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Abstract
When operating a conditionally automated vehicle, humans occasionally have to take over control. If the driver is out of the
loop, a certain amount of time is necessary to gain situation awareness. This work evaluates the potential of stereoscopic
3D (S3D) dashboards for presenting smart S3D take-over-requests (TORs) to support situation assessment. In a driving
simulator study with a 4 × 2 between-within design, we presented 3 smart TORs showing the current traffic situation and a
baseline TOR in 2D and S3D to 52 participants doing the n-back task. We further investigate if non-standard locations affect
the results. Take-over performance indicates that participants looked at and processed the TORs’ visual information and by
that, could perform more safe take-overs. S3D warnings in general, as well as warnings appearing at the participants’ focus
of attention and warnings at the instrument cluster, performed best. We conclude that visual warnings, presented on an S3D
dashboard, can be a valid option to support take-over while not increasing workload. We further discuss participants’ gaze
behavior in the context of visual warnings for automotive user interfaces.

Keywords Automotive user interfaces · Stereoscopic 3D · Driving simulation

1 Introduction

With level 2 automation on the road and higher levels
being tested, it is important to look at the moments when
humans suddenly have to take over control [62]. These
situations require fast, correct, and safe responses to a
potentially dangerous traffic situation. To make matters
more complicated, it is very likely that humans engage in
non-driving-related tasks when automation is enabled and
by that, have reduced situation awareness (SA) [24]. Before
the human can (or should) react to a take-over request
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(TOR), a certain level of SA is necessary [20]. While motor
readiness is almost instantaneously available, gaining SA
takes a certain amount of time. The longer it takes to gain
SA, the higher the risk of an accident [25].

Walch et al. [67] conclude their research with the state-
ment that the majority of their participants simply took over
as soon as a TOR was issued — without assessing the sit-
uation. Contrary to that, Telpaz et al. [66] mention that
their haptic take-over support system did not perform well
because drivers did a complete visual scan of their sur-
roundings before acting. Bueno et al. [11] hint at a possible
solution to avoid these two extremes: in their research, they
conclude that providing information about the environment
during a critical event could foster gaining SA. Miller et al.
[44] come to a similar conclusion, recommending that
sharing information with the driver could support SA.

Vehicle-to-vehicle (V2V) communication, where cars
share information with each other — for example positional
data [57]—can be a source of such information. Facilitating
this knowledge, a vehicle could provide adaptive and
holistic visualizations to drivers and support gaining SA.
Related to that, recent research indicates that stereoscopic
3D (S3D) displays can improve the comprehension of
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traffic scenario visualizations compared with traditional 2D
presentations [17], making it an interesting candidate for
such adaptive and holistic visualizations.

In this work, we explore smart TORs displayed on an
S3D dashboard. “Smart” refers to two properties of our
multimodal take-over requests: First, we use information
from simulated V2V communication to show the relative
location of other vehicles in the form of glyph-like icons.
Second, we present the TOR not only at the instrument
cluster — the default location for warnings — but also at
other, potentially more suitable, locations of the dashboard.
By that, we provide evidence for the effectiveness of smart
TORs during the take-over process and demonstrate a
positive effect of S3D on take-over performance.

Main contributions of this work are:

1. Evidence of the effectiveness of audiovisual smart S3D
TORs during the take-over process.

2. Proof that well-designed visual warnings do not
necessarily increase mental workload.

3. Three gaze patterns performed by participants when
using visual in-vehicle warnings.

This article extends our previous work on smart take-
over requests [71]. In addition to the influence of such
notifications on take-over performance, this article reports
on the design process that led to our visualization, on user
experience, and on participants’ performance at the non-
driving-related task. User experience and performance in
the n-back task further strengthen our results by adding
information about the state of participants during the
experiment. In detail, it helps to judge their attitude towards
the experiment and if they were out of the loop. In addition
to that, the details about design process of the visualizations
allow researchers to better understand the final take-
over visualizations but also support them when creating
new designs. We further provide an extensive analysis of
participants’ gaze behavior and the new visualizations’
influence on mental workload. Both are important for safety
critical features as they tell if the new technology has
significant side effects besides potentially influencing take-
over performance.

The following section provides related work to S3D,
TORs, and mental workload. After that, we outline the
research questions (Section 3) and the simulator environment
(Section 4). Subsequently, we report on the pre-study that
guided the design of the visualization in Section 5. Then,
Section 6 describes the design of the driving simulator study.
Section 7 presents results of our user study whereas
Section 8 puts them in context and discusses them. Section 9
presents the derived gaze patterns, implications, and recom-
mendations based on our results. Finally, Section 10 concludes
our work and provides possible future research directions.

2 Background and related work

2.1 Perspective 3D and stereoscopic 3D

Stereoscopic displays provide two images to the human:
one for the left eye and one for the right eye. Using
special display hardware that ensures that each eye sees its
corresponding image, the human visual system is able to
fuse both images. This results in a perceived image with
binocular depth cues. This type of 3D is called stereoscopic
3D (S3D).

Perspective displays operate on traditional screens and
show one image for both eyes. Various cues but not
binocular cues still make depth perception possible. Such
displays often apply linear perspective to create the illusion
of depth. Then, the perceived image is in perspective 3D
(P3D or 2.5D) [47].

2.2 Mental workload while driving

In research, there is no clear definition of mental workload
[12, 34, 38, 51]. However, many definitions refer to the
information processing capacity necessary for executing
a task [13, 59, 73]. Executing tasks that require similar
mental resources (e.g., visual processing) in parallel can
lead to decreased performance [72]. With regard to driving
and take-over, it has been argued that the additional visual
information of a visual take-over notification can impair
driving performance by requiring visual processing capacity
that is then not available for the primary driving task [5].
Hence, it is necessary to consider the influence of the added
mental workload introduced by processing the visual TOR.

In the automotive domain, many techniques have been
used to assess mental workload—all having advantages and
disadvantages. Questionnaires like the Driver Activity Load
Index (DALI, [50]) or the NASA TLX (Task Load Index,
[26]) are widely used to assess mental workload because
they are easy to use. However, these instruments can only
be administered after the task or experiment which can
lead to, for example, recall bias or post-rationalization bias
[41].

To assess mental workload during the task or experiment,
researchers have been using various physiological signals
[13, 38]. Especially ocular measures promise to measure
mental workload directly during a driving simulator
experiment and in a non-invasive way [34]. That is because
the eyes can rather easily be captured using head-mounted
or external eye-trackers and the environment lighting can
be controlled [23]. Especially the latter can be a problem
and researchers need to control for it [55]. Prominent
ocular measures for mental workload are based on the pupil
diameter (e.g., index of cognitive activity — ICA [39],
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mean pupil diameter change and change rate [49], index of
pupillary activity — IPA [18]), on blink behavior (e.g., blink
latency [30], blink rate [3]), or on the movement of the eye
(e.g., microsaccades [31])

In this study, ocular measures based on pupil diameter
and blink behavior are used to assess mental workload as
they can be captured in a non-invasive way and have shown
to deliver valid results in previous research.

2.3 In-vehicle stereoscopic 3D

Over the last few years, stereoscopic 3D displays are gaining
popularity in the automotive domain [16, 54]. Previous
work showed that warnings displayed on an S3D instrument
cluster can lower reaction times in case of unexpected events
[8]. S3D instrument clusters can also shorten glance times
at the instrument cluster when identifying objects in non-
critical situations [56]. Also, a navigation system in the
form of an S3D display on the upper center stack can
support drivers better than a presentation in perspective
3D [10]. It has also been shown that S3D can increase
perceived urgency, and information structure of instrument
clusters when used as a design element [9]. Results of
Weidner et al. [70] further indicate that S3D visualizations
as notifications and highlighting elements do not impair
driving or secondary task performance. In addition to that,
Dettmann et al. [17] found that using autostereoscopic 3D
displays for the analysis of traffic situations leads to better
perception and situational assessment compared with 2D
displays. However, they did not perform their experiment in
a driving simulator.

The scenarios in these experiments were not time-critical
and potentially dangerous as an unscheduled take-over
maneuver can be. Further, up to now, no previous study has
analyzed the impact of S3D warning visualizations at other
locations than the instrument cluster and the upper center
stack. Nevertheless, these results motivate the evaluation of
S3D take-over notifications that show spatial information.

2.4 (Directional) take-over requests

There is a large body of research on in-vehicle warnings
in general and take-over requests in detail. In 2015,
Bazilinskyy et al. [2] performed a crowd-survey with 1692
respondents. They conclude that visual take-over requests
on the dashboard are among the most preferred ones.
Hence, many researchers have been using visual take-over
requests during studies, either as main research objective
or in multimodal user interfaces. Visual take-over requests
have been used as icons on the center stack [48, 66], on
the instrument panel [35, 36, 42, 43, 46], or on head-
up displays (HUD) [29]. These studies used simple icons

to indicate a take-over request (TOR) without providing
any additional information that might support situation
assessment. Because these signs have been heavily used in
research on take-over requests, we use an icon paired with
an audio signal as a baseline.

