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A B S T R A C T   

Having a specific understanding of the actual ingredient composition of products helps to calculate additional 
nutritional information, such as containing fatty and amino acids, minerals and vitamins, as well as to determine 
its environmental impacts. Unfortunately, producers rarely provide information on how much of each ingredient 
is in a product. Food manufacturers are, however, required to declare their products in terms of a label 
comprising an ingredient list (in descending order) and Big7 nutrient values. In this paper, we propose an 
automated approach for estimating ingredient contents in food products. First, we parse product labels to extract 
declared ingredients. Next, we exert mathematical formulations on the assumption that the weighted sum of Big7 
ingredients as available from food compositional tables should resemble the product’s declared overall Big7 
composition. We apply mathematical optimization techniques to find the best fitting ingredient composition 
estimate. We apply the proposed method to a dataset of 1804 food products spanning 11 product categories. We 
find that 76% of these products could be analyzed by our approach, and a composition within the prescribed 
nutrient tolerances could be calculated, using 20% of the allowed tolerances per Big7 ingredient on average. The 
remaining 24% of the food products could still be estimated when relaxing one or multiple nutrient tolerances. A 
study with known ingredient compositions shows that estimates are within a 0.9% difference of products’ actual 
recipes. Hence, the automated approach presented here allows for further analysis of large product quantities 
and provides possibilities for more intensive nutritional and ecological evaluations of food.   

1. Introduction 

Taking the increasing amount of pre- and ultraprocessed foods in 
supermarkets and the prevailing burden of malnutrition into account 
(Afshin et al., 2019; Monteiro et al., 2019), more sophisticated evalua-
tion and monitoring tools - resulting in nutritionally better balanced 
foods - should be developed to overcome the challenges in the 
food-environment-health nexus. Currently, consumers are confronted 
with hundreds to thousands of different foods in retail markets, which 
are often preprocessed and labeled with a range of mandatory and 
voluntary information. Unfortunately, the extent of different brands, 
labels, stores and marketing strategies does not help consumers make 
more sophisticated decisions but rather leads to increased consumer 
confusion (Wobker et al., 2015). Although the updated health claim 

regulation (European Commission, 2012a) has allowed for 
evidence-based health and nutrient statements on foods since 2012, only 
a small number of everyday foods are labeled with these. According to 
Bratzke et al. (2018), only 1.9% of all available meat products in food 
retailing markets in Germany are explicitly labeled health promoting. 
For dairy products, market penetration was slightly lower, ranging be-
tween 0.6% and 2.7% (average: 1.6%). On the other hand, the over-
consumption of sugars, saturated fats and salt (and other food additives) 
cause tremendous disease and financial cost burdens, which undermine 
the viability of health care systems (Bommer et al., 2017; Meier et al., 
2015, 2017; Tremmel et al., 2017; World Health Organization, 2019). 
Moreover, the majority of consumers have a keen interest in more 
transparent and more holistic labeling of food products, taking into 
account not only further nutritional information such as mineral content 
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but also key environmental facts (Verbraucherzentrale Bundesverband 
e.V, 2019). A crucial piece of information in this context is the compo-
sition of ingredients (recipe) when aiming for more precise and 
cross-product information on health and environmental sustainability. 
Such information is only rarely given on food packages. In this work, we 
propose an automated, optimization-based approach to calculate the 
ingredient compositions of preprocessed food types via mathematical 
optimization. We evaluate the approach on a dataset consisting of 1804 
real food products belonging to different food categories offered in 
German supermarkets in 2019 and 2020. Eventually, we evaluate 
whether the estimated food ingredient composition corresponds to the 
actual composition declared by the producer. 

2. Methods 

Our proposed method aims to calculate the food composition, i.e., 
the percentage of all ingredients in a food product. A list of ingredients 
and the so-called Big7, i.e., the amount of energy, fat, saturated fat, 
carbohydrates, sugar, protein and salt (sodium chloride) contained in 
the product are publicly disclosed on a product’s package. We propose a 
six-step process (cp. Fig. 1) to estimate a product’s composition based on 
this information. First, we extracted individual ingredients from a 
product’s list of ingredients as well as its Big7 information. These steps 
involved splitting and interpreting the list of ingredients into single, 
common-name ingredients that are mapped to a food composititional 
table (FCT). For our study, we used the German Nutrient Database 
(Bundeslebensmittelschlüssel) with up to 138 nutrients per ingredient as 
the FCT (Hartmann et al., 2014). Combining ingredient and nutrient 
information, we built a system of linear equations constrained by 
additional information regarding the regulatory allowed declaration 
tolerances. Eventually, we selected the best solution among all possible 
ingredient compositions fulfilling the system of equations. Therefore, 
the best solution was defined as the solution with the minimal squared 

error of the calculated Big7 values compared to the labeled Big7 values. 
Throughout the following sections, we discuss each of these steps in 
detail. 

