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Simple Summary: The IQ motif-containing GTPase-activating protein family is comprised of three
signal scaffolding proteins that regulate a variety of biological functions by aiding signal transduction
in cells. IQGAPs induce numerous cancer-related processes, including proliferation, apoptosis,
migration, invasion, and angiogenesis. In comparison to IQGAP1, IQGAP2 and IQGAP3 were
less researched. In this review, we comprehensively reviewed the significant roles of IQGAP2 and
IQGAP3 in cancer-associated pathways as well as the role in carcinogenesis and progression of
different cancer entities.

Abstract: The scaffold protein family of IQ motif-containing GTPase-activating proteins (IQGAP1,
2, and 3) share a high degree of homology and comprise six functional domains. IQGAPs bind and
regulate the cytoskeleton, interact with MAP kinases and calmodulin, and have GTPase-related
activity, as well as a RasGAP domain. Thus, IQGAPs regulate multiple cellular processes and
pathways, affecting cell division, growth, cell–cell interactions, migration, and invasion. In the past
decade, significant evidence on the function of IQGAPs in signal transduction during carcinogenesis
has emerged. Compared with IQGAP1, IQGAP2 and IQGAP3 were less analyzed. In this review, we
summarize the different signaling pathways affected by IQGAP2 and IQGAP3, and the antithetic
roles of IQGAP2 and IQGAP3 in different types of cancer. IQGAP2 expression is reduced and
plays a tumor suppressor role in most solid cancer types, while IQGAP3 is overexpressed and acts
as an oncogene. In lymphoma, for example, IQGAPs have partially opposite functions. There is
considerable evidence that IQGAPs regulate a multitude of pathways to modulate cancer processes
and chemoresistance, but some questions, such as how they trigger this signaling, through which
domains, and why they play opposite roles on the same pathways, are still unanswered.

Keywords: IQGAP; cancer; pathway; signaling; biomarker

1. Introduction

IQ motif-containing GTPase-activating proteins (IQGAPs) are a family of evolution-
arily conserved proteins found in a broad range of protists, fungi, and animal cells. In
humans, there are three IQGAP proteins, IQGAP1, IQGAP2, and IQGAP3, which share a
similar domain structure and sequence homology. These scaffold proteins are often located
between cell junctions of epithelial cells, and interact with components of the cytoskeleton,
cell adhesion, and signaling molecules that regulate various cellular processes [1–5].

The multidomain structure of IQGAPs facilitates the formation of protein complexes
necessary for cellular functions. Since its identification in human osteosarcoma tissue in
1994 [6], IQGAP1, which is ubiquitously expressed, has attracted considerable interest as
the best-characterized isoform of IQGAPs. More than a hundred interacting proteins with
diverse functions have been characterized [7], which have been subsequently implicated in
a number of cellular processes, including cell proliferation [8,9], cytokinesis [10,11], vesicle
trafficking [12,13], cell migration [14,15], and cytoskeletal dynamics [16,17].
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As the first identified member of the IQGAP protein family, IQGAP1 has gained the
greatest interest. Upregulated IQGAP1 was detected in multiple cancer entities, including
breast [18,19], colorectal [20,21], esophageal [22,23], gastric [24,25], head and neck [26,27],
ovary [28], pancreases [29], and thyroid cancer [30]. Patients with increased levels of
IQGAP1 have a worse prognosis, demonstrating the prognostic value of IQGAP1 in many
cancers. Hundreds of studies have clarified and summarized that IQGAP1 is able to interact
with and activate different oncogenic pathways [7], including the MAPK, RAC1/CDC42,
Wnt/β-catenin, PI3K, Hippo, and TGF-β pathway, as well as ultimately promoting tumor
proliferation, migration, and invasion.

IQGAP2 was identified in 1996 as a large cytoplasmic scaffold protein that is expressed
predominantly in the liver, but also in the prostate, kidney, stomach, testis, and platelets [31].
Despite its 62% sequence homology with other IQGAPs, the majority of evidence demon-
strated that IQGAP2 acted as a tumor suppressor in malignancies [32–40]. In contrast,
IQGAP3 is an oncogene [41–45]. It correlates with poor cancer prognosis [46–49]. IQGAP3
was identified in 2007, is more strongly expressed in the brain, and is important for the
regulation of neurite growth in neurons [50]. IQGAP3 is necessary for proper cell prolif-
eration and motility in addition to governing mitotic progression, genomic integrity, and
stability [51,52].

Despite their apparent similarities, the expression patterns of IQGAPs are inconsistent
(Table 1).