Going beyond simple warning icons, directional TORs
provide navigational cues or guide attention and try to
support drivers during take-overs. It has been shown that
such directional cues can improve take-over performance
by means of various modalities. Besides spatial audio [76],
especially haptic and visual TORs have been explored.
For example, shape-changing steering wheels [6] and
vibro-tactile seats [52, 66] have been shown to positively
influence workload and take-over performance. However,
they were less suited to communicate directions. Also,
both approaches, the steering wheel and the vibro-tactile
seat, are only able to encode a relatively low level
of information, which might not be enough for more
complex situations. Nevertheless, the provided directional
information improved performance and safety, which acts
as a motivation for our study. In the domain of visual
directional take-over requests, ambient light cues presented
via simple LEDs or LED strips have been shown to improve
take-over performance but are also limited regarding
information density due to low pixel resolution of LED
arrangements [10, 33]. Similar to our approach but in 2D
and only on the HUD, Rezvani et al. [61] provided 2D
illustrations of the surroundings during a control transfer
with the intent to communicate the internal and external
awareness of the vehicle to the driver. Their results indicate
that such illustrations improve drivers’ trust, performance,
and SA.

Most of these take-over requests have in common that
they only, but often successfully, provide a direction to
the driver. This direction highlights either the hazard
or a potentially safe route whereas this work tries to
communicate information about the location of the hazard
as well as the surroundings to improve SA (similar to
Rezvani et al. [61]). In addition to that and building on
the promising results of in-vehicle S3D, we also want to
explore, if potential benefits are reinforced by S3D. It is
important to note that most of the mentioned take-over
requests are in fact multimodal and accompanied by an
auditory signal. Further information on control transitions
in (semi-)automated vehicles is provided by Lu et al. [37]
and Mirnig et al. [45].

3 Research questions

Based on the related work, the research questions were
formulated as follows:
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RQ1 Does a visual TOR that provides information about
the surroundings increase take-over performance
compared to a simple warning symbol?

RQ2 Does the location of the TOR visualization on the
dashboard influence take-over performance?

RQ3 Does the presentation of a visual TOR that provides
information about the surroundings in S3D lead to
better take-over performance than P3D?

RQ4 Does the added visual information of a visual TOR
that provides information about the surroundings
increase mental workload during take-over?

RQ1 is based on research that indicates that directional
TORs can support the take-over process but research on
visual directional TORs is scarce. RQ2 is motivated by the
fact that non-directional visual TORs have been applied in
several locations such as the instrument cluster or the center
stack but no other, possibly more suitable, location. RQ3 is
based on the fact that S3D has been shown to be beneficial
for understanding of spatial information but has not been
evaluated in time-critical take-over situations. RQ4 controls
for mental workload as the additional visual information of
a visual directional TOR that contains information about
surroundings could lead to a resource conflict in information
processing.

We first performed a pre-study to create an appropriate
design for the directional take-over requests that provides
information about the surroundings. Based on the results of
this preliminary study, we ran the final study to answer the
research questions.

4 Apparatus

Source code of the user interface software and driving
simulation are available for free upon request.

4.1 Driving simulation and laboratory environment

The simulation environment is shown in Fig. 1. It consists of
a front screen, a rear-screen visible via a rear-view mirror,
and a car mock-up. The driving simulation software was
built with Unreal Engine 4.18.31 (UE4). A steering wheel
and pedals are integrated into UE4 using plugins. For this
study, using another commercial or free driving simulation
software (e.g., STISIM [65]) would have also been possible.

A screen (3.6 m × 2.25 m, 2560 × 1600 pixel at 120
Hz) displayed the driving environment. A rear-view mirror
was positioned next to the mock-up and a 1920 × 1080,
30-Hz projector projected the rear-view. Participants were

1http://unrealengine.com/, 2020-05-16

Fig. 1 Driving simulator environment with front screen, car mock-
up, and rear-view mirror. Highlighted are the four states of the
automation indicator: take-over request (red), automation cannot be
enabled (gray), automation disabled but can be turned on (yellow),
automation enabled (green)

positioned approximately 2.5 m in front of the screen. This
led to an approximate horizontal field of view of 72◦. The
laboratory has blacked-out windows to control the lighting
conditions during the experiment.

4.2 Car mock-up

The car mock-up is shown in Fig. 2. Its design is inspired
by the interior of a Mercedes A-class A200 [15]. It provides
a large L-shaped S3D dashboard (appr. 90 cm × 60 cm)
via rear-projection. The projector provides S3D images with
a resolution of 2560 × 1600 pixels at 120 Hz (in S3D
mode: 60 Hz per eye). A first-surface mirror redirects the
image from the projector onto the projection surface. Stereo
vision has been realized using volfoni Edge RF glasses2

and a volfoni ActivHub RF503. For head-tracking, we used
an Optitrack Motive system4. Primary input devices of the
mock-up are a Thrustmaster TX Racing Wheel Leather
Edition and pedals5.

The UI software responsible for displaying content on
the car mock-up consists of two basic components: the
tracking system (in our case Optitrack Motive) and the
user interface software. The latter was built with Unreal
Engine 4.22.3. An off-axis projection is used to correct
shear-distortion introduced by stereoscopic 3D rendering.
This leads to an improved visualization of virtual objects
[1]. Communication between driving simulation and user
interface software (c.f. Section 4.2) was realized via local
area network (UDP).

2http://volfoni.com/en/edge-rf/, 2020-05-16
3http://volfoni.com/en/activhub-rf50/, 2020-05-16
4http://optitrack.com/, 2020-05-16
5http://thrustmaster.com/de DE/produkte/
tx-racing-wheel-leather-edition, 2020-05-16
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Fig. 2 Side-view of the mock-up showing the projector, first-surface
mirror, black-out fabric, and primary control elements

The time it takes for a single frame of motion data from
Optitrack to reach Unreal Engine is LMotive = 5.18 ms6.
In our setup, Unreal Engine 4 has a between-frame latency
of LUE4 = 8.3 ms (120 Hz). These measurements were
acquired on a workstation equipped with two Quadro K6000
(one powers UI software and one the driving simulation),
an Intel Xeon CPU E5-2670 v3 @ 2.30 GHz, and Gigabit
LAN. The projector displays images with 120 Hz per second
(LProjector = 8.3 ms per image). In S3D, the projector
displays the images with 60 Hz per eye (16.6 ms). Together,
this results in a latency estimation of L = 30.08 ms. These
calculations do not include additional delays introduced
by transmission between components. Hence, the absolute
latency L is slightly higher. While motion-to-photon latency
needs to be measured with special devices (c.f. Choi et al.
[14]), this calculation provides an informed estimation of
our system’s latency.

4.3 Car and automation capabilities

For our experiment, the car was in automatic mode—
no manual shifting was required. We designed the
following automation system: The car is able to drive with
conditional automation of SAE level 3 on a highway (partial
automation, Society of Automotive Engineers, [62]). An
icon located between the speedometer and the tachometer
indicated the state of the automation system (c.f. Fig. 1).
This indicator was gray when the vehicle was outside
its operational design domain, orange if automation is
off but could be enabled, green when automation was
enabled, and red during certain take-over requests. Partial
automation could only be activated when the vehicle was
on the center lane (to enforce that participants are located

6https://v21.wiki.optitrack.com/index.php?title=Latency
Measurements Client Latency, 2020-05-16

at the correct lane when the TOR will be issued). To turn
on automation, participants had to push a green button
on the steering wheel. With automation enabled, the car
could hold the center lane, maintain distance to leading
vehicles, and overtake cars on the right lane. It maintained
a speed of 120 km/h which is a common speed on a
German autobahn. Automation turned automatically off if
participants turned the steering wheel more than 10◦ in
either direction or pushed a pedal more than 10% [25].
Note that the steering wheel was calibrated and centered
automatically for each participant using the control panel
application of the manufacturer7 . The influence of 10%
steering on the vehicle’s velocity is �v = −1.420 km/h per
10 s (SD = 0.014 km/h; averaged over N = 5 trials). Initially,
the value was set to 2◦ but our steering wheel has some
backlash (or play). Hence, we had to increase the steering
wheel angle from 2◦ to 10◦. The operational design domain
of the car does not include evasive maneuvers requiring
lateral movements. Participants always drove with partial
automation enabled except during the take-over maneuvers.

4.4 TOR locations

While driving an automated car, the driver-passenger does
not necessarily monitor the road or the instrument cluster.
However, most warnings are displayed on the instrument
cluster. This might lead to situations where users miss
critical information. Hence, we also evaluate locations that
might be more suitable during time-critical situations and
might better support the driver-passenger in handling such
situations. We defined three locations for displaying the
directional TOR. They are shown in Fig. 3:

– TOR-IC: The area behind the steering wheel at the instru-
ment cluster where warnings are usually displayed.

