the spatial/spatial setting, we should have further increased the search space for thementioned
models based on the distribution of the optimal hyperparameters of each fold (Figure �.�). However,
using the extended setting, the algorithms did not converge anymore for some folds and at the same time
runtime increased without a substantial increase in predictive performance.

All these points show the need for a thorough speci�cation of parameter search spaces. As the optimal
hyperparameter ranges also depend on the dataset characteristics, it is not possible to de�ne a universal
search space that works best on every dataset. Nevertheless, the chosen hyperparameter limits of this work
can serve as a starting point for future analyses in the spatial modeling �eld. Within the framework of the
mlr project a database exists which stores hyperparameter settings of various models from users that can
serve as a reference point (Richter, ����).

Comparison of spatial vs non-spatial tuning

No major di�erences in model performances were found when using spatial versus non-spatial hyperpa-
rameter tuning procedures (e.g. �.��� for BRT (�.��� vs. �.���mean Brier score).

�e winning algorithm RF is used to discuss the optimal estimated hyperparameters per fold of the
spatial and non-spatial tuning setting in more detail. Although the tuning of RF had no substantial ef-
fect on predictive performance (Figure �.�), the estimated optimal hyperparameters of RF di�er for the
non-spatial and spatial tuning setting (Figure �.�). We split the following discussion into two points: (�)
Explanation of the di�erences and (�) the implications of choosing a speci�c resampling method.

(�) �e resampling method has no direct e�ect on how RF prioritizes variables internally. �e Gini
Impurity Index which is used to choose the variable that is used for splitting a node is calculated on a
bootstrapped sample from the training data of the respective fold (Breiman, ����). �is applies for both
spatial and non-spatial tuning. �e Gini Index is not a�ected by spatial autocorrelation in this setting
and RF will select the same variables in both resampling settings. Next RF is trained using the speci�c
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hyperparameter set which was given in this fold (for example mtry = 3 and min.node .size = 4). Now
the e�ect of choosing di�erent resampling strategies applies:

• In the spatial setting, RF scored a low performance on the test set. �e trained model over�tted on
the training set.

• In the non-spatial setting, RF scored a good performance on the test. Here, the test set was highly
similar to the training set and �tting the model closely to the training data resulted in good test set
results.

�e higher mtry and the lower min.node .size are chosen, the more RF will over�t on the given data.
�is statement is backed up by the visualization of the chosen hyperparameter settings in each fold (Fig-
ure �.�).
Ultimately, a spatial resampling in the tuning setting forces the algorithm to create a model that is more
regularized than it would be in the case of a non-spatial resampling setting. �is applies to all algorithms.

(�) Even though the estimated hyperparameters from a spatial and non-spatial sampling di�er, they
sometimes achieve the same performance when being evaluated at the performance estimation level of the
CV (Figure �.�).�is outcome depends on the speci�c characteristics of the chosen dataset and algorithm.
For example, SVM showed substantial di�erences between the resamplingmethods chosen during tuning
while the e�ect for KNNwas negligibly small. �e �ndings of this work need to be veri�ed by using other
spatial datasets (and algorithms). In addition, if a model is going to be evaluated on a speci�c sampling
scheme (here spatial sampling), we see no valid argument why its hyperparameters should be trained on
a di�erent sampling scheme if the predictive performances do nlibot di�er signi�cantly.

�.�.� Predictive Performance

Non-spatial vs. spatial CV

Our �ndings agree with previous studies in that non-spatial performance estimates appear to be substan-
tially "better" than spatial performance estimates (Meyer et al., ����; Micheletti et al., ����; Roberts et al.,
����). However, this di�erence can be attributed to an overoptimistic bias in non-spatial performance
estimates in the presence of spatial autocorrelation (Goetz et al., ����; Meyer et al., ����; Ruß & Bren-
ning, ����a; Steger et al., ����). SCV is therefore required for performance estimation in spatial predictive
modeling, and similar grouped CV strategies have been proposed elsewhere in environmental as well as
medical contexts to reduce bias in predictive performance (Brenning & Lausen, ����; Meyer et al., ����;
Peña & Brenning, ����; Pohjankukka et al., ����; Roberts et al., ����).

�e e�ect of hyperparameter tuning on predictive accuracy

Although hyperparameter tuning certainly increased the predictive performance for BRT, GAMandKNN
in our case, the magnitude always depends on the meaningful/arbitrary defaults of the respective algo-
rithm and the characteristics of the dataset. Naturally, the tuning e�ect is higher for models without
meaningful defaults (such as BRT and KNN) than for models with meaningful defaults such as RF. To
underline this statement, there was basically no tuning e�ect for SVM in this study (Figure �.�) although
the SVM usually shows substantial increases when being tuned (Rojas-Dominguez et al., ����).
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Predictive performance across algorithms

Other studies also found that RF showed the best predictive performance (referring to setting spatial/spa-
tial) (Bahn &McGill, ����; Jarnevich et al., ����; Smoliński & Radtke, ����; Vorpahl et al., ����) although
this is not always the case (Peña & Brenning, ����).�e fact that the GLM is showing a better performance
than the GAM shows the heterogeneous train/test split introduced by spatial partitioning: �e GAM was
probably not able to generalize enough (i.e. it over�tted on the training set) in the spatial resampling
setting. �e high variance of the GAM performances in the spatial setting support this assumption: If
the training set is similar to the test set, the GAM is able to achieve Brier score results around �.��. In
cases where training and test set are more heterogeneous, the predictive performance showed Brier score
estimates up to �.��. �e linear approach of the GLM was able to generalize better in this study and sub-
sequently resulted in a better performance.

It maybe surprising at �rst that the GLM is showing a showing a performance which is similar to
that of BRT, KNN and SVM. �is is most likely due to the ability of the algorithm to generalize. Highly
�exible algorithms have a tendency to over�t when the test set di�ers substantially from the training set.
For instance, a test set located close to the sea might be hard to predict for models trained on data that
was almost exclusively located in mountainous regions. In such a setting, a low degree of �exibility will
result in better predictions. �is example also shows the importance of traditional parametric approaches
in ecological modeling: O�en enough ecological datasets show a high degree of diversity and machine-
learning models might su�er from over�tting. In this case, the interpretability, speed and generalization
capabilities of aGLMmake this algorithm a valid choice, especially if the di�erences in predictive accuracy
compared to black-box models are small.

�e in�uence of the performance measure

�e choice of the scoring rule for the evaluation of binary classi�cations is an important decision (Gneiting
& Ra�ery, ����). Measures that are not classi�ed as "proper" can lead to undetected deviations during
scoring that can end up in biased results (Byrne, ����). One of the most used performance measures in
the �eld of binary classi�cation, the AUROC, is a�ected by this. In a previous version of this work we used
AUROC to rank the algorithms which had the e�ect of GAM showing a similar performance as RF. So by
only changing the measure, GAMwent from the best (AUROC) to the worst (Brier score) algorithm. �is
example highlights the importance of selecting a measure for benchmarking purposes that is classi�ed as
a proper scoring rule. However, analyzing the e�ect of di�erent measures on benchmarking performance
across algorithms exceeds the scope of this work. Nevertheless, the use of the AUROC is justi�able in
situations where relative indices of susceptibility are sought instead of predicted probabilities (e.g., hazard
susceptibility modeling, (Goetz et al., ����)).

A note on spatial autocorrelation structures in parametric models

In this work we expect that, on average, parametric models with and without residual autocorrelation
structures are comparable. However, since model comparisons have focused on model behavior in statis-
tical inference there is little research on this speci�c topic (Dormann, ����; Mets et al., ����) and a detailed
analysis goes beyond the scope of this work. In our view, a possible analysis would need to re-estimate
the spatial autocorrelation structure for every fold of a CV using a data-driven approach (i.e. automati-
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cally �t a residual autocorrelation on each in the respective CV fold) and compare the results to the same
model �tted without a spatial autocorrelation structure. Since we only focused on predictive accuracy in
this work, we did not use spatial autocorrelation structures during model �tting for GLM and GAM to
reduce runtime. However, if the aim is statistical inference, it is of utmost importance to include a spatial
autocorrelation structure during model �tting.

�e e�ect of overoptimistic performance estimates on ecological decision making

Unbiased model outcomes are the foundation of informed ecological decision-making, biodiversity con-
servation as well as ecological restoration strategies (Muenchow et al., ����). In particular, reliable out-
comes are indispensable in species distribution (Loehle, ����), invasive species dispersal (Srivastava et al.,
����), and ecosystem service modeling (Watanabe & Ortega, ����). Global change makes model predic-
tions uncertain enough (IPCC, ����). �erefore, it is unnecessary to introduce an additional autocorre-
lation bias, especially since one can relatively easy account for it. We encourage the use of spatial CV for
performance estimation (Brenning, ����; Ruß &Kruse, ����), variable importance assessment (Brenning,
����; Brenning et al., ����) and hyperparameter tuning (this study).

�.�.� Outlook

In this study, we focused on comparing resampling methods (spatial vs. non-spatial strategies) including
hyperparameter tuning on a typical ecological dataset. Alsowe showed how to retrieve a bias-reduced per-
formance estimate in the presence of spatial autocorrelation. Since we only used one dataset, the numeric
outcomes are not generalizable. Still, we believe that future studies adapting the approach presented in
this work will help with �nding general patterns. It would be interesting to see if a spatial hyperparameter
tuning (Figure �.�) shows a more pronounced e�ect when other datasets are used. Most freely available
datasets in the major repositories (Olson et al., ����; Vanschoren et al., ����) lack spatial information
which obviously is the prerequisite for spatial data analysis.

Finally, ecological observations are o�en observed repeatedly at the same locations. In this case, the
observations are most likely a�ected by both spatial and temporal autocorrelation. �erefore, one would
have to adjust the methodology presented in this manuscript by incorporating the temporal dimension
into the spatial resampling strategy.

�.� Conclusions

In this study, we compared six statistical andmachine-learningmodels in terms of predictive performance.
With the exception of SVM, all machine-learningmodels outperformed (semi-)parametric models. More
importantly, we found that non-spatial partitioning yields largely overoptimistic performance results in
the presence of spatial autocorrelation.

By contrast, the e�ect of hyperparameter tuning on the predictive performancewas less obvious, varies
by algorithm and was overall smaller than the performance di�erences between algorithms. Additionally,
the performance di�erences between spatial and non-spatial hyperparameter tuning were rather small.
Still, we would recommend to use spatial CV instead of non-spatial CV for hyperparameter tuning when
working with spatial data as only this ensures the assessment of bias-reduced predictive performance
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results. �is is especially important when the corresponding results form the basis of ecological and con-
servation decision making.

Finally, we recommend to clearly identify the main goal of an analysis from the beginning: If the
goal is to disentangle environmental-ecological relationships with the help of statistical inference, (semi-
)parametric models should be favored even if they fare less well in terms of predictive accuracy. By
contrast, if the intention is to produce highly accurate spatial prediction maps, spatially tuned machine-
learning models maybe the better choice.

Reproduced with permission from International Journal on Ecological Modelling and Systems Ecology;
published by Elsevier, ����.
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Abstract

�is study analyzed highly correlated, feature-rich datasets from hyperspectral remote sensing data
using multiple statistical and machine-learning methods. �e e�ect of �lter-based feature selection
methods on predictive performance was compared. In addition, the e�ect of multiple expert-based
and data-driven feature sets, derived from the re�ectance data, was investigated. Defoliation of trees
(�), derived from in situ measurements from fall ����, was modeled as a function of re�ectance.
Variable importance was assessed using permutation-based feature importance. Overall, the support
vector machine (SVM) outperformed other algorithms, such as random forest (RF), extreme gradient
boosting (XGBoost), and lasso (L�) and ridge (L�) regressions by at least three percentage points. �e
combination of certain feature sets showed small increases in predictive performance, while no sub-
stantial di�erences between individual feature sets were observed. For some combinations of learners
and feature sets, �lter methods achieved better predictive performances than using no feature selec-
tion. Ensemble �lters did not have a substantial impact on performance. �e most important features
were located around the red edge. Additional features in the near-infrared region (��� nm–���� nm)
were also essential to achieve the overall best performances. Filter methods have the potential to be
helpful in high-dimensional situations and are able to improve the interpretation of feature e�ects in
�tted models, which is an essential constraint in environmental modeling studies. Nevertheless, more
training data and replication in similar benchmarking studies are needed to be able to generalize the
results.

�.� Introduction

�e use of machine learning (ML) algorithms for analyzing remote sensing data has seen a huge increase
in the last decade (Lary et al., ����). �is coincided with the increased availability of remote sensing
imagery, especially since the launch of the �rst Sentinel satellite in the year ����. At the same time, the
implementation and usability of learning algorithms has been greatly simpli�ed with many contributions
from the open-source community. Scientists can nowadays process large amounts of (environmental)
information with relative ease using various learning algorithms. �is makes it possible to easily extend
benchmark comparisonmatrices of studies in a semi-automatedway, possibly stumbling uponunexpected
�ndings, such as process settings, that would not have been explored otherwise (Ma et al., ����).
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ML methods in combination with remote sensing data are used in many environmental �elds, such
as vegetation cover analysis and forest carbon storage mapping (Mascaro et al., ����; Urban et al., ����).
�e ability to predict these environmental variables in unknown regions quali�es ML algorithms as a
helpful tool for such environmental analyses. One aspect of this research �eld is to enhance the under-
standing of biotic and abiotic stress triggers, for example, by analyzing tree defoliation (Hawryło et al.,
����). Defoliation is known to be a proxy for pathogen and insect damage (Pollastrini et al., ����). While
common symptoms are observable across species, some e�ects and their degree of severity are species-
speci�c (Gottardini et al., ����). Defoliation has also been shown to increase predisposition of tree death
from secondary biotic factors up to ten years a�er the actual defoliation event (Oliva et al., ����). Other
approaches for analyzing forest health include change detection (Zhang et al., ����) or describing the cur-
rent health status of forests on a stand level (Townsend et al., ����).
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Vegetation indices have shown the potential to provide valuable information when analyzing forest
health (Adamczyk & Osberger, ����; Jiang et al., ����). Most vegetation indices were developed with the
aim of being sensitive to changes in speci�c wavelength regions, serving proxies for underlying plant phys-
iological processes. In some cases, indices developed for di�erent purposes than the one to be analyzed
(e.g., defoliation of pine trees) may help to explain complex underlying relationships that are not obvious
at �rst. �is emphasizes the need to extract as much information as possible from the available input data
to generate promising features that can help in improving our understanding of the modeled relation-
ship (�enkabail et al., ����). A less known index type that can be derived from spectral information is
the NRI. In contrast to most vegetation indices, NRIs do not use an expert-based formula following envi-
ronmental heuristics; instead, they make use of a data-driven feature engineering approach by combining
(all possible) combinations of spectral bands (�enkabail et al., ����). When working with hyperspectral
data, thousands of NRI features can be derived this way.

Even though ML algorithms are capable of handling highly correlated input variables, model �tting
becomes computationally more demanding andmodel interpretationmore challenging. Feature selection
approaches can help to address this issue, reducing possible noise in the feature space, simplifying model
interpretability, and possibly enhancing predictive performance (Cai et al., ����). Instead of usingwrapper
feature selection methods, which add a substantial overhead to a nested model optimization approach,
especially for datasets with many features, this study focuses on (ensemble) �lter methods, which can be
directly integrated into the hyperparameter optimization step during model construction.

Overall, this study aims to show how high-dimensional datasets can be handled e�ectively with ML
methods while still allowing the interpretation of the �tted models. �e predictive power of non-linear
methods and their ability to handle highly correlated predictors is combined with common and new ap-
proaches for assessing feature importance and feature e�ects. However, this study focuses mainly on in-
vestigating the e�ects of �lter methods and feature set types on predictive performance rather than inter-
preting individual feature e�ects.

Considering these opportunities and challenges, the research questions of this study are as follows:

• How do di�erent feature selection methods in�uence the predictive performance of ML models of
the defoliation of trees?

• Do di�erent (environmental) feature sets show di�erences in performance?

• Can predictive performance be substantially improved by combining feature sets?

• Which features are most important and how can these be interpreted in this context?

In recent years, various studies that have used hyperspectral data to analyze pest/fungi infections on
trees have been published. Pinto et al. (Pinto et al., ����) successfully used hyperspectral imagery to char-
acterize pest infections on peanut leaves using random forest, while Yu et al. (Yu et al., ����) aimed to
detect pine wilt disease in pine plots in China using vegetation indices derived from hyperspectral data.
Other studies which applied hyperspectral data for forest health monitoring are (J. P. Dash et al., ����;
Kayet et al., ����; H. Lin et al., ����). Building upon these successful applications of hyperspectral remote
sensing usage in the �eld of leaf and tree healthmonitoring, this work analyzes tree defoliation in northern
Spain using airborne hyperspectral data.�emethodology of this study usesMLmethods in combination
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with feature selection and hyperparameter tuning. In addition, feature importance was analyzed. Incor-
porating the idea of creating data-driven NRIs, this study also discusses the practical problems of high
dimensionality in environmental modeling (Trunk, ����; H. Xu et al., ����).

�.� Materials and Methods

�.�.� Data and study area

Airborne hyperspectral data with a spatial resolution of one meter and ��� spectral bands were available
for four Monterey Pine (Pinus radiata D. Don) plantations in northern Spain. �e trees in the plots suf-
fer from infections with pathogens such as Diplodia sapinea (Fr.) Fuckel, Fusarium circinatum Nirenberg
& O’Donnell, Armillaria mellea (Vahl) P. Kumm, Heterobasidion annosum (Fr.) Bref, Lecanosticta acicola
(�üm) Syd., and Dothistroma septosporum (Dorogin) M. Morelet causing (among others) needle blight,
pitch canker, and root diseases (Iturritxa et al., ����; Mesanza et al., ����). �e �rst two fungi are mainly
responsible for the foliation loss of the trees analyzed in this study (Iturritxa et al., ����). In situ mea-
surements of defoliation of trees (serving as a proxy for tree health) were collected by visual inspection by
experts. Defoliation in percent was used as the response variable (Figure �.�).

It is assumed that the fungi infect the trees through open wounds, possibly caused by previous hail
damage (Iturritxa et al., ����). �e dieback of these trees, which are mainly used as timber, causes sub-
stantial economic losses (Ganley et al., ����).
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Figure �.�: Response variable “defoliation of trees” for plots Laukiz�, Laukiz�, Luiando, and Oiartzun. n
is the total number of trees in each plot, and x̄ the mean defoliation. Values for Laukiz�, Luiando, and
Oiartzun were observed in �� intervals; for Laukiz�, defoliation was observed at multiple heights and
then averaged, leading to smaller defoliation di�erences than ��.

In situ data

�e Pinus radiata plots of this study, namely Laukiz�, Laukiz�, Luiando, and Oiartzun, are located in
the northern part of the Basque Country (Figure �.�). Oiartzun has the largest number of observations
(n = ��� trees), while Laukiz� is the largest in area (�.�� ha). All plots besides Luiando are located within
��� km from the coast (Figure �.�). A total of ���� observations are available (Laukiz�: ���, Laukiz�: ���,
Luiando: ���, Oiartzun: ���). Field surveys were conducted in September ���� by experienced forest
pathologists. Defoliation was measured in �� steps through visual inspection with the help of a score
card. For Laukiz�, values at three height levels (bottom, mid, and top) were available and averaged into an
overall defoliation value, resulting in values that are not multiples of �� (e.g., �.���). �e magnitude of
human observer errors in such surveys, including the present one, is not precisely known and has being
discussed formany years (Innes, ����). Ref. (MacLean & Lidstone, ����) estimated human observer errors
in defoliation surveys to range between �� and ���.
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Figure �.�: Study area maps showing information about location, size, and spatial distribution of trees for
all plots (Laukiz�, Laukiz�, Luiando, and Oiartzun). �e background maps give a visual impression of the
individual plot area but do not necessarily represent the plot’s state during data acquisition.

Hyperspectral data

�e airborne hyperspectral data were acquired by an AISA EAGLE-II sensor during two �ight campaigns
on �� September and �October ���� at noon. All preprocessing steps (geometric, radiometric, and atmo-
spheric) were conducted by the Institut Cartogra�c i Geologic de Catalunya (ICGC). �e �rst four bands
were corrupted, leaving ��� bands with valid information. Additional metadata information is available
in Table �.�.