Table 1. The protein expression of IQGAPs in organs (data adapted from the Human Protein Atlas
database: https://www.proteinatlas.org/, accessed on 15 October 2022) [53].

IQGAP1 IQGAP2 IQGAP3

Breast +++ + ++

Brain + ++ +++

Bladder ++ - +++

Colon +++ ++ +++

Kidney +++ ++ +++

Liver ++ + ++

Lung +++ ++ +

Prostate ++ +++ ++

Stomach ++ +++ +++

Thyroid gland ++ ++ +++

Testis + + +++

Skin +++ + +++

Compared with IQGAP1, we have little knowledge on IQGAP2 and IQGAP3. The
last review published about these two IQGAPs was in 2015 [54], and our understanding
of IQGAP2 and IQGAP3 has further deepened in the past few years. In this review, we
summarize the different signaling pathways affected by IQGAP2 and IQGAP3, and the
antithetic roles of IQGAP2 and IQGAP3 in different types of cancer.

2. The Molecular Domains of IQGAPs

IQGAPs share a high degree of homology in amino acid sequence and domain struc-
ture. The six major functional domains allow them to bind to several partners, thus altering
the spatial and temporal distribution of distinct signal transduction complexes (Figure 1).

The N-terminal calponin-homology domain (CHD) of IQGAPs, which is also present
in several actin-binding proteins, is able to directly interact with actin [31,50,55,56]. This
induces rearrangements of the actin cytoskeleton, and regulates cell division, cell migration,
and the stability of cell–cell interactions.

https://www.proteinatlas.org/
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The coiled-coil repeat region (CC) domain, which consists of hydrophobic and charged
amino acids in a repeated pattern, facilitates IQGAPs to bind to the ezrin-radixin-moesin
(ERM) protein family [57,58]. This reinforces the role of IQGAPs as cytoskeletal regulators
and signal transduction hubs.

The polyproline protein–protein domain contains two functionally conserved trypto-
phans. These are responsible for the interaction with classical MAP kinases (MAPK), and
stimulate downstream signaling pathways, thus promoting tumor growth, progression,
and invasion [59,60].

There are four tandem isoleucine-glutamine (IQ) motifs in the IQ domain, which
interact in a calcium-dependent manner with calmodulin, which regulates several cellular
processes [61,62].

The IQ domain is followed by a GTPase activation-related structural domain (GRD)
that is extremely identical to the functional components of Ras GTPase-activating proteins
(GAPs), and interacts with the Rho family members, small GTPases, such as Rac1 and
Cdc42, altering their GTP activity [63,64]. This is, among other things, critical for the
polymerization of actin filaments throughout the progression of cancer [65].

Lastly, IQGAPs possess an exclusive C-terminal RasGAP domain. By binding to a
range of proteins, including E-cadherin and beta-catenin, this domain contributes consider-
ably to mediate cell–cell adhesion, cell polarization, and directional migration [66].

Figure 1. Schematic depiction of the domain organization and amino acid homology of IQGAPs and
their common binding partners (Permission obtain from OA journal: [67]).

3. IQGAPs Mediate Multiple Key Pathways

Multiple signaling pathways, such as the MAPK/ERK, receptor tyrosine kinase (RTK)-
activated phosphatidylinositol 3-kinase/AKT (PI3K-AKT), transforming growth factor β
(TGF-β), and Wnt/-catenin pathways, are aberrantly activated in malignancies, leading to
unregulated cell division, differentiation, proliferation, motility, and apoptosis (Figure 2).
Increasing research indicates that altered IQGAP expression affects cancer progression.
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Figure 2. Schematic diagram of the IQGAP-mediated signaling pathways involved in carcinogenesis
(Permission obtain from OA journal: [67]).

3.1. MAPK Signaling

IQGAP2 and IQGAP3 are both correlated with the MAPK/ERK pathway, which is
one of the most crucial signaling pathways in the progression of cancer, promoting tumor
growth and metastasis [68–70]. Zhu Y. et al. established immortalized gastric epithelial
cells transformed by cagA, an important virulence factor closely related to gastric cancer
patients, and found it was achieved through abnormal activation of the ERK1/2 MAPK
cascade. The aberrant activation of the MAPK cascade then increased the expression level
of IQGAP2, as confirmed by real-time PCR and Western blot analysis [71]. However, the
knockdown of IQGAP2 in breast cancer and bladder cancer elevated the phosphorylation
of MEK1/2 and ERK1/2, which resulted in promoting EMT [40]. A further pull-down assay
indicated that IQGAP2 levels in the cells can regulate IQGAP1-mediated ERK activation.
Overall, this evidence proved IQGAP2 is related to MAPK signaling, but the mechanism
needs to be further studied in detail.

