
TU Ilmenau | Universitätsbibliothek | ilmedia, 2023 
http://www.tu-ilmenau.de/ilmedia 

Lindt, Kevin; Mattea, Carlos; Stapf, Siegfried; Ostrovskaya, I. K.; Fatkullin, Nail F.

The Deuteron NMR Hahn Echo Decay in Polyethylen oxide melts 

Original published in: AIP Advances / American Institute of Physics. - New York, NY : American 
Inst. of Physics. - 12 (2022), 7, art. 075219, 12 pp. 

Original published: 2022-07-29 

ISSN: 2158-3226 
DOI: 10.1063/5.0099293 
[Visited: 2022-09-29] 

This work is licensed under a Creative Commons Attribution 4.0 
International license. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/ 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1063/5.0099293
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


AIP Advances ARTICLE scitation.org/journal/adv

The deuteron NMR Hahn echo decay
in polyethylene oxide melts

Cite as: AIP Advances 12, 075219 (2022); doi: 10.1063/5.0099293
Submitted: 16 May 2022 • Accepted: 27 June 2022 •
Published Online: 29 July 2022

K. Lindt,1,a) C. Mattea,1 S. Stapf,1 I. K. Ostrovskaya,2 and N. F. Fatkullin2

AFFILIATIONS
1Department Technical Physics II/Polymer Physics, TU Ilmenau, P.O. Box 100 565, D-98684 Ilmenau, Germany
2 Institute of Physics, Kazan Federal University, Kazan 420008, Tatarstan, Russia

a)Author to whom correspondence should be addressed: kevin.lindt@tu-ilmenau.de

ABSTRACT
The deuteron transverse relaxation properties of polyethylene oxide melts of four different molecular weights, covering the range from the
onset of entanglements to the regime of fully entangled chains, are investigated using Hahn echo decays over an extensive time interval up to
ten times the effective transverse spin relaxation time. The results are compared to predictions based on the Rouse and reptation formalisms,
taking into account the dynamical heterogeneity of linear polymer chains produced by the end segments. The experimental results can be
described qualitatively by a combination of both models, with the contribution of reptation dynamics increasing with growing chain length.
The transition is continuous, rather than being characterized by sharp regime boundaries. Up to a molecular weight of 300.000 g/mol, the
predicted limit of pure reptation dynamics is not yet reached. Quantitative deviations from the predicted decays as computed by numerical
procedures become observable toward the long-time limit of the Hahn echo decays and are being discussed in terms of shortcomings of the
available reptation theories.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0099293

I. INTRODUCTION
Nuclear Magnetic Resonance (NMR) has traditionally been a

powerful approach to verify and improve dynamic models of poly-
mer dynamics in the melt state, the best-known concepts of which
are represented by the Rouse model for short and unentangled
chains, and the reptation model for long and multiple entangled
molecules (see, for example, Refs. 1–6 and articles cited therein).
In the most general terms, the essence of the various NMR meth-
ods is that the spin subsystem of the substance under study, which
is initially in a state of thermodynamic equilibrium, is manipulated
by a particular sequence of radiofrequency pulses and measures the
dynamic response of the system to this influence. The time depen-
dence of the measured signal depends on the nature of spins’ fluc-
tuations in space. Therefore, the measured signal can be expressed
through dynamic correlation functions, which, on the other hand,
can be theoretically predicted based on existing dynamic models.
A comparison of experimental data with theoretical predictions,
in turn, provides a basis for improving our understanding of the
dynamics and structure of the systems under study.

The Hahn echo (HE) is one of the technically simplest meth-
ods of pulsed NMR methods, which have been used for decades
in the experimental investigation of polymer dynamics (see, for
example, Refs. 7–14). It is the response of spins of the investigated
system on two radiofrequency pulses. The experiment begins with a
defined situation of all spins contained in the sample being placed
in a temporarily constant magnetic field oriented, by definition,
along the z axis and being in their thermodynamic equilibrium state,
i.e., with the total magnetization oriented along z and assuming
the Curie equilibrium value. Following an initial resonant radiofre-
quency pulse, Pπ/2

x as written in its operator representation, the
magnetization is rotated by an angle of π/2 relative to the x axis,
so that a non-equilibrium state of the spin system is created. Fol-
lowing a time interval τ, the spin system is irradiated by a second
radiofrequency pulse Pπ

x rotating the magnetization by the angle
π relative to the x axis. The experimentally observed response of
the spin system on the two described radiofrequency pulses at time
moment t = 2τ is named the Hahn echo. After the first pulse Pπ/2

x ,
the so-called Free Induction Decay (FID) is observed, caused by the
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precession of the non-equilibrium magnetization around the mag-
netic field, which induces an oscillating voltage in the receiver coil.
The FID decays, on the one hand, by dephasing due to the distri-
bution of Larmor frequencies either by inhomogeneous magnetic
fields within the sample volume or by the multiplicity of chemical
shifts and, on the other hand, by fluctuations in the internal elec-
tromagnetic fields that allow spin transitions and are modulated by
the molecular motions that affect the spin system. The latter effect
is called NMR relaxation in its proper sense. While the dephasing
effect may be neglected for short evolution times under favorable
conditions, such as the high homogeneity typically achieved in com-
mercial NMR spectrometers and in substances possessing only a
single chemically distinct spin with one single chemical shift, the
actual signal decay due to molecular motions can be isolated by
compensating this dephasing effect using the Hahn echo. The decay-
ing part of it is fully equivalent to the initial FID. For observation
times exceeding the inverse of the Larmor frequency spread by either
inhomogeneous fields or chemical shift differences, a Hahn echo or
a similar echo sequence will be the method of choice. This paper
will present the original experimental results obtained by the Hahn
echo method, so, henceforth, we will discuss about it considering, by
default, that the Hahn echo is completely analogous to the FID for
a system of equivalent spins in a perfectly homogeneous magnetic
field.