– TOR-FoA: The location on the dashboard where the
user’s attention is during automated driving (FoA: focus
of attention).

– TOR-Large: The large area at the center stack. In
this condition, all other elements of the dashboard are
hidden to mitigate visual distraction.

TOR-IC is the location behind the steering wheel where
today’s vehicles often show information about advanced
driving assistance systems like lane keeping assist or
adaptive cruise control. This location has led to promising
results in previous studies on multimodal take-over requests
that used visual warnings as drivers are used to check there
for updates and warnings. The TOR-FoA location (FoA:
focus of attention) was chosen to assess the potential of
future systems that could track the users gaze and display

7https://support.thrustmaster.com/en/product/
txracingwheelleather-en/, Thrustmaster - Technical support, 2020-07-14
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Fig. 3 Locations of the visualization of the take-over requests: TOR-IC at the instrument cluster, TOR-FoA at the focus of attention, TOR-Large
at the large upper area of the center stack

time-critical warnings at the current fixation location.
In the final study, we used a non-driving-related task
(c.f. Section 6.3) to make sure that users had focused
on a certain location which we then considered as the
focus of attention. With TOR-Large, we want to assess if
prominently displaying the take-over request supports the
driver. For that, we remove all other visual elements on
the dashboard to reduce visual clutter and display the take
over request on the large empty area at the upper center
stack. The baseline condition uses the same location as
TOR-IC but a different visualization: a simple icon in the
design language of the automation indicator (c.f. Fig. 3).
Here, symbols in today’s cars inspired the design. Note,
contrary to the other three conditions, the baseline provides
no additional information about the surroundings.

5 Pre-study: design of the TOR visualization

Due to the absence of existing literature for visual
directional take-over requests, we designed a preliminary
TOR visualization for a smart S3D take-over request.
The objective was to make an easy-to-understand visual
representation of the current traffic situation that can be
perceived and processed in a short period of time. It should
further indicate potentially dangerous objects. The design
is intended for the driving situation of our study where a
car in front of the ego car on the center lane performs a
full stop and also hides a vehicle that is in front of it (c.f.
Section 6.2). We decided to run an informal pre-study with
few participants to guide design of the visualization.

For the initial design, we took inspiration from visualiza-
tions of navigational systems and visualizations of advanced
driving assistance systems (e.g., semi-automated vehicles,
lane keeping assist systems, adaptive cruise control) that
provide not only status information but also information
about the surroundings (e.g., Tesla Model S). The visual-
izations were 2D graphics and varied in level of detail (c.f.
Fig. 4). During the design phase, we realized that distances

had to be modified to only represent relative distances due to
the available design space and the zone of comfort [69]. All
visualizations presented similar amount of information: the
position of the ego vehicle, the position of dangerous actors
(red), and the current environment (road etc.). Further, for
each pair, one instance presented navigational information
in the form of arrows.

In the abstract TOR (Fig. 4a), cars are stylized as cubes,
the road is a plain surface, and colors indicate the ego
vehicle and a potentially dangerous object. The objective

Fig. 4 Three pairs of take-over requests — a abstract, b photo-
realistic, and c mixed — presented during pre-study showing the ego
car, other vehicles, and a warning sign indicating potentially dangerous
objects. Each pair consist of one visualization with arrows indicating a
safe direction and one without arrows
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of this version was to show a very basic visualization
of the surroundings, containing only the most important
information (the location of objects and the potential danger
they pose). We thought that the absence of many visual
elements would make information processing faster and
hence, increase reaction time and take-over quality. In the
photo-realistic TOR (Fig. 4b), colors in the notification
match colors of the driving simulation. The guardrail,
detailed road markings, and terrain were displayed. The
ego-car is a vehicle and a warning sign indicates potentially
dangerous objects. Primary intention of this version was
to replicate the road scenario as closely as possible to
make it easier for the participant to map the provided
information to the real world. In the mixed TOR (Fig. 4c),
colors of cars indicate potential danger (red), the ego car
is green (inspired by navigation devices), it shows only
the own lane with road markings, and no environment is
displayed. In this compromise between photo-realistic and
abstract, we intended to keep the design pseudo-realistic.
By that, we hoped to keep the visualization aesthetic without
overloading it with unnecessary details.

5.1 Sample and procedure

We invited N = 5 (2 female, 3 male) people from university
campus (24–36 years old; Mage = 30 years, SD = 6.52). All
possessed a valid drivers license and drove their car every
day during the week.

The aim of this participatory design study (getting
insights on the design of visual warnings for time-
critical take-overs) was explained to participants. After
that, participants took a seat in the simulator and enabled
automation. They were repeatedly encouraged to think-
aloud during the drive and to pay attention to the dashboard.
In regular intervals, they saw one of the six visualizations,
had to take over control of the vehicle, and avoid the
obstacles on the road. After each take-over, we paused the
simulation and asked participants about their opinion on the
visualization. After that, they were told to enable partial
automation again. The TOR was only a visual warning
without an audio signal. They did not execute a non-driving-
related task. All participants experienced all visualizations
on all locations in randomized order.

5.2 Results

All participants commented that the visualization showing
the surroundings could be a good idea. Three out of 5
participants mentioned that the abstract design is too plain,
especially the road. One participant was unsure if the gray
area depicts only one lane or the complete side of the
road. The photo-realistic version was perceived as the most
visually pleasing one but all participants mentioned that it

might be very overloaded and distracting when there is a
crowded road or an environment that contains many objects
(e.g., a highway rest area). All participants commented that
it is not a good idea to depict the ego vehicle as a car because
it was not easily recognizable. Being in a car mock-up, they
probably lacked a visual representation of the “car” they
are sitting in. Four out of 5 participants preferred the mixed
version because it showed them the most important objects
with basic information of the environment. Regarding the
navigational markers, 4 out of 5 participants stated that they
liked the idea, but they were also very skeptic about the
accuracy of such recommendations, especially in critical
situations. One participant stated that he would “always and
ever double check such recommendations - Google Maps
makes errors, too.” Regarding the warning sign, participants
mentioned that the general idea is good but that it could
be displayed more prominently because it is actually the
most important item. Four participants also mentioned that
the visualization on the center stack (TOR-Large) could be
larger to better utilize the available display space.

Key takeaways of the pretest are:

– Recommendations during critical situations require a
high level of trust in automation.

– The visualization of the TOR should show only
necessary information and basic environmental objects.

– The ego car must be easily identifiable.
– Sources of potential danger must be marked very

prominently.

5.3 Final TOR visualization

Based on the pre-study, we redesigned the visualization of
the TOR. The final version is shown in Fig. 5 and has the
following properties and design elements:

– Other potentially dangerous cars are red.

Fig. 5 Final TOR visualization redesigned based on results of the pre-
study. It shows the ego car in green; other objects are highlighted in
red. Red signs with an exclamation mark indicate locations that require
special attention
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– The road is shown with lane markings.
– A green arrow indicates the position of the ego car.
– Warning signs indicate dangerous objects or areas.

The green triangular shape was chosen as a representation
of the ego vehicle because similar versions are used in
in today’s navigational systems. Other cars are shown in
their relative location with the appropriate car type (e.g.,
truck and sedan). The visualization shows the lane of the
ego vehicle with markings. We refrained from arrows that
recommend a driving maneuver to prevent potential slow
downs introduced by confirming the additional information
based on participants comments and also previous results
from Endsley et al. [21]. The warning sign was re-positioned
so that it is better visible. Another sign was added, if there
is potential danger behind the ego vehicle. The baseline
condition as well as the final visualization applied to the
locations is shown in Fig. 6.

5.4 Stereoscopic 3D configuration

In the S3D condition, inter-pupillary distance was constant
across all participants and set to IPD = 63 mm (c.f.
Howard et al. [27]). Disparity was calculated according
to McIntire et al. [40] for a viewing distance of 80 cm.
Following participants’ feedback from the pretest, the size
of TOR-Large was scaled up with a factor of 1.36. The
visualizations’ sizes and disparities are listed in Table 1.

The user interface was designed so that all objects are
displayed within the zone of comfort [69]. Gauges for speed
and RPM were displayed with a binocular disparity of 0◦.
We further provide visual reference points at screen level
and displayed the main content of the take-over requests
behind the projection plane [7]. Also, we applied a head-
coupled perspective to provide the best possible projection
and counteract unnatural motion parallax as well as shear-
distortion [68]. Simultaneously to the visual TOR, we
provide an auditory warning that increases in pitch for 1 s.

6 Study: evaluating the TOR visualizations

6.1 Conditions

The study had a between-within 4 × 2 design yielding
8 different conditions. Between-subject factor was type of
TOR with four levels: TOR-IC, TOR-FoA, TOR-Large, and
baseline. Within-subject factor was dimensionality of the
presentation with two levels: S3D and P3D. Table 2 shows
the conditions.