The activation of ERK mediated by IQGAP3 was found in gastric cancer [47], breast
cancer [72,73], lung cancer [44], and bladder cancer [43], which is more likely achieved
through the interaction between IQGAP3 and RAS, while IQGAP2 had no effect on the Ras
activity within cells [45]. Nojima et al. found that IQGAP3 specifically interacted with the
active form of Ras. The Ras activity was significantly downregulated after knockdown of
IQGAP3, following completely abrogated activation of ERK2 in mouse mammary gland
epithelial cells. This suggests that Ras/ERK is a functional downstream effector of IQ-
GAP3 [51]. Meanwhile, the evidence that Ras signaling pathway key components Erbb2,
Erbb5, Fgfr2, Fgfr3, Met, and Ras were enriched in isthmus stem cells with high IQGAP3
expression confirmed this positive interaction between IQGAP3 and Ras [74]. However,
Chen et al. discovered the reverse outcome in DLBCL cells, where shRNA-directed down-
regulation of IQGAP3 led to increased RAS activity [75].
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3.2. Wnt Signaling

The Wnt signaling pathway is involved in numerous cellular functions, includ-
ing proliferation, differentiation, migration, polarization, and self-renewal during de-
velopment [76], but also results in abnormal cell proliferation and the promotion of tu-
mors [77,78].

Schmidt et al. identified a multiprotein β-catenin-E-cadherin-IQGAP1-IQGAP2 scaf-
fold in hepatocytes. Further analysis detected the activation of the WNT pathway, defined
by the loss of E-cadherin, activation of β-catenin, and overexpression of the β-catenin
nuclear target cyclin D1, in an IQGAP2-deficient mice model [35]. By using Affymetrix
microarray technology, it was demonstrated that the Wnt/-catenin signaling pathway
is the most commonly altered pathway in HCC tumors in the IQGAP2-deficient mouse
model [79]. A similar effect was found in ovarian cancer, where IQGAP2 strongly inhibited
the expression and nuclear translocation of β-catenin. Notably, IQGAP2 inhibited the
Wnt3a-induced transcriptional activity of β-catenin in ovarian cancer, indicating that it is a
suppressor of Wnt signaling [34].

3.3. PI3K-AKT Signaling

The Akt pathway, also known as the PI3K-Akt pathway, is involved in essential
biological activities, such as protein synthesis, cell proliferation, and apoptosis [80,81].

It has been discovered that IQGAP2 increases E-cadherin expression and inhibits
EMT via a reduction of Akt activation in prostate cancer [33]. Further analysis in gastric
cancer revealed the underlying mechanism, whereby IQGAP2 interacted with SHIP2, and
increased its phosphatase activity, deactivating Akt and decreasing EMT [38]. In a recent
study, the increased expression of IQGAP2 significantly decreased the amount of VEGF-A
in breast cancer cells, and the consequent phosphorylation of VEGFR2 in endothelial cells,
which resulted in the phosphorylation of AKT molecules [82].

IQGAP3 was found to interact with protein kinase C delta (PKCδ), a binding factor of
protein kinase C alpha (PKCα), to block the association between PKCδ and PKCα. This
releases PKCδ, and activates PKCα through phosphorylation, resulting in the activation of
PI3K/AKT signaling pathways to promote HCC cell proliferation [83]. In addition, as one
of the three isoforms of class II PI3Ks, PIK3C2B, which can activate AKT signaling path-
ways, was upregulated at the protein and mRNA transcription levels following exogenous
overexpression of IQGAP3 in colon cancer, resulting in promoting invasiveness [42].

3.4. TGF-β Signaling

TGF-β signaling regulates the proliferation, differentiation, and apoptosis of numerous
cancers [84,85].

The upregulated TGF-β-responsive luciferase activity, phosphorylation of Smad2,
Smad3, and downstream proteins of the TGF-β signaling pathway were detected in re-
sponse to IQGAP3 overexpression in HCC cell lines. This resulted in induction of EMT
in HCC. SB431542, a TGF inhibitor, inhibited the effects of IQGAP3 on HCC cell motil-
ity and invasion, suggesting that activation of TGF-β signaling is a crucial mediator for
IQGAP3-induced HCC metastasis [86].

3.5. NF-κB Signaling

The NF-κB signaling plays an important role in inflammatory processes and is key in
the development and dysfunction of the immune system [87,88]. The NF-κB family, one of
the most important transcription factors linking chronic inflammation to cancer, consists of
five members: RelA (p65), c-Rel, RelB, NF-κB 1 (p50), and NF-κB 2 (p52).