2.1. Data extraction 

From each food product p, we acquired its Big7 B and its ingredient 
list L in the form of a text string (cp. Step 1a and 1b in Fig. 1) denoted as: 

p = (B, L). (1) 

Therefore, Big7 B includes (1) energy, (2) fat, (3) saturated fat, (4) 
carbohydrates, (5) sugar, (6) protein, and (7) salt content and is denoted 
as: 

B = (b1, b2, ⋯ , b7). (2) 

The European Union’s food labeling regulations prescribe an ingre-
dient list on every packaged food product (European Commission, 
2011). When aiming to analyze large quantities of food products, 
manually acquiring this information from a product’s package is 
time-consuming (cp. Step 1 in Fig. 1). A method that can support and 
speed up manual data acquisition is optical character recognition (OCR) 
(Lazzari et al., 2018), which retrieves textual information from product 
images automatically. Alternatively, commercial product data collec-
tions, e.g., GDSN data pools (GS1 Germany), or community-collected 
product data, e.g., open food facts (Open Food Facts association), may 
be used as data sources. 

2.2. Split ingredient list into individual ingredients 

The EU food labeling regulations also prescribe that ingredients must 
be listed in descending order of their contents on a product’s package 
(European Commission, 2011). A precondition for further analysis is the 
separation of these lists into individual ingredients. Declared ingredients 

Fig. 1. Overview of the approach: we retrieve 
(1a) a list of ingredients and (1b) declared 
nutrition information from a product’s label 
information. (2) The declared ingredient string 
is split into individual ingredients. (3) These 
ingredients are mapped to a food compositional 
table (FCT) to retrieve their Big7 nutrients. (4a) 
All acquired information is used to build an 
equation system subject to a variety of con-
straints. (4b) An optimization method is used to 
identify an optimal solution, i.e., an estimate of 
the product’s ingredient composition.   
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may be accompanied by percentages referring to the relative weight of 
an ingredient in the composition. Additionally, ingredients may be hi-
erarchically composed of a list of subingredients, which in extreme cases 
may be further composed of subingredients thereby spanning a 
compositional tree. For this analysis, we were mainly interested in the 
most detailed ingredient information. Thus, out of the ingredient list L, 
we extracted n most detailed ingredients or subingredients I. To utilize 
the dominance of ingredients as additional information, we also 
considered their hierarchical positions E. Furthermore, we captured 
compositional amounts of these ingredients if declared (cp. Step 2 in 
Fig. 1). We denote an ingredient list L as: 

L = (n, I, E, R), (3)  

where n is the number of noncompositional ingredients, I = (i1, i2, ⋯ , in) 
refers to the noncompositional ingredients in the form of a text or string, 
E = (e1, e2, ⋯ , en) is the hierarchical position (number) of every 
ingredient, and R = (r1, r2, ⋯ , rn) is the given percentage per ingredient 
ranging from 0.0 to 1.0 if available. 

While the regulative framework prescribes the contents of ingredient 
lists, they do not detail their formatting, e.g., no rule is in place 
regarding the separation of ingredients, meaning that they may be 
separated by commas as well as by semicolons. The declaration of 
subingredients may be indicated with a colon or using different forms of 
brackets. From a technological point of view, the ingredient list is a 
sequence of characters, called a string, possibly annotated with addi-
tional details and clustered into a hierarchy that we aimed to decompose 
into a well-defined data structure. From a human perspective, this is 
simple due to our linguistic comprehension and acquired knowledge in 
performing similar tasks. However, a computer program needs precise 
rules to perform this separation, i.e., which character signals a delimiter 
between ingredients and which characters signals subingredients. For 
example, brackets are sometimes used to indicate subingredients, while 
for other products, they indicate allergens. Consider the ingredient herbs 
containing the allergen mustard to illustrate the variety of common 
ingredient formatting used on products today: “Herbs (MUSTARD)” vs. 
“Herbs containing MUSTARD” vs. “Herbs (contains MUSTARD)”. All 
these representations and many more are commonly used in product 
declarations and need to be interpreted as the ingredient herbs. We 
propose a rule-based approach to cope with this problem. More specif-
ically, we denoted grammar defining our agreed structure of an ingre-
dient list. Additionally, we propose a set of rewriting rules that 
transform deviations, i.e., ingredient lists using a different formatting, 
into this ideal ingredient list format. We use the grammar as well as the 
rewriting rules as input to the well-known ANTLR parser generator 
(Parr, 2020), which generates a program for our given ingredient list 
parsing problem. 