Table �.�: Speci�cations of hyperspectral data

Characteristic Value

Geometric resolution �m
Radiometric resolution �� bit
Spectral resolution ��� bands (���.�� nm–���.�� nm)
Correction: Radiometric, geometric, atmospheric

�.�.� Derivation of indices

To use the full potential of the hyperspectral data, all possible vegetation indices supported by the R pack-
age hsdar (�� in total) as well as all possibleNRI combinationswere calculated. NRIs follow the optimized
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multiple narrow-band re�ectance (OMNBR) concept of data-driven information extraction fromnarrow-
band indices of hyperspectral data (�enkabail et al., ����, ����). While various index formulations, such
as band ratios or normalized ratios, are available, indices involving the same bands are strongly correlated.
Since the widely used NDVI index belongs to the group of normalized ratio indices (NRIs), which are im-
plemented in the hsdar R package, we used the following normalized di�erence index (NDI) formula to
combine all pairs of re�ectances:

NRIi , j = bandi − bandj

bandi + bandj
(�.�)

where i and j are the respective band numbers.
To account for geometric o�sets within the hyperspectral data, which were reported by ICGC to be

potentially up to one meter, a bu�er of one meter radius around the centroid of each tree was used when
extracting the re�ectance values. A pixel was considered to fall into a tree’s bu�er zone if the centroid of
the respective pixel was touched by the bu�er. �e pixel values within a bu�er zone were averaged and
formed the �nal re�ectance value of a single tree, and they were used as the base information to derive all
additional feature sets. In total, ���∗���� = ���� NRIs were calculated.
�.�.� Feature selection

High-dimensional, feature-rich datasets come with several challenges for both model �tting and evalua-
tion:

• Model �tting times increase.

• Noise is possibly introduced into models by highly correlated variables (Johnstone & Titterington,
����).

• Model interpretation and prediction become more challenging (Johnstone & Titterington, ����).

To reduce the feature space of a dataset, several conceptually di�ering approaches exist: wrappermeth-
ods, �lters, penalization methods (lasso and ridge), and principal component analysis (PCA) (Bommert
et al., ����; Das, ����; Guyon & Elissee�, ����; Jolli�e & Cadima, ����). In contrast to wrapper methods,
�lters have a much lower computational cost, and their tuning can be added to the hyperparameter op-
timization step. In addition, �lters are less known than wrapper methods, and, in recent years, ensemble
�lters, which have shown promising results compared to single �lter algorithms, were introduced (Drotár,
Šimoňák, et al., ����). �ese two points mainly led to the decision to focus on �lter methods for this work
and evaluate their e�ectiveness on highly correlated, high-dimensional datasets. Due to this focus, only
this subgroup of feature selection methods is be introduced in greater detail in the following sections.

Filter methods

�e concept of �lters originates from the idea of ranking features following a score calculated by an al-
gorithm (Guyon & Elissee�, ����). Some �lter methods can only deal with speci�c types of variables
(e.g., numeric or nominal). Filters only rank features; they do not decide which covariates to drop or
keep (Drotár et al., ����). �e decision of which features to keep for model �tting can be integrated into
the optimization phase during model �tting, along with hyperparameter tuning. �us, the number of
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top-ranked features to be included in the model is treated as an additional hyperparameter of the model.
�is hyperparameter is tuned to optimize the model’s performance.

Beyond the use of individual �lter methods to rank and select features, recent studies have shown that
combining several �lters by using statistical operations such as "minimum" or "mean" may enhance the
predictive performance of the resulting models, especially when applied to multiple datasets (Abeel et al.,
����; Drotár, Šimoňák, et al., ����). �is approach is referred to as "ensemble �ltering" (Dietterich, ����).
Ensemble �lters align with the recent rise of the ensemble approach inML, which uses the idea of stacking
to combine the predictions ofmultiplemodels, aiming to enhance predictive performance (Bolón-Canedo
& Alonso-Betanzos, ����; Feurer et al., ����; Polikar, ����). In this work, the Borda ensemble �lter was
used (Drotár, Šimoňák, et al., ����). Its overall feature order is determined by the sum of �lter ranks of all
individual �lters in the ensemble.

Filter methods can be categorized based on three binary criteria: multivariate or univariate feature
use, correlation or entropy-based importance weighting, and linear and non-linear �lter methodology.
Care needs to be taken to not weigh certain classes more than others in the ensemble, as, otherwise, the
ranking will be biased. In this study, this was taken care of by checking the rank correlations (Spearman’s
correlation) of the generated feature rankings of all methods against each other. If �lter pairs showed a
correlation of �.� or higher, only one of the two was included in the ensemble �lter, selecting it at random.

Description of used �lter methods

Filter methods can be classi�ed as follows (Table �.�):

• Univariate/multivariate (scoring based on a single variable/multiple variables).

• Linear/non-linear (usage of linear/non-linear calculations).

• Entropy/correlation (scoring based on derivations of entropy or correlation-based approaches).

Table �.�: Article �: List of �lter methods used in this work, their categorization, and scienti�c reference

Name Group Ref.

Linear correlation (Pearson) univariate, linear, correlation (Pearson, ����)
Information gain univariate, non-linear, entropy (Quinlan, ����)
Minimum redundancy, maximum relevance multivariate, non-linear, entropy (X.-M. Zhao, ����)
Carscore multivariate, linear, correlation (Zuber & Strimmer, ����)
Relief multivariate, linear, entropy (Kira & Rendell, ����)
Conditional minimal information maximization multivariate, linear, entropy (Fleuret, ����)

�e �lter "Information Gain" in its original form is only de�ned for nominal response variables:

H(Class) +H(Attribute) −H(Class,Attribute) (�.�)

where H is the conditional entropy of the response variable (class or Y) and the feature (attribute or X).
H(X) is Shannon’s entropy (Shannon, ����) for a variable X, andH(X ,Y) is a joint Shannon’s entropy for
a variable X with a condition to Y. H(X) itself is de�ned as

H(X) = − n�
i=� P(xi) logb P(xi) (�.�)
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where b is the base of the logarithm used, most commonly �.
In order to use this method with a numeric response (percentage defoliation of trees), the variable was

discretized into equal bins nbin = 10 and treated as a categorical variable.

�.�.� Benchmarking design

Algorithms

�e following learners were used in this work:

• Extreme gradient boosting (XGBoost);

• Random forest (RF);

• Penalized regression (with L�/lasso and L�/ridge penalties);

• Support vector machine (SVM, radial basis function Kernel);

• Featureless learner.

RF and SVM are well-established algorithms and widely used in environmental remote sensing. Ex-
treme gradient boosting (commonly abbreviated as XGBoost) has shown promising results in benchmark-
ing studies in recent years. Penalized regression is a statistical modeling technique capable of dealing with
highly correlated covariates by penalizing the model coe�cients (Hastie et al., ����). Common penalties
are "lasso" (L�) and "ridge" (L�). Ridge regression does not remove variables from the model (penalization
to zero), but it shrinks them towards zero, keeping them in the model. A featureless learner was included
for a baseline comparison.

In total, the benchmarking grid consisted of ��� experiments (� feature sets × � ML algorithms × �
feature-selection methods and for the L�/L�models, � feature sets × �models. �e selected hyperparam-
eter settings are shown in Table A�. All code and data are included in the research compendium of this
study (https://doi.org/10.5281/zenodo.2635403, accessed on �� November ����).

Feature sets

�ree feature sets were used in this study, each representing a di�erent approach to feature engineering:

• �e raw hyperspectral band information (HR): no feature engineering

• Vegetation indices (VIs): expert-based feature engineering;

• Normalized ratio indices (NRIs): data-driven feature engineering.

�e idea of splitting the features into di�erent sets originated from the question of whether feature-
engineered indices derived from re�ectance values have a positive e�ect on model performance. Peña et
al. ���� (Peña et al., ����) is an exemplary study that used this approach in a spectro-temporal setting.
Benchmarking learners on these feature sets while keeping all other variables, such as model type, tuning
strategy, and a partitioningmethod, �xedmakes it possible to draw conclusions on their individual impact.
Each feature set has distinct capabilities that di�erentiate it from the others. �is can have both a positive
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and negative e�ect on the resulting performance, which is one question this study aims to explore. For
example, feature set VI misses certain parts of the spectral range, as the chosen indices only use speci�c
spectral bands. Feature set NRI will introduce highly correlated features, for which some algorithms may
be more suitable than others.

In addition to these individual feature sets, the following combinations of feature sets were also com-
pared:

• HR + VI

• HR + NRI;

• HR + VI + NRI.

Some individual features were removed before using the datasets for modeling when being numer-
ically equivalent to another feature based on the pairwise correlation being greater than � − ��−��. �is
preprocessing step reduced the number of covariates for feature set VI to �� (from ��). �is decision was
made to prevent numerical issues that may occur in the subsequent tuning, �ltering, and model �tting
steps when o�ering features with a pairwise correlation of (almost) one. �e remaining features were then
used as input for the �lter-based feature selection within the CV.

Hyperparameter optimization

Hyperparameters were tuned usingmodel-based optimization (MBO) within a nested spatial CV (Binder
et al., ����; Bischl et al., ����; Schratz et al., ����). In MBO, �rst, n hyperparameter settings are randomly
chosen from a user-de�ned search space. A�er these n settings have been evaluated, one new setting,
which is evaluated next, is proposed by a �tted surrogate model (by default, a kriging method). �is
strategy continues until a user-de�ned stopping criterion is satis�ed (Hutter et al., ����; Jones et al., ����).

In this work, an initial design of �� randomly drawn hyperparameter settings in combination with a
stopping criterion of �� iterations was used, resulting in a total budget of ��� evaluated hyperparameter
settings per fold.�e advantage of this tuning approach is a substantial reduction of the tuning budget that
is required to �nd a setting close to the global optimization minimum. MBO may outperform methods
that do not use information from previous iterations, such as random search or grid search (Bergstra &
Bengio, ����). Tuning ranges used in this work are shown in Table A�.

To optimize the number of features used for model �tting, the percentage of features was added as
a hyperparameter during the optimization stage (Binder et al., ����). For PCA, the number of principal
components was tuned. �e RF hyperparameter mtry was re-expressed as mtry = ptsel, a function of the
number of selected features, psel. It was thus tuned on a logarithmic scale by varying t between � (i.e.,
mtry = �) and �.� (i.e.,mtry =√psel). �is was necessary to ensure thatmtry did not exceed the number of
features available a�er optimizing the feature percentage during tuning.

Spatial resampling

A spatial nested cross-validation on the plot level was chosen to account for spatial autocorrelation within
the plots and assess model transferability to di�erent plots (Brenning, ����; Schratz et al., ����). �e
RMSE was chosen as the error measure. Each plot served as one cross-validation fold, resulting in four
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iterations in total.�e inner level of cross-validation for hyperparameter tuning also used plot-level cross-
validation.

�.�.� Feature importance and feature e�ects

Estimating feature importance for datasets with highly correlated features is a challenging task for which
numerous model-speci�c and model-agnostic approaches exist (J. H. Friedman, ����; Greenwell et al.,
����; Hastie et al., ����). �e strong correlations among features make it challenging to calculate an unbi-
ased estimate for single features (Molnar, ����). Methods such as PDP or permutation-based approaches
may produce unreliable estimates in such scenarios because unrealistic combinations of feature values are
created (Molnar, ����). �e development of robust methods that enable an unbiased estimation of feature
importance for highly correlated variables is subject to current research (Brenning, ����).

In this work, permutation-based feature importance was calculated to estimate feature importance or
e�ects (Apley & Zhu, ����). With the limitations in mind when applied to correlated features, the aim
was to get a general overview of the feature importance of the hyperspectral bands while trying to avoid
an over-interpretation of results. �e best-performing algorithm on the HR task (i.e., SVM) was used for
the feature importance calculation.

To facilitate interpretation, the tenmost important indices of the best performingmodels using feature
sets HR and VI were linked to the spectral regions of the hyperspectral data that went into their calcula-
tion. �e aim was to visualize the most important features along the spectral curve of the plots to better
understand which spectral regions were most important for the model.

�.�.� Research compendium

All tasks of this study were conducted using the open-source statistical programming language R (R Core
Team, ����). A complete list of all R packages used in this study can be found in the linked repositories
mentioned in the next paragraph. Due to space limitations, only selected packages with high impact on
this work are explicitly cited.

�e algorithm implementations of the following packages were used: xgboost (T. Chen & Guestrin,
����) (extreme gradient boosting), kernlab (Karatzoglou et al., ����) (support vector machine) and glm-
net (J. Friedman et al., ����) (penalized regression). �e �lter implementations of the following packages
were used: praznik (Kursa, ����) and FSelectorRcpp (Zawadzki & Kosinski, ����). Package mlr (Bischl et
al., ����) was used for all modeling related steps, and drake (Landau, ����) was used for structuring the
work and for reproducibility. �is study is available as a research compendium on Zenodo (10.5281/
zenodo.2635403, (accessed on �� November ����). Apart from the availability of code and manuscript
sources, a static webpage is available at https://pat-s.github.io/2019-feature-selection (ac-
cessed on �� November ����) which includes additional side analyses that were carried out during the
creation of this study.
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Table �.�: �e overall best individual learner performance across any task and �lter method for RF, SVM,
XGBoost, Lasso and Ridge, sorted ascending by RMSE (p.p.) including the respective standard error (SE)
of the cross-validation run. Forregr.featureless theTask is not applicable andwas therefore removed.

Task Model Filter RMSE SE
� NRI-VI SVM Info Gain ��.��� ��.���
� NRI RF Relief ��.��� ��.���
� HR XGBoost Info Gain ��.��� ��.���
� NRI Lasso-MBO No Filter ��.��� ��.���
� NRI Ridge-MBO No Filter ��.��� ��.���
� - regr.featureless No Filter ��.��� ��.���

Table �.�: Test fold performances in RMSE (p.p.) for learner SVM on the HR dataset without using a �lter,
showcasing performance variance on the fold level. For each row, the model was trained on observations
from all others plots but the given one and tested on the observations of the given plot.

RMSE Test Plot
� ��.�� Laukiz�
� ��.�� Laukiz�
� �.�� Luiando
� ��.�� Oiartzun

�.� Results

�.�.� Principal component analysis of feature sets

PCA was used to assess the complexity of the three feature sets. Depending on the feature set, ��� of the
variance is explained by two (HR), twelve (acVI), and �� (NRI) principal component (PC)s. HR features
are therefore highly redundant, while the applied feature transformations enrich the data set, at least from
an exploratory linear perspective.

�.�.� Predictive performance

Overall, the response variable “tree defoliation” could be modeled with an RMSE of �� percentage points
(p.p.) (Figure �.�). SVM showed almost no di�erences in RMSE across feature sets whereas other learners
(RF, SVM, XGBoost, lasso and ridge) di�ered up to �ve p.p. (Figure �.�). SVM showed the best overall
performance with a mean di�erence of around three p.p. to the next best model (XGBoost) (Table �.�).
Performance di�erences between test folds were large: Predicting on Luiando resulted in an RMSE of �.�
p.p. for learner SVM (without �lter) but up to ��.� p.p. when testing on Laukiz� (Table �.�).

�e combination of feature sets showed small increases in performance for some learners. XGBoost
scored slightly better on the combined datasets HR-NRI, NRI-VI, andHR-NRI-VI compared to their stan-
dalone variants (NRI and VI) (Figure �.�). However, the best performances for RF and XGBoost were
scored on NRI and HR, respectively. RF showed a substantial performance increase when using only NRI
compared to all other feature sets, whereas for XGBoost, the worst performances were associated with the
VI- and NRI-only feature sets (Figure �.�).
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Table �.�: Best ten results among all learner-task-�lter combinations, sorted in decreasing order of RMSE
(p.p.) and their respective standard error (SE).

Task Model Filter RMSE SE
� NRI-VI SVM Info Gain ��.��� ��.���
� NRI SVM CMIM ��.��� ��.���
� VI SVM Relief ��.��� ��.���
� NRI-VI SVM Borda ��.��� ��.���
� HR SVM CMIM ��.��� ��.���
� HR SVM MRMR ��.��� ��.���
� VI SVM Info Gain ��.��� ��.���
� NRI SVM PCA ��.��� ��.���
� HR-NRI SVM PCA ��.��� ��.���
�� HR-NRI-VI SVM PCA ��.��� ��.���

Table �.�: Selected feature portions during tuning for the best performing learner-�lter settings (SVM
Relief, RF Relief, XGBoost CMIM) across folds for task HR-NRI-VI, sorted by plot name. ’Features (#)’
denotes the absolute number of features selected and ’Features (%)’ refers to the percentage relative to
the overall features available in the training sets for each plot (Laukiz� = ����, Laukiz� = ����, Luiando =
����, Oiartzun = ����). Results were estimated in a separate model tuning step, not within the main cross-
validation comparison.

Learner Test Plot Features (�) Features (�)

RF
Car

Laukiz� �.����� �/����
Laukiz� �.����� �/����
Luiando �.����� �/����
Oiartzun �.����� ��/����

SVM
Car

Laukiz� ��.����� ���/����
Laukiz� ��.����� ���/����
Luiando ��.����� ���/����
Oiartzun ��.����� ����/����

XGB
Borda

Laukiz� ��.����� ���/����
Laukiz� �.����� ��/����
Luiando ��.����� ���/����
Oiartzun ��.����� ���/����

SVM combined with the “Information Gain” �lter achieved the best overall performance (RMSE of
��.��� p.p.) (Table �.�). Regressionswith ridge (L�) and lasso (L�) penalties showed their best performances
on the NRI feature set (Table �.�). Combining feature sets for lasso and ridge did not help to increase
performance, and while there was no substantial di�erence for lasso, the performance of ridge improved
by around two percentage points. XGBoost showed very poor performances for some feature sets and �lls
the last ten places of the ranking (Table �.�). Especially when combined with PCA, the algorithm was not
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able to achieve adequate performances.
�e e�ects of �lter methods on performance di�ered greatly between the algorithms: SVM showed

no variation in performance across �lters (Figure �.�). �e use of �lters for RF resulted in a substantial
increase in performance in all tasks, especially on the HR feature set where all �lters showed an improved
score compared to using no �lter (Figure �.�). XGBoost’s performance depended strongly on feature selec-
tion. In two out of six tasks (HR, VI), using no �lter resulted in the worst performance. XGBoost showed
the highest overall di�erences between �lters for a single task—for feature set HR, the range is up to �� p.p.
(“CMIM” vs. “no �lter”) (Figure �.�).

When comparing the usage of �lters against using no �lter at all, there were no instances in which a
non-�ltered model scored a better performance than the best �ltered one (Figure �.�). For SVM, all �lters
and “no �lter” achieved roughly the same performance on all tasks.

�e Borda ensemble �lter was not able to score the best performance in any learner �lter setting (Fig-
ure �.�). For RF and XGBoost, it most o�en ranked within the better half among all �lters of a speci�c
task.

�e number of features selected during model optimization strongly varied across learners and plots.
RF selected the least features of all three learners, and with the exception of Oiartzun, only one or two
variables were selected. SVMused ��� features ormore in all instances and selected between ��� (Laukiz�)
and ��� (Oiartzun) of the features (Table �.�). XGBoost also favored using several hundred features with
the exception of Laukiz�, for which only �� (�.���) were selected.

Table �.�: Worst ten results among all learner-task-�lter combinations, sorted in decreasing order of RMSE
(p.p.) and their respective standard error (SE).

Task Model Filter RMSE SE
� VI XGBoost No Filter ��.��� �.���
� HR XGBoost No Filter ��.��� �.���
� VI XGBoost PCA ��.��� �.���
� HR XGBoost PCA ��.��� �.���
� NRI XGBoost PCA ��.��� �.���
� HR-NRI XGBoost PCA ��.��� �.���
� HR-NRI-VI XGBoost PCA ��.��� �.���
� VI RF CMIM ��.��� ��.���
� VI RF Info Gain ��.��� ��.���
�� NRI XGBoost Pearson ��.��� ��.���

��



NF,35.516NF,32.62CMIM,31.165

Relief,33.28CMIM,28.119

NF,31.951 NF,36.357

Pearson,36.803MRMR,35.309Relief,28.082

NF,31.165

NF,31.165 No Filter,34.697

Relief,30.842

CMIM,28.044

NF,31.914 NF,33.665

Car,34.361Relief,33.007Info Gain,27.915

NF,31.914

NF,33.535

No Filter,34.196

Car,35.007

PCA,28.121

NF,31.914 NF,33.531

Borda,34.568

Car,34.977

PCA,28.121

HR

VI

NRI

NRI−V
I

HR−
NRIHR−

NRI−V
I

28 30 32 34 36 38 40
RMSE

Learner Lasso Ridge XGBoost RF SVM

Figure �.�: Predictive performance in RMSE (p.p.) of models across tasks. Di�erent feature sets are shown
on the y-axis. Labels show the feature selection method (e.g., NF = no �lter, Car = "Carscore", Info Gain
= "Information Gain", Borda = "Borda").
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Figure �.�: Model performances in RMSE across all tasks, split up in facets, when using no �lter method
(blue dot) compared to any other �lter method (red cross) for learners RF, SVM, and XGBoost (XG).
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Figure �.�: Predictive performances in RMSE (p.p.) when using the Borda �lter method (blue dot) com-
pared to any other �lter (red cross) for each learner across all tasks.