It has been reported that IQGAP2 physically interacts with p65 [89,90], which in-
duces genes implicated in inflammation, cell proliferation and survival, epithelial-to-
mesenchymal transition, and invasion, angiogenesis, and metastasis [91–93]. Suppressed
NF-κB signaling was detected in the colons of IQGAP2-deficient mice. The protein level of
the p65 subunit of NF-κB was diminished compared to WT mice. Treatment with an inflam-
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matory activator (dextran sulfate sodium), inducing p65 expression, had no effect in colons
of IQGAP2-deficient mice [94]. However, transient knockdown of IQGAP2 had no effect
on NF-κB baseline activation or p65 expression in liver cells, but significantly decreased
the NF-κB promoter activation and p65 phosphorylation in response to type I interferons
(IFN), indicating that the role of IQGAP2 in NF-κB activation is stimulus-dependent [90].

4. IQGAP2 and IQGAP3 Have Antithetic Roles in Many Types of Cancer

IQGAPs have been revealed to play critical roles in different malignancies, especially in
the progression of cancer. Numerous researchers have observed that IQGAP2 and IQGAP3
play antagonistic roles in gastric cancer, colorectal cancer, hepatocellular carcinoma, prostate
cancer, ovarian cancer, breast cancer, and malignant lymphoma. Lower expression levels
of IQGAP2 or rather higher expression levels of IQGAP3 are associated with a worse
prognosis (Table 2).

Table 2. Cancers with altered IQGAP2 and IQGAP3 expression. IHC: immunohistochemistry;
LC-MS: liquid chromatography–mass spectrometry; WB: Western blot; RT-PCR: reverse transcription-
polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay; PIN: prostatic intraepithelial
neoplasia; DLBLC: diffuse large B cell lymphoma; GCB: germinal center B cell; ABC: activated B cell.

Cancer
Type Comparison Expression

Alteration Sample Method Prognostic
Relevance Reference

Liver
Carcinoma vs. normal
Carcinoma vs. normal
Carcinoma vs. normal

IQGAP2↓ Tissue
IHC

LC-MS/WB/IHC
RT-PCR/WB/IHC

/
/

Yes

[95]
[96]
[97]

Carcinoma vs. adenoma IQGAP3↑

Tissue

Serum

RT-PCR/WB/IHC
DNA sequencing

IHC
ELISA

Yes
/

Yes
Yes

[86]
[98]
[83]
[99]

Prostate

Carcinoma vs. normal
PIN/Gleason ≤ 3 vs.

normal
Gleason 4–5 vs.

PIN/Gleason ≤ 3

IQGAP2↑
IQGAP2↑
IQGAP2↓

Tissue
RT-PCR

IHC
IHC

/
[100]
[33]
[33]

Carcinoma vs. normal IQGAP3↑ Tissue DNA sequencing Yes [101]

Breast Carcinoma vs. normal IQGAP2↓ Tissue IHC
RT-PCR/WB

Yes
/

[40]
[39]

Carcinoma vs. normal IQGAP3↑ Tissue RT-PCR/WB
RT-PCR/WB/IHC

/
Yes

[73]
[49]

Gastric Carcinoma vs. normal IQGAP2↓ Tissue IHC Yes [32]

Carcinoma vs. normal IQGAP3↑ Tissue IHC
IHC

Yes
No

[47]
[41]

Ovary Serous and clear cell
ovarian cancer vs. normal IQGAP2↓ Tissue DNA sequencing

/WB Yes [34]

High-grade serous
ovarian cancer vs. normal IQGAP3↑ Tissue RT-PCR/WB/IHC Yes [45]

Colorectal Carcinoma vs. normal IQGAP2↓
IQGAP2↑ Tissue IHC

DNA sequencing
No
/

[36]
[102]

Carcinoma vs. normal IQGAP3↑ Tissue/Serum
Tissue

IHC/ELISA
RT-PCR/IHC
RT-PCR/IHC

Yes
Yes
Yes

[103]
[48]
[42]
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Table 2. Cont.

Cancer
Type Comparison Expression

Alteration Sample Method Prognostic
Relevance Reference

Bladder Carcinoma vs. normal IQGAP2
(Heterogeneity) Tissue IHC [43]

Carcinoma vs. normal IQGAP3↑ Tissue
Tissue/Urine

RT-PCR/IHC
RT-PCR

/
/

[43]
[46]

DLBLC GCB DLBCL vs. ABC
DLBCL IQGAP2↓ Tissue DNA sequencing Yes [104]

Cancer vs. normal IQGAP3↑ Tissue DNA sequencing Yes [75]

We have summarized the current evidence on the contribution of IQGAP2 and IQGAP3
to these different types of cancer as examples. Nevertheless, IQGAPs are also associated
with other cancer types. These findings collectively support the concept that IQGAP2 and
IQGAP3 act as critical regulators of tumorigenesis by scaffolding and promoting diverse
oncogenic pathways.