2.3. Map ingredients to food compositional table 

In the mapping process, we aimed to retrieve Big7 values for all 
identified ingredients in the previous step (cp. Step 3 in Fig. 1). These 
values are commonly available in food composition tables (FCTs). An 
FCT contains detailed sets of information on the nutritionally important 
components of typical foods. The table lists not only the Big7 values, but 
also additional nutrients, vitamins, minerals and others. We mapped the 
n ingredients I elementwise to entries in the FCT FCTall denoted as: 

fm : In→FCTn
all. (4) 

Once mapped, we acquired the respective Big7 information of this 
ingredient to be later used in our approach. Eventually, this step of the 
proposed process resulted in Ai = ai,1, ai,2, ⋯, ai,7, with Ai referring to the 
overall Big7 information for ingredient i and ai,1, ai,2, ⋯, ai,7 being in-
dividual Big7 values. Since the FCT typically only contains widely 
distributed ingredients, we allowed such entries to also be manually 
added FCTadd, i.e., FCTall = FCT ∪ FCTadd. For this study, we used the 

German nutrient database (Bundeslebensmittelschlüssel (BLS) (Hart-
mann et al., 2014)) containing 10,169 food entries comprising processed 
food products and ingredients as well as preprocessed ingredients, raw 
and cooked, with up to 138 nutrients documented per entry. We used 
fuzzy string matching to map a product’s ingredient to the BLS. This 
method compared the name of an ingredient to all BLS entries and 
retrieved the most similar ingredient. We used the Levenstein distance as 
a similarity metric (Levenshtein, 1965), i.e., computing the minimal 
number of single-character edits (insertion, deletion, substitution) 
needed to change one word into another. However, fuzzy string 
matching did not always result in the most similar entry because entries 
of FCTs carry a standard name, while producers may choose from a rich 
set of synonyms or grammatically different forms to refer to the same 
ingredient. Thus, in this step wrongly matched ingredients can occur. 
Furthermore, the processing grade may not be declared appropriately in 
the ingredient list. Therefore, an expert manually checked and poten-
tially corrected matches with a low similarity. We not only corrected the 
given mapping but also stored a kind of white list of matches to be used 
in further matching processes. For some food ingredients, such as goji 
berries, the BLS does not provide a suitable entry. For these cases, we 
retrieved information from other FCTs as FCTadd, such as the Food 
DataCentral Database (U.S. Department of Agriculture, Agricultural 
Research Service, 2019). The extend of the curated information will be 
discussed within Section 3.1. 

2.4. Calculate the product’s ingredients composition 

Eventually, our goal was to calculate the unknown relative amount x 
per ingredient i in a given product. The information retrieved in the 
previous steps allowed for us to formulate a linear equation system 
assuming that the weighted sums of every ingredient’s Big7 value ai,j 
should match the product’s overall Big7 values B = (b1, b2, ⋯, b7) as 
close as possible (cp. Step 5 of Fig. 1) and denoted this relationship as 

b1 = a1,1⋅x1 + a2,1⋅x2 + a3,1⋅x3 + … + an,1⋅xn
b2 = a1,2⋅x1 + a2,2⋅x2 + a3,2⋅x3 + … + an,2⋅xn
…
b7 = a1,7⋅x1 + a2,7⋅x2 + a3,7⋅x3 + … + an,7⋅xn.

(5) 

Thus, we argued that b = A ⋅ x where b refers to the product’s overall 
Big7, A refers to the Big7 per ingredient and x denotes the unknown 
proportion of ingredients in the analyzed food product. Since all rele-
vant information, i.e., declared Big7 and nutrient information retrieved 
from the FCT, were already normalized to 100 g or 100 ml of the product 
and ingredient, respectively, there was no need to specifically consider 
product weight or volume in our analysis. Other forms of normalization, 
such as per portion, were not permitted within the EU and were, 
therefore, beyond our scope. In cases where FCT ingredient information 
is only available per weight but required per volume, the ingredient’s 
density is needed to convert between both. This equation system was 
subject to regulatory prescribed tolerance ranges per Big7. Table 1 
shows the defined tolerances among the Big7 according to the European 
Commission (2012b), with most nutrients having a constant minimum 

Table 1 
Allowed tolerances per Big7 defined by the European Commission (2012b).  