�.�.� Variable importance

Permutation-based variable importance

�e most important features for datasets HR and VI showed an average decrease in RMSE of �.�� p.p.
(HR, B��) and �.�� p.p. (VI, Vogelmann�) when permuted (Figure �.�). For the HR dataset, most (i.e., six
out of ten) relevant features clustered around the infrared region (��� nm–���� nm), while for VI, eight
out of ten concentrate within the wavelength range of ��� nm–��� nm (the so/called “red edge”). For HR,
four features in the infrared region (��� nm–���� nm) were identi�ed by themodel to bemost important,
being associated with a mean decrease in RMSE of around � p.p. Overall, apart from the top �ve features,
the vast majority of features showed only a small importance with average decreases in RMSE below �.�
p.p.
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Figure �.�: Variable importance for feature sets HR and VI: Mean decrease in RMSE for one hundred
feature permutations using the SVM learner. �e wavelength range on the x-axis matches the range of
the hyperspectral sensor (��� nm–���� nm). For each dataset, the ten most important features are high-
lighted as black dots and labeled by name. Gray dots represent features from importance rank �� to last.
�e spectral signature (mean) of each plot was added as a reference on a normalized re�ectance scale [�, �]
(secondary y-axis). VI features were decomposed into their individual formula parts, all instances being
connected via dashed lines. Each VI feature is composed out of at least two instances.

�.� Discussion

�.�.� Predictive performance

�e best overall performance achieved in this study (SVM with the “Info Gain” �lter, RMSE ��.��� p.p.)
has to be seen in the light of model over�tting (see subsection �.�.�). Leaving out the performance on
Laukiz� when aggregating results, the mean RMSE would be around �� p.p. However, leaving out a single
plot would also change the prediction results for the other plots because the observations from Laukiz�
would not be available for model training. Due to the apparent presence of model over�tting in this study,
it is suggested that more training data representing a greater variety of situations are needed. Amodel can
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only make robust predictions if it has learned relationships across the whole range of the response. Hence,
care should be takenwhen predicting on the landscape scale usingmodels �tted on this dataset due to their
lack of generalizability caused by the limitations of the available training data. However, when inspecting
the fold/level performances, it can be concluded that the models performed reasonably well, predicting
defoliation greater than ���, but they failed for lower levels. �is applied to all learners of this study. In
this study, the overall performance across all learners can be classi�ed as “poor” given that only the SVM
learner was able to substantially outperform the featureless learner (Table �.�). It is worth noting that data
quality issues may have a�ected model performances, as discussed below in detail (subsection �.�.�).

Model di�erences

An interesting �nding is the strength of the SVM algorithm when comparing its predictive performance
to its competitors (Table �.�). �ese cluster around a performance of �� p.p., while SVM scored about �
p.p. better than all other methods. However, we refrain from comparing these results (both relatively and
absolute) to other studies since many study design points have an in�uence on the �nal result (optimiza-
tion strategy, data characteristics, feature selection methods, etc.).

A potential limiting factor in this study could be the upper limit of �� iterations used for the XGBoost
algorithm (hyperparameter nrounds), especially for feature sets including NRIs (Table A�). �is setting
was a compromise between runtime and tuning space extensionwith the goal to workwell formost feature
sets. It may be recommendable to increase this upper limit to a value closer to the number of features in
the dataset in order to be able to exploit the full potential of this hyperparameter.

Feature set di�erences

One objective of this study was to determine whether expert-based and data-driven feature engineering
have a positive in�uence onmodel performance. With respect to Figure �.�, no overall positive or negative
pattern related to speci�c feature sets was found that would be valid across all models. �e performance
of RF and XGBoost on the VI feature set was around � to � p.p. lower than on others. One reason could be
the lack of coverage in the wavelength range between ��� nm and ���� nm (Figure �.�). In addition, for
all learners but SVM, a better performance was observed when NRI indices were included in the feature
set (i.e., NRI-VI, HR-NRI, and HR-NRI-VI).

�.�.� Performance vs. plot characteristics

�e large di�erences in RMSE obtained on di�erent test folds can be attributed to model over�tting
(Table �.�). An RMSE of ��.�� p.p. reveals the model’s inability to predict tree defoliation on this plot
(Laukiz�). Laukiz� di�ers highly in the distribution of the response variable defoliation compared to all
other plots (Figure �.�). In the prediction scenario for Laukiz�, the model was trained on data containing
mostlymedium-to-high defoliation values and only few low ones.�is caused over�tting on themedium-
to-high values, degrading the model’s predictive performance in other scenarios. When Laukiz� was in
the training set, the overall mean RMSE was reduced by up to ��� with single fold performances as good
as nine p.p. RMSE (with Luiando as test set).

�ere was also no clear pattern in the percentage of features selected based on hyperparameter tuning
(Table �.�).�e optimal value for the number of features (interpreted as a percentage of available features),
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which are selected from the ranked �lter results, is determined by the internal surrogate learner of the
MBO tuning method using the results from the previous tuning iterations. Due to this iterative approach,
MBO is in some ways able to evaluate how well a learning algorithm plays together with a certain amount
of selected features and is subsequently able to adjust the number of variables to an optimal value. In
general, considering SVM’s relative success, the use of at least a few hundred features from the combined
feature set appears to be bene�cial, or at least not harmful when the model’s built-in regularization is
capable of dealing with the resulting high-dimensional situation.

Realizing early during hyperparameter optimization that only a few features are needed to reach ade-
quate performances can reduce the overall computational runtime substantially. Hence, regardless of the
potential advantage of using �lters for increased predictive performance, these can have a strong positive
e�ect on runtime, especially of models making use of hyperparameters that depend on the available num-
ber of features, such as RF with mtry.

Ultimately, the results of Table �.� should be taken with care, as they rely on single model–�lter com-
binations and are subject to random variation. More in-depth research is needed to investigate the e�ect
of �lters on criteria other than performance (such as runtime), leading to a multi-criteria optimization
problem.

�.�.� Feature selection methods

�e usefulness of �lters with respect to predictive performance in this study varied. While the perfor-
mance of some models (up to � p.p. for RF and XGBoost) was improved by speci�c �lters, some models
achieved a poorer performance with �lters than without them (Figure �.�). �ere was no pattern of spe-
ci�c �lters consistently resulting in better scores. Hence, it is recommended to test multiple �lters in a
study if it is intended to use �lters. While �lters can improve the performance of models, they may be
more appealing based on other aspects than performance. Reducing variables can reduce computational
e�orts in high-dimensional scenarios and may enhance the interpretability of models. Filters are a lot
cheaper to compute than wrapper methods, and the �nal feature subset selection can be integrated as an
additional hyperparameter into the model optimization stage.

Models that used the Borda ensemble method in this study did not perform better on average than
models that used a single �lter or no �lter at all. Ensemble methods have higher stability and robustness
than single ones and have shownpromising results in (Drotár, Šimoňák, et al., ����). Hence, their expected
main advantage is stable performances across datasets with varying characteristics. Single �lter methods
might yield better model performances on certain datasets but fail on others. �e fact that this study used
multiple feature sets but only one dataset and tested many single �lters could be a potential explanation of
why, in all cases, a single �lter outperformed the ensemble �lter. However, studies that use ensemble �lters
are still rare, and these are usually not compared against single �lters (Ghosh et al., ����). In summary,
in this study, Borda did not perform better than a randomly selected �lter method. More case studies
applying ensemble �lter methods are needed to verify this �nding. Nevertheless, ensemble �lters can be
a promising addition to an ML feature selection portfolio.

PCA, acting as a �lter method, more o�en showed less than optimal results, especially for algorithms
RF and XGBoost. XGBoost in particular had substantial problems when using PCA as a �lter method and
accounted for four of the six worst results (Table �.�). However, PCAwas able to reducemodel �tting times
substantially across all algorithms. Depending on the use case, PCA can be an interesting option to reduce
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dimensionality while keeping runtime low. However, information about the total number of features used
by the model is lost when applying this technique. Since �lter scores only need to be calculated once for a
given dataset in a benchmark setting, the runtime advantage of a PCA vs. �lter methods might in fact be
negligible in practice.

�.�.� Linking feature importance to spectral characteristics

Unsurprisingly, the most important features for both HR and VI datasets were identi�ed around the red
edge of the spectra, speci�cally in the range of ��� nm to ��� nm.

�is area has the highest ability to distinguish between re�ectances related to a high density/high
foliage density and thus the health status of vegetation and its respective counterpart (Horler et al., ����).
However, four out of ten of the most important features of dataset HR are located between ��� nm and
���� nm. Looking at the spectral curves of the plots, apparent re�ectance di�erences can be observed in
this spectral range—especially for plotOiartzun—whichmight explainwhy these featureswere considered
important by the model.

A possible explanation for the poor performances of most models scored on the VI dataset compared
to all other feature sets could be the lack of features covering the area between ��� nm and ���� nm
(Figure �.�). �e majority of VI features covers the range between ��� nm–��� nm. Only one index
(PWI) covers information in the range beyond ��� nm.

�.�.� Data quality

Environmental datasets always come with some constraints that can have potential in�uence on the mod-
eling process and its outcome. Finding a suitable approach to extract the remote sensing information
from each tree was a complex process. Due to the reported geometric o�set of up to one meter within the
hyperspectral data, the risk of assigning a value to an observation that would actually refer to a di�erent,
possibly non-tree, pixel was reasonably high. It was concluded that using a bu�er radius of one meter
can be a good compromise between the inclusion of information from too many surrounding trees and
an under-coverage of the tree crown. With the chosen radius, we are con�dent that we were able to map
individual tree crowns while accounting for a possible geometric o�set. �is results in all cases in four
contributing pixels (=four square meters) for the extraction of hyperspectral information for a given tree.
Even though no results showing the in�uence of di�erent bu�er values on the extraction were provided, it
is hypothesized that the relationships between features would not change substantially, leading to almost
identical model results. Instead of using a bu�er to extract the hyperspectral information, segmentation
could have been considered. However, this method would have required more e�ort for no clear added
value in our view and would have moved the focus of this manuscript more to data preprocessing and
away from feature selection methods.

Trees located within grid cells on the border of a plot are a notable exception where the exact number
of pixels contributing to the observation’s feature value may be reduced since the image was cropped to
the plot’s extent. Cropping was applied to avoid the accidental inclusion of background data such as forest
roads. However, this e�ect was deemed to be of negligible importance.

�e available hyperspectral data covered a wavelength between ��� nm and ���� nm. Hence, the
spectral range of the shortwave infrared (SWIR) region is not covered in this study. Given that this range
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is o�en used in forest health studies (Hais et al., ����), e.g., when calculating the normalized di�erence
moisture index (NDMI) index (B.-C. Gao, ����), this marks a clear limitation of the dataset at hand.

�e dataset consists of in situ data collected during September ����, which was matched against re-
mote sensing data acquired at the end of September ����. A multi-temporal dataset consisting of in situ
data from di�erent phenology stages would possibly improve the achieved model performances. How-
ever, this would also require the costly acquisition of hyperspectral data of these additional timestamps.

�e R package hsdar was used for the calculation of vegetation indices (Lehnert et al., ����). All
indices that could be calculated with the given spectral range of the data (��� nm–���� nm) were used.
�is means that even though Table A� lists all indices available in the package, not all listed indices were
used in this study. Although this selection included a large number of indices, some possibly helpful
indices might have been missed due to the restriction of the hyperspectral data.

Overall, the magnitude of uncertainty introduced by the mentioned e�ects during index derivation
cannot be quanti�ed. Such limitations and uncertainties apply to most environmental studies and cannot
be completely avoided.

�.�.� Practical implications on defoliation and tree health mapping

Even though this work has a strong methodological focus by comparing di�erent benchmark settings on
highly correlated feature sets, implications on tree health should be brie�y discussed in the following. Due
to the outlined dataset issues in subsection �.�.�, which aremainly responsible for the resulting poormodel
performances, the trained models are not suited for practical use, e.g., to predict defoliation in unknown
areas, due to the high mapping uncertainty. However, the general approach of utilizing hyperspectral
data to classify the health status of trees partly led to promising results. For example, due to the narrow
bandwidth of the hyperspectral sensor, small parts of the spectrum (mainly in the infrared region) were of
higher importance to the models (e.g., see Figure �.�), meaning that they helped themodels to distinguish
between low and high tree defoliation. If spatial o�set errors of the image data and possible background
noise can be reduced (possibly bymaking use of image segmentation), we believe thatmodel performances
could be substantially enhanced. Such improvedmodels, starting around anRMSEof ��� and less, should
be able to provide added value to support the long-termmonitoring of forest health and early detection of
fungi-a�ected tree plots. Nevertheless, overall the use of defoliation as a proxy for forest health should be
critically reconsidered as it comes with various practical issues, starting from potential o�sets during data
collection, varying leaf density due to tree age, and di�ering e�ects between tree species, to name just a
few.

�.�.� Comparison to other studies

While most defoliation studies operate on the plot level using coarser resolution multispectral satellite
data (de Beurs & Townsend, ����; Rengarajan & Schott, ����; Townsend et al., ����), there are also several
recent studies using airborne or ground-based sensors at the tree level. Among these, refs. (Kälin et al.,
����; R. Meng et al., ����) used ground-level methods, such as airborne laser scanning (ALS) and light
detection and ranging (LiDAR).

Studies focusing on tree-level defoliation mainly used ground-level methods, such as ALS or
LiDAR (Kälin et al., ����; R.Meng et al., ����). Ref. (R.Meng et al., ����) used ordinary least squares (OLS)
regression methods while (Kälin et al., ����) retrieving information from ground-level RGB photos using
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convolutional neural networks (CNN). However, neither of them used spatial CV for model assessment,
and (Kälin et al., ����) did not perform feature selection (FS). �e authors of (Goodbody et al., ����) used
a partial least squares (PLS) model with high-resolution digital aerial photogrammetry (DAP) to predict
cumulative defoliation caused by the spruce budworm. Study results indicated that spectral features were
found to bemost helpful for themodel. Incorporating such features (both spectral and structural) could be
a possible enhancement for future works. No studies were found to model defoliation caused by Diplodia
sapinea (Fr.) Fuckel with remote sensing data, and most studies focused on describing the tree conditions
based on local sampling (Hlebarska & Georgieva, ����; Kaya et al., ����).

�e �eld of (hyperspectral) remote sensing has had a strong focus on using RF for modeling in re-
cent years (Belgiu & Drăguț, ����). However, in high-dimensional scenarios, tuning the parameter mtry

becomes computationally expensive. To account for this and the high dimensionality in general, studies
used feature selection approaches, such as semi-supervised feature extraction (Xia et al., ����), wrapper
methods (Fassnacht et al., ����; J. Feng et al., ����; Georganos et al., ����), PCA, and adjusted feature se-
lection (Rochac & Zhang, ����). In general, applying feature selection methods on hyperspectral datasets
has shown to be e�ective, regardless of the method used (Keller et al., ����; Pal & Foody, ����). How-
ever, no studies were found that made explicit use of �lter methods in combination with hyperparameter
tuning in the �eld of (hyperspectral) remote sensing. Potential reasons for this absence could be an eas-
ier programmatic access to wrapper methods and a higher general awareness of these compared to �lter
methods. Applying the �lter-based feature selectionmethodology shown in this study and its related code
provided in the research compendiummight be a helpful reference for future studies using hyperspectral
remote sensing data.

When looking for remote sensing studies that compare multiple models, it turned out that these
o�en operate in a low-dimensional predictor space (S. Xu et al., ����) or use wrapper methods explic-
itly (Georganos et al., ����).

Refs. (Ludwig et al., ����; Shendryk et al., ����) are more similar in their methodology but focus on
a di�erent response variable (woody cover). Ref. (Shendryk et al., ����) used machine learning with ALS
data to study dieback of trees in eucalyptus forests. A grid search was used for hyperparameter tuning and
forward feature selection (FFS) for variable selection. Ref. (Ludwig et al., ����) analyzed woody cover in
South Africa using a spatial CV and FS approach (Meyer et al., ����) with an RF classi�er. Ref. (Zandler
et al., ����) shows a similar setup; they used hyperspectral vegetation indices and a nested CV approach
for performance estimation, and they estimated variable importance targeting woody biomass as the re-
sponse. In the results, lasso showed the best performance among the chosen methods. However, the
authors did not optimize the hyperparameters of RF, which makes a fair comparison problematic since
the other models used internal optimization. �e discussion section of (Zandler et al., ����) lists addi-
tional studies that made use of shrinkage models for high-dimensional remote sensing modeling.

In summary, no studies could be found that used �lter methods for FS or made use of NRI indices
in their work and had a relation to tree health. �is might relate to the fact that most environmental
datasets are not high dimensional. In fact, many studies use fewer than ten features, and issues related
to correlations are o�en solved manually instead of relying on an automated approach. �ese manual
approaches might su�er from subjectivity and may limit the reproducibility of results.

Other �elds (e.g., bioinformatics) encounter high-dimensional datasets more o�en.
Hence, more studies using (�lter-based) feature selection approaches can be found in this
�eld (Guo et al., ����; Radovic et al., ����). However, bioinformatics di�ers conceptually in many
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ways from environmental modeling, and, therefore, no greater focus was put into comparing studies
of this �eld. �e availability of high-dimensional feature sets will increase in the future due to higher
temporal and spectral resolutions of sensors. In addition, a high-spatial resolution comes with the
possibility of calculating many textural features. Hence, the ability to deal with high-dimensional datasets
becomes more important, and unbiased robust approaches are needed. We hope that this work and
its methodology raise awareness about the application of �lter methods to tackle high-dimensional
problems in the environmental modeling �eld.

�.� Conclusions

�is study analyzed the e�ectiveness of �lter-based feature selection in improving various machine-
learning models of defoliation of trees in northern Spain based on hyperspectral remote-sensing data.
Substantial di�erences in performance occurred depending onwhich feature selection andmachine learn-
ing methods were combined. SVM showed the most robust behavior across all highly correlated datasets
and was able to predict the response variable of this study substantially better than other methods.

Filter methods were able to improve the predictive performance on datasets in some instances, al-
though there was no clear and systematic pattern. �eir e�ectiveness depends on the algorithm and the
dataset characteristics. Ensemble �lter methods did not show a substantial improvement over individual
�lter methods in this study.

�e addition of derived feature sets was, in most cases, able to improve predictive performance. In
contrast, feature sets that focused on only a small fraction of the available spectral range (i.e., dataset VI)
showed aworse performance than the ones that covered awider range (��� nm–���� nm; HR,NRI). NRIs
can be seen as a valuable addition to the optimization of predictive performance in the remote sensing of
vegetation.

Features along the red-edge wavelength region were most important for models during prediction.
With respect to dedicated vegetation indices, all versions of the Vogelmann index were seen as the most
important indices for the best performing SVM model. �is matches well with the actual purpose of
these indices—they were invented to detect defoliation on sugar maple trees (Acer saccharum Marsh.)
caused by pear thrips (Taeniothrips inconsequensUzel) (Vogelmann et al., ����). However, assessing feature
importance for highly correlated features remains a challenging task. Results might be biased and should
be taken with care to avoid overgeneralizing from individual studies.

Finally, the potential of predicting defoliation with the given study design was rather limited with
respect to the average RMSE of �� p.p. scored by the best performing model. More training data covering
a wider range of defoliation values in a larger number of forest plantations are needed to train better
models that can create more robust predictions.

Reproduced with permission from Remote Sensing Journal; published by MDPI, ����.
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MLR�SPATIOTEMPCV: SPATIOTEMPORAL RESAMPLINGMETHODS FORMACHINE
LEARNING IN R

Schratz, P., Becker M., Lang M., and Brenning A. ����. "mlr�spatiotempcv: Spatiotemporal
resampling methods for machine learning in R." arXiv:����.�����, https://arxiv.org/
abs/2110.12674

Abstract

Spatial and spatiotemporal machine-learning models require a suitable framework for their model
assessment, model selection, and hyperparameter tuning, in order to avoid error estimation bias and
over-�tting. �is contribution reviews the state-of-the-art in spatial and spatiotemporal CV, and in-
troduces the R packagemlr�spatiotempcv as an extension package of themachine-learning framework
mlr�. Currently various R packages implementing di�erent spatiotemporal partitioning strategies ex-
ist: blockCV, CAST, kmeans and sperrorest. �e goal of mlr3spatiotempcv is to gather the
available spatiotemporal resampling methods in R and make them available to users through a sim-
ple and common interface. �is is made possible by integrating the package directly into the mlr3
machine-learning framework, which already has support for generic non-spatiotemporal resampling
methods such as random partitioning. One advantage is the use of a consistent nomenclature in an
overarching machine-learning toolkit instead of a varying package-speci�c syntax, making it easier
for users to choose from a variety of spatiotemporal resampling methods. �is package avoids giving
recommendations which method to use in practice as this decision depends on the predictive task
at hand, the autocorrelation within the data, and the spatial structure of the sampling design or geo-
graphic objects being studied.