4.1. Gastric Cancer

The relation between IQGAP2 and cancer was first mentioned in gastric cancer. Zhu
et al. detected increased expression of IQGAP2, R-Ras, and B-Raf, and activation of the
Erk1/2 pathway in virulence factor (CagA)-transformed immortalized gastric epithelial
cells [71].

On the other hand, some reports indicate that IQGAP2 can act as a tumor suppressor
in gastric cancer. IQGAP2 was found methylated and lost in gastric carcinoma tissues
compared with gastric mucosa, and patients with IQGAP2 inactivation by methylation had
a significantly worse prognosis. In an in vitro experiment, suppression of IQGAP2 increased
cell invasion in gastric cancer cell lines, revealing its probable tumor suppressor role [32].
A subsequent study demonstrated that IQGAP2 may regulate gastric cancer through the
AKT pathway [38], which is highly activated in nearly 80% of gastric cancers [105]. They
found that IQGAP2 can bind to the PRD and SAM domains of SHIP2 in the cytoplasm of
GC cells, resulting in an increase in SHIP2 phosphatase activity and thereby suppressing
GC cell EMT via Akt inactivation.

The increase of IQGAP3 was observed in gastric cancer samples compared with normal
controls, mostly distributed on the cell membrane and cytoplasm. Further examination
of the clinicopathologic characteristics showed that IQGAP3 expression was significantly
associated with the TNM classification and was an independent predictor of survival.
IQGAP3 is also correlated with metastasis of gastric cancer, and overexpression enhances
cell migration and invasion and reduces cell–cell adhesion [41,47].

4.2. Liver Cancer

The tumor suppressor role of IQGAP2 was first mentioned in hepatocellular carcinoma
(HCC). There is substantial evidence that IQGAP2 plays a tumor suppressor role in HCC.
Decreased IQGAP2 expression is related with increased tumor size, advanced tumor stage,
worse tumor differentiation, as well as shorter postoperative tumor-free survival and
overall survival after hepatectomy [95–97,106,107]. Further experiments in HCC cell lines
demonstrated that IQGAP2 depletion may correlate with alpha-fetoprotein (AFP), the only
current clinical biomarker for HCC. IQGAP2 was highly expressed in AFP+ cell lines, while
it was lost in AFP– cell lines [107]. IQGAP2-deficient mice showed a high incidence of
HCC compared with wildtype controls. Further analysis of these samples demonstrated
a reduction of IQGAP1 expression in plasma membranes and an increase in IQGAP1
expression in the cytoplasm, and this pattern occurred in parallel with the activation of
the Wnt/β-catenin pathway. The IQGAP1–IQGAP2-deficient mice were then generated to
analyze the relationship between IQGAP1 and IQGAP2 in the progression of HCC. Survival
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durations of IQGAP1–IQGAP2-deficient mice were virtually equal to wildtype controls
and were markedly enhanced compared to IQGAP2-deficient mice, which indicated that
a loss of IQGAP2 may not be sufficient to induce a malignant phenotype; rather, this is
dependent on the oncogenic IQGAP1 protein [35].

IQGAP3 was identified as an oncogene in HCC due to its overexpression in HCC
tissues [86,98]. Its expression is associated with a larger tumor size, advanced tumor stage,
and poor tumor differentiation. IQGAP3 induces intrahepatic and extrahepatic metastases
in HCC, hence considerably lowering patient survival [86]. In addition, IQGAP3 is a new
biomarker for HCC screening and diagnosis that detects small HCCs more effectively than
AFP. IQGAP3 can be used as a biomarker in addition to AFP to increase the diagnostic
accuracy of AFP-negative HCC. The combination of AFP, IQGAP3, and chaperonin con-
taining TCP1 complex subunit 3 (CCT3) significantly increased the discriminatory ability
of HCC compared to AFP alone [99].

4.3. Breast Cancer

Female breast cancer is the most commonly diagnosed cancer and the main cause of
cancer-related mortality worldwide in women [108]. IQGAPs seem not to be correlated
with different subtypes (ER, PR, HER2, or triple-negative) of breast cancer but associated
with overall tumorigenic features.