Nutrient Content per 100 g Tolerance 

carbohydrates, sugar, protein, fiber < 10 g ± 2 g 
10 − 40 g ± 20% 

> 40 g ± 8 g 
fat < 10 g ± 1.5 g 

10 − 40 g ± 20% 
> 40 g ± 8 g 

saturated fat < 4 g ± 2 g 
≥ 4 g ± 20% 

salt < 1.25 g ± 0.375 g 
≥ 1.25 g ± 20%  
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and maximum tolerance as well as a relative tolerance in between. 
Knowing a product’s declared Big7 b, we can define their allowed 
tolerance btolerance. For example, a product with a declared protein value 
of 25 g would be allowed to vary by up to 20%, amounting to b3,tolerance 
= 5 g. These tolerances constrained the possible solutions to our equa-
tion system and we denoted them as: 

b − btolerance < A⋅x < b + btolerance (6) 

This system of equations is, additionally, subject to further con-
straints regarding the calculated proportions of ingredients: 

xi > 0
∑

xi = 1
xi ≥ xi−1

(7) 

These constraints reflect that: (1) all ingredients need to contribute a 
minimal proportion, (2) the proportions of all ingredients need to sum 
up to 1, respectively and 100%, and (3) the proportions of ingredients 
need to decrease from the first to the last ingredient. It should be noted, 
that behind within ingredient xi some aggregated subingredients can be 
present, which are included in the equations, but are not shown here for 
simplicity. 

Next, our goal was to determine a solution to this system of equa-
tions. From a mathematical point of view, a system of linear equations 
with constraints may be either infeasible when there is no solution that 
satisfies all of the constraints or feasible otherwise. A feasible system of 
linear equations may have no solution (overdetermined), one solution 
(even-determined), or an infinite number of solutions (under-
determined). An overdetermined problem with no solution occurs if 
more linearly independent equations exist than unknowns. Even- 
determined is the ideal case that yields exactly one solution and re-
sults from a number of linearly independent equations, i.e., ingredients’ 
Big7 values are linearly independent, equaling the number of unknown 
ingredient amounts. An underdetermined problem exists when there are 
more unknowns than independent equations, resulting in an infinite 
number of possible solutions, i.e., various alternative ingredient com-
binations yield the Big7 values declared on the product. Solvable, i.e., 
even-determined, problems will only rarely exist since products rarely 
consist of exactly seven ingredients. However, we can often still find a 
suboptimal solution to an over- or underdetermined problem by treating 
it as an optimization problem. Therefore, we formulated the given 
problem as an approximate equation system and employed optimization 
techniques to identify its best possible solution: 

b ≃ A⋅x. (8) 

An optimal solution to this problem minimizes the difference be-
tween the calculated and labeled Big7 measured in terms of squared 
error, i.e., a least squares problem: 

min
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
(A⋅x − b)

btolerance

⃒
⃒
⃒
⃒|

2
. (9) 

Therefore, we normalized differences by the predefined tolerance 
ranges btolerance to facilitate their more intuitive interpretation with re-
gard to regulatory tolerances. Solving this optimization problem yielded 
a proportional combination of ingredients (x1, x2, ⋯ , xn) nearest to the 
Big7 declared on the product’s package B. We used linear programming, 
a mathematical technique that allowed for determining an optimal so-
lutions that satisfy several constraints at once (Dantzig and Thapa, 
1997). Linear programming has previously been employed in nutrition 
sciences, e.g., for solving the mink diet problem (Ben-David et al., 1997). 
All our analyses were implemented with R, and we used the limSolve 
package (Soetaert et al., 2009a; Soetaert et al., 2009b) to solve the 
optimization problem. 

An ingredient list may numerically declare the relative amount of 
one or more ingredients, e.g., “10% sugar”. This information is addi-
tional information toward the product’s ingredient composition and 

should be used, if available, in the optimization problem. Therefore, we 
formulated these as additional conditions in the equation system. 
Furthermore, the success of our approach depends on our ability to 
precisely map product ingredients to FCT entries. This was not restricted 
to a single ingredient but also extended to its various degrees of pro-
cessing, e.g., fresh tomato vs. single-concentrated tomato puree vs. 
triple-concentrated tomato puree, which greatly influenced the in-
gredient’s Big7 values. However, these processing stages will rarely be 
completely covered by an FCT. We propose adding water as a virtual 
ingredient xw to account for the ingredient’s Big7 variations arising from 
ingredient processing, such as cooking, drying, and freezing, and denote 
the following additional constraint: 

xw,min < xw < xw,max∑
xi + xw = 1.

(10) 

Processing water contributes to the overall sum of ingredients and 
can, contrary to the other ingredients, be positive or negative but does 
not contribute to any Big7 values. Processing water is only considered 
when the constraints counteract, so no solution can be found without its 
application. 

3. Evaluation 

To evaluate the proposed approach, we formulated and systemati-
cally studied the following research questions:  

1. Applicability of the approach and optimization error. How often 
and with which quality can the proposed approach deliver a solution 
to the formulated optimization problem for a large variety of given 
food products? 