�.� Introduction

Spatial and spatiotemporal prediction tasks are common in applications ranging from environmental sci-
ences to archaeology and epidemiology. While sophisticated mathematical frameworks have long been
developed in spatial statistics to characterize predictive uncertainties under well-de�ned mathematical
assumptions such as intrinsic stationarity (Cressie, ����), computational estimation procedures have only
been proposed more recently to assess predictive performances of spatial and spatiotemporal prediction
models (Brenning, ����; Brenning et al., ����; Pohjankukka et al., ����; Roberts et al., ����).

Although alternatives such as the bootstrap exist since some decades (Efron & Gong, ����; Hand,
����), cross-validation (CV) is a particularly well-established, easy-to-implement algorithm for model
assessment of supervised machine-learning models (Efron & Gong, ����, and next section) and model
selection (Arlot & Celisse, ����). In its basic form, CV is based on resampling the data without paying
attention to any possible dependence structure, which may arise from, e.g., grouped or structured data,
or underlying environmental processes inducing some sort of spatial coherence at the landscape scale. In
treating dependent observations as independent, or ignoring autocorrelation, CV test samples may in fact
be heavily correlated with, or even pseudo-replicates of, the data used for training themodel, which intro-
duces a potentially severe bias in assessing the transferability of �exible machine-learning (ML) models.
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�is CVbias is well-known in spatial aswell as non-spatial prediction (Arlot&Celisse, ����; Brenning,
����; Brenning & Lausen, ����; Roberts et al., ����) and in forecasting (Bergmeir et al., ����). It is most
easily understood fromapredictivemodeling perspective by focusing on the question ofwhere (andwhen)
the model should be used for prediction. In crop classi�cation from remotely-sensed data, for instance,
learning samples routinely contain multiple grid cells from a sample of �elds with known crop type, for
instance ���� grid cells from ��� �elds scattered across a large study region. �e purpose of training a
model on this particular sample is to make predictions on other, new �elds within the same geographic
domain (Brenning, ����, intra-domain prediction) — not within the same �eld, which obviously presents
only a single crop type that is already known from the training sample. In this speci�c situation it would
therefore seem rather unwise to train amodel on a simple random subsample of grid cells, and to test it on
the remaining data, using other grid cells from the same �elds, as if one wanted to predict within a �eld.
�e results from this performance assessment would be over-optimistic, and perhaps badly so. To mimic
the predictive situation for which the model is trained, one would rather have to resample at the level
of �elds, not grid cells (Peña & Brenning, ����). If the model was to be applied to adjacent agricultural
regions, i.e., outside the learning sample’s spatial domain (Brenning, ����, extra-domain prediction), it
would even seem necessary to resample at a higher level of spatial aggregation, i.e. at the level of sub-
regions within the learning sample, in order to realistically mimic the actual prediction task. �e CV
resampling needed therefore depends as much on the prediction task itself as on the data structure or
dependency at hand.

While it is not the purpose of this article to recommend speci�c resampling schemes for speci�c use
cases, the example from above may su�ce to motivate the use of appropriate spatial and spatiotemporal
cross-validation techniques, and the need for a uni�ed framework and computational toolbox that ac-
commodate a variety of prediction tasks that may be applicable to a broad range of application scenarios.
mlr3spatiotempcv is such a toolbox.

�is toolbox, implemented as an open-source R package, builds upon and generalizes several exist-
ing toolboxes that have been developed in recent years for more speci�c settings (Table �.�). �e earliest
and most comprehensive of these implementations is the sperrorest R package (Brenning et al., ����),
which provides an extensible framework and includes prede�ned resampling strategies based on geomet-
ric blocking, clustering, and bu�ering. In contrast, packages blockCV and ENMeval were developed for
block and bu�er resampling with a focus on species distribution modeling (Muscarella et al., ����; Rest
et al., ����; Valavi et al., ����). However, neither of these have been integrated into established machine-
learning frameworks such as mlr/mlr3 (Lang et al., ����) or caret/tidymodels (Kuhn & Wickham,
����), and all of them lack support for temporal prediction tasks. �e CAST package, in contrast, focuses
on spatiotemporal prediction tasks and makes use of some functions of the caret framework (Meyer,
����; Meyer et al., ����). One limitation of all these packages is the sole focus onmodel assessment, while
the proposed implementation within the mlr3 framework also o�ers seamless integration into model
selection and provides parallel execution and enhanced logging abilities. It is worth noting that a SCV li-
brary named spacv has recently been developed for Python�, which can be used with the scikit-learn
machine-learning framework (Pedregosa et al., ����).

�us, mlr3spatiotempcv implements for the�rst time a comprehensive state-of-the-art compilation
of spatial and spatiotemporal partitioning schemes that is well-integrated into a comprehensive machine-
learning framework inR, the mlr3 ecosystem.�is package is furthermore equippedwith a variety of two-
and three-dimensional visualization capabilities. �e hope is that this implementation will simplify and
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facilitate reproducible geospatial modeling and code-sharing across a broad range of application domains.
�e purpose of this article is to give an overview of the methods implemented in the R package

mlr3spatiotempcv. A�er presenting the conceptual background in the following section, the overall
structure of the mlr3spatiotempcv package is outlined. Next, various spatial and spatiotemporal parti-
tioning techniques are contrasted and compared, before their application is demonstrated in a machine-
learningmodel assessment in the following section. Finally, recommendations for the selection of suitable
resampling techniques are given.

�.� Spatial and spatiotemporal CV

In CV for predictive model assessment, the following formal setting is considered. �e interest is in
predicting a numerical or categorical response y of an object or instance using a feature vector x =
(x(�), . . . , x(p))t ∈ Rp and a model f̂L that has been trained on a learning sample L = {(yi , xi), i =
�, ..., n}. �e goal is to estimate the expected value of the performance of f̂L,

perf (f̂L) ∶= E(l(Y , f̂L(X))),
where l is a real-valued loss function, and the expected value is with respect to the probability distribution
of X, the features of an instance (Y , X) drawn randomly from the underlying population. �is is referred
to as the actual or conditional performance measure, as it is conditional on L (Hand, ����). �e loss
function can take a variety of forms such as the misclassi�cation error I(Y ≠ f̂L(X)) in classi�cation,
or the squared error (Y − f̂L(X))� in regression, among many other possible measures. �e choice of
the performance measure is equally critical as the choice of the estimation procedure, but it is beyond
the scope of this contribution to discuss performance measures for regression and classi�cation (see, e.g.,
(Hand, ����) for classi�cation, and (Hyndman & Koehler, ����) for regression and forecasting tasks).

Since there is only a sample T of test data drawn from the population, one can only estimate the
conditional performance of f̂L:

�perf T( f̂L) = �
�T � �(Y ,X)∈T l(Y , f̂L(X)).

�is representation as a point estimator of perf (f̂L) underlines the importance of using a random sample
for model assessment to avoid estimation bias. Other estimators than the simple mean may be required
when T is not a simple random sample, for instance a strati�ed random sample (�ompson, ����). As
always, judgment sampling may lead to uncontrollable bias.

Since re-using the learning sampleL for testing, i.e. T ∶= L, would yield the over-optimistic resubstitu-
tion or apparent performance, CV partitions the sample L into disjoint training and test sets. Speci�cally,
L is split into k partitions,

L = L� ∪ . . . ∪Lk , Li ∩L j = � for all i ≠ j,

and amodel f̂(i) is �tted onL(i) ∶= L�Li , whileLi is withheld for testing. �is is repeated for i = �, . . . , k
in order to e�ectively use the entire sample for testing, while keeping training and test sets disjoint at all
times. �e k-fold CV estimator can therefore be written as

�perfL,CV( f ) ∶= �
k

k�
i=�
�perfLi

( f̂L(i)),
��



where f is a ML algorithm, i.e. a mapping that trains a model f̂S using any suitable training sample S .
�e use of k = � or k = �� folds is most commonly seen in practice, and these preferences are also sup-
ported by theory (Bengio & Grandvalet, ����; Cawley & Talbot, ����). �e k-fold CV estimator of model
performance is a nearly unbiased estimator of the conditional performance measure when the observa-
tions were drawn independently (Efron & Gong, ����). Since�perfL,CV( f ) still depends on the particular
partitioning chosen for L, it is sometimes recommended to repeat the estimation using di�erent random
partitionings (r-repeated k-fold cross-validation) to reduce the in�uence of randomness when creating
partitions (Vanwinckelen & Blockeel, ����).

In traditional CV, the partitioning is based on uniform random resampling, which ignores spatial
or temporal autocorrelation or any existing grouping structure as well as the structure of the prediction
task, and may result in over-optimistic performance estimates. Several approaches have therefore been
proposed in the literature and implemented in so�ware to accommodate a variety of predictive situations
(Table �.�).

Approaches based on spatial blocking (or sometimes called grouping) require either the construction
of spatial zones, or the use of pre-existing spatial structures in the data. Let’s refer to these spatial units or
blocks as Zi , � ≤ i ≤ nz . �ese blocks are o�en constructed to serve as the k = nz spatial partitions, for
example by performing k-means clustering of the sample coordinates (Ruß&Kruse, ����), which we refer
to as coordinate-based clustering; or generating the desired number of rectangular blocks as an example of
geometric partitioning. �e blocks may also be de�ned by a modeler based on an arbitrary partitioning of
the study region based on an external data source, which we refer to as custom resampling. �is o�en used
when the data is grouped. For example, when using to multi-level sampling designs or studying spatial
objects, it has been proposed to apply LOO at the site level (Kasurak et al., ����; Martin et al., ����) or, in
animal movement studies, at the animal level (Anderson et al., ����). We will broadly refer to such groups
of observations as ‘blocks’ in a generic sense, regardless of the shape or origin of the groups. Also, data can
be partitioned in feature space instead of geographic space, which has been referred to as “environmental
blocking” (Roberts et al., ����).

When nz is much larger than the desired number of folds, k, then a partitioning can be applied to the
zones themselves. In this case, the zone indices �, . . . , nz are grouped into k equally sized subsetsI�, . . . , Ik .
�is approach has been applied, for example, in spatial CV at the agricultural �eld level (Peña & Brenning,
����). We would like to emphasize the conceptual distinction between CV at the block level, referring to
this scenario, and leave-one-block-out CV, where the blocks themselves de�ne theCVpartitions. Figure �.�
gives an overview of the conceptual framework and terminology used in this work.

One variant of CV is leave-one-out (LOO) CV, which has long been established in geostatistics
(Cressie, ����), sometimes with a focus on the spatial distribution of LOO error (Willmott & Matsuura,
����). Although this is just a special case of non-spatial CV with k = n, it is sometimes also referred to as
spatial CV (Willmott & Matsuura, ����).

Spatial variants of CV have been proposed that apply an exclusion bu�er or guard zone to the test
locations to separate them from the training data (Brenning, ����; Roberts et al., ����). One approach
that has been proposed for de�ning a separation distance is to use the range of autocorrelation of model
residuals to determine the bu�er distance, as this seeks to establish independence conditional on the pre-
dictors (Brenning, ����; Roberts et al., ����).

It should be noted that k-fold CVwith a large value of k, and LOOCV in particular (k = n), is not only
very time-consuming since the model has to be trained k times; these models will also be nearly identical
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since only a tiny fraction of the data is withheld, and therefore estimation bias increases. ‘Pure’ LOO CV
is therefore not recommended for machine-learning model assessment.

In the purely temporal domain, a special case is to leave out temporal observational units (or time
slices; leave-time-out or LTO CV), as in leave-one-year-out CV (Anderson et al., ����; Brenning, ����).
CV and hold-out validation strategies for time series have been discussedmore extensively in the forecast-
ing literature, considering also the e�ects of serial autocorrelation (Bergmeir et al., ����); these methods
are not the focus of the implementation presented in this work.

Turning to prediction tasks with spatiotemporal data, various spatial, temporal, or spatiotemporal
partitioning strategies are being used, depending on the speci�c study objectives. While the former two
ignore the temporal and spatial dimension of the data, respectively, it has also been proposed to leave out
random subsets of locations and time points (Meyer et al., ����) or spatiotemporal clusters (Y. Zhao &
Karypis, ����). Details of these and other implementations are outlined in the respective subsections of
section �.�.

�.� mlr�spatiotempcv within the mlr� ecosystem

With the increased awareness of the importance of spatial and spatiotemporal resampling strategies and
the growing popularity of R in environmental modeling and geocomputation, it is important to equipML
frameworks such as mlr3 with suitable algorithms. In this context, the mlr3 ecosystem stands out as a
uni�ed, object-oriented and extensible framework designed to accommodate numerous ML tasks with
a variety of learners, feature and model selection tools, and model assessment capabilities (Becker et al.,
����; Lang et al., ����). All of these are supported by advanced visualization tools, which are particularly
important in a spatial and spatiotemporal setting. Additionally, mlr3pipelines (Binder et al., ����)
provides a plethora of preprocessing operators to conveniently buildMLpipelineswhich can be resampled,
tuned and benchmarked as regular learners.

With its integrative approach and its aim to provide long-term support, mlr3 overcomes the challenges
of combining multiple specialized packages with poorly standardized interfaces. Issues that practitioners
o�en face include varying argument lists of learners, di�erent return values of predict() methods, and
support for only speci�c feature types. �ese challenges result in substantial overhead and possible repro-
ducibility issues, which are exacerbated by asynchronous development timelines of di�erent components
of the used ML pipelines.

Within the mlr3 ecosystem, partitioning strategies are represented by their own objects of class
Resampling, most of which are available within mlr3 itself (e.g., randomCV); other specialized strategies
are de�ned in extension packages such as mlr3spatiotempcv. In the ML pipeline, these objects de�ne
the data splits used for model assessment and selection (hyperparameter tuning) by ML algorithms. Spa-
tial and spatiotemporal partitioning techniques in mlr3spatiotempcv are currently mostly imported
and interfaced from other packages, in particular sperrorest, blockCV and CAST (Brenning et al., ����;
Meyer, ����; Valavi et al., ����), in order to expose them to mlr3 functionality. To reduce dependencies,
some methods were re-implemented instead of importing them from the respective upstream packages.

Resampling objects in mlr3spatiotmpcv inherit from class mlr3::Resampling and can be cre-
ated from established object classes for geospatial data in R, including simple features (E. Pebesma, ����),
which facilitates their integration into domain-speci�c work�ows in the geospatial sciences. Support for
projected (planar) and unprojected (geographic) coordinate reference systems (CRS) currently varies de-
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pending on the partitioning techniques used, since these inherit their behavior from the underlying up-
stream packages.

Partitioning objects in mlr3spatiotempcv are equipped with generic plot() and autoplot()
methods to visualize the created partitions. autoplot() is ggplot2-based and uses ggplot� (Wickham,
����) in two-dimensional geographic space and plotly (Sievert, ����) in the three dimensional case, i.e.,
geographic space plus time.

While mlr3spatiotempcv solely focuses on spatiotemporal resampling methods and their visual-
ization, other packages such as mlr3spatial or mlr3temporal are planned in the mlr3 ecosystem to
provide dedicated spatiotemporal learner and prediction methods.

From a user perspective, this package structure results in the following work�ow for model assess-
ment with mlr3spatiotempcv within mlr3: A�er choosing a ML algorithm that is supported by mlr3
and setting up a learner object, users need to select hyperparameters that should be tuned and specify these
in a paradox::ParamSet. Next, a suitable resampling scheme available within mlr3spatiotempcv is
selected that mimics the spatial and/or temporal structure of the prediction task, such as spatial extrap-
olation, or forecasting of spatial time series. �is information is used to create a Resampling object
which is used within a (nested) CV to estimate the model performance. When using nested CV, the
resampling schemes in the inner (tuning, mlr3tuning::AutoTuner) and outer loop (performance es-
timation, resample()) should be identical (Schratz et al., ����). To evaluate the (nested) resampling,
an adequate performance measure with respect to the response variable, such as the misclassi�cation
rate (classi�cation) or the root-mean-square error (regression), must be selected and speci�ed within
mlr3tuning::AutoTuner and resample$score(). �ese choices now allow the user to execute the
model assessment via either resample() (single model) or benchmark() (multiple models), and the
results can be summarized visually (via mlr3viz) or in tabular form by accessing the respective �elds of
the returned ResampleResult object.

Additional examples and tutorial can be found in the mlr�book or the mlr�gallery.

�.� Spatiotemporal partitioning methods and their implementation

At the most general level, resampling methods are categorized according to the level at which the data is
partitioned and resampled (see Figure �.�):

• Spatial leave-one-out resampling: Each individual observation forms a test set;
• Leave-one-block-out CV: Individual blocks are le� out as test data, i.e. the number of folds equals
the number of blocks;

• CV at the block level: Blocks are grouped into k partitions, each of which is used as a test fold.

In this context, a block can refer to an arbitrarily shaped spatial (or spatiotemporal) group of obser-
vations, not necessarily a rectangular region. A �ner distinction can then be made by looking at how the
blocks are derived:

• Using a geometry-based approach (rectangular or circular);
• Using an unsupervised clustering approach;
• Using a custom input, i.e. specifying the blocks with an external grouping variable.

��
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Figure �.�: Conceptual overviewof various spatial partitioning schemas. Starting fromunpartioned spatial
observations (top le�) either a ’spatial block partitioning’ or a ’spatial leave-one-out resampling’ is applied
in the �rst step. A spatial block partitioning can further be turned into a ’leave-one-block-out resampling’
or a ’k-fold CV resampling at the block level’. �e use of a bu�er is theoretically possible in any scenario
but in practice only o�ered by speci�c method implementations.

In some resampling schemes, separation bu�ers or guard zones can be imposed to separate the training
and test data.

mlr3spatiotempcv currently implements the partitioning methods identi�ed in Table �.�. Sev-
eral of the implemented algorithms are themselves versatile toolboxes with multiple options. Compre-
hensive and up-to-date information can be found in the package’s online documentation (https://
mlr3spatiotempcv.mlr-org.com). �e following sections give an overview of most implemented
partitioning strategies and their visualization options. �e available methods are further discussed in
section �.�.

Users are encouraged to contribute new or missing spatiotemporal resampling methods directly to
mlr3spatiotempcv. �e already implemented methods can be inspected to get to know the class struc-
ture, active bindings and methods.

�.�.� Spatial leave-one-out

Spatial leave-one-out methods use individual observations in space as test partitions and apply circu-
lar bu�er or guard zones around around these test points to enforce a minimum prediction distance.
Leave-one-disc-out resampling modi�es this approach to leave out circular regions centered at observa-
tion points.

Spatial leave-one-out with bu�er — "spcv_buffer"

Leave-one-out CV with bu�er and several adaptations for species distribution modeling (Hijmans et al.,
����) are implemented in the blockCV package as the so-called “bu�ering” method and integrated into
mlr3spatiotempcv under the label "spcv_buffer". In species distribution modeling, the response
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Type Sub-type Name R package References

Spatial leave-one-out

single point, with bu�er "spcv_buffer" blockCV (�)
Ploton et al. (����)
Diesing (����)

disc, with bu�er "spcv_disc" sperrorest (�)
Karasiak et al. (����)
Møller et al. (����)
Endicott et al. (����)

Leave-one-block-out CV

clustering of coordinates "spcv_coords" sperrorest (�)
Morera et al. (����)
Geiß et al. (����)
T. Wu et al. (����)

geometric: rectangular "spcv_tiles" sperrorest
Bebber and Butt (����)
Zurell et al. (����)
Brenning et al. (����)

custom "custom_cv" mlr3 (�) -

CV at the block level

geometric: rectangular "spcv_block" blockCV (��)
Jensen et al. (����)
Escobar et al. (����)
Stewart et al. (����)

custom "cv" with grouping mlr3 (�) -

clustering in feature space "spcv_env" blockCV (�) Morera et al. (����)

Spatiotemporal CV
custom "sptcv_cstf" CAST (�)

J. Gao et al. (����)
Reitz et al. (����)
Egli and Höpke (����)

clustering: custom "sptcv_cluto" skmeans (�) -

Table �.�: Article �: Available spatiotemporal resampling methods in the mlr3 ecosystem. �e "Name"
column shows the mlr3 method name as found in the mlr3::mlr_resamplings dictionary. �e count
in brackets a�er the package name represents the number of studies that were found having used this
resampling technique until May ����. For each method, up to three randomly selected references were
added to the table.

variable can either be recorded as presence/absence data or as presence/background information; both
options are supported by this implementation. By default, the dataset contains con�rmed presence and
con�rmed absence observations, i.e. locations where a species was observed and not observed, respec-
tively, and therefore spatial LOO CV in its usual sense can be carried out. Figure �.� shows the �rst test
fold generated with this method for presence/absence data with a bu�er distance of ����m.