Our study and the scenario are intended to resemble a
hypothetical situation where a leading vehicle on a highway
has to perform a full stop due to some (unknown) hazard.

Fig. 6 The four TOR conditions Baseline (a), TOR-IC (b), TOR-FoA
(c), and TOR-Large (d) with a tachometer, speedometer (both black),
the n-back task (white circle in the lower right area), and the take-over
requests. Baseline provides no additional information
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Table 1 Disparities D and size of the TORs

TOR-IC TOR-FoA TOR-Large Baseline n-back

DNearestP oint (◦) –.005 –.005 –.005 0 .002

DFarestP oint (◦) .016 .016 .024 .002 .003

Width (cm) 13 13 17.7 12 12

Height (cm) 4.5 4.5 6.1 12 12

Depth (cm) 33 33 45 2 1

Negative disparities indicate positions in front of the screen

In this case, the driver has to perform an evasive maneuver.
In our case, simply hitting the break is not possible due to
a tailing vehicle. Participants were told that the conditional
automation system receives data of other vehicles via V2V
communication and that this data is integrated into the
visualization of the take-over request. We want to assess
if these TOR visualizations perform better or worse than
traditional take-over requests and if the presentation in
S3D leads to improvements compared with P3D while not
impeding workload.

6.2 Driving task

Participants started in the center lane of a German autobahn
with three lanes in each direction and light traffic (about
5 cars every 1 km). They started driving and turned
on the automation system when they felt comfortable.
The dashboard showed a speedometer, tachometer, the
automation indicator, and the n-back task (c.f. Fig. 6a). After
3 min of driving with partial automation enabled, the car
encountered a truck in the center lane and followed it. For
this, it decelerated to a speed of 80 km/h and maintained
distance for a time between 20 and 35 s. At some time
during this interval, the truck performed a full stop. Five
seconds before collision with the truck, the car issued a take-
over request [10, 25]. With that, the dashboard changed to
one of the four TOR conditions shown in Fig. 6. Participants
were then required to take over control, evade the truck

Table 2 Conditions of the user study with a 4 × 2 design (between:
TOR, within: dimension)

Within: Dimension

S3D P3D

Between:
TOR

Baseline at instru-
ment cluster

S3D:Baseline P3D:Baseline

TOR at instrument
cluster

S3D:TOR-IC P3D-TOR-IC

TOR at focus of
attention

S3D:TOR-FoA P3D:TOR-FoA

TOR at center stack S3D:TOR-Large P3D:TOR-Large

and also a vehicle that was hidden either on the left or
right lane, 25 m in front of it. Figure 7 illustrates the take-
over situation. After that, participants turned on automation.
The dashboard returned to its initial layout (speedometer,
tachometer, automation indicator, n-back task).

In general, participants could perform a full stop without
an evasive maneuver. However, they were instructed to
avoid any crashes and in our scenario, a car behind the ego
vehicle was close (40 to 60 m) and would have crashed into
it during a full stop. The vehicle was visible in the rear-view
mirror. The critical event happened four times during each
drive. Figure 8 exemplary illustrates a critical event.

6.3 Non-driving-related task

While driving in automated mode, participants were
required to perform the n-back task (n = 2) [60]. Participants
saw a number that changed every 1.5 s to another number
between 1 and 10. They had to remember the second last
number and hit the enter button of a keypad if they matched.
The keypad was positioned on an armrest to their right.
The n-back task was chosen because it constantly requires
attention. By that, we force the driver to look away from
the screen and enforce engagement in a non-driving-related
task (similar to reading something on a display in the center

(a) View of the driver when the TOR was issued. The

green car is hidden.

(b) A few moments after the TOR was issued. The green

car makes one of the two possible evasive maneuvers more

dangerous (here, left is more dangerous than right).

Fig. 7 Driving simulation during a TOR: When the truck suddenly
brakes, the driver has to evade it (a). A vehicle is hidden either on the
left or right side behind the truck (b)
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ego ego Lorry

Take-over request; dashboard
shows one of the four TOR 
cond ons; p pant has to take
over control

Car drives in automated 
mode

ego

ca. 3min TTC = 20-35s

Car follows lorry 
in automated 
mode

TTC = 5s

Dashboard shows speedometer, tachometer, 
and the n-back task; automa on indicator is 
green. P pant does the n-back task.

Fig. 8 Exemplary illustration of a take-over event with timings of the three phases. In total, there were four such take-over requests

stack). Participants were instructed to score as high as
possible in the n-back task and by that, encouraged to do
their best.

6.4 Procedure

When participants arrived, they were asked to sign a consent
form. After that, they took a seat in the driving simulator
and were handed information about the experiment, simu-
lator, automation capabilities, and take-over requests. Sub-
sequently, they filled out a demographics questionnaire and
the Motion Sickness Susceptibility Questionnaire (MSSQ).
Each participant had to pass a stereo vision test by pointing
out a rectangle on a random dot stereogram [64]. Continu-
ing with the experiment, participants put on the eye tracking
and shutter glasses. The experimenter guided the partici-
pants through a 5-min training drive to get them accustomed
to vehicle physics, non-driving-related task, and take-over
requests. After this introductory phase, the first experi-
ment condition started (either P3D or S3D). According to
a counterbalanced procedure, participants were assigned to
a TOR-group and started either with S3D or P3D visu-
alization. Each of the two drives took about 12 min and
participants encountered four events each where they had
to take over control. After the first drive, visualization was
switched to either P3D or S3D. After each drive, partic-
ipants had to fill out the User Experience Questionnaire
(UEQ) and the Simulator Sickness Questionnaire (SSQ).
That concluded the experiment. Approximate experiment
duration was 40 min. Participants had the chance to win 50
Euros.

6.5 Measures

6.5.1 Subjective measures

We check for simulator sickness using the Simulator
Sickness Questionnaire (SSQ) [28]. User experience is

evaluated with the User Experience Questionnaire (UEQ,
[32]). Both questionnaires were provided using a tablet pc
with the participant sitting in the simulator.

6.5.2 Glance behavior

We measured glance behavior using an Ergoneers DIKAB-
LIS Professional eyetracker and D-Lab 3.51.8 We defined
four area of interests (AOIs): one for each TOR, covering
the area on the dashboard where it is displayed (TOR-IC and
baseline are sharing one area), one area for the road cover-
ing the area in front of the participant above the dashboard,
and one area covering the rear-view mirror. We extracted the
following data:

– Number of glances at the TOR visualizations
– Mean glance duration at the TOR visualizations
– Time to first glance at the road
– Pupil diameter
– Time-series data on glances at the AOIs

We started measuring gaze behavior when participants
started automation first and stopped when they reached the
end of the track.

We further use scarf plots [4] to analyze the glance
behavior of participants regarding the AOIs. By that, it
is possible to get insights on how participants used the
visualizations of the TORs during the take-over process. We
use this data to highlight the gaze behavior of participants
and perform a qualitative analysis.

As scarf plots are good for illustrating gaze patterns and
their duration, they make comparisons across the sample
hard due to their cluttered nature [74]. Hence, we also report
participant’s fixation transition patterns regarding the AOIs
to evaluate the gaze behavior during take-over maneuvers.
In addition to that, we analyze the single transitions from
one AOI to another. Both methods allow us to investigate

8http://ergoneers.com, 2020-05-16
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differences of the gaze behavior and to understand the effect
of the dimension (P3D/S3D) and the TOR visualizations.

6.5.3 Workload

We measured workload of participants directly during the
take-over process via ocular measures. This avoids post-
rationalization and recall bias. It also ensures that the
workload data is directly related to the TOR event and
not, for example, to the secondary task or the overall
driving task. We refrained from using additional subjective
measures (e.g., NASA TLX, DALI) to not lengthen the
duration of the experiment.

Mean pupil diameter change. We recorded pupil diameter
and calculated the mean pupil diameter change MPDC
following the procedure of Palinko et al. [49].

MPDC =
∑nTOR

i=0 (MPDn − MPDtotal)

nTOR
(1)

with MPDn being the mean pupil diameter per event,
MPDtotal being the mean pupil diameter per participant,
and nTOR representing the number of TORs. A low MPDC
indicates low mental workload.

Mean pupil diameter change rate. Calculation of the mean
pupil diameter change rate MPDCR is based on the
procedure of Palinko et al. [49]:

MPDCR =
∑nTOR

i=0

∑nT −1
j=1 F ′(t)
nT −2

nTOR
(2)

with t representing the time, nT the total amount of pupil
diameter entries, nTOR the number of TORs per participant,
F ′(t) = F(t+h)−F(t−h)

2h
, h the time between measurement

points, and F(t) returning the mean pupil diameter MPD
at a time point t . If the MPDCR is positive, the pupil
dilated during the event. This can represent increased mental
workload and vice versa. According to Palinko et al. [49],
this measure is especially suited for detecting changes in
cognitive load during time intervals of several seconds.