2. Food category-specific analysis. Are such quality variations spe-
cific to certain food categories and if so, what are potential reasons? 

3. Viability of processing water. Does considering water as an addi-
tional undeclared ingredient improve analytical results?  

4. Relaxing optimization constraints. Does relaxing of individual 
nutrient constraints yield an accurate ingredient composition for 
otherwise infeasible optimization problems?  

5. Estimated vs. actual composition. How close does the estimated 
ingredient composition of a product match its actual composition? 

3.1. Dataset 

We employed a dataset with 1804 real food products belonging to 
eleven food categories and consisting of twelve ingredients on average 
ranging from a minimum of 1 to a maximum of 68 ingredients (cp.  

Fig. 2. Evaluated products per food category and their average number of in-
gredients, including additives. The number n on the x-axis refers to the count of 
products per category. 
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Fig. 2). The dataset was provided by the University Halle-Wittenberg 
and comprises the following categories: snacks, sweets, milk products, 
cheese products, cereals, tinned foods, frozen products, meat products, 
and special diet food products. Individual food products were collected 
from several supermarkets in Germany in 2019 and 2020, representing a 
representative sample reflecting the current market. Since vegan and 
vegetarian cheese and meat products substantially diverge from their 
nonvegetarian counterparts, we decided to consider them as the extra 
group plant-based cold cuts, with only a very small sample size. For the 
same reason, we separated ice cream from frozen foods. Special diet 
foods comprise products from health food shops such as suitable for 
diabetics or gluten-free. Dairy products do not include cheese. In terms 
of the average number of ingredients, cheese products were character-
ized by the lowest number (5 on average), while tinned food and ice 
cream showed the highest number of ingredients (19 and 20). The 
overall highest number of 68 ingredients was observed in a breakfast 
cereal product. For each product, graduate students of nutritional sci-
ences collected the name, GTIN, list of ingredients, Big7 values and other 
nutrient information from its package. Then, the students formatted the 
ingredient lists into an upfront agreed style that we could accurately 
parse in subsequent analysis. We matched each ingredient to the FCT 
discussed above (cp. Sec.2.3) and manually checked and corrected in-
gredients with low matching scores. Therefore, we acquired a dictionary 
mapping 842 declared ingredients to 373 FCT entries. These mappings 
included synonyms but also additives, such as smoke, that were not 
listed in the FCTs since they contain no nutrients. In total, for the 1804 
products consisting of 21,458 ingredients, 1701 (7,9%) declared in-
gredients were matched via the dictionary. Out of the 1804 products, 
merely 9 declared their Big7 normalized to 100 ml of product volume 
rather than 100 g of product weight. Respective FCT entries where 
either already available per 100 ml or could be converted via known 
densities, e.g., water, milk, and oil. 

4. Results 

4.1. RQ1: applicability of the approach and optimization error 

For 64% of the food products from our dataset (1142 out of 1804), 
our approach was able to calculate an ingredient composition so such 
that all specified constraints were fulfilled. Therefore, we observed an 
underdetermined equation system in 731 cases (64%), an over-
determined equation system in 387 cases (34%), and an even- 
determined equation system in merely 24 cases (2%) (cp. Fig. 3 (left)). 
That is, for only 28 food products (2%), an ingredient composition can 
be estimated by solving the equation system, i.e., the Big7 values 
matched exactly. For 1114 food products (98%), an ingredient compo-
sition can only be estimated via optimization, meaning that the Big7 
values did do not match exactly but were within the EU’s prescribed 
tolerances. Considering the optimization error relative to the respective 
tolerance per Big7 value and averaged across those (cp. Eq.9), we can 
compare matching quality across products. Fig. 3 (right) shows a 

histogram of this error exposing a decreasing asymptotic error behavior. 
The error’s median amounted to 0.038, i.e., the average value was 
within a 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(0.038)

√
= 19% tolerance range (cp. Eq.9). We observed a 

rather similar distribution of error across underdetermined and over-
determined systems of equations (cp. Fig. 3 (right)). 

4.2. RQ2: Food category-specific analysis 

In a more detailed analysis, we studied whether and how much the 
optimization error can be attributed to the category of a food product. 
We observed large variations in the number of products that can be 
analyzed, i.e., feasible equation system, ranging from 20% to 100% 
analyzable products per food category (cp. Fig. 4 (left)). From left to 
right in the figure, we observed the following amounts of analyzable 
products: meat products (22%), dairy products (96%), breakfast cereals 
(88%), cheese products (33%), tinned food (82%), special diet food 
(52%), snacks (62%), ice cream (84%), sweets (65%), frozen food 
(80%), and plant-based cold cuts (100%). When comparing the 
analyzable products per category in terms of optimization error (cp. 