�

� library("mlr3")
� library("mlr3spatiotempcv")
� task = tsk("ecuador")
� rsmp_buffer = rsmp("spcv_buffer", theRange = 1000)
�

� autoplot(rsmp_buffer, size = 0.8, task = task, fold_id = 1)
�

��



� <ResamplingSpCVBuffewith 0 iterations
�� * Instantiated: FALSE
�� * Parameters: theRange=1000
��

3.97°S

3.98°S

3.99°S

4.00°S

79.06°W79.07°W79.08°W

Fold 1

Set
Train
Test

Figure �.�: Visualization of the spatial bu�ering method from package blockCV (method "spcv_bu�er" in
mlr�spatiotempcv). �e bu�er distance is ����m.

In the presence/background (or presence-only) situation, in contrast, only presence observations are
recorded, and all other locations within the study area are referred to as background and considered as
pseudo-absences. Presence/background modeling can be enabled with the argument spDataType =
"PB". In this situation, the method constructs test folds that are centered at the recorded presence lo-
cations, o�ering two di�erent modes of operation. With addBG = TRUE (the default), all background
points with a distance of theRange around a test (presence) point are included in the test fold as absence
data; note that in this case, there is no separation bu�er between training and test samples. �e addBG
= FALSE setting, in contrast, for which no background data is added to the test fold, then contains only
one (presence) observation, and only the data at a distance of theRange or greater are included in the
training sample, including background data from these areas.

�e application of LOO methods can be computationally expensive since the method cycles through
the entire dataset and �ts one model for each test fold.

Leave-one-disc-out with optional bu�er — "spcv_disc"

Leave-one-disc-out resampling from package sperrorest de�nes circular test sets that are centered at
sample locations, and optionally excludes a bu�er zone from the remaining training data. It thus ensures
that a minimum separation distance between training and test data is maintained. �e number of discs
is speci�ed by the folds argument, which defaults to the sample size n. Sample locations are selected
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randomly when folds is smaller than n; it is optionally possible to sample with replacement (replace
= TRUE). Leave-one-disc-out resampling becomes spatial LOO CV for a radius of � m and when each
observation is at a unique location.

It should be noted that the resampled discs will potentially overlap. Strictly speaking, this straightfor-
ward extension of spatial LOO does therefore not establish a disjoint partitioning as used for CV resam-
pling in the traditional sense.

��

�� rsmp_disc = rsmp("spcv_disc", folds = 100, radius = 300L, buffer = 400L)
�� rsmp_disc
��

�� autoplot(rsmp_disc, size = 0.8, task = task, fold_id = 1)
��

�� <ResamplingSpCVDisc> with 100 iterations
�� * Instantiated: FALSE
�� * Parameters: folds=100, radius=300, buffer=400

3.97°S

3.98°S

3.99°S

4.00°S

79.06°W79.07°W79.08°W

Set
Train
Test

Fold 1, Repetition 1

Figure �.�: Visualization of one training set / test set combination generated with the leave-one-disc-out
method from package sperrorest (method "spcv_disc" in mlr�spatiotempcv). �e disc has a radius of
���m and is surrounded by a ���-m bu�er.

�.�.� Leave-one-block-out cross-validation

Leave-one-block-out resampling methods partition the dataset spatially in order to use each of the result-
ing partitions as a CV test fold.
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Clustering-based: using coordinates — "spcv_coords"

Cluster analysis provides a �exible approach to creating irregularly shaped spatial blocks for spatial re-
sampling. Numerous techniques are available that can potentially be applied to the spatial coordinates of
observations, to the features, or to a combination of both. In spatial model assessment, the focus has been
on coordinate-based clustering, and speci�cally on leave-one-block-out resampling with blocks created
by k-means clustering of the coordinates (Ruß & Kruse, ����).

Coordinate-based clustering for spatial CV (Brenning et al., ����; Ruß &Kruse, ����) as implemented
in package sperrorest uses the coordinates of all observations to create clusters in the spatial domain
with the help of the k-means clustering algorithm. �is can be regarded as a leave-one-block-out resam-
pling method, or as a k-fold CV in which each test set is a spatial cluster. �is method is referred to as
"spcv_coords" in mlr3spatiotempcv.

�e coordinate-based clustering approach is very versatile as it adapts to irregularly-shaped study
areas and ensures that exactly k partitions are created, which are usually of very similar size when the
sample locations are spread out evenly. Nevertheless, despite the random selection of initial cluster centers,
repeated partitioningsmay in some cases be nearly identical. Also, k-means clusteringmay be less suitable
for data sets with pre-existing clusters of points and/or with isolated, distant sample locations. When
distinct clusters of points are present, as in multi-level sampling, it may be better to de�ne clusters using
a factor variable (see method "custom_cv" in section �.�.�).

��

�� rsmp_coords = rsmp("spcv_coords", folds = 5)
��

�� autoplot(rsmp_coords, size = 0.8, fold_id = 1, task = task)
��

Geometric: using rectangular blocks — "spcv_tiles"

Leave-one-tile-out resampling is implemented in the "spcv_tiles" method imported from package
sperrorest. It uses rectangular blocks that can be rotated (argument rotation), and aminimum num-
ber or fraction of observations per block can optionally be achieved by iteratively merging small blocks
into adjacent blocks (argument reassign in conjunction with min_n or min_frac). Block size or num-
ber is speci�ed via the argument dsplit or nsplit, respectively, and square blocks can be obtained with
a single (or two identical) dsplit value(s).

Note that the actual number of folds obtained may be smaller than nsplit[1]*nsplit[2] (or
smaller than what would be expected based on dsplit) since some blocks may be empty or (option-
ally) merged into adjacent folds. In the example, there are only eleven folds instead of twelve because the
southwestern part of the study area’s bounding box does not contain observations (Figure �.�).

��

�� rsmp_tiles = rsmp("spcv_tiles", nsplit = c(3L, 4L))
��

��
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Figure �.�: Leave-one-block-out CV based on k-means clustering of the coordinates as implemented in
package sperrorest (method "spcv_coords" in mlr3spatiotempcv).

�� autoplot(rsmp_tiles, size = 0.8, fold_id = 1, task = task)
��
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Figure �.�: Leave-one-block-out resampling from package sperrorest (method "spcv_tiles" in package
mlr�spatiotempcv with argument nsplit = c(�,�) indicating the number of rows and columns).
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Custom: "custom_cv" in mlr�

Support for user-de�ned partitioning strategies is built into mlr3 directly. In this so-called “Custom
CV”, users supply a factor variable, each level of which de�nes a partition. �e factor variable can ei-
ther be speci�ed through a factor vector of the same length as number of observations, or by pass-
ing the name of a feature within the task (argument col). �e following simple example (taken from
sperrorest::partition_factor()) creates altitudinal zones that de�ne the spatial partitions.

��

�� breaks = quantile(task$data()$dem, seq(0, 1, length = 6))
�� zclass = cut(task$data()$dem, breaks, include.lowest = TRUE)
��

�� rsmp_custom = rsmp("custom_cv")
�� rsmp_custom$instantiate(task, f = zclass)
��

�� autoplot(rsmp_custom, size = 0.8, task = task, fold_id = 1)
��
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Figure �.�: Leave-one-level-out (custom) resampling from package mlr� (method "custom_cv"). A factor
variable is used to de�ne all partitions.

�.�.� Cross-validation at the block level

Methods which operate at the block level �rst group the observations into blocks and then combine these
blocks into CV partitions. In k-fold CV resampling at the block level, there are therefore k partitions,
each consisting of ��k-th of the blocks. �e special case in which k equals the number of blocks, CV at
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the block level simply becomes leave-one-block-out CV, for which dedicated implementations exist (see
subsection �.�.�).

Geometric: using rectangular blocks — "spcv_block"

�e "spcv_block" method from package blockCV supports both random and systematic resampling of
square blocks with argument selection = "random" and "systematic", respectively; (see Figure �.�
and Figure �.�). �ere are additional options for modeling presence-only data, which is a typical use
case in species distributionmodeling. Users can furthermore supply a user-de�ned polygon via argument
rasterLayer with prede�ned blocking zones.

�e size of the square blocks (in meters) are determined by the range argument. Rectangular blocks
can be created by specifying the number of desired rows and columns (arguments rows and cols).
Due to the non-trivial speci�cation of argument range package blockCV provides the helper functions
spatialAutoRange() and rangeExplorer() to conduct a data-driven estimation of the distance at
which the spatial autocorrelation within the data levels o� (Valavi et al., ����). According to the package
authors, this estimate should then be used for argument range to have a sensible value for the block sizes
created in method "spcv_block".

It should be noted that rectangular partitioning can be problematic in irregularly shaped study areas
as shown in Figure �.�where some of the resulting partitionsmay contain substantially fewer observations
than others.

��

�� rsmp_block_random = rsmp("spcv_block", range = 1000, folds = 5)
��

�� autoplot(rsmp_block_random, size = 0.8, fold_id = 1, task = task,
�� show_blocks = TRUE, show_labels = TRUE)
��

In systematic resampling, the blocks are numbered row by row, and blocks i + j ⋅ folds are assigned
to fold i (see Figure �.�). �is may create undesired patterns when the number of columns is equal to or
a multiple of the number of folds.

��

�� rsmp_block_systematic = rsmp("spcv_block",
�� range = 1000, folds = 5, selection = "systematic"
�� )
��

�� autoplot(rsmp_block_systematic, size = 0.8, fold_id = 1, task = task,
�� show_blocks = TRUE, show_labels = TRUE)
��
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Figure �.�: Random resampling of square spatial blocks using the implementation in package blockCV
(method "spcv_block" with option selection = "random" in mlr3spatiotempcv). �e size of the
squares is ����m, and four out of the �� blocks were assigned to the test partition.

Checkerboard partitioning is a special case of a systematic block partitioning (selection =
"checkerboard") which is why we omitted a practical example for this option. It inherently supports
only two folds, making it less appealing than themore commonly used �ve- or ten-fold resampling, which
achieve larger training set sizes.

Custom: "cv" with grouping in mlr�

Although the "cv" resampling strategy in mlr3 performs random, non-spatial partitioning by default, it
can also be used for CV at the block level. �is is achieved by specifying the “group” column role in a mlr�
Task object, which uses the factor levels as blocks. A complete group or block of observations is therefore
assigned to a speci�c partition, which consequently honors the grouping structure. In the deprecated mlr
package this concept was referred to as “blocking”.

In contrast to geometric or clustering-based blocks, the spatial or temporal location is not used ex-
plicitly, but rather implicitly through the spatial or spatiotemporal footprint of each user-de�ned block.

�e following example uses k-means clustering to generate classes that are used as blocks. Tounderline
the honoring of the groups, a number of groups (eight) that is not amultiple of the number of folds (three)
was chosen. �e test sets in the �rst and second folds are therefore composed of three groups while the
third one holds two groups.

��

�� task_cv = tsk("ecuador")
�� group = as.factor(kmeans(task$coordinates(), 8)$cluster)
�� task_cv$cbind(data.frame("group" = group))
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Figure �.�: Sytematic resampling of square spatial blocks using the implementation in package blockCV
(method "spcv_block" with option selection = "systematic" in mlr3spatiotempcv). �e size
of the squares is ����m, and four out of the �� blocks were assigned to this test sample.

�� task_cv$set_col_roles("group", roles = "group")
��

�� rsmp_cv_group = rsmp("cv", folds = 3)$instantiate(task_cv)
��

�� print(rsmp_cv_group$instance)
��

�� > row_id fold
�� > 8 1
�� > 4 1
�� > 5 1
�� > 2 2
�� > 3 2
�� > 7 2
�� > 1 3
�� > 6 3
��

��

�� autoplot(rsmp_cv_group, size = 0.8, task = task_cv, fold_id = 1)
��
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Figure �.�: Cross-Validation at the block level including prede�ned groups from package mlr3 (method
"cv"). A factor variable is used to de�ne the grouping. Each class is either assigned to the test or training
set.

Clustering: using feature-based clustering — "spcv_env"

�e last method from the blockCV package, referred to as “environmental blocking” (Roberts et al., ����),
makes use of k-means clustering (Hartigan &Wong, ����) in a possibly multivariate space to de�ne blocks
for resampling at the block level. �e user can select one or multiple numeric features via argument
feature from which the clusters are created. Hereby, k-means will use Euclidean distance. To avoid
a potential bias introduced by features with high variance when selecting multiple features, all features are
standardized by default.

In the following example, the observations are clustered based on the feature “distance to forest” (le�
sub-�gure of Figure �.��), which results in a distance-based zoni�cation. �is method also allows to
use multiple features for clustering. �e right sub-�gure of Figure �.�� shows the outcome when using
“distance to deforestation” and “slope angle”.

��

�� rsmp_env = rsmp("spcv_env", features = "distdeforest", folds = 5)
��

�� rsmp_env_multi = rsmp("spcv_env", features = c("distdeforest", "slope"), folds = 5)
��

�� plot_env_single = autoplot(rsmp_env, size = 0.3, fold_id = 1, task = task) +
��

�� plot_env_multi = autoplot(rsmp_env_multi, size = 0.3, fold_id = 1, task = task)
��

�� library("patchwork")
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�� plot_env_single + plot_env_multi
��
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Figure �.��: Environmental leave-one-block-outCV frompackage blockCVusing one (le�, "distdeforest")
and two (right, "distdeforest" and "slope") predictors to de�ne blocks in the feature space. Due to feature
space clustering observations are not (necessarily) grouped in the spatial domain.

�.�.� Cross-validation for spatiotemporal data

Some of the implemented resampling methods operate in multiple dimensions, i.e. in space, time, or
space–time. In this section, only examples of these methods in the spatiotemporal domain will be shown.
For their application in lower dimensions, usually only either the space or time coordinates need to be
omitted from the user input.

Custom: “Leave-location-and-time-out” and related methods — "spcv_cstf"

(Meyer et al., ����) proposed a spatiotemporal resampling method in which a test set is selected and all
observations that correspond to the same location or time point are omitted from the training sample.�is
method is referred to as “leave-location-and-time-out” (LLTO) in package CAST. Additional methods that
resample in the temporal and spatial domain only are named “leave-time-out” (LTO) and “leave-location-
out” (LLO), respectively. Note that despite their names, LLTO, LTO and LLO are conceptually not leave-
one-out methods as they place a certain fraction of observations in the test set, as in ordinary CV. Also,
LTO and LLO are conceptually similar to mlr3’s “cv” method with a custom grouping as they perform
a CV at the block level using a grouping structure de�ned by time points (LTO) and locations (i.e., time
series; LLO).

In this section the cookfarm dataset is used as an example because it has a temporal dimension iden-
ti�ed by the variable “Date”.

mlr3spatiotempcv::autoplot() supports two visualization types for spatiotemporal methods
which can be selected via the logical argument plot3D.�e heavy li�ing of the �D visualization (i.e. �D+
time) option is done via package plotly. Because a dynamic image cannot be included in thismanuscript,
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static versions, which can be generated by setting static_image = TRUE, are shown (see for example
Figure �.��).

CV at the time-point level: “leave-time-out” (LTO) In the LTOmethod, the time points are resampled
into the desired number of folds. In the terminology used in this work, this can be referred to as resampling
at the level of time points, which e�ectively de�ne blocks.�us, observations from the same time point are
jointly sampled into the same test (or training) fold, with no constraints on the temporal distance between
the sampled time points. �is method does therefore not implement block CV in the sense of the time
series literature.

In the cookfarm example dataset, the Date variable was reduced to �ve unique levels for better visu-
alization, and then used to create a spatiotemporal regression task in mlr3spatiotempcv (Figure �.��).
In autoplot(), a strati�ed sample based on the partitions is taken to reduce the number of points plot-
ted.

��

�� data = cookfarm_mlr3
�� set.seed(42)
�� data$Date = sample(rep(c(
�� "2020-01-01", "2020-02-01", "2020-03-01", "2020-04-01",
�� "2020-05-01"), times = 1, each = 35768))
�� task_spt = as_task_regr_st(data,
�� id = "cookfarm", target = "PHIHOX",
�� coordinate_names = c("x", "y"), coords_as_features = FALSE,
�� crs = 26911)
��� task_spt$set_col_roles("Date", roles = "time")
���

��� rsmp_cstf_time = rsmp("sptcv_cstf", folds = 5)
���

��� autoplot(rsmp_cstf_time,
��� fold_id = 5, task = task_spt, plot3D = TRUE,
��� sample_fold_n = 3000L
��� )
���

CV at the location level: “leave-location-out” (LLO) In contrast to LTO, the LLO method randomly
resamples locations that may, for example, correspond to time series. �e sampled locations form the
test partition while the temporal information is ignored (Figure �.��). Unlike spatial CV methods that
are based on geometric regions or the clustering of coordinates, the sampled test locations include no
particular spatial relationship.

To tell the resamplingmethod to use the ’space’ column for partitioning, the ’time’ column needs to be
unset and the ’space’ column de�ned. Because the temporal variable "Date" is not in use in this scenario,
autoplot() needs to be instructed explicitily to use it for �D plotting via argument plot_time_var.
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Figure �.��: Perspective plot of "leave-time-out"CV frompackage CAST (method "sptcv_cstf" and
column role "time" = "Date"). Only �ve folds and �ve time points were used in this example. Note
that the blue dots correspond to �ve discrete time levels, which appear as a point cloud due to the static
viewing angle.

���

��� task_spt$col_roles$time = character()
��� task_spt$set_col_roles("SOURCEID", roles = "space")
���

��� rsmp_cstf_loc = rsmp("sptcv_cstf", folds = 5)
���

��� autoplot(rsmp_cstf_loc,
��� fold_id = 5, task = task_spt,
��� plot3D = TRUE, plot_time_var = "Date",
��� sample_fold_n = 3000L)
���

“Leave-location-and-time-out” (LLTO) In LLTO, a test set is �rst randomly sampled from the data set,
and then all observations that correspond to the same location or time point are omitted from the training
sample (Figure �.��). LLTO resampling mimics the situation where a model is trained on time series data
from a number of locations and time points, and used to predict the time series at other locations and
time points that are not included in the training sample.
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Figure �.��: Birds-eye view of "leave-location-out" CV from package CAST (method "sptcv_cstf" and
column role space_var = "SOURCEID").

Conceptually, LLTO applies zero-distance bu�ering in both space and time: �e bu�er zones consist
of all observations whose distance to the test sample in either space or time equals zero. In amathematical
sense, however, this bu�ering is not based on a valid metric (or distance function) in three-dimensional
space (�D+ time) as neither the identity of detectability nor the triangle inequality are satis�ed by the un-
derlying combined ‘distance’ measure. Also note that LLTO does not ‘combine’ LTO with LLO, as neither
of these applies a bu�er zone.

�e "spcv_cstf" methods LLO and LTO (with only one of space_var or time_var set) require a
variable in the dataset which should be used for grouping.�e speci�cation of the variable(s) which should
be used for a spatial, temporal or spatiotemporal grouping is not trivial because the �nal partitioning
should, in the optimal case, ensure that the selected groups inherit substantial autocorrelation within
themselves and simultaneously di�er substantially from other partitions. Also, if the selected variable
contains too many groups, the di�erence within train/test splits may become undesirably high and tend
towards a LOO CV (Meyer et al., ����).

���

��� task_spt$set_col_roles("SOURCEID", roles = "space")
��� task_spt$set_col_roles("Date", roles = "time")
���

��� rsmp_cstf_time_loc = rsmp("sptcv_cstf", folds = 5)
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���

��� autoplot(rsmp_cstf_time_loc,
��� fold_id = 4, task = task_spt, plot3D = TRUE,
��� show_omitted = TRUE, sample_fold_n = 3000L)
���

Figure �.��: Perspective plot of "leave-location-and-time-out" CV from package CAST (method
"sptcv_cstf" and column roles "time" = "Date" and "space" = "SOURCEID"). �e grey points
are excluded from both the training and the test set in this example.

Clustering: using CLUTO— "sptcv_cluto"

At present, mlr3spatiotempcv also supports spatiotemporal partitioning using the versatile CLUTO
clustering algorithm (Y. Zhao & Karypis, ����). CLUTO is available in R through the skmeans package,
which provides an interface to a downloadable compiled library with a restriction to non-commercial uses
(see help("ResamplingSptCVCluto", package = "mlr3spatiotempcv") for more information).
Due to this restriction and the age of the latest release (�� years at the time of writing) this method is not
explained in greater detail.

�.� Step-by-step example: Comparing spatial and non-spatial CV

Awell-known case study is used to demonstrate the application of spatial and non-spatial resampling tech-
niques for model assessment in mlr3spatiotempcv. �e objective of landslide susceptibility modeling
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is to predict how prone to landslide initiation a location is. Models are �tted to historical landslide occur-
rences, but they need to learn generalizable relationships between predisposing variables and the response
as opposed to perfectly reproducing or memorizing the historical distribution. �is binary classi�cation
task on landslides in Ecuador (Muenchow et al., ����) is available as a built-in task via tsk("ecuador"),
but is generated from the learning sample in this example. Random forest is used as a classi�er, and the
area under the ROC curve (AUROC) as the performance measure.