Kumar et al. observed decreased IQGAP2 in most breast cancer tissue compared to
normal tissue, and lower IQGAP2 expression was strongly correlated with lymph node
metastases, lymphovascular invasion, and a higher cancer stage, but not with tumor
size [40]. The expression pattern showed no clustering of specific molecular subtypes
through the analysis on different breast cancer cell lines. Furthermore, reduced IQGAP2
expression leads to increased proliferation and reduced apoptosis regardless of ER status,
which results in continuous tumor growth and development of breast cancer [40]. In
search of the mechanism, the IQGAP2 promotes apoptosis via activating the p38-p53
pathway, triggered by an increase in reactive oxygen species (ROS). Invasion of breast
cancer is mainly a cumulative result of EMT and angiogenesis [109,110]. Kumar et al.
recently showed that depletion of IQGAP2 promoted both EMT via activation of the ERK
pathway and angiogenesis in a paracrine manner through activating VEGFR2-AKT [40,82].
Similarly, Wang et al. found that IQGAP2 can suppress the proliferation, migration, and
invasion of TNBC cells [39], but they did not observe any influence on the apoptosis. How
IQGAP2 expression is regulated is mostly unknown. In breast cancer, the miR-10b-5p,
which has been reported to be dysregulated and linked to prognosis, could negatively
target IQGAP2 [39].

In comparison to IQGAP2, IQGAP3 is highly expressed in breast cancer tissues relative
to adjacent normal tissues [49,73]. Overexpression of IQGAP3 was substantially linked with
a higher clinical stage, distant metastases, locoregional recurrence, and radio-resistance. In
addition, IQGAP3 is an independent negative prognostic factor for breast cancer. Patients
with elevated levels of IQGAP3 had a poor prognosis, even after radiation [49].

4.4. Prostate Cancer

The expression of IQGAP2 in prostate cancer is contradictory. Analysis of the tran-
scriptome revealed that IQGAP2 was overexpressed in prostate cancer tissues compared
with normal adjacent prostate tissue [100,111]. Meanwhile, IQGAP2 expression was found
elevated in low-grade tumors (prostatic intraepithelial neoplasia to Gleason 3 tumors),
which could be applicable for PC diagnosis in the future, as its accuracy for detection
was higher than the PSA level. On the other hand, IQGAP2 was downregulated in high-
grade tumors (Gleason 4–5) [33,37]. Survival analysis of the public database revealed that
downregulation of IQGAP2 in prostate cancer is positively correlated with recurrence and
metastasis [37]. Further molecular experiments confirmed the suppressor role of IQGAP2
in prostate cancer. IQGAP2 inhibited cell proliferation and invasion of prostate cancer cell
lines through enhancing E-cadherin promoter activity via inhibiting AKT activation [33].
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Analyses of TCGA-PRAD (prostate adenocarcinoma) data revealed 733 overexpressed
genes, including IQGAP3, which is also frequently mutated [112]. The higher expression of
IQGAP3 was indicative of a worse overall survival and disease-free interval (DFI) [113].
Moreover, the expression of IQGAP3 was positively correlated with infiltration of B cells,
macrophages, and dendritic cells, indicating its potential role as a tumor-specific antigen
and therapeutic target in PRAD [113].

4.5. Bladder Cancer

Bladder cancer is the tenth most commonly diagnosed cancer in the world. The gold
standard diagnostic method for bladder cancer is the cystoscopy, an invasive, uncomfort-
able, and costly procedure, which is also used for postoperative follow-up [114]. Sufficiently
sensitive urine-based markers are not available. In recent years, the urinary nucleic acids
have been widely examined, which are directly derived from the urinary tract tumor cells’
death [115]. Won et al. detected overexpression of IQGAP3 in urine samples from bladder
cancer patients compared with normal controls. ROC curve analysis revealed that IQGAP3
is a highly sensitive and specific diagnostic marker for bladder cancer, which can reach
80.0% and 83.8%, respectively. The specificity in hematuria was up to 90.7% [116,117].
IQGAP3 was also overexpressed in bladder cancer tissues, and can promote bladder cancer
progression via activating the Ras/ERK pathway [43].

Although almost all studies have confirmed that IQGAP1 is an oncogene, IQGAP1
was reported as a tumor suppressor in bladder cancer [118], playing a completely opposite
role compared with other cancers. IQGAP1 depletion increases tumor growth in vitro
and in vivo via TGF-β signaling and is associated with a worse prognosis in bladder
cancer patients.

In a recent study, we conducted research on IQGAP2 in bladder cancer for the first
time [119]. Bioinformatic analysis using TCGA and published data showed reduced
IQGAP2 in bladder cancer tissue compared with normal tissue. We also observed decreased
IQGAP2 mRNA and protein in bladder cancer cell lines compared with normal urothelium
cell lines [119]. Then, we analyzed the functional role of IQGAP2 in bladder cancer cells.
The knockdown of IQGAP2 promoted proliferation, migration, and invasion, while the
overexpression of IQGAP2 had the opposite role. Pathway mapping using TCGA data and
confirmatory experiments indicated that this effect was achieved through the regulation of
the MAPK/ERK pathway and cytokines [119].