Fig. 3. Pie chart illustrating the proportions of products with solvable optimization problem (RQ1) in green and with unsolvable in blue (left) and distribution of 
optimization error across the products with feasible optimization problem (right). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Bar chart showing the proportion of feasible equation systems of food 
products per category (left) and box plots showing optimization error per 
category (right). 
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Fig. 4 (right)), we observed a trend toward product categories with a 
larger share of feasible optimization problems yielding a lower, i.e., 
better, average optimization error. However, there were also exceptions 
to this observation, e.g., snack products yielded the highest average 
optimization error with widely distributed outliers while being roughly 
average among all food categories (61% vs. 64%) in terms of analyzable 
products.(cp. Fig. 5). 

4.3. RQ3: viability of processing water 

We applied the processing water concept to all food products 
(n = 591) with a previously infeasible optimization problem (cp. RQ1). 
With water as an additional ingredient, 28% (n = 165) of these products 
can now be analyzed (cp. Fig. 6). Therefore, we set xw,min = − 3 and 
xw,max = 3, i.e., we allowed for a maximum of 300% dehydration or 
dilution, respectively. Across these now analyzable products, optimi-
zation delivered an averaged processing water of 116% dehydration, 
ranging from 300% dehydration to 70% maximum dilution. The ex-
tremes of dehydration (cp. Fig. 5) occurred for potato chips and vege-
table chips in the snack category. These energy-dense, dried or fried 
foods are characterized by intense processing that largely removes 
water, which is not outlined in the ingredient lists. Extremes of dilution 
occurred when cereals or beans are hydrated, and Big7 value declaration 
may include the water that is needed for preparation. In summary, for 
1378 out of 1804 food products (76%), an ingredient composition could 
be calculated via automated optimization. However, for 425 food 
products (24%), an ingredient composition cannot be computed since 
the given constraints were not satisfiable together. 

4.4. RQ4: relaxing optimization constraints 

No ingredient composition could be calculated for 24% of the 
selected foods. Thus, estimating an ingredient composition meeting all 
constraints, mainly those imposed by the EU’s Big7 tolerances, was not 
possible for these products. Products with infeasible equation systems 
existed across all food categories, except for plant-based cold cuts. These 
systems occurred most dominantly among cheese and meat products and 
less dominantly among special dietary foods and sweets (cp. Fig. 6). 
Relaxing some of the equation system’s constraints can yield a feasible 
equation system while violating the allowed declaration tolerances for 
the relaxed nutrient(s). Among the food categories that include a rela-
tively high number of products, whose ingredient compositions were not 
estimable due to infeasible constraints, we observed that for meat 
products, special diet foods and sweets, relaxing a single nutrient 
constraint typically yielded a feasible equation system (cp. Fig. 7). Fig. 8 
shows how often a certain Big7 nutrient needs to be relaxed to yield a 
feasible optimization problem per food category. We observed no typical 

nutrients that needed to be relaxed per category. However, for example, 
for sweets, we observed that carbohydrates and sugars predominantly 
had to be relaxed. 

4.5. RQ5: validation of the approach on actual composition data 

To evaluate the accuracy of the developed algorithm, we compared 
the calculated and actual ingredient compositions. This comparison was 
conducted for 33 food products composed of 247 ingredients, of which 
the manufacturers were willing to provide quantitative information on 
actual ingredients. These products belonged to three categories, namely, 
meat products, frozen foods, and tinned foods, and consisted of seven 
ingredients on average. We compared the quality of our approach on the 
level of the entire product composition in terms of the mean absolute 
difference between the calculated and actual ingredient compositions. 
Here, we found that the estimated ingredients differed on average by 
2.7% from the actual ingredient contents. A deviation of more than 5% 
was observed for only four products (cp. Fig. 9), i.e., beyond some 
outliers, the estimated ingredient composition fit the actual ingredient 
composition very well. The standard deviation showed that there were 
no strong outliers diverging from the average. To obtain more insights 
into differences in ingredient compositions and the effect of the number 
of Big7 constraints, Fig. 10 shows that 206 ingredients belonging to 26 
products were characterized by a feasible equation system that can be 
estimated with a median absolute error of 0.9%. The remaining product 
ingredients were only estimable by relaxing 1 (4 products), 2 (1 prod-
uct), or 3 (2 products) Big7 constraints, and we observed slightly 
increasing median absolute errors of 0.9%, 2%, and 4%, respectively. 
However, we also observed outliers with large differences between the 

Fig. 5. Boxplot showing each of the eleven food categories across the 165 
products analyzed with the processing water concept, the average estimated 
water content due to dehydration or dilution in the production process. 