Spatial CV is implemented in the form of leave-one-block-out CV using coordinate-based k-means
clustering to generate irregularly shaped blocks of roughly equal size. �is approach is better suited for
the irregular shape of the present study area than a rectangular partitioning. Figure �.�� and Figure �.��
show the contrasting distributions of training and test samples. For demonstration purposes only four
CV folds and two repetitions are used.

�.�.� Task preparation

In mlr3, machine-learning tasks with their respective dataset and response variable are represented by
objects of class Task. mlr3spatiotempcv’s spatial and spatiotemporal machine-learning tasks are also
derived from this superclass. Speci�cally, the TaskClassifST and TaskRegrST classes for classi�cation
and regression tasks require several additional arguments that must be passed as a named list using the
extra_args argument:

• coordinate_names: Names of the features that represent the spatial coordinates. �is is automat-
ically inferred when a sf object is passed.

• coords_as_features: Whether the coordinates should be used as features; by default they are
not.

• crs: �e coordinate reference system of the data as a PROJ string or EPSG code in the format
ESPG:<code>.

At �rst all necessary R packages are loaded and a lower verbosity is set to keep the output tidy. A
random-number seed is set for reproducibility.

���

��� library("mlr3")
��� library("mlr3spatiotempcv")
���

��� # be less verbose
��� lgr::get_logger("bbotk")$set_threshold("warn")
��� lgr::get_logger("mlr3")$set_threshold("warn")
���

��� set.seed(42)
���

�e task "ecuador" is available as an example task in mlr3spatiotempcv through
tsk("ecuador"). To create it manually from a data.frame named ecuador, one would do:
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���

��� backend = mlr3::as_data_backend(ecuador)
��� task = TaskClassifST$new(
��� id = "ecuador", backend = backend, target = "slides", positive = "TRUE",
��� extra_args = list(
��� coordinate_names = c("x", "y"), coords_as_features = FALSE,
��� crs = "EPSG:32717")
��� )
���

�.�.� Model preparation

Next, the random forest learner ("classif.ranger") is initialized with default hyperparameters and
the prediction type is set to "probability" because the model is used for so� classi�cation. A set of
commonly used learners is available in package mlr3learners (Lang et al., ����), including the random
forest implementation of (Wright & Ziegler, ����).

���

��� library("mlr3learners")
���

��� learner = lrn("classif.ranger", predict_type = "prob")
���

�.�.� Non-spatial cross-validation

To de�ne a resampling strategy, the rsmp() function is used to generate a resampling object using four
folds and two repetitions following a random sampling logic (“cv”).

Next, the created resampling object rsmp_nsp is passed to the resample() function together with
the task and learner objects created earlier to execute the model assessment. �is is the actual, potentially
time-consuming CV estimation. With the present settings, eight random forest classi�ers are �tted and
evaluated in this step — one model �tted on each CV training set.

Model performances are calculated from the CV predictions using the AUROC ("classif.auc" in
mlr3 notation).

���

��� rsmp_nsp = rsmp("repeated_cv", folds = 4, repeats = 2)
��� rsmp_nsp
��� rr_nsp = resample(
��� task = task, learner = learner,
��� resampling = rsmp_nsp
��� )
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���

��� rr_nsp$aggregate(measures = msr("classif.auc"))
���

��� > classif.auc
��� > 0.7600664
���

�.�.� Spatial cross-validation via coordinate-based clustering

�e model assessment is now repeated again using spatial CV resampling, for which the only required
change is to replace "repeated_cv" by "repeated_spcv_coords".

���

��� rsmp_sp = rsmp("repeated_spcv_coords", folds = 4, repeats = 2)
��� rsmp_sp
��� rr_sp = resample(
��� task = task, learner = learner,
��� resampling = rsmp_sp
��� )
���

��� rr_sp$aggregate(measures = msr("classif.auc"))
���

��� > classif.auc
��� > 0.6100402
���

�.�.� Visualization of CV partitions

Finally, we visualize (two of) the partitions that were used during performance estimation by making use
of the generic autoplot() function in package mlr3spatiotempcv (Figure �.��).

���

��� autoplot(rsmp_sp, task, fold_id = c(1:2), size = 0.8)
��� autoplot(rsmp_nsp, task, fold_id = c(1:2), size = 0.8)
���

�.�.� Interpretation

If one takes a closer look at the results, the non-spatial CV estimate of AUC (�.��) is substantially higher
compared to the spatial CV estimate of �.��. Since test points in non-spatial CV may be from the same
slopes or even the same landslides as the training data, the non-spatial CV result should/can be consid-
ered as an over-optimistic estimate of the model’s ability to predict the susceptibility to “new” landslides.
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Figure �.��: Spatial leave-one-block-out partitioning using coordinate-based clustering to create roughly
equally sized polygonal blocks. Due to space limitations only the �rst two folds of the �rst repetition are
shown.
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Figure �.��: Random (non-spatial) four-fold CV partitioning. Only the �rst two folds of the �rst repetition
are shown.

Spatial CV, in contrast, provides a better/more accurate measure of a model’s ability to generalize from the
training sample — in this case study, from the speci�c hillslopes and historical landslides in the training
sample. It is also expected that spatial CV results better represent themodel’s transferability to geologically
and topographically similar areas adjacent to the training area. �e magnitude of the di�erence between
spatial and non-spatial CV estimates may depend on the dataset, the strength on spatial or spatiotemporal
autocorrelation, and the learner itself. Algorithms with a higher tendency to over�t to the training set will
tend to have a larger spread in such scenarios.

�.� Discussion

�.�.� Choosing a resampling method for model assessment

�e question of which resampling method should be chosen for a prediction task and dataset at hand
comes up regularly in practice. Even though there is and most likely will be no de�nitive answer to this
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question, we would like to give some guidance in this section to help �nd an appropriate method. As a
general rule, we recommend to use a resampling scheme that (�) mimics the predictive situation in which
the model will be applied operationally, and (�) is consistent with the structure of the data. Both aspects
are outlined in this section, starting with two concrete modeling scenarios.

Although the case study example in section �.� used the "spcv_coords" method for coordinate-
based clustering, this should not give the impression that this method is the only method suitable for
this example task. In this application setting, we want to assess how well the model generalized from
the concrete set of historical landslide occurrences, which is why we ensured that training and test sets
contain di�erent, “new” hillslopes and landslides. Coordinate-based clustering is particularly appealing in
this setting because of its ability to adapt to the irregularly shaped study area of this example. Resampling
at the level of sub-catchments could have been a viable alternative approach that can be implemented using
custom resampling ("custom_cv" method); however, this may result in less balanced sizes of test sets as
catchment sizes may vary. When the timing of landslides is known (event-based inventories) or multiple
inventories have been compiled for di�erent time points, it can also be recommendable to additionally
sample training and test data from di�erent time points, as with the LLTO and LTO (Meyer et al., ����)
or similar methods (Brenning, ����).

In other application scenarios such as the crop classi�cation example given in section �.� (Peña&Bren-
ning, ����), the objective is to predict the fruit-tree crop type of ‘new’, unseen �elds within an agricultural
region. In this use case we are not at all interested in “predicting” the already known crop type of (other)
grid cells within the same agricultural �eld. Also, a model will likely be much better able to predict the
crop type within the same �eld from multitemporal remote-sensing data since all crops within that �eld
are subject to identical management practices (e.g., use of pesticides, pruning of fruit trees, tree spacing),
while ‘new’ �elds may be managed di�erently. As a consequence, grid cells from the same �eld should be
grouped into a block, and resampling should be done at the �eld level ("cv" method with grouping) to
receive an honest estimate of the model’s performance in a relevant predictive situation. If, in contrast, the
objective is to apply the model to an adjacent agricultural region (e.g., adjacent county) where the same
crop types are present, it may be advisable to use coordinate-based clustering ("spcv_coords" method)
to obtain larger, contiguous test regions.

In summary, there are various factors that may be considered in judging the suitability of a resampling
method:

• Will the model be applied to predict ‘new’ outcomes at near or more distant spatial locations?
• Will it be applied to predict into the future, or hindcast gaps between spatiotemporal observations
in the past?

• Is it necessary to impose a separation distance or prediction horizon as a spatial or temporal bu�er
between training and prediction locations?

• How densely are the observations distributed in space and time? Are they more densely distributed
than the intended spatial or temporal prediction distance?

• Is the data naturally grouped, e.g. because of the spatial extent of the studied objects, or as a conse-
quence of multi-level (cluster) sampling?

• With an eye on environmental blocking and extrapolation in feature space, is it intended to apply
the model to predict ‘new’ outcomes for unobserved values of predictor variables?
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Based on these criteria users may choose amatching resamplingmethod that is either more restrictive
(by discarding nearby observations for fold creation) or more liberal (by not removing observations and
eventually ignoring natural grouping patterns).�e speci�c publications related to themethods integrated
into mlr3spatiotempcv may give further advice and provide additional use cases for the application of
each respective approach. Users should therefore also refer to publications that are referenced of linked
in the help �les of this package or its respective upstream packages.

�.�.� Resampling for hyperparameter tuning

CV is alsowidely used to assessmodel performancewhen tuning the hyperparameters of�exiblemachine-
learning models, and this is also supported by the mlr3 framework. Using the CV methods introduced
here, mlr3 can therefore be used to optimizedmodels to show an improved performance in speci�c spatial
or spatiotemporal predictive setting (Schratz et al., ����). Such an optimization may, for example, result
in a reduced maximum tree depth or increased minimum node size in the Ecuador case study, since these
hyperparameter settings would result in a stronger generalization and reduced over�tting.

We recommend using nested CV for this purpose. In nested CV, an “inner” CV is performed on each
CV training set, since hyperparameter tuning is an integral part of model �tting that should not be able
to use information from the CV test set. In such scenarios it is recommended to use the same spatial
resampling method for the inner CV (hyperparameter tuning) as for the outer CV (model assessment) in
order to use the appropriate objective function for optimization. See (Schratz et al., ����) for more details
as well as chapter �� of Geocomputation with R (Lovelace et al., ����).

�.�.� Additional practical issues

Since mlr3spatiotempcv harvests already implemented resampling methods from existing R packages,
the broader overview presented in this work has highlighted that there are still several gaps that may need
to be closed in the future, if speci�c use cases require those features.

For example, bu�ering, or the use of a spatial or temporal separation distance between training
and test sets, is currently only implemented for some methods ("spcv_buffer", "spcv_disc", and
"sptcv_cstf" with both space_var and time_var). Its use should, however, be limited to use cases
involving a prediction distance, as a bu�er zone reduces the size of the training sample and introduces the
risk of geographically biased training data.

CV is o�en executed repeatedly to reduce the possible in�uence of randomvariability onCVestimates.
In general, onlymethods that involve a randommechanism for generating or resampling blocks are suited
for this. In leave-one-block-out CV, coordinate-based and environmental clustering ("spcv_coords",
"spcv_env" and "sptcv_cluto") achieve this as their clusters are generated based on random seeds.
However, experience with "spcv_coords" shows that clusters from repeated executions may in some
situations be nearly identical to each other, resulting in very little variability between CV repetitions.
While this e�ect also depends on the variable used for clustering, similar e�ects could potentially also
apply to "spcv_env" and "sptcv_cluto" methods. However, such e�ects are more di�cult to quantify
because selected features of these methods are always di�erent, in contrast to "spcv_coords" which
always uses coordinates for clustering. �is issue is even more critical in CV at the block level with
"spcv_block" with options selection = "systematic" and selection = "checkerboard" be-
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cause identical folds are assigned in each repetition. In contrast, "spcv_block" with option selection
= "random" avoids this problem.

�.� Conclusion and outlook

�e mlr3spatiotempcv package is the �rst package to bundle and categorize spatiotemporal resampling
methods implemented inmultiple other packages in R.�e available resampling techniques allow users to
vary the scale or granularity of the resampled spatiotemporal units aswell as their shape and possible bu�er
distance between training and test samples. �ese settings may account for the speci�c characteristics of
spatiotemporal prediction tasks, but modelers now have to make the important decision of choosing a
method that is adequate for their situation. �ey are advised to focus on the spatial or spatiotemporal
structure of the model’s prediction task, consider the structure of the learning sample at hand, and think
about how the autocorrelation between training and test samples might a�ect their model assessment and
selection.

�e compilation of resampling techniques in mlr3spatiotempcv is by no means complete. Addi-
tional methods or parameters may therefore be added in the future as they become available in upstream
package or are contributed directly to this package.

Spatiotemporal cross-validation as a paradigm is not yet fully established in scienti�c work�ows, al-
though it has been discussed intensively for more than a decade now. We anticipate that making the
existing methods easily accessible to users is an important step to foster the acceptance of spatiotemporal
cross-validation in the community and to allow modelers to produce bias-reduced model assessments in
environmental and ecological studies.
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DISCUSSION

�e goal of this thesis was to advancemethodological processes in the environmental/ecologicalmodeling
�eld. To reach this goal in situ data related toD. sapinea (chapter �) and F. circinatum (chapter �) infections
in northern Spain were analyzed using various learning algorithms. State-of-the-art tuning and feature
selection methods combined with variable importance analyses were used therefor. Emphasis was put on
a bias-reduced assessment of model performance estimates using SCV. All studies were conducted in a
reproducible manner and wrapped in individual research compendia. Generalized research so�ware has
been created in the form of an R package to allow for simpli�ed reusability (chapter �). �e following
sections primarily discuss the research questions outlined in section �.�.

�.� Analyzing pathogen infections using environmental & remote sensing
data

�.�.� Re�ections on data availability and study setup

Data quality played an important role during the analyses. Examples are the in situ measurements of D.
sapinea-infected trees (case study �, chapter �), the observed degree of defoliation caused by F. circinatum
and the airborne hyperspectral remote sensing data (case study �, chapter �). Several components could
have possibly in�uenced data quality in this work: the human error during data collection (MacLean
& Lidstone, ����), the quality of the remote sensing data (geometrical o�set, atmospheric correction)
and the temporal o�set between the acquisitions of the in situ and remote sensing data. �e latter is
problematic when the data collection time interval overlaps with a seasonal change period, as it was the
case in the second case study (chapter �): here, the in situ data was collected during the �rst two weeks
of September while the hyperspectral data was collected at the end of September/beginning of October
(section �.�.�). Observed trees, both infected and non-infected ones at the time of data collection, might
have undergone changes until the remote sensing data was acquired about two and a half weeks later. �e
potential bias introduced by this o�set is hard to quantify and might as well be negligibly small in the
best-case scenario. Performing the survey during peak times of the vegetation period might have helped
to more easily distinguish healthy from non-healthy trees and hence improved data quality (Morellato et
al., ����). Furthermore itmight have been bene�cial to analyze data, both in situ and remote sensing, from
di�erent seasons in the �rst place to average out phenology-related changes. �is would have also helped
to average out potential bias introduced by a time o�set between in situ and other datasets (Morellato et
al., ����).

�e following paragraph discusses re�ections related to predictor selection and possible data source
combinations. Both studies used very distinct feature sets tomodel the respective response variable: when
D. sapineawas the response variable (chapter �), only environmental predictors such as temperature, pre-
cipitation or soil type were used to model infected trees. In contrast, the second case study (chapter �)
only made use of feature sets derived from hyperspectral remote sensing data. �e combined use of both
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hyperspectral data and environmental variables in the respective studies would have been challenging.
Due to the large study area in the �rst case study (chapter �) (the Basque Country), no complete coverage
of hyperspectral data would have been available. Multispectral data, which would have been available via
the Sentinel satellite �eet, would have lacked the required geometric resolution needed to analyze indi-
vidual trees adequately. In the second case study (chapter �), the individual trees were located within plots
spanning an area of �.� ha - �.� ha. For such area sizes there are small to no di�erences for variables like
temperature, precipitation or soil type. Hence the inclusion of these variables would have mostly likely
had no e�ect on the modeling outcome.

Other studies which modeled D. sapinea infections found that higher summer temperatures were re-
sponsible for increased tree damage while in areas with higher precipitation and lower temperatures the
pathogen caused substantially lesser damages (Brodde et al., ����). Studies analyzing F. circinatum also
mainly focused on the main climatic variables temperature and precipitation (Möykkynen et al., ����).
In contrast to D. sapinea, temperature is less important for F. circinatum which prefers more humid re-
gions (Iturritxa et al., ����). Others also explored the potential of using remote sensing data to analyze
pathogens. Poona and Ismail (����) made use of narrow band indices to analyze F. circinatum related
stress in P. radiata seedlings. �ese �ndings back the idea of modeling D. sapinea as a function of envi-
ronmental predictors while aiming to improve model performance by adding yet unused predictors like
soil type or PISR (chapter �) (Iturritxa et al., ����).

Most research in this work focused on analyzing and detecting the presence of these pathogens using
environmental variables, for example temperature, precipitation or soil type. �is is in line with various
other research, e.g., Drenkhan et al. (����); Hernandez-Escribano et al. (����); Iturritxa et al. (����);
Wing�eld et al. (����). �e spread of a pathogen, however, might also be initiated and boosted by non-
environmental factors. Evira-Recuenco et al. (����) demonstrated that F. circinatum, which is known to be
a “seed-borne” pathogen, is able to infest cones on healthy branches in (hygienic) nurseries.�ese infected
cones will then eventually be distributed into pine plots. �e potential spread of F. circinatum via infected
seeds has also been discussed further by Burgess and Wing�eld (����) and Storer et al. (����). Bosso
et al. (����) found altitude (higher probability of presence at low altitudes) and land cover, i.e., di�erent
compositions of tree species in this context, to be important predictors for detecting D. sapinea presence
in Italy. �e authors state that D. sapinea was found to be primarily present in areas that are dominated
by one of P. pinea, P. pinaster, P. halepensis, P. sylvestris or P. nigra.

�.�.� A critical view on model performance

When looking at the model performance results of both studies (RMSE of �� percentage points for the
F. circinatum study (case study �, chapter �) and a Brier score of around �.�� when analyzing D. sapinea
(case study �, chapter �)) it becomes likely that (yet unknown) predictors could potentially help explain the
existing relationships better and increase model performance. External events such as damages caused by
hail storms can lead to entry points for pathogens. It has been shown that the inclusion of such information
can improve model performances (Schratz, ����). Yet data collection for such variables is very costly and
o�en lacking coverage for speci�c time periods or areas. In addition, such information might be a�ected
by high (human) observer errors.

�e performance achieved by the �tted models during this work is rated as fair. Taking the overall
e�ort into account that was put into both data collection andmodel �tting, it can be concluded that results
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stayed below initial expectations. Yet, the overall idea of using learning algorithms to explain pathogen
infections stays a promising one. �e use of good quality data combined with the potential modeling
has to o�er (tuning, feature selection, variable importance, benchmarking di�erent algorithms and the
potential use of specialized species distribution models (e.g., Bosso et al., ����)), might result in models
that can be of practical help for local decisionmaking, monitoring and early detection of pathogen spread.

�.�.� �e current and future state ofD. sapinea and F. circinatum

Drenkhan et al. (����) summarized the current state of F. circinatum dispersal on a global scale. According
to the geodatabase provided by the authors, the fungus is present in �� countries with the main dissem-
ination regions being Mid-South America and southern Europe. Ganley et al. (����) used a CLIMEX
model, which is a biostatistics so�ware to model the geographical distribution of a species, to visualize
suitable living areas of F. circinatum. Matching these historical predictions from Ganley et al. (����) with
the current state of the disease distribution mapped by Drenkhan et al. (����) shows a good �t. Watt et
al. (����) included di�erent climate scenarios into suitable living area projections of F. circinatum. �e
authors found that possible habitat areas in Europe (and New Zealand) grew under all considered climate
scenarios while in contrast the global suitable habitat area will most likely decrease between ��� to ���
(Watt et al., ����). More speci�cally, Drenkhan et al. (����) predicted an increase by ��� p.p. to ��� of
the total European land up north until Denmark and the Netherlands with the main drivers being the rise
in temperature and reduced drought stress. Möykkynen et al. (����) also used CLIMEX to model the po-
tential spread of F. circinatum. While the authors conclude with other studies that central European areas
like France and Germany will turn into suitable habitats for the pathogen, they emphasize that the short
�ight distance of spores will most likely be a limiting factor for pathogen distribution. Human support
would be needed to help the pathogen cross natural gaps of unsuitable habitats on its way spreading to
Northern Europe.

�e risk areas ofD. sapinea infection, which favors dry and low precipitation areas, will likely increase
globally due to ongoing global warming (Bosso et al., ����; European Environment Agency, ����). �e
European Environment Agency (����) and Lorenzo and Alvarez (����) predict a substantial decrease in
precipitation and an increase in temperature for Spain and the Mediterranean region. �e duration of
dry periods for Southern Europe, which includes Spain and the Basque Country, will also likely increase
(Castaño-Santamaría et al., ����; Jiménez-Donaire et al., ����; Lorenzo & Alvarez, ����). One of the
major threats toD. sapinea is the minimum temperature during winter time, which needs stay above �–��
°C to not cause substantial damage to the pathogens population (Desprez-Loustau et al., ����). Global
warming though will lead to more regions not falling below this range, increasing the suitable habitat
space of the pathogen.