Mean blink duration change. Similar to MPDC for the
pupil diameter, we measure blink duration (MBD) and
calculated mean blink duration change MBDC.

MBDC =
∑nTOR

i=0 (MBDn − MBDtotal)

nTOR
(3)

Again, the smaller the MBDC, the lower the average blink
duration during the events compared with the average blink
duration of the whole drive. A positive MBDC means that
the blink duration during events is larger than the duration
during the rest of the drive. A decreased blink duration is an
indicator for increased mental workload [30, 38].

Blink latency. Blink latency BL was measured as the time
between the TOR and the first blink. Previous work states
that blink inhibition in time-critical events is related to
the fact that humans want to perceive as much visual
information as possible before blinking. Hence, with
increasing visual workload, blink latency has been shown to
increase [3, 30, 59].

6.5.4 Driving-related measures

For each participant, we calculated the number of safe take-
overs. Maneuvers were classified into two classes: correct
and incorrect. The maneuver was correct if the evasive
action did not go towards the lane with the hidden vehicle
and there was no accident or full stop and vice versa.
We further calculated the time from the TOR to the first
interaction with the steering wheel or pedals that exceeded
either 10◦ in wheel turn angle or 10% of pedal position
(motor reaction time).

6.5.5 Non-driving-related task performance

We calculated the nBackRate for each participant which
indicates how well s/he performed in the non-driving-
related task. For this, we calculated the success rate
in percent per participant. We counted a success if the
participant hit the enter key at the correct number. If s/he
missed, pressed the button on the wrong number, or pressed
it too late, it counted as a failure. We use this measure to
control if participants were out of the loop and focused on
the non-driving-related task.

6.6 Sample

The final sample consisted of 52 participants (34 male,
18 female; aged 19–63 years, mean age M = 31.9
years, SD = 10.6 years). We used convenience sampling
for recruitment via university mailing lists and posts in
Facebook groups. All participants had a valid driving
license, either normal or corrected vision, and had passed a
stereo vision test [64]. Thirty-six had previous experience
with stereoscopic displays. Thirty participants had no
experience with driving simulators, 10 once, 7 more than
once and less then 5 times, and 5 more than 5 times.
Mean score of the Motion Sickness Susceptibility score is
M = 8.45 (SD = 7.06).

7 Results

Data was analyzed using R 3.6.1 (afex 0.24.1, bestNormal-
ize 1.4.0, emmeans 1.4, and fBasics 3042.89). An α-value
of 0.05 was used as significance criterion were necessary
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(significance codes: ***: p < 0.001, **: p < 0.01, *:
p < 0.05). Outliers were removed if they were above or
below 2 times the inter-quartile range [19]. All data was nor-
mal distributed unless stated otherwise (tested with Shapiro-
Wilk test for normality and QQ-plots [75]). All data showed
homoscedasticity according to Levene’s tests. Data was ana-
lyzed with mixed ANOVAs. For all mixed ANOVAs, no
corrections were necessary (all p values for Mauchly’s test
p > .05). Post hoc analysis was performed using Tukey-
corrected pairwise comparisons. If not stated otherwise, the
data of 52 × 2 × 4 = 416 take-overs was analyzed.

Of the 416 take-over maneuvers, 119 of them were
classified as wrong. Fourteen of these wrong maneuvers
were due to the participants making a full stop of the
highway (not the emergency lane) and by that risking or
actually being in a rear-end collision.

7.1 SSQ

A two-way mixed ANOVA yielded no significant main
or interaction effects of the factors TOR and dimension
(p > .07; nausea: M = 16.05, SD = 14.76, oculomotor:
M = 20.99, SD = 18.18, disorientation: M = 16.66,
SD = 21.70, total: M = 21.54, SD = 18.75).

7.2 n-back performance: nBackRate

Data on nBackRate was not normal distributed. Hence,
we applied an ordered quantile normalizing transforma-
tion [53]. Overall, participants performed with an nBack-
Rate = 81.75% (SD = 12.91%). A mixed ANOVA did
not indicate significant main or interaction effects in trans-
formed n-back performance (TOR: F(3,48) = 0.93, p = .434,
η2

p = .05; dimension: F(1,48) = 1.42, p = .239, η2
p = .03;

interaction: F(3,48) = 0.43, p = .731, η2
p = .03). This means

that the groups did not show any differences in performance.

7.3 User experience

Data of the UEQ scales did not show normal distribution.
A ordered quantile normalizing transformation restored
normal distribution. For the transformed Attractiveness
scale, there is a significant interaction effect of TOR and
dimension, F(3,48) = 4.30, p = .009, η2

p = .21. Post hoc
analysis shows a significant difference between baseline-
P3D (M = 0.86, SD = 1.10) and baseline-S3D (M = 1.41,
SD = 0.99) in favor of the S3D condition, t(48) = 3.270,
p = .0386, Cohen’s d = 0.52. This result tells us that
the baseline-P3D condition was less attractive than the
baseline-S3D condition. All other factor combinations are
not significantly different in attractiveness.

For the transformed stimulation scale, there was a signif-
icant main effect of TOR, F(3,48) = 5.40, p = .003, η2

p = .25.
Post hoc analysis revealed significant differences between
baseline and TOR-IC (t(48) = 3.193, p = .0129, Cohen’s
d = 0.997) as well as baseline and TOR-FoA (t(48) = 3.299,
p = 0.010, Cohen’s d = 0.010). That means that both TOR-
IC (M = 1.416, SD = 0.850) and TOR-FoA (M = 1.442,
SD = 0.983) were perceived as more exciting and motivat-
ing then the baseline (M = 0.413, SD = 1.138). There were
no other significant main or interaction effects.

To put the results in context, we further classified the
results of the UEQ according to the benchmark results
of Schrepp et al. [63]. Figure 9 illustrates the result of
this classification. It can be seen that, according to this
classification, there are hardly any differences between
S3D and P3D. Between the TOR conditions, TOR-IC and
TOR-FoA fall in slightly better categories compared with
TOR-Large and baseline.

7.4 Eyemeasures

We subdivided the total measurement into intervals starting
with the TOR and ending 7 s after that. After 7 s, all
participants had handled the situation. All participants

Fig. 9 Classified UEQ results by dimension (a) and TOR condition
(b). The larger the better. From inner to outer line: bad - below average
- above average - good - excellent
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looked at the lower center stack when a TOR was issued and
5 s before that.

7.4.1 Number of glances

There was a statistically significant interaction effect of
TOR and dimension on the number of glances at a TOR
(F(3,48) = 3.30, p = .028, η2

p = .17) as indicated by Fig. 10.
Post hoc tests revealed significant differences between S3D-
TOR-IC and all other factor combinations except S3D-
TOR-Large, t(48) > 3.421, p < 0.05, Cohen’s d > 0.77.
That means that participants looked significantly more often
at S3D-TOR-IC than at any other TOR visualizations except
S3D-TOR-Large.

There was also a main effect of TOR (F(3,48) = 4.88,
p = .005, η2

p = .23) and also of dimension (F(1,48) = 5.88,

p = .019, η2
p = .11). The former indicates that TOR-IC

attracts more glances than baseline and TOR-FoA. The
latter indicates that P3D leads to fewer glances at any TOR
than S3D. However, the interaction effect reflects both.

7.4.2 Mean glance duration

Figure 11 illustrates the mean glance duration for each
factor combination. A two-way mixed ANOVA shows
a significant main effect of TOR on glance duration,
F(3,48) = 19.30, p < .001, η2

p = .55. The baseline TOR
shows a significantly shorter mean glance duration than
TOR-FoA, t(48) = -7.394, p <.0001, Cohen’s d = 2.55.
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Fig. 10 Interaction effect of dimension and TOR on number of
glances at a TOR visualization during a take-over. S3D-TOR-IC is
significantly larger than any other value except S3D-TOR-Large
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Fig. 11 Summary of mean glance duration at TOR visualizations
(mean and standard deviation). In total, participants looked longer at
TOR-FoA than at the other TORs. TOR-IC was looked at longer than
the baseline TOR

Also, TOR-IC accumulated a significantly shorter mean
glance duration than TOR-FoA, t(48) = -4.603, p = 0.0002,
Cohen’s d = 1.61. In the same way, participants spent
significantly less time looking at TOR-Large than TOR-
FoA, t(48)=5.194, p < .0001, Cohen’s d = 1.58. In
summary, this suggests that the TOR-FoA was observed
longer than all other TORs. In addition to that, the baseline
TOR lead to a significantly shorter mean glance duration
than TOR-IC, t(48) = -2.791, p = 0.037, Cohen’s d = 1.26.