Fig. 6. Bar chart showing the proportion of feasible equation systems per 
product category without processing water (light gray) and the additional share 
that becomes feasible with processing water (dark gray). 

Fig. 7. Bar chart showing the number of Big7 constraints that would need to be 
relaxed to yield a feasible equation system and to estimate an ingredient 
composition for otherwise nonestimable products. 
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actual and calculated amounts of an ingredient. These outliers included 
ingredients of a berry mix, pesto and pickled cabbage. 

5. Discussion 

The proposed approach offers a great opportunity to assess the 

nutritional value of foods in a much more differentiated way than pre-
viously. This approach can also be used to identify particularly desirable 
nutrients, such as n-3 PUFAs and iodine, which are usually not indicated 
on food packaging. In addition, this approach enables a calculation of 
life cycle assessment based on the ingredients. Furthermore, the devel-
oped approach can be used for nutritional advice in consumption 
surveys. 

Taking the Big7-related regulatory prescribed tolerance ranges into 
account, our study shows that the proposed approach is able to deter-
mine the majority of the ingredient compositions of the food products 
analyzed. However, depending on the food category, we observed that 
applied constraints have to be relaxed to calculate compositions (cp. 
Fig. 6). In particular, cheese and meat products revealed relatively few 
Big7 values in the allowed ranges and thus low predictability of ingre-
dient compositions. The nutrients of meat vary greatly depending on its 
fat content. While the fat content of dairy products, such as milk or 
yogurt, needs to be declared in the ingredient list following EU regula-
tions, declaring the fat content of meat products is not required. As a 
result, it is difficult to match meat ingredients to the correct entry of an 
FCT. Cheese products are hard to estimate due to their processing via 
fermentation from milk and lactic acid bacteria. Processing water would 
allow for a translation from the volume of milk to the declared fat 
content while still not resulting in the correct sugar values. Proposing a 
more appropriate solution to this problem should be addressed in the 
future. 

The quality of ingredient compositions calculated by our approach 
depends on several factors. First, a precise recognition and interpreta-
tion of the declared ingredients as well as a precise matching to FCT 
entries is a prerequisite for our approach. We propose an advanced 
parser approach and a mixture of partial string matching and an expert 
curated and incrementally enhanced dictionary supporting problematic 
ingredient matches. Second, nutritional values in FCTs are average 
values representing a common instance of an ingredient, which may 
vary due to natural influences and variations in the ingredient’s pro-
duction process. For example, tomatoes grown on open farmland may be 
characterized by different nutrients than those grown in a greenhouse. 
Overcoming this challenge requires a more detailed declaration of the 
product as well as richer and more up-to-date FCTs. Third, a funda-
mental assumption of our approach is that ingredients’ Big7 values 
should sum up to the product’s Big7 value. However, the processing of 
ingredients may cause substantial differences in their nutrients, e.g., a 
dried tomato differs greatly from a raw tomato in terms of, e.g., water 
content. This poses a twofold problem for our approach: (1) producers 

Fig. 8. Per food category, the number of times that a prescribed Big7 tolerance would need to be relaxed to yield a feasible optimization system and to estimate a 
product ingredient composition. 

Fig. 9. Mean absolute difference and standard deviation of calculated ingre-
dient composition in relation to the actual composition of 33 food products. 

Fig. 10. Averaged absolute difference of calculated and actual ingredient 
amount for 33 products’ ingredient compositions grouped by number of 
respected Big7 constraints (x-axis) with 7 meaning that all constraints 
were fulfilled. 
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rarely declare ingredients’ processing degree on the package and (2) 
FCT may only provide nutrients for the raw ingredient or a limited set of 
processing stages. We decided to match the raw ingredient when no 
further information was declared. However, we argue that at least the 
case of missing declaration (see (1) above) could be approached by 
analyzing product categories for common ingredients and their pro-
cessing degree, e.g., the majority of potato chip products will contain 
fried potatoes. Such an analysis could be supported by the latest pattern 
matching and natural language processing methods. Fourth, two or 
more of a product’s ingredients may be characterized by Big7 values in 
equal proportions, e.g., raw wheat equaling wheat flakes or cheese types 
with equal fat contents, making it possible to trade one ingredient for the 
other during optimization (linear combination). These cases complicate 
the optimization, and the delineation of the respective ingredients is 
challenging. In the extreme case, where the Big7 values of two in-
gredients are identical, our proposed method cannot separate them and 
only estimate their combined amount in a product. This problem occurs 
often for ingredients that are characterized by only a single nonzero Big7 
value, e.g., water and salt differ solely in the amount of the Big7 value of 
salt, and alcohol and acid differ often solely in the amount of calories. 
Fifth, another assumption of the approach is that all nutrient informa-
tion is normalized to the same unit and quantity. In our evaluation, 
99.5% of the products were normalized to 100 g of product weight and 
for the remaining products all required information was available per 
100 ml of product, justifying our assumption. For products declared per 
100 ml of product volume and FCT entries solely available per 100 g of 
ingredient, density information would be required to convert between 
volume and weight and their acquisition remains a future excise when 
scaling the approach to even larger quantities of products. 