4.6. Ovarian Cancer

As in gastric cancer, hypermethylation-mediated inactivation of IQGAP2 was discov-
ered in serous and clear cell ovarian cancer samples, and it was associated with worse
progression-free survival. The pull-down assay in ovarian cells confirmed that IQGAP2
did not affect the activity of Ras, but altered the phosphorylation of AKT, ERK, and the
protein expression, as well as its nuclear translocation of beta-catenin. Further analysis
proved that IQGAP2 inhibited the migration, invasion, and EMT of ovarian cancer cells
through deactivation of Wnt/-catenin signaling [34].

IQGAP3 expression was upregulated in high-grade serous ovarian cancer samples
compared with the fallopian tubal samples, and this increase was significantly associated
with poor overall survival, as well as progression-free survival [45]. The knockdown of
IQGAP3 inhibited the metastasis of high-grade serous ovarian cancer (HGSOC) in vitro and
in vivo. IQGAP3 regulated cell proliferation via regulation of apoptosis in ovarian cancer
cells [45]. IQGAP3 was also found to correlate with medication sensitivity of Olaparib, a
PARP inhibitor. The knockdown of IQGAP3 increases the sensitivity of ovarian cancer cells
to Olaparib, which may be accomplished by the regulation of proteins associated with DNA
damage and chemoresistance. Furthermore, the knockdown of IQGAP3 also influenced a
series of oncogenic mechanisms in ovarian cancer, as demonstrated by the alteration in the
protein expression, including EMT-related proteins (E-CAD, N-CAD, ZEB-1, Vimentin, and
Snail) and apoptosis-related proteins (Caspase-3, Caspase-9, Bcl2, and Bax) [45].
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4.7. Colorectal Cancer

The mechanism of IQGAP2 was not analyzed in detail in colorectal cancer (CRC).
Dinesh Kumar reported that IQGAP2 was decreased in CRC tissue, both at the mRNA and
protein levels. They did not see any significant correlation with OS [36]. Anyway, another
report found that IQGAP2 was overexpressed in tissues of CRC [102]. Two publications
revealed how IQGAP2 was regulated. The overexpression of miR-92a and miR-29a-3p
can negatively regulate IQGAP2 in CRC cell lines [120,121]. However, considering that
dysregulation of Wnt signaling is necessary for the development of colorectal cancer, and
nearly all CRCs exhibit abnormalities in Wnt signaling, it will be interesting to clarify if
IQGAP2 plays a role in the carcinogenesis of colorectal cancer through the Wnt pathway in
further research [34,35,79,122].

IQGAP3 was elevated at the tissue and cellular levels in colorectal cancer [42,48,103].
Increased IQGAP3 expression was associated with a higher tumor stage and shorter overall
survival. Moreover, Cao et al. also detected higher IQGAP3 levels in the serum of CRC
patients than those in the healthy group, with higher sensitivity than carcinoembryonic
antigen (CEA) and cancer antigen 19-9 (CA19-9), which are the most widely used diagnostic
markers in CRC [101,103,123].

4.8. Malignant Lymphoma

Beyond solid tumors, IQGAPs also play roles in malignant lymphoma. Interestingly,
they played the exact opposite roles to that in solid tumors. Diffuse large B cell lymphoma
(DLBCL) accounts for 25–35% of non-Hodgkin lymphomas and is the most prevalent kind
of lymphoma worldwide [124,125]. Although 50–70% of patients are usually treated with
cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy and
combined immunochemotherapy with rituximab (R-CHOP), approximately one-third of
individuals with DLBCL suffer from highly deadly recurring or progressive illnesses, so
identifying these patients early, and providing alternative therapy, is critical [126,127].

IQGAP2 mRNA expression is significantly higher in hematologic malignancies than in
solid tumors. Furthermore, high-grade lymphoma expressed higher IQGAP2 protein levels
than low-grade lymphoma, indicating that IQGAP2 is related to the malignancy of DLBCL.
On the other hand, DLBCL patients with elevated IQGAP2 mRNA had reduced survival pe-
riods, even when treated with CHOP and R-CHOP chemotherapy. IQGAP2-associated gene
enrichment analysis revealed a high link between IQGAP2 and immunological processes.
IQGAP2 mRNA expression was positively linked with immunosuppressive genes and in-
filtration of leukocytes, suggesting that IQGAP2 may be implicated in immunosuppression
in DLBCL, which is a crucial factor in DLBCL carcinogenesis [104].