Results did not indicate a significant main effect of
dimension, F(1,48) = 0.08, p = .783, η2

p < .01. We
can assume that neither S3D nor P3D did significantly
influence glance duration during our experiment. We do
also not observe a significant interaction effect of TOR
and dimension, F(3,48) = 0.61, p = .612, η2

p = .04. That
tells us that no combination of take-over request and
dimension of presentation significantly differs from another
one regarding mean glance duration.

7.4.3 Time to first glance at road

Figure 12 illustrates the times it took participants to look
at the road for the first time. The type of TOR did have
a significant effect, F(3,48) = 4.06, p = .012, η2

p = .20.
Results of post hoc tests indicate that, compared with TOR-
IC, participants needed less time to look at the road when
confronted with the baseline condition, t(48) = -3.341,
p = .0085, Cohen’s d = 0.84. We did not find any other
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Fig. 12 Summary of eye-tracking data showing the time to the first
glance at the road (mean and standard deviation): Compared with
baseline, participants looked later at the road when TOR-IC was
presented

main or interaction effects. The former tells us that the time
to the first glance on the road did not significantly differ
between TOR visualizations—regardless of dimensionality.
The latter indicates that no factor combination led to
significantly higher or lower time it took participants to look
at the road.

7.4.4 Glance behavior regarding AOIs

Gaze over time. Each scarf plot in Fig. 13 shows the glance
behavior of the 52 TOR events for a single TOR. One
line represents one single take-over event. For the baseline
condition, Fig. 13a and e indicate that the gaze remained on
the lower right location for a short time after the TOR was
issued. After that, participants mostly looked either at the
mirror or to the front. It is noticeable that participants in the
P3D-Baseline condition looked more often at the rear-view
mirror than participants in the S3D-Baseline condition.

In the TOR-IC condition (c.f. Fig. 13b and f), the
gaze quickly shifts to the instrument cluster and the TOR
visualization. It then shifts to the front or to the mirror. It
is noteworthy that for many participants, there are several
switches back to the instrument cluster. This is indicated by
many short subsequent blue lines in one row. There are few
glances at the rear-view mirror but overall, not as many as in
the baseline condition. Opposite to the baseline condition,
there is no salient difference between P3D and S3D.

The TOR-FoA visualization (c.f. Fig. 13c and g) attracted
very few subsequent glances but rather long initial glances.
The figures indicate that the total time participants looked
at the TOR is often longer than the time it took participants
to look from the n-back task to the IC and then to the road.
Also, there were hardly any glances at the rear-view mirror
or the IC but participants mostly looked directly at the
road. Similarly to TOR-IC, there are no salient differences
between S3D and P3D.

Finally, the large TOR visualization (c.f. Fig. 13d
and h) often attracted one short glance per participant, only
sometimes followed by another glance at the TOR. If such
a glance happened, it usually happened close to the first
one. There are very few glances at the instrument cluster or
the rear-view mirror. Again, no obvious differences between
S3D and P3D could be found.

Gaze transitions patterns. Figure 14 shows the distribution
of the single gaze patterns or transitions, but without giving
information about the duration of a gaze. Here, each single
digit (or key) on the x-axis represents a dedicated area
of interest. Several digits (or keys) form a pattern and
indicate the gaze path across area of interests over time.
To analyze possible differences between the gaze transition
patterns in the P3D and S3D condition per take-over
visualization, we performed Fisher’s exact tests. With them,
we investigated if there is any link between dimension of
the visualization and the measured gaze transition patterns.
For TOR-IC and TOR-FoA, no significant differences could
be found (p > 0.0559, Fig. 14b and c). That indicates
that the distribution of measured gaze patterns is the same
in the P3D and S3D condition for these visualizations.
Nevertheless, it is noteworthy that the TOR-IC visualization
led to almost twice as many gaze patterns as the other three
TOR visualizations.

For TOR-Large (p = 0.0493, c.f. Fig. 14d) and the
baseline visualization (p = 0.0373, c.f. Fig. 14a), Fisher’s
exact tests indicated significantly different distributions.
Salient differences are that, in the Baseline-S3D condition,
participants looked more often directly from the n-back task
(key 1) at the road (key 5, pattern “15”). In the Baseline-P3D
condition, participants looked more often from the n-back
task (key 1) to the road (key 5), than on the mirror (key
4) and finally back on the road (pattern “1545”). In the
TOR-Large-S3D condition, it is noticeable that users looked
more often from the n-back task (key 1) to the TOR-Large
visualization (key 3) to the road (pattern “135”). In the
TOR-Large-P3D condition, participants often looked back
from the road to the TOR visualization (pattern “13535”).

Gaze transition matrices. To analyze gaze transitions in
detail, we split the patterns listed in Fig. 14 into pairs. For
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Fig. 13 Scarf plot of glances at TOR visualizations during take-over
over a time interval of 5s (Baseline/TOR-IC=blue, TOR-FoA=green,
TOR-Large=orange, rear-view mirror=beige, front=grey). Base-
line (a, e) shows the default gaze behavior. TOR-IC (b, f) shows many

short glances at the visualization whereas TOR-FoA (c, g) shows few
but long glances at the visualization. TOR-Large (d, h) shows rela-
tively few and short glances at the visualization. TOR-FoA (c, g) and
TOR-Large (g, h) show few glances at the rear-view mirror

example, “15” is a transition from the n-back task (key 1) to
the road (key 5). This resulted in frequency tables telling us
how often participants performed transitions. We tested the
frequency tables with Fisher’s exact test. Results indicated
no significant differences between P3D and S3D for TOR-
FoA, TOR-Large, and TOR-IC (p > 0.1849). That suggests
that dimension did not significantly influence the likelihood
of a gaze transition between two AOIs.

For the baseline condition, the Fisher’s exact test
indicated significant differences (p = 0.0290, c.f. Fig. 15).
Salient differences are that participants in the P3D condition
looked more often from the mirror (key 4) to the road (key
5) and vice versa. That indicates that participants in the
Baseline-S3D condition checked the rear-view mirror more
often during the take-over maneuver. Also, participants in
the S3D condition looked more often from the instrument

Fig. 14 Gaze transition patterns during the S3D take-over processes
for Baseline (a), TOR-IC (b), TOR-FoA (c), and TOR-Large (d) (x-
axis: 1 = TOR-FoA, 2 = TOR-IC, 3 = TOR-Large, 4 = rear-view
mirror, 5 = front/road; example: “125”: gaze switched from TOR-FoA

to the area covering the TOR-IC to the road). Distributions of P3D
and S3D in the conditions Baseline (a) and TOR-Large (d) differ
significantly
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Fig. 15 Difference between gaze transition in the Baseline-P3D
condition and the Baseline-S3D condition. Values smaller than zero
indicate that the transition was more often measured in the S3D
condition (and vice versa)

cluster (key 2) to the road (key 5) and vice versa.
That suggests that they were checking if the baseline
visualization provides additional information.

7.5Workload

7.5.1 Blink latency

Blink latency describes the interval between the time the
TOR was issued and the time the participant blinked
first. Mean blink latency of the untransformed data is
(M = 992.27 ms, SE = 55.41 ms). Data on blink latency
was not normal distributed. Hence, we applied an ordered
quantile normalizing transformation. Fifteen participants
did not blink during the 7-s interval after issuing the TOR.
For the analysis, we set their blink latency to the maximum
of the observed interval of 7 s. We analyzed data using a
mixed ANOVA. We did not uncover significant main or
interaction effects, indicating that transformed blink latency
did not differ significantly between conditions and factor
combinations (TOR: F(3,48) = 1.66, p = .187, η2

p = .09;

dimension: F(1,48) = 0.18, p = .669, η2
p < .01; interaction:

F(3, 48) = 0.52, p = .668, η2
p = .03). Note, analyzing

data without participants who did not blink did also not
uncover significant differences. These results suggest that
blink latency and in return, mental workload, did not differ
between groups in the transformed data.

7.5.2 MBDC: mean blink duration change

We calculated MBDC without the 15 participants who did
not blink as there was no logical replacement value. Because
of unequal sample sizes, we used type III sum of squares and
orthogonal contrasts [22]. A mixed ANOVA did not indicate

a significant main effect of TOR (F(3,37) = 1.45, p = .245,
η2

p = .10) or an interaction effect of TOR visualization and

dimension (F(3, 37) = 0.28, p = .841, η2
p = .02). However,

results indicate a significant main effect of dimension on
mean blink duration change (F(1,37) = 4.37, p = .043,
η2

p = .11), with MP 3D = -107.09 ms (SE = 7.94 ms) being
higher than MS3D = -114.82 ms (SE = 8.49 ms). That means
that in the S3D condition, mean duration of blinks was
shorter compared with the P3D condition which indicates a
higher workload in S3D.