Bosso et al. (����) predicted an increase of suitable areas for D. sapinea in Italy between �� to ���
using di�erent climate scenarios. Mountainous areas are predicted to stay unsuitable for the pathogen
due to their inconsistent climatic behavior. Yet other studies exist which predict the upcoming climatic
changes to have only little impact: Fabre et al. (����) concluded climatic changes in the next �� years to be
less impactful to the presence ofD. sapinea than climatic changes which happened within the last �� years
as such already favored the pathogen considerably.

In summary, both pathogens D. sapinea and F. circinatum have spread substantially in Europe within
the last decade and will likely continue to do so in a more rapid way in the upcoming decades. Most pro-
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jections and studies conclude that climate change will have a signi�cant positive in�uence on the increase
of high-risk areas in the future. �is applies speci�cally to Europe as suitable areas on a global scale will
eventually even decrease (Watt et al., ����).

�.� Spatial partitioning methods in cross-validation

�e e�ects of SAC in CV have been discussed intensively in recent years (Brenning, ����; Geiß et al., ����;
Halvorsen et al., ����; Mets et al., ����; Ploton et al., ����; Roberts et al., ����; Ruß & Brenning, ����b;
Wadoux et al., ����). �e following sections discuss the contributions of this work to the ongoing debate.

�.�.� E�ects of using spatial cross-validation during hyperparameter tuning

In chapter � the e�ects of using spatial partitioning in di�erent benchmarking scenarios is analyzed using
the k-means based method a�er Brenning (����). �e focus was on evaluating di�erences in predictive
performance when using spatial partitioning during the tuning stage of a nested CV setting compared to
no hyperparameter tuning or hyperparameter tuning with non-spatial partitioning (Schratz et al., ����).
�emotivationwas based on existing researchwhich showed substantial di�erences in performancewhen
comparing spatial and non-spatial partitioning during CV (Brenning, ����; Goetz et al., ����; Roberts et
al., ����). So far no study analyzed the e�ect of spatial partitioning on hyperparameter optimizationwithin
the inner loop of a CV.

Hyperparameters di�ered greatly in many instances between the di�erent partitioning setups (Fig-
ure �.�). Yet the e�ects on predictive performance were small and non-substantial (Figure �.�). Few no-
table model-speci�c di�erences were observed, e.g., SVM and BRT showed improvements when using a
consistent “spatial/spatial” setup, i.e., using spatial partitioning for both performance estimation and hy-
perparameter tuning. No similar (positive trending) patterns were observed for unequal resampling pairs,
for example “spatial/non-spatial”.

�e fact that models did not perform worse when using spatial partitioning for hyperparameter op-
timization should strengthen the motivation to use a consistent partitioning scheme for both stages of
a nested CV. Yet, in cases where this is not feasible or technically possible, the use of an inconsistent
schema does not seem to have a great (negative) e�ect on the results if spatial partitioning is at least used
in the outer loop of the CV. While the study has seen quite some attraction citation-wise until now, only
few follow-up studies used a consistent resampling scheme when conducting CV (e.g., Hengl et al., ����;
Morera et al., ����; Petermann et al., ����) until today. �e majority of citing studies used the work as a
reference to justify hyperparameter tuning in general without referring to nested SCV explicitly. One pos-
sible reason for the so far low adaption rate, besides the fact that the in�uence on predictive performance
will likely be negligibly small, could be the lack of (simple) technical solutions to apply spatial partitioning
methods in a nested CV scenario. Tackling this potential issue was part of the motivation for the creation
of the R package mlr3spatiotempcv (chapter �). Despite the slow adaption rate, Kopczewska (����)
concludes that that the use of (nested) SCV is on the way to become the standard partitioning method
when dealing with spatial data.
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�.�.� (Bias)-di�erences in performance estimation between spatial and non-spatial CV

�e main motivation for using spatial partitioning methods during CV is to create realistic train-
prediction scenarios with the data at hand. Realistic in this case means to mimic the actual desired pre-
diction scenario of the model in practice. �e desired prediction area is o�en spatially distant from the
region where the training data originated from, i.e., the model is performing an extrapolation task. If this
is applied within CV, SAC is actively accounted for in the data because training and test sets become less
similar to each other if the spatial distance between their respective observations increases. �is sepa-
ration is actually accounting for the underlying spatial autocorrelation as it results in less overoptimistic
and biased-reduced performance estimates. In the last years the acceptance for using SCV to estimate
bias-reduced model performances increased with many studies making active use of it, e.g. Meyer et al.
(����); Ploton et al. (����); Roberts et al. (����). While the knowledge to make use of spatial partitioning
for biased-reduced CV estimates has been around even longer (Brenning, ����), many researchers might
have been unaware of it or might have simply missed the few available tools in commonly used program-
ming languages to account for SAC during CV.

Yet recently,Wadoux et al. (����) started a scienti�c debate discussing possible overpessimistic perfor-
mance results based on the study of Ploton et al. (����). Wadoux et al. (����) criticizes the use of SCV in
general and uses the study of Ploton et al. (����) as an example to claim that the performances calculated
by the use of SAC during CV are overly pessimistic and that design-based probability sampling should
be used, if possible. According to Wadoux et al. (����), the use of spatial resampling methods leads to
misinterpretation of map accuracy, due to overly pessimistic results, and should be replaced by design-
based inference instead, which is “model-free” and “design-unbiased.” In addition the authors claim that
“in probability sampling the validation data [to be] design independent” (Wadoux et al., ����).

�e general claim of SCV possibly being overpessimistic and leading to a higher bias than non-spatial
CV is still unaddressed. However, the claim that only the use of design-based probability sampling leads
to unbiased performance estimates applies solely to scenarios in which taking a probability sample is a
feasible approach and data is not spatially clustered. If data is clustered, SCV does not show more bias
than non-spatial CV, as shown by Wadoux et al. (����) themselves in the “clustered random” example of
their study (Fig. �, setting (d)). Only (very) few environmental/ecological studies evaluate map accuracy
on non-clustered datasets. It is agreed on that the use of design-based validation should be encouraged for
studies that allow the use of probability samples. Yet the overall claims of Wadoux et al. (����) of SCV not
being the right tool to evaluate model performance is not backed by their study and needs more research.

�.�.� Availability & application of spatial resampling methods

�e term “availability” in this section refers to the existence of code packaged in modules or packages of
a programming language. At the start of this thesis in ����, the availability of spatial resampling imple-
mentations across programming languages was sparse. In R speci�cally, the only project which addressed
the topic was the R package sperrorest (Brenning, ����). sperrorest provides a �exible solution
for applying various spatial resampling methods in combination with any modeling algorithm in R. Yet,
no straightforward option to use the implemented resampling strategies with model optimization tech-
niques was available. In addition, parallelization was not supported and (benchmark) results from dif-
ferent models needed to be combined manually. While the addition of parallelized resampling iterations
was a byproduct of this thesis, adding support for �exible hyperparameter tuning was found to exceed the
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scope of the package. Following the goal of conducting environmental benchmarking analyses as done in
chapter � and chapter �, the need for a more generic solution which supports all of the mentioned points
was identi�ed.

During this time, machine-learning frameworks such as the R package caret or mlr startedmaturing
(Bischl et al., ����; Kuhn, ����). While their focus was on simplifying the application of machine learning
in general, they were lacking support for niche modeling �elds and their respective methods, e.g., spa-
tial partitioning methods for environmental modeling applications. It was eventually decided to rather
contribute spatial resampling methods to existing frameworks than implementing essential machine-
learning building blocks, like hyperparameter tuning, into sperrorest. A possible side-motivation was
to increase awareness of �eld-speci�c methods within the machine learning community due to the large
outreach of these frameworks compared to a standalone R package. In addition, the available studies dis-
cussing the use non-spatial resampling being possibly suboptimal for spatial data at this timewas yet small
(Brenning et al., ����). Last, the application of non-spatial resampling methods on spatial datasets was
still widely accepted during peer reviews, o�en without any hint about the existence of spatial resampling
methods.

While in the beginning, only onemethod from sperrorestwas contributed into the mlr framework,
it was quickly realized that a generic interface providing various spatial resampling methods is needed to
e�ectively support the process of selecting and applying spatial resamplingmethods in a generic way. �is
�nally lead to the creation of the R package mlr3spatiotempcv (chapter �) which attempts to make the
application of spatial partitioning methods easier by providing a consistent interface across di�erent par-
titioningmethods while at the same time providing full access to the functionality from the mlr3machine
learning framework, e.g., the selection of various model optimization techniques. mlr3spatiotempcv is
an extension of the mlr3machine learning framework, which itself is the successor of the mlr framework.

During the development of mlr3spatiotempcv more R packages providing single or multi-
ple spatial resampling methods were created (CAST, blockCV) (Meyer, ����; Valavi et al., ����).
Following the philosophy of building upon existing work, these implementations were bundled
within mlr3spatiotempcv. Some methods o�ered by mlr3spatiotempcv (e.g., the classes
ResamplingSptCVCstf and ResamplingSptCVCluto in mlr3spatiotempcv) also support spa-
tiotemporal data. Yet their application, implementation and discussion are considered to be out of scope
for this work. �e task to account for two autocorrelation types, during model validation and elsewhere,
comes with new issues and challenges (Di Cecco & Gouhier, ����; Ives et al., ����).

Similar toolboxes in other languages data-science focused programming languages (Python, Ju-
lia) were missing until recently. In Python, the modules spacv (Comber, ����) and Museo Toolbox
(Karasiak, ����) provide spatial partitioning methods which can be used within the scikit-learn ma-
chine learning framework. Both were developed at roughly the same time as mlr3spatiotempcv. No
similar projects were found for Julia at the time of writing.

�e question which spatial resampling method to use comes up frequently in practice. �us, the topic
is addressed in more detail in subsection �.�.�. While there is no straightforward answer, helpful pointers
to simplify the decision-making process are provided. It was observed that the existence of tutorials which
show how to use resampling methods together with advanced tuning and feature selection techniques,
increased adoption by fellow researchers.
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�.� Using �lter-based feature selection for high-dimensional data

�e handling of high-dimensional data in modeling is a challenging problem which has been researched
for decades (Donoho, ����; Johnstone & Titterington, ����). Due to the large increase in available data
within the last ten years, this topic has become even more prevalent. While the number of features in
environmental modeling is usually low, the availability and use of hyperspectral data changes this. A
typical hyperspectral sensor usually consists of hundreds of bands. �ese bands are o�en used as the base
to generate a large number of features, which are then used for modeling. A dataset which is composed
out of more features than observations is commonly referred to as "high-dimensional". Yet this de�nition
is only a rule of thumb (Johnstone & Titterington, ����).

While wrapper feature selection is a well known and established approach in modeling (El Aboudi &
Benhlima, ����; Kohavi & John, ����), the study presented in chapter � focuses on a less popular feature
selection approach: �lter methods. Filters have two main advantages compared to other feature selection
techniques, such as wrapper methods; (�) merged execution with the hyperparameter tuning stage and (�)
the ability to reuse existing ranking calculations due to caching. Essentially, the number of features can be
treated as an optimizable hyperparameter of the model. Because �lters rank the variable space only once
using a speci�c heuristic, the calculated rankings can be reused in reoccurring optimization steps without
the need for a recalculation. �is is especially helpful in high-dimensional settings as for example in the
second case study of this thesis (chapter �).

�e technical implementations of �lter methods in the R packages mlr and mlr3 allow to make use of
said caching.�e implementation of this option and the possibility to use ensemble �lters in general was a
byproduct of this study. �e second case study (chapter �) then focused on applying di�erent (ensemble)
�lter methods on di�erent combinations of feature sets derived from hyperspectral data by making use of
various algorithms.

Overall models using �lter methods did not score a substantially better performance in the case study
when compared to models that were �tted without �lters (Figure �.�). Yet speci�c model/feature set com-
binations showed notable improvements when making use of �lters, e.g., XGBoost on the HR and VI
datasets in the second case study (Figure �.�). Due to their low computational demand and their potential
to shrink the predictor space and speed up high-dimensional modeling setups, the use of �lters appears to
be largely bene�cial. A quanti�cation of the speed up is not straightforward and essentially depends on the
overall model �tting time of a speci�c algorithm with a speci�c amount of features. Once calculated, �lter
rankings can be used as a pretty much instant subset of the feature set in the respective tuning iteration
and thus save time �tting the model in each iteration as the used algorithm does not need to incorporate
all available features. �e net speedup could be calculated by comparing the one-time calculation of the
�lter ranking against the added up time saved during each tuning iteration model �t. �ough suchlike
detailed comparisons are usually not conducted in practice as the exact timings are of low interest and
not easily retrievable. PCA achieved similar results with respect to model �tting time in the conducted
case study. Because PCA compresses the variable space into few principal components, which are then
used to �t the model, PCA exacerbates subsequent interpretation at the single predictor level. �is vari-
able squashing and the additional step to disentangle the principal components into single features again
might be potential advantages for using �lter methods over PCA for feature selection purposes.

Lately the use of �lter-based approaches and their development was mainly happening in the bioin-
formatics �eld. Many analyses of this research �eld face high-dimensional modeling challenges (Raj &
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Mohanasundaram, ����; Urbanowicz et al., ����). No other studies in the environmental/ecological �eld
could be found which made use of �lter-based feature selection. It is hoped that the study conducted in
chapter � can serve as a starting point for the environmental modeling community, both from a study
design and programmatic point of view.

�.�.� Ensemble vs. single �lters

�e use of ensemble �lters showed promising results in recent studies (Drotár, Gazda, & Gazda, ����;
Drotár et al., ����; Drotár, Šimoňák, et al., ����; C.-F. Tsai & Sung, ����) which was one of the drivers to
incorporate the BORDA �lter. �is �lter type returns the ranked sum of multiple individual �lters and
aims to average out the potential weaknesses of single �lters, which is also the general idea of any ensemble
approach (Pes, ����). �e results of the second case study did not coincide with the promising literature
�ndings as the BORDA �lter was not able to score the best result in any learner/feature set/�lter setting
(Figure �.�). Yet the use of ensemble �lter methods is essentially cost-free in benchmark setups as the
calculation of the underlying single �lter rankings can be reused in other runs. Overall, more applications
of �lter methods with other (high-dimensional) environmental datasets are needed to draw generalized
conclusions on their performance compared to single �lters. Besides solely focusing on �lter methods, it
might also be worth looking into combining �lter and wrapper based approaches as shown by C.-W. Chen
et al. (����) and Pes (����). Examples includes the creation of hybrid ensembles or the use of multistage
approaches, i.e., �rst applying �lters to reduce the feature space substantially and then applying wrapper
methods on the remaining subset of the data.

�.�.� E�ects of data-driven feature sets

Multiple feature sets were created from the hyperspectral data used in the second case study (chapter �)
by making use of data-driven feature engineering. �e goal was to improve model performances by mak-
ing use of both arbitrary (NRI feature set) and expert-based indices (VI). Even though the overall best
benchmark setting in the study used a combination of the NRI and VI feature sets (Table �.�), the average
performance di�erences between the feature sets were negligibly small. �e HR feature set was thought
of as a baseline to compete against as it re�ects the re�ectance values as seen from the hyperspectral sen-
sor. Overall, the e�ort of creating additional feature sets from the hyperspectral data did not result in a
substantial improvement in predictive performance in this speci�c case study.

�.�.� Model interpretation with high-dimensional feature sets

Permutation-based variable importance was used to estimate variable importance of the best performing
algorithm (SVM) on the HR and VI feature set, respectively. �e so-called red edge (ranging between
��� nm and ��� nm) was estimated to have the highest in�uence on model performance (Figure �.�).
�is �nding is in line with other vegetation-related research (Kang et al., ����; Zhu et al., ����). �e
absolute importance of the most important feature(s), which is re�ected by the mean decrease in RMSE
across permutations when omitting this particular feature, were rather small. �is applied especially to
the HR dataset for which only one feature exceeded the absolute value of one RMSE.

From a general point of view, the use of a permutation-based method in a scenario with highly-
correlated variables must be seen critical as results might be biased (Molnar et al., ����). A general prob-
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lem of permutation-based variable importance is that it creates (highly) unreasonable combinations of
feature values.�ismight result in a high (false-positive) estimated importance of a particular (correlated)
feature as the predictive performance of such amodel o�en drops substantially (Molnar et al., ����). Yet it
is unclear if and howmuch bias this e�ect introduces into the �nal performance estimation as it is usually
not feasible to assess the amount of unreasonable feature combinations within a dataset beforehand.

�is limitation does not apply to local methods like ALE plots or SHAP importance (Apley & Zhu,
����; Lundberg & Lee, ����). Local model-agnostic methods like these aim to explain the importance
of features of individual predictions rather than estimating the overall model performance (Lundberg &
Lee, ����). However, they also su�er from the problem of shared importance, i.e., if highly-correlated
features are present, their individual importance weight is split across the respective correlated features,
essentially masking their actual individual importance. A potential solution to this can be a bundled
assessment of (highly)-correlated features, also known as grouped feature importance (Au et al., ����).
Here, rather than looking at individual feature importance, the focus is on explaining the importance of a
feature group. Brenning (����) recently came up with a new method which aims to address this problem
and builds open existing solutions similar to ALE or (grouped) permutation-based variable importance.
�e approach builds on the analysis of features in a transformed feature space (e.g. through di�erent
means of PCA), and shares ideas earlier proposed by Adebayo and Kagal (����).

�.� (Spatial) research so�ware in R & reproducibility

�.�.� Generalist repositories

To ensure study reproducibility, data must be shared publicly and a license needs to be attributed to it.
�is paragraph discusses currently available options and their di�erences.

�e selection of a generalist repository to ensure long-term reproducibility of the study data is im-
portant. Sharing code and small-sized data on git-based platforms such as GitHub, GitLab, Bitbucket
or others is a good start with respect to reproducibility. However, generalist repository providers are
needed to ensure longterm conservation of data and code as pro�t-oriented o�erings (e.g., the previ-
ously mentioned git providers) are not guaranteed to exist longterm (Bast, ����). In addition the men-
tioned git-platforms have a strong focus on code hosting. While the upload of small datasets, around
a few megabytes in size, is generally unproblematic, problems might occur for larger datasets. If a cer-
tain threshold is exceeded, data storage might incur costs. Hence, platforms are needed which fol-
low the FAIR principles and focus on making (research) data available long-term. Examples are Zen-
odo (https://zenodo.org), the Open Science Framework (https://osf.io), So�ware Heritage
(https://softwareheritage.org), Dataverse (https://dataverse.org) or Figshare (https://
figshare.com) (Bast, ����). Other �eld-speci�c initiatives like PANGAEA exist which also aim to pro-
vide a generic data storage o�ering to scientists (PANGAEA: Data Publisher for Earth & Environmental
Science, ����). Yet many �eld-speci�c o�erings su�er from their discoverability and are sometimes cov-
ered by other, non-science related services that have a higher ranking in web search results (e.g., PAN-
GAEA) and might therefore not be covered here.

Generalist repository providers which are tied to a particular research entity such as journal publish-
ers (e.g., "Mendeley Data" as a partner of Elsevier) or university-speci�c repository providers must be
seen critical. University-driven projects are o�en hard to discover and might be tied to a limited budget,
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which imposes potential maintenance risks. Providers a�liated with journal publishers might also su�er
from budget and, in addition, marketing decision issues. Also, due to the convenient integration into a
journal’s submission process, their use is o�en not cost-free and comes eventually with the devolution of
data permission.

With respect to literature, Choi et al. (����) also emphasizes the importance of reproducible science
in their work and showcases a combination of di�erent online tools to conduct a hydrological case study.
�e National Academies of Science in the United States published a relatively recent report which includes
an exhaustive overview on reproducibility in science (National Academies of Sciences &Medicine, ����).

For this thesis, Zenodo was chosen as a longterm generalist repository provider given its open source
nature, the ability to attach DOIs to datasets, and its backing by the European Commission (within the
Horizon ���� initiative) (European Organization For Nuclear Research & OpenAIRE, ����).

�.�.� License attribution

Besides the selection of a generalist repository provider, a license which declares distribution and reusabil-
ity permissions of the shared content is an important building block for reproducible research. One of the
most used licenses which strongly supports reproducibility and allows reusability of data is the "Creative
Commons" license family with its speci�c "CC BY-SA" or "CC BY" types (Y.-H. Lin et al., ����). Here
"BY" stands for the need of copying authors to credit the original authors of the data. �e "SA" acronym
does not allow new authors to use a more restrictive license in their derived works. More options can
be added to a "Creative Commons" license to make it more restrictive, for example the restriction to not
allow the reuse for commercial purposes (type "NC"). Other licenses, which encourage reusability, such as
MIT or "GNU Lesser General Public License" (LGPL), are mainly used in a so�ware context (Y.-H. Lin et
al., ����). Similar to the "SA" option of the Creative Common license, LGPL enforces the use of the LGPL
license for the new product. MIT is the oldest (created in ����), most permissive andmost used license for
so�ware projects as of ���� (Goldstein, ����). It should be noted that the described licenses from above
represent only a subset of licenses which are suitable for the use in research compendia licensing.