Optimization and linear programming are applied to several prob-
lems in nutrition science. A prominent example is diet problems and the 
optimization of food costs that shall at the same time satisfy certain 
nutrient requirements (van Dooren, 2018). We found only a few studies 
that treat ingredient composition estimation as an optimization prob-
lem. As one of the first references, Marcoe and Haytowitz (1993) briefly 
proposed the idea of using linear optimization for estimating ingredient 
compositions of several convenience foods. However, the verbally 
described method is highly manual, and the authors did not further 
detail their approach. Westrich et al. (1994) studied the estimation of 
dietary fiber and linoleic acid amounts in 31 food products and 
compared them to analytically measured values. The authors compared 
three different nutritionists using three different methods each: (1) the 
common trial-and-error method, (2) linear programming, and (3) 
quadratic programming. Since they considered all three methods to be 
highly manual, they were mainly interested in whether optimization 
would yield an equal or more accurate estimation than the purely 
manual and expertise-dependent trial-and-error estimation. The authors 
found the trial-and-error method to be less accurate than optimization 
methods at estimating dietary fiber. However, only in terms of absolute 
error did they find no difference in terms of estimated linoleic acid. The 
authors observed a significantly faster computation when using the 
optimization techniques. Ng et al. (2015) proposed a large-scale analysis 
using linear programming to estimate added sugars in US-offered bev-
erages in 2007 and 2008. Based on an estimation of intrinsic sugars 
derived from a beverage’s nutrition facts label, the authors deduced the 
amount of added sugar. The authors highlighted the necessity for a 
differentiated treatment and discussion of estimation errors potentially 
suggesting the need for an error measure that is relative to the amount of 
an ingredient or nutrient, respectively. Lamarine et al. (2018) mapped 
food diaries with fuzzy string matching to FCTs. The authors reported an 
accuracy of 89% when mapping ready-to-eat products. We applied a 
similar approach in matching ingredients to the FCT but found the more 
general ingredient naming requiring a stricter matching to achieve 
sufficient accuracy. 

In conclusion, in our study, we used a large dataset spanning several 
food categories to systematically evaluate the estimation of ingredient 

composition. Previously, methods were highly manual, requiring addi-
tional inputs from an expert nutritionist, such as which ingredients to 
exclude from the calculation, where to allow tolerances and how much. 
Our proposed approach is fully automated using parser technology to 
separate ingredient declarations and string-matching methods to find 
the most suitable entry within an FCT. An expert was employed one time 
to define general mappings that could not be performed automatically, 
and these mappings will benefit all further analyses. However, ingre-
dient mapping will remain a crucial task to achieve further automation. 

6. Conclusions 

In this paper, we demonstrated that by using mandatory food label 
information and an automated optimization approach, we were able to 
calculate the ingredient composition of common food products. In a 
comparison of our estimated ingredient compositions with actual rec-
ipes from different producers, we observed an average estimation error 
of 2.7% per ingredient. Via automation, large quantities of products can 
thus be evaluated in a short time. We found that by increasing the 
number of calculated Big7 values that fit within allowed ranges with the 
labeled Big7 values, the predictability of ingredient composition 
increased. The approach is still limited and does not deliver satisfactory 
results for food that undergoes special processing, such as cheese, where 
utilizing the declared fat content or processing grade could help to 
overcome current high estimation tolerances. In its current form, our 
approach and additional databases quantify up to 139 nutrients per food 
item and corresponding environmental impacts (cp. (Meier et al., 2021) 
and is thereby suitable for different use cases, e.g, (1) to allow for a more 
comprehensive and broadened nutrient tracking – on an individual basis 
or in prospective cohort studies, (2) to monitor the progress of food 
reformulation policies beyond Big7 nutrients (Bundesministerium für 
Ernährung und Landwirtschaft, 2022) and by using a broader range of 
nutrients to allow for a more sophisticated public health evaluation, (3) 
to support food manufactures with additional information to optimize 
health and environmental profiles of their food products, and (4) to 
develop specific food products, which are in particular suitable for 
previously or chronically diseased people that need a specific diet 
regime, e.g., cardiovascular diseases, chronic kidney disease, or diabetes 
type II. 
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