7.5.3 MPDC: mean pupil diameter change

Data of the mean pupil diameter change was not normal
distributed. We applied a ordered quantile normalizing
transformation to gain normal distribution. A mixed
ANOVA did not uncover any main effects of TOR or
dimension on transformed mean pupil diameter change
(M = 6.32 pixel, SE = 0.42 pixel; TOR: F(3,48) = 1.13,
p = .347, η2

p = .07; dimension: F(1, 48) = 0.00, p = .992,

η2
p < .01). Results also do not indicate a significant

interaction effect, F(3,48) = 1.22, p = .314, η2
p = .07.

That suggests that mental workload did not differ between
groups.

7.5.4 MPDCR: mean pupil diameter change rate

Again, data was not normal distributed and an ordered
quantile normalizing transformation was applied before
calculating a mixed ANOVA. Analysis of the transformed
mean pupil diameter change rate did not uncover a
significant difference (M = 0.011 pixel, SD = 0.008 pixel).
Neither the TOR visualization (F(3,48) = 2.58, p = .064,
η2

p = .14) nor dimension (F(1,48) = 1.30, p = .259,

η2
p = .03) lead to significant main effects. There was also

no interaction effect between the factor combinations, F(3,
48) = 0.19, p = .902, η2

p = .01. By that, results suggest that
there is no difference in transformed mean pupil diameter
change rate and based on that, in mental workload.

7.6 Driving-relatedmeasures

7.6.1 Reaction times

There were no significant main or interaction effects on
participants’ reaction times (M = 1749 ms, SD = 284.8
ms; TOR: F(3,48) = 0.89, p = .452, η2

p = .05, dimen-

sion: F(1,48) = 0.03,p = .875, η2
p < .01, interaction:

F(3,48) = 1.77, p = .165, η2
p = .10). By that, we can assume

that neither the take-over request nor the dimension of the
visualization affected reaction times of our participants.
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7.6.2 Safe take overs

Figure 16 shows mean values and standard deviations
for the number of safe take-overs per participant for
each factor combination. We did not observe a significant
interaction between dimension and TOR, F(3,48) = 2.22,
p = .098, η2

p = .12. That means that no combination of
TOR and dimension is significantly different to another one
with respect to the number of safe take-overs. However,
according to the results of a mixed ANOVA, there is a
significant main effect of TOR on the number of safe
take-overs, F(3,48) = 7.75, p < .001, η2

p = .33.
Post hoc tests showed that the conditions baseline and

TOR-IC differ significantly, t(48) = -4.384, p = .0004,
Cohen’s d = 1.706. Also, the groups TOR-FoA and
baseline differ significantly, t(48) = 3.468, p = .0059,
Cohen’s d=1.605. This suggests that TOR-IC and TOR-
FoA lead to significantly more safe maneuvers, regardless
of dimension. Also, results indicate a main effect of
dimension, F(1,48) = 4.51, p = .039, η2

p = .09. It tells us
that the S3D condition lead to significantly more safe take-
overs than the P3D condition (MS3D = 2.98, SDS3D = 0.960;
MP 3D = 2.73, SDP 3D = 1.06).

7.7 Learning effect

Each participant performed 8 take-overs — 4 in S3D and
4 in P3D. Hence, we checked if driving-related measures
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Fig. 16 Average number of safe take-over maneuvers with standard
deviation (scale: 0–4; 2 being the value a participant can achieve
when always evading either on the left or the right lane or choosing
randomly). TOR-FoA and TOR-IC resulted in more safe take-over
maneuvers than baseline

or workload changed over time. Here, we analyzed the
differences between trials for all participants (8 trials ×
52 participants). We also investigated if there are any
differences between trials for the subgroups of people who
experienced the same take-over visualization (8 trials × 13
participants × 4 TOR visualizations).

For the workload measures, results of a repeated-
measures ANOVA with Greenhouse-Geisser correction
did not show any significant difference between trials,
F(2.03,24.36) < 2.60, p > .094, η2

p < .18. Similarly,
there was also no significant difference in participants’
reaction times (repeated-measures ANOVA with Green-
house-Geisser correction, F(5.44, 277.61) < 1.42, p > .211,
η2

p < .03) or in the number of safe take-overs (Cochran’s

Q-test, χ2(7) = 8.0812, p = .3256).

8 Discussion

We did not find any differences in simulator sickness;
hence, we can assume that such differences do not influence
our results. The results of the UEQ were relatively equal
between groups. While the baseline-S3D condition was per-
ceived more attractive than the baseline-P3D condition, all
other factor combinations were not perceived more or less
attractive. Compared with the baseline TOR, the conditions
TOR-IC and TOR-FoA were perceived more stimulating.
Analyzing the categorization in Fig. 9, it is noticeable
that the conditions TOR-FoA and TOR-IC often perform
better in the classification compared with baseline and TOR-
Large. However, differences were largely insignificant. All
participants were involved in the n-back task. Hence, we
assume that they were sufficiently out of the loop.

8.1 RQ1 and RQ2: added visual information
and location

We assumed that supporting situation assessment with TOR
visualizations that show information about the surrounding
improves situation awareness and results in more safe take-
overs maneuvers.

Contrary to our assumption, we found no effect of the
large TOR at the center stack on the number of safe
take-over maneuvers. We assume that participants did
not or not fully process the information provided by the
visualization. The time participants looked at it is not
significantly different than the baseline. Also, they did
not need significantly more time to look at the road for
the first time. Overall, there was also no significantly
increased number of glances at the TOR. We argue that
most of the participants moved the head to the road and
tried to process the visualization of TOR-Large in a fly-by
motion. The brief first glances and few additional glances in
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Fig. 13d and h illustrate this. We believe that this time might
not be sufficient to process the information. Additional
measurements of the head movements might provide further
insights. Also, a different design that is better conceivable in
a fly-by motion might improve the performance of this type
of TOR.

Participants looked longer at the visualization in TOR-
FoA than at all other take-over requests. We think that
this is because of two reasons: First, we need to consider
that participants were already looking at the location where
TOR-FoA appeared when the take-over request was issued:
they were doing the n-back task. It is likely that their gaze
remained there until they processed the information of the
visualization completely and that it then quickly shifted to
the road. The low number of glances at the visualization
after the TOR was issued, supports this. Figure 13c and g
illustrate this behavior. We can only see very few second
glances per row and most participants performed only one
glance at the visualization of TOR-FoA. All in all (and
despite the longer glance duration), participants performed
significantly more safe take-overs when the visualization
was presented at the focus of attention than in the baseline
condition.

In the TOR-IC condition, participants looked signifi-
cantly more often at the visualization than at all other TORs
except TOR-Large-S3D. Being at a dashboard location that
is quite close to the road, it is likely that participants shifted
their glances between road and the instrument cluster: when
the TOR was issued, most participants switched a few times
back and forth between road and the instrument cluster
which results in the elevated number of glances. The many
short glances in Fig. 13a (scattered blue lines) highlight this
behavior. The time it took participants to look at the road for
the first time is significantly higher than the mean time of the
baseline condition. Because mean glance time at the visual-
ization in the TOR-IC condition is not significantly higher
than baseline, we assume that the additional gaze movement
from the n-back task to the instrument cluster introduced
this increase. Nevertheless, the TOR-IC condition lead to
significantly more safe take-overs compared with baseline.

While we could not find a positive effect of the large
TOR, there was also no detrimental effect in this condition.
Confirming with our initial assumptions, the conditions
TOR-IC and TOR-FoA lead to significantly more safe
takeovers than the baseline condition. In addition to that,
reaction time did not change significantly — regardless of
take-over request and despite the high number of glances
(TOR-IC) or long glance time (TOR-FoA). That is an
indicator that TORs with added visual information about the
surroundings can improve take-over performance.

8.2 RQ3: S3D and P3D

We assumed that by presenting spatial information in a more
natural way and similar to the way humans perceive the real
world — in stereoscopic 3D — participants can process the
information of the smart TOR better and hence, perform
more safe take-over maneuvers.

The dimension of the take-over request did not signifi-
cantly affect reaction time.

There were some differences in gaze behavior between
S3D and P3D. Interestingly, some of them were in the
baseline condition where no TOR visualization showing
the surroundings was displayed. Here, the gaze transition
patterns indicate that participants in the P3D condition
included the mirror more often during the take-over (pattern
“1545”) whereas S3D lead to more patterns from the n-
back task to the road without a mirror check (pattern
“15”). Further analysis of this showed that participants
in the Baseline-P3D condition looked more at the mirror
after having looked at the road (transition “5 – 4” and
“4 – 5” in Fig. 15) whereas participants in the Baseline-
S3D conditions looked more often at the instrument cluster
(transition “5 – 2” and “2 – 5”). Here, is is possible that
the S3D display as an advanced display technique increased
expectations in the driving automation system and that
participants expected to get further helpful information to
master the critical situation. P3D users might have refrained
to more traditional methods to gather information like
checking the rear-view mirrors.

The S3D-TOR-IC lead to significantly more glances
than all P3D conditions and S3D-TOR-FoA. One reason
for this phenomena might be that the glance strategy
with quick glances which shift between road and TOR
visualization does not necessarily work with stereoscopic
images. Research indicates that the human visual system
can need up to 200 ms to fuse stereoscopic images [27].
Short glances below the fusion threshold of an individual
might require additional glances to process the information.