�.�.� Toolboxes for reproducible research work�owmanagement

So�ware toolboxes can help in the process of executing reproducible research in a well-de�ned and stan-
dardized way. �ey can be applied at di�erent analysis levels. General ones such as Docker (Merkel,
����), ReproZip (Chirigati et al., ����) or “�e experiment factory” (Sochat, ����) can help to bundle
analysis on the operating system level, i.e., they de�ne a �xed environment in which the analysis is exe-
cuted. �e “Codecheck” project on the other hand scans an existing code-driven analysis and provides
tailored guidelines and best practice recommendations how reproducibility can possibly be improved
(Nüst & Eglen, ����). �ose tools can be combined with domain-speci�c implementations which help
to ensure reproducibility on the programming language level. Examples for the R programming language
are containerit (Nüst & Hinz, ����), renv (Ushey, ����), drake (Landau, ����) or drakes successor
targets (Landau, ����).

Adhering to these concepts in spatial analysis practice can be complicated given the widespread use
of graphical user interface (GUI)-based and/or licensed so�ware in the geoscience �eld (e.g ArcGIS or
ENVI) (Konkol et al., ����). �is view is also shared by Gil et al. (����) who, in addition, proposes guide-
lines for the “Geoscience Paper of the Future” in their work which is similar to the concept of a research
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compendium. �e use of licensed and/or GUI-based so�ware does not completely block study repro-
ducibility but makes it more di�cult. Making use of recent online-based services (e.g., Google Earth
Engine) for processing data is an additional threat to reproducibility as these services are not guaranteed
to be accessible in the future (Nüst & Pebesma, ����). In general, the use of any non-programmatic ap-
proach requires extensive documentation and lowers the probability of a study being reproducible. Studies
which involve di�erent so�ware environments (GUI so�ware or di�erent programming languages) either
require an overarching toolbox which combines the execution of the respective individual analysis parts
or manual connectors between such. �e use of a fully code-driven analysis which relies on a single pro-
gramming language is arguably the desired execution approach with respect to reproducibility (Nüst &
Pebesma, ����; Singleton et al., ����).�is work solely uses the programming language R andmakes heavy
use of the packages renv and drake as already outlined in more detail in subsection �.�.�.

While the adaptation of such reproducible toolboxes has slowly increased in recent years, more weight
needs to be put on their role and practical use within science. Teaching the theoretical concepts and
practical solutions during undergraduate and graduate studies is a key step to establish the reproducible
research idea in daily scienti�c practice. Almost all mentioned concepts also apply to scienti�c �elds
outside of the natural sciences and their respective reproducibility toolbox implementations. One example
from the life sciences is the “Galaxy” project (Goecks et al., ����).
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CONCLUSIONS

�e goal of this thesis was to simplify the application of spatial modeling in R, with a special focus on bias-
reduced performance estimation, hyperparameter optimization and feature selection on spatial datasets.
�is was done by analyzing the forest pathogens D. sapinea and F. circinatum in the Basque Country in
northern Spain following reproducibility best practices. �e overall scope of this work is relatively broad
and addresses di�erent important subjects in the environmental modeling �eld; from data analysis over
so�ware development to best practices in work�ow management.

�e main conclusions are presented in the following:

�. �e use of spatial modeling to help monitor pathogen infections at trees can be helpful assessing
disease spread. �is thesis highlighted the importance of data quality, both for in situ and remote
sensing data, to achieve model performances which can be of practical help for local decision mak-
ers to understand and reduce the spread of such forest diseases. Additional explanatory variables
which describe the surrounding environment beyond its climatic state are needed to further im-
provemodel performances. Forest pathogen spread is predicted to increase due to climate warming.
�e use of semi-automated mapping approaches can play an important role in helping to control
invasive disease spreading in the future.

�. �is thesis investigated the e�ects of using spatial partitioning during the model optimization stage
in a nested CV setting for the �rst time. Even though the results did not indicate a single strategy to
be advantageous, small performance improvements were identi�ed for speci�c settings. �e results
encourage the use of consistent resampling strategies for both model optimization and assessment,
although the use of a non-spatial resampling strategy during tuning, in contrast to the validation
resampling strategy, is unlikely to have a substantial impact on the results.

�. �e generalization of so�ware implementations is bene�cial for both the work at hand and fel-
low researchers. By focusing on so�ware documentation and testing, theoretical concepts are so-
lidi�ed and added value beyond the analytical part is created. Numerous contributions to exist-
ing free and open source so�ware (FOSS) in R were done throughout this work. �e R package
mlr3spatiotempcv, which bundles spatiotemporal resampling methods in R for simpli�ed appli-
cation in nested CV scenarios, represents exemplary the so�ware related e�orts throughout this
thesis.

�. �e use of �lter-based feature selection in a high-dimensional, collinear data setting did not result
in signi�cant improvements of predictive performance. Some speci�c model setups (i.e., speci�c
combinations of algorithm, feature set and �lter method) pro�ted from the use of �lters but no
consistent pattern could be identi�ed across all benchmark settings. �e use of ensemble �lters
compared to single �lters or the use of no �lters did not yield an improvement in this work. �e
integration of �lter methods into the tuning step resulted in time savings during the model opti-
mization stage due to reduced model �tting times.
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�. Variable importance results of features derived from the (environmental) hyperspectral data showed
that variables in the red-edge area of the spectrum are most important to the used models when
modeling tree defoliation. While this �nding coincides with existing research, results might be
biased due to the high correlation among the predictors which classical permutation-based variable
importance is not able to account for. More sophisticated approaches like grouped permutation
approaches, SHAP or ALE are needed for unbiased interpretation of variable importance.

�. Reproducible research and work�ow management tools are able to enhance scienti�c research by
emphasizing transparency and openness of methodologies and concepts used in academic studies.
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Appendix �-�: Descriptive summary of numerical and nominal predictor
variables

Variable n Min q� Çx x̄ q� Max IQR �NA
temp ��� ��.� ��.� ��.� ��.� ��.� ��.� �.� �
precip ��� ��.� ���.� ���.� ���.� ���.� ���.� ��.� �
hail_probability ��� �.� �.� �.� �.� �.� �.� �.� �
ph ��� �.� �.� �.� �.� �.� �.� �.� �
slope_degrees ��� �.� ��.� ��.� ��.� ��.� ��.� ��.� �
pisr ��� -�.� �.� �.� �.� �.� �.� �.� �
age ��� �.� ��.� ��.� ��.� ��.� ��.� ��.� �

Table A�: Article �: Summary of numerical predictor variables. Precipitation (precip) in mm�m�, temper-
ature (temp) in °C, solar radiation (pisr) in kW�m�, tree age (age) in years. Statistics show sample size
(n), minimum (Min), ��th percentile (q�), median (Çx), mean (x̄), ��th percentile (q�), maximum (Max),
inner-quartile range (IQR) and NA Count (�NA).

Variable Levels � �
diplo�� � ��� ��.�

� ��� ��.�
all ��� ���.�

soil soils with clay-enriched subsoil ��� ��.�
soils with little or no pro�le di�erentiation ��� ��.�
pronounced accumulation of organic matter in the mineral topsoil � �.�
soils with limitations to root growth � �.�
all ��� ���.�

lithology surface deposits �� �.�
clastic sedimentary rock ��� ��.�
biological sedimentary rock ��� ��.�
chemical sedimentary rock ��� ��.�
magmatic rock �� �.�
all ��� ���.�

year ���� ��� ��.�
���� ��� ��.�
���� ��� ��.�
���� ��� ��.�
all ��� ���.�

Table A�: Article �: Summary of nominal predictor variables
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Appendix �-�: Hyperparameter ranges and types for each model

Table A�: Article �: Hyperparameter ranges and types for each model. Hyperparameter notations from
the respective R packages are shown.

Model
(package)

Hyperparameter Type Start End Default

RF
(ranger)

xtry dbl � �.� -
min.node.size int � �� �
sample.fraction dbl �.� �.� �

SVM
(kernlab)

C dbl �−�� ��� �
σ dbl �−� �� �

XGBoost
(xgboost)

nrounds int �� �� -
colsample_bytree dbl �.� � �
subsample dbl �.� � �
max_depth int � �� �
gamma int �.�� �� �
eta dbl �.� � �.�
min_child_weight int � � �

���



Appendix �-�: Spearman correlations of NRI feature rankings obtained with
di�erent �lters

0.03 0.39 0.37 0.45 0.32 −0.09 0.33 0.35 0.35

0.05 0.04 0 0.13 0 −0.07−0.05−0.06

0.89 0.32 0.48 0.26 0.56 0.56 0.58

0.38 0.45 0.29 0.68 0.63 0.69

0.37 0.02 0.36 0.4 0.37

0.01 0.27 0.27 0.27

0.24 0.27 0.26

0.85 0.99

0.9

carscore

FSelectorRcpp_relief

linear.correlation

rank.correlation

praznik_MRMR

praznik_CMIM

variance

FSelectorRcpp_information.gain

FSelectorRcpp_gain.ratio

FS
ele
cto
rR
cp
p_
rel
ief

line
ar.
co
rre
lat
ion

ran
k.c
orr
ela
tio
n

pra
zn
ik_
MR
MR

pra
zn
ik_
CM
IM

va
ria
nc
e

FS
ele
cto
rR
cp
p_
inf
orm
ati
on
.ga
in

FS
ele
cto
rR
cp
p_
ga
in.
rat
io

FS
ele
cto
rR
cp
p_
sym

me
tric
al.
un
ce
rta
int
y

−1.0

−0.5

0.0

0.5

1.0
Corr

Figure A�: Article �: Spearman correlations of NRI feature rankings obtained with di�erent �lters. Filter
names refer to the nomenclature used by the mlrRpackage. Underscores in names divide the terminology
into their upstream R package and the actual �lter name.
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Appendix �-�: List of available vegetation indices in the hsdar package

Table A�: Article �: List of available vegetation indices in the hsdar package.

Name Formula Reference*

Boochs D��� Boochs et al. (����)

Boochs� D��� Boochs et al. (����)

CAI �.� × (R���� + R����) − R���� Nagler et al. (����)

CARI a = (R��� − R���)���� Walthall et al. (����)

b = R��� − (a × ���)
R���×�(a×���+R���+b)

R���×(a�+�)��.�

Carter R����R��� Carter (����)

Carter� R����R��� Carter (����)

Carter� R����R��� Carter (����)

Carter� R����R��� Carter (����)

Carter� R����R��� Carter (����)

Carter� R��� Carter (����)

CI R��� × R����R�
��� Zarco-Tejada et al. (����)

CI � R����R��� − � A. A. Gitelson et al. (����)

ClAInt ∫ ���nm
���nm R Oppelt and Mauser (����)

CRI� ��R��� − ��R��� A. A. Gitelson et al. (����)

CRI� ��R��� − ��R��� A. A. Gitelson et al. (����)

CRI� ��R��� − ��R��� × R��� A. A. Gitelson et al. (����)

CRI� ��R��� − ��R��� × R��� A. A. Gitelson et al. (����)

D� D����D��� Zarco-Tejada et al. (����)

D� D����D��� Zarco-Tejada et al. (����)

���



Datt (R��� − R���)�(R��� − R���) Datt (����b)

Datt� R����R��� Datt (����b)

Datt� D����D��� Datt (����b)

Datt� R����(R��� × R���) Datt (����)

Datt� R����R��� Datt (����)

Datt� (R���)�(R��� × R���) Datt (����)

Datt� (R��� − R����)�(R��� − R����) Datt (����a)

Datt� (R��� − R����)�(R��� − R����) Datt (����a)

DD (R��� − R���) − (R��� − R���) le Maire et al. (����)

DDn � × (R��� − R��� − R���) Lemaire et al. (����)

DPI (D��� ∗ D���)�D�
��� Zarco-Tejada et al. (����)

DWSI� R���R���� Apan et al. (����)

DWSI� R�����R��� Apan et al. (����)

DWSI� R�����R��� Apan et al. (����)

DWSI� R����R��� Apan et al. (����)

DWSI� (R��� + R���)�(R���� + R���) Apan et al. (����)

EGFN (max(D���∶���)−max(D���∶���))(max(D���∶���)+max(D���∶���)) Peñuelas et al. (����)

EGFR max(D���∶���)�max(D���∶���) Peñuelas et al. (����)

EVI �.�×((R���−R���)(R���−(�×R���)−(�.�×R���)+�) A. R. Huete et al. (����)

GDVI (Rn
��� − Rn

���)�(Rn
��� + Rn

���)** W. Wu (����)

GI R����R��� Smith et al. (����)

Gitelson ��R��� A. A. Gitelson et al. (����)

Gitelson� (R��� − R����R��� − R���) − � A. A. Gitelson et al. (����)

���



GMI� R����R��� A. A. Gitelson et al. (����)

GMI� R����R��� A. A. Gitelson et al. (����)

Green NDVI R���−R���
R���+R���

A. A. Gitelson et al. (����)

LWVI_� (R����−R���)(R����+R���) Galvão et al. (����)

LWVI_� R����−R����
R����+R����

Galvão et al. (����)

Maccioni R���−R���)
R���−R���

Maccioni et al. (����)

MCARI ((R��� − R���) − �.� × (R��� − R���)) × (R����R���) Daughtry (����)

MCARI� ((R��� − R���) − �.� × (R��� − R���)) × (R����R���) C. Wu et al. (����)

mND��� (R���−R���)
R���+R���−�×R���

Sims and Gamon (����)

mNDVI (R���−R���)
R���+R���−�×R���

Sims and Gamon (����)

MPRI R���−R���
R���+R���

Hernández-Clemente et al. (����)

MSAVI �.� × ((� × R��� + �)� − � × (R��� − R���))�.� Qi et al. (����)

MSI R����
R���

E. Hunt and Rock (����)

mSR R���−R���
R���−R���

Sims and Gamon (����)

mSR� (R����R���)−�
R����R���+�)�.� J. M. Chen (����)

mSR��� R���−R���
R���−R���

Sims and Gamon (����)

MTCI R���−R���
R���−R���

J. Dash and Curran (����)

MTVI �.� × (�.� × (R��� − R���) − �.� × (R��� − R���)) Haboudane et al. (����)

NDLI log(��R����)−log(��R����)
log(��R����)+log(��R����) Serrano et al. (����)

NDNI log(��R����)−log(��R����)
log(��R����)+log(��R����) Serrano et al. (����)

NDVI R���−R���
R���+R���

Tucker (����)

NDVI� R���−R���
R���+R���

A. Gitelson and Merzlyak (����)

NDVI� R���−R���
R���+R���

Guanter et al. (����)

���



NDWI R���−R����
R���+R����

B.-C. Gao (����)

NPCI R���−R���
R���+R���

Peñuelas et al. (����)

OSAVI (�+�.��)×(R���−R���)
R���+R���+�.�� Rondeaux et al. (����)

OSAVI� (�+�.��)×(R���−R���)
R���+R���+�.��) C. Wu et al. (����)

PARS R���
R���

Chappelle et al. (����)

PRI R���−R���
R���+R���

Gamon et al. (����)

PRI_norm PRI×(−�)
RDVI×R����R���

Zarco-Tejada et al. (����)

PRI*CI� PRI ∗ CI� Garrity et al. (����)

PSRI R���−R���
R���

Merzlyak et al. (����)

PSSR R���
R���

Blackburn (����)

PSND R���−R���
R���−R���) Blackburn (����)

PWI R���
R���

Penuelas et al. (����)

RDVI R���−R����
R���+R���

Roujean and Breon (����)

REP_LE Red-edge position through linear extrapolation Cho and Skidmore (����)

REP_Li Rre = R���+R���)
� Guyot and Baret (����)

���+��×((Rre−R���)(R���−R���))

SAVI (�+L)×(R���−R���)(R���+R���+L) A. Huete (����)

SIPI R���−R���
R���−R���

Penuelas et al. (����)

SPVI �.� × �.� × (R��� − R���) − �.� × ((R��� − R���)�)�.� Vincini et al. (����)

SR R���
R���

Jordan (����)

SR� R���
R���

A. A. Gitelson and Merzlyak (����)

SR� R���
R���

A. A. Gitelson and Merzlyak (����)

SR� R���
R���

A. A. Gitelson and Merzlyak (����)

���



SR� R���
R���

McMurtrey et al. (����)

SR� R���
R���

Chappelle et al. (����)

SR� R���
R���

Zarco-Tejada and Miller (����)

SR� R���
R���

Lichtenthaler et al. (����)

SR� R���
R���

Hernández-Clemente et al. (����)

SRPI R���
R���

Penuelas et al. (����)

SRWI R���
R����

Zarco-Tejada et al. (����)

Sum_Dr� ∑���
i=��� D�i Elvidge and Chen (����)

Sum_Dr� ∑���
i=��� D�i Filella and Penuelas (����)

SWIR FI R�
����

R����×R�
����

Levin et al. (����)

SWIR LI �.�� × (R���� − R����) − ��.�� × (R���� − R����) − �.� Lobell et al. (����)

SWIR SI −��.��×(R����−R����)+�.��×(R����−R����)+�.�� Lobell et al. (����)

SWIR VI ��.��× (R���� −R����)+�.��× (R���� −R����)+�.�� Lobell et al. (����)

TCARI �∗((R���−R���)−�.�×R���−R���)×(R����R���)) Haboudane et al. (����)

TCARI/OSAVI TCARI/OSAVI Haboudane et al. (����)

TCARI� �×((R���−R���)−�.�×(R���−R���)×(R����R���)) C. Wu et al. (����)

TCARI�/OSAVI� TCARI�/OSAVI� C. Wu et al. (����)

TGI −�.�(���(R��� − R���) − ���(R��� − R���)) E. R. Hunt et al. (����)

TVI �.� × (��� × (R��� − R���) − ��� × (R��� − R���)) Broge and Leblanc (����)

Vogelmann R���
R���

Vogelmann et al. (����)

Vogelmann� R���−R���
R���+R���) Vogelmann et al. (����)

Vogelmann� D���
D���

Vogelmann et al. (����)

Vogelmann� R���−R���
R���+R���

Vogelmann et al. (����)
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Appendix �-�: Translation of the original hyperspectral data preprocessing
description

�e following information was provided by the Institut Carogrà�c i Geològic de Catalunya, which was in
charge of image acquisition and data preprocessing.

�e AISA EAGLE-II sensor was used for airborne image acquisition with a �eld of view of ��.� °. Its
spectral resolution is �.� nm and ranges from ��� nm to ���� nm.

�e conversion of digital numbers (DN) to spectral radiance wasmade using so�ware designed for the
instrument. Imageswere originally scaled in �� bits but were radiometrically calibrated to �� bits, reserving
the highest value (��,���) for null values. �e procedure was applied to the �� previously selected images.
Finally, the geometric and atmospheric corrections were applied to the images.

�e aim of this procedure was to reduce the positional errors of the images. �e cartographic ref-
erence system in use was EPSG �����. Positioning was achieved by coupling an Applanix POS AV ���
system to the sensor, integrating GPS and IMU systems. �e system provides geographic coordinates of
the terrain and relative coordinates of the aircra� (attitude) at each scanned line. Additionally a DSM
from GeoEuskadi with a spatial resolution of �mwas used. �e orthorecti�ed hyperspectral images were
compared to orthoimages (�:����) from GeoEuskadi. �is comparison was used as the base to calculate
RMSE, which was below the ground sampling distance in the across and along track directions.

�e radiance measured by an instrument depends on the illumination geometry and the re�ective
properties of the observed surface. Radiation may be absorbed or scattered (Rayleigh and Mie scatter-
ing). Scattering is responsible for the adjacency e�ect, i.e., radiation coming from neighbors’ areas to the
target pixel. �e MODTRAN algorithm was used to model the e�ect of the atmosphere on the radiation.
To represent the aerosols of the study area, the rural model was used. In addition, optical thickness was es-
timated on pixels with a high vegetation cover. Columnar water vapor was estimated by a linear regression
ratio where the spectral radiance of each pixel at the band of the maximum water absorption (��� nm) is
compared to its theoretical value in the absence of absorption. Nonetheless, this technique is unreliable in
the presence of a spectral resolution as in this case. To resolve this, the water vapor parameter was selected
manually according to the smoothness observed on the re�ectance peak at ��� nm. �is was combined
with a mid-latitude summer atmosphere model. �e output of this procedure was re�ectance from the
target pixel scaled between � and ��,���.

�e image acquisitions were originally attempted during one day (�� October ����). Due to the vari-
able meteorological conditions, some stands had to be imaged one day later.
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