Despite that IQGAP3 was found as the most conspicuously overexpressed gene in
DLBCL samples relative to normal controls, patients with high IQGAP3 expression had
a much better clinical outcome, as indicated by longer progression-free (PFS) and over-
all survival (OS) [75]. In patients whose lymphoma cells lacked active PI3K signaling,
the expression of IQGAP3 did not predict any survival outcome. However, in patients
with an activated PI3K pathway, a higher IQGAP3 level predicted a significantly better
clinical outcome. In addition, IQGAP3 could inhibit RAS activity in DLBCL cells, hence
dramatically limiting DLBCL cell motility. The data reveal that IQGAP3 is one of the most
essential molecules that connect the RAS and PI3K pathways, allowing them to influence
each other and co-regulate functions farther down, and that this cross-talk contributes to
the development and progression of cancer [75].

5. Putative Explanation for IQGAPs’ Opposite Functions

The paradoxical fact that IQGAPs play opposing roles in malignancies may be at-
tributable to the slight differences in the similar domain structure and sequence homology.
For instance, the calcium-sensing protein CaM (calmodulin) attaches to all the IQGAPs via
IQ motifs, but its stability varies between each member. In the presence of calcium ions,
IQGAP2 binds to CaM with a lower affinity than IQGAP1 and 3. This difference has been
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explained in that CaM interacts with IQGAP2 via the second and third binding sites of the
IQ motif, whereas IQGAP1 and 3 connect with CaM via all four IQ motifs. However, the
binding between IQGAP2 and CaM is temporary, whereas IQGAP3 displays long-lived
binding with its last three IQ motifs and transient binding with its first IQ motif [62].

Similarity, the Rho family of small GTPases showed different binding affinity to
IQGAPs. IQGAP1 and 3 have higher binding affinity for the active GTP-Cdc42 and GTP-
Rac1 than for the inactive, GDP-bound form of the GTPases, through the GRD domain [50].
However, the IQGAP2 has been observed to interact without discrimination with both the
GDP and GTP-bound versions [31,128]. In addition, IQGAP3 strongly interacted with the
active form of Ras, but only moderately with the wildtype or dominant-negative form.
IQGAP1 and 2 could not stimulate the GTPase activity of Ras [31].

The binding affinity of IQGAPs to the essential light chain of myosin and S100B
also differs. IQGAP1 has a high affinity for binding to myosin essential light chain
and S100B, but IQGAP2 and IQGAP3 have transitory or no affinity for binding to these
proteins [62,129,130]. In addition, Anillin proteins co-immunoprecipitate with IQGAP3
but not with IQGAP1 or IQGAP2, which suggests the importance in cytokinesis [131].
Therefore, further in-depth studies on the molecular binding and structures of IQGAPs
should be completed to uncover unresolved issues, such as why IQGAPs exert opposing
effects on the MAPK/ERK and PI3K-AKT signaling pathways.

6. Conclusions

In the past decade, significant evidence on the function of IQGAPs in signal transduc-
tion during carcinogenesis has emerged. This review described the architecture of IQGAP2
and IQGAP3, as well as their expression and antithetic roles through relevant signaling
pathways in various malignancies.

IQGAP2 expression is reduced and plays a tumor suppressor role in most solid cancer
types, while IQGAP3 is overexpressed and acts as an oncogene in the same cancer types.
Only in lymphoma did DLBCL patients with a higher expression of IQGAP2 have a worse
prognosis, and IQGAP3 overexpression was correlated with an excellent prognosis.

It has been proven that the alteration of IQGAPs’ expression in serum or urine can
differentiate HCC, CRC, and bladder cancer from healthy patients. Thus, IQGAPs may
be applicable as promising biomarkers. Different studies indicated that the reduction of
IQGAP2 may be correlated with the abnormal promoter methylation. Further studies on the
epigenetic state of IQGAP2 may obtain some promising results. In addition to methylation,
the other factors that trigger the altered expression of IQGAPs in cancer also need further
investigation. There is now considerable evidence that IQGAPs regulate a multitude of
pathways to modulate cancer processes and chemoresistance, but some questions, such as
how they trigger this signaling, through which domains, and why they play opposite roles
on the same pathways, are still unanswered. Thus, it is crucial to investigate the dynamics
between IQGAP-mediated pathways in cancer. With a greater understanding of the role
of IQGAPs in cancer and the underlying mechanisms, drugs targeting IQGAPs and their
related signaling could hold promise.
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