For the S3D-TOR-Large condition, the gaze transition
patterns also indicate more glances from the road back at the
TOR to confirm or gather information shown by the TOR
visualization. Reason for these additional confirmatory
glances could again be the fusion threshold of 200ms.

Confirming with our assumptions, there was an effect of
the take-over requests’ dimension on the number of safe
take-over maneuvers. Overall, the S3D condition lead to
significantly more safe take-over maneuvers than the P3D
condition. By that, our results are evidence that encoding
spatial information in S3D can be superior to traditional 2D
presentation of take-over requests.
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8.3 RQ4: mental workload

We expected that the additional effort necessary to process
the visual TORs would increase mental workload. Indeed,
there was a significant difference in mean blink duration
change MBDC: in the S3D condition, participants’ MBDC
was significantly lower compared with the P3D condition.
This indicates that, compared with the P3D visualizations,
the S3D condition lead to a shorter average blink duration
during a TOR compared with the rest of the drive. Thus, this
suggests a higher mental workload in the S3D condition.
However, Howard et al. [27] mention that blinking rapidly
can control and mitigate binocular rivalry. It could be
that the sudden appearance of the S3D content and the
related necessity for binocular fusion made shorter blinks
necessary. It is important to note that there was no main
effect of TOR. This would have suggested that the visual
TOR and its location might influence mental workload. The
other measures — mean pupil diameter change (MPDC),
mean pupil diameter change rate (MPDCR), and blink
latency — suggest that mental workload does not differ.
Especially MPDCR is well known to predict workload over
intervals of several seconds [49]. All in all, looking at
the absence of any significant differences between baseline
TOR and the other TORs in three of our four measures
(MPDC, MPDCR, and blink latency), results suggest that
the additional information does not significantly increase
mental workload. Similar to our research, Petermeijer et al.
[52] analyzed different multimodal and directional TORs.
They also do not report significant differences.

9 Recommendations and implications

By showing that smart TORs have potential to increase
safety while not increasing workload, we can derive some
more general recommendations and design guidelines for
warnings encoding spatial information.

During a critical situation, it is inherently important to
only provide adequate and appropriate visual information.
Humans should be able to process the information within
a time-frame that does not pose a safety risk (e.g., by
deteriorating motor readiness or maneuver performance).
Our results argue for a window of opportunity during critical
situations where the presentation of such visual warnings to
humans is possible. Table 3 shows those values for the three
locations of our study.

Those values can act as an initial orientation for
designing visual warnings. If perception and processing of
a warning is below those values, our results indicate that
they do not affect workload, motor readiness, or driving
performance at a speed of 80 km/h (the speed of the ego
vehicle when the TOR was issued). However, the amount

Table 3 Average glance times in milliseconds by location that did not
impair driving-related measures or increased mental workload

Location Mean SD

Instrument cluster (IC) 326 132

Lower center stack (FoA) 598 132

Upper center stack (large) 290 185

of information and the warning design need to be carefully
considered. We deliberately encoded very few information
in the visual warnings, kept the design language very
simple, and used basic colors. More information might
lead to longer glance times and might increase the risk
of neutralizing any benefits or even introduce detrimental
effects.

For the design of such warnings, it is important to
understand how humans perceive the information. We can
characterize three combinations of mean glance duration
and number of glances by dashboard location as follows:

– Switch: For visual TORs displayed on the instrument
cluster, participants showed a back-and-forth gaze
pattern. This gaze pattern showed a high number of
glances at the TOR visualization (c.f. Figs. 13b and f
and 14b)

– Observe: On the lower center stack (or focus of
attention), we identified a long-glance pattern. This
pattern is characterized by a long glance duration at
the TOR visualization and a similar number of glances
compared with baseline (c.f. Fig. 13c and g).

– fly-by: For the upper-right center stack, participants
most likely applied a pattern featuring a normal number
of glances and a relatively normal glance duration —
they did not fixate the TOR visualization very often or
that long (c.f. Fig. 13d and h).

These gaze characteristics could guide the design of
warning symbols. For example, for the switch-pattern, it is
especially important that symbols do not require complex
search patterns in order to work with short glances. The
observe-pattern requires warnings that appear in a similar
region (also depth region) than the previously observed
visual element to support visual analysis and to avoid
large eye adjustments in accommodation and vergence.
For example, the position of the TOR-FoAs visualization
confirmed with the location of the n-back task and we tried
to keep it at a similar size. Designs for the fly-by pattern
should show only very salient and obvious information
which can be observed in a short period of time without
many fixations. Naturally, for all applications and warnings,
the design should be as simple as possible to improve
performance and safety.
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9.1 Limitations

We used convenience sampling for recruiting which limits
the generalizability of results. We also did not ask for
driving experience and can therefore not interpret the results
within this context.

A major limitation of our study is the design of the traffic
scenario. We took inspiration from related experiments that
have implemented similar scenarios to evaluate take-over
requests. However, the usage of events that are not necessar-
ily occurring in the wild (e.g., suddenly appearing objects or
pseudo-randomly stopping vehicles) might influence partic-
ipants’ driving behavior. While no participant commented
on the traffic scenario, this lack of realism limits external
validity of the study.

Results are also limited by the fact that we only had
one critical event and visualization. While the location of
the hidden vehicle was randomly assigned, a more diverse
set of traffic and critical situations is necessary to draw a
holistic picture of visual TORs. For eye-tracking, we used a
head-mounted device which got heavy over time, probably
influencing simulator sickness scores and by that, the over-
all results. While it was necessary to use this configuration
(a remote eye-tracker would have been problematic due to
the S3D glasses), further investigations with a more com-
fortable eye-tracker are necessary. The take-over requests,
while being displayed in a controlled lighting environ-
ment, create slightly different brightness values and hence
influence pupil diameter. This limits the interpretation and
analysis of MPDC and MPDCR. The technical setup, while
providing a front and rear-view mirror, lacked side-view
mirrors. For further investigations of situation awareness,
side-view mirrors should be included. With eye-tracking
becoming a more prominent research tool for workload
measurements, it is important to be sure that it is an appro-
priate measure for the experiment design. For our data, blink
latency, MPDC, and MPDCR consistently indicated that
workload did not increase. Only mean blink duration change
lead to different results, suggesting an increased workload
for the S3D condition. This argues for a deeper investigation
of these measures and if they deliver correct results when
used with active stereoscopic 3D technology or if this visu-
alization technique influences blink behavior in a way that
prohibits the usage of blink duration.

For the warning sign, we used a sign shape resembling
a stop sign. This could have lead to participants intuitively
reacting with a full stop (which then was classified as a
wrong maneuver). However, the low number of full stops
out of all maneuvers (14 out of 416) suggests a rather
low impact. Nevertheless, future studies should avoid this
design flaw and use a triangular sign shape as used in many
warning signs.

10 Conclusion

Inspired and motivated by novel display technologies and
previous research, we assessed an S3D dashboard and smart
take-over notifications. Different to previous notifications,
our system applies a smart approach: it integrates data from
simulated vehicle-to-vehicle communication and by that,
displays a simplified view of the surroundings with the
objective to increase situation awareness and safety during
take-over while not increasing mental workload.

To test this approach, we outlined our design process
towards an effective design of such TOR visualizations
which ultimately lead to an increased take-over perfor-
mance. Our results further revealed that the location of the
take-over notification on the dashboard influences take-over
performance: displaying a smart TOR at the instrument
cluster (TOR-IC) or at the focus of attention (TOR-FoA)
significantly improved take-over performance. Also, our
results indicate that displaying such visual TORs in stereo-
scopic 3D can improve take-over performance. We also
showed that such visual warnings do not necessarily impact
mental workload during take-over. We further showed that
S3D does not necessarily lead to critically different gaze
patterns or transitions if designed correctly. Finally, inter-
preting the acquired eye-tracking data, we identified three
distinct patterns on how participants perceive and process
the visual warnings on the dashboard.

Aimed at take-over requests, our positive and promising
results enable further research on stereoscopic 3D visual
warnings that communicate the current traffic situation
to the driver. This may also apply for other time-critical
warnings that require a certain level of situation awareness.

Future studies might explore the maximum complexity
of such visual warnings in similar as well as in other
scenarios, e.g., take-overs in inner cities or the involvement
of pedestrians. It has also been shown that the type of non-
driving-related task influences the take-over process (e.g.,
Radlmayr et al. [58]). Hence, research on visual TORs and
different non-driving-related tasks is necessary. In addition
to that, the underlying reasons on why the large TOR did
not lead to positive results should be explored. Finally, a
comparison of our smart TORs with plain 2D visualizations,
AR-HMDs, and AR-HUDs would put our results in context
to those alternative warning signs.
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