Possibilities of modern NMR spectrometers allow for exper-
imental investigation of the Hahn echo over a period of time
corresponding to a signal decay to at least 10−3–10−4 times of the
initial HE magnitude. However, the theoretical interpretation of
the HE on such a long period of time will, at least in polymer
melts, meet difficulties of a principal character that are connected
to the still unresolved many-body problem of statistical mechanics.
In fact, in polymer melts, a theoretically justified and analytically
tractable approximation can be formulated only for shorter time
periods t < Teff

2 , where Teff
2 is the effective spin–spin relaxation time

defined by the relation g(Teff
2 ) = e

−1, with g(t) being the normal-
ized HE signal at time moment t = 2τ and the condition g(0) = 1
(see, for example, Refs. 15–19). Within this time range, it is possi-
ble to limit the consideration to calculations of the second moment
of magnetization, dependent on dynamic lattice pair-correlation
functions. Higher-order moments, in addition to becoming cum-
bersome to compute, also contain higher-order dynamic correlation
functions, which make them analytically intractable today. A com-
mon extrapolation to long times in such situations is the so-called
Anderson–Weiss approximation, i.e., a second cumulant approxi-
mation based on the assumption that all higher-order moments can
be expressed through the second moment. In essence, this means
that in the general situation, the Anderson–Weiss approximation
is theoretically justified within the same time limits as the sec-
ond moment approximation. In our recent studies,20–22 it has been
shown that for the case of the tube-reptation model, assuming the
central role in modern treatments of polymer melt dynamics, the
description can, indeed, be extended beyond the Anderson–Weiss
approximation if the time dependence of the HE for deuteron spins
is considered, the relaxation of which is mainly determined by
intramolecular interactions.

The main purpose of this article is to investigate experi-
mentally the HE in deuterated melts of well-defined polyethy-
lene oxides with different molecular masses as a function of

temperature and to attempt a quantitative interpretation in terms
of the above-mentioned approach.

II. THEORY
In this section, we will provide the necessary information

related to the theory of the dynamics of macromolecules, adher-
ing to the terminology and notation of the classical monograph.23
In accordance with the phenomenological tube-reptation model,
which is currently the dominating concept in the theory of macro-
molecular dynamics in polymer melts with sufficiently large molec-
ular masses N ≫ Ne—where N is the number of Kuhn segments
per macromolecule and Ne is a phenomenological number treated
as the average number of Kuhn segments between two entangle-
ments23—the spatial displacement of macromolecules takes place
inside “tubes” formed by the surrounding medium with the dia-
meter a = bN1/2

e , where b is the Kuhn segment length of polymer
chains. The discussed model contains four characteristic time scales:
the segmental relaxation time τs, the entanglement time τe = τsN2

e ,
the Rouse relaxation time τR = τsN2, and the tube disengagement,
or terminal relaxation, time τd = 3τRZ = 3τeZ3, with the number of
entanglements per chain Z = N/Ne. In accordance with these time
scales, the following regimes of motions are distinguished:

1. Regime I, or Rouse (non-entangled) regime of motions, for the
interval t ≪ τe, where polymer chains are moving in accor-
dance with the Rouse model (see details, for example, in
Refs. 23–27).

2. Regime II, or regime of incoherent reptation, for the inter-
val τe ≪ t ≪ τR. Due to the entanglements between differ-
ent polymer chains, each chain effectively becomes confined
inside a tube with diameter a and performs one-dimensional
anomalous Rouse diffusion with an exponent 1/2 for the
time dependence of mean squared displacements inside their
own tube. In this regime, parts of the chain that are suffi-
ciently separated, i.e., by more than

√
t/τs segments along the

chain, are moving independently from each other. The total
mean squared displacement of polymer segments in space is
changed here as ⟨r2(t)⟩ ∼ b2N1/2

e (t/τs)
1/4. The length of the

tube is computed as LT = aZ = bNN−1/2e . The central line of
the tube, the so-called primitive path, can be considered as an
ideal chain constructed from primitive segments of length a.

3. Regime III, or regime of coherent reptation, for the interval
τR ≪ t ≪ τd. The polymer chains still remain confined in their
initial tubes, but perform normal one-dimensional Rouse dif-
fusion inside the tube, when different polymer segments are
moving coherently with each other and the mean square dis-
placement inside the tube is proportional to time with total
mean squared displacement ⟨r2(t)⟩ ∼ b2Z−1/2(t/τs)1/2.

4. Regime IV, or regime of normal diffusion, for the interval
t ≫ τd. The polymer chains escape from their initial tubes
and perform normal (Gaussian) diffusion with the diffusion
coefficient Dcm =

1
3π2

Nb2
τd
= 1

9π2
b2Ne
τsN2 =

1
9π2

a2
τeZ2 .

Note also that in the tube-reptation model, all polymer chains
are considered as ideal chains, which seems to be an acceptable
approximation for polymer melts in the light of Flory’s ideality
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hypothesis (see, for example, Refs. 23–26). Given a polymer chain
consisting ofN Kuhn segments, it can also be viewed as consisting of
N/Z primitive segments, each of which contains Ne ordinary Kuhn
segments. SinceNe ≫ 1, any primitive segment of the polymer chain
can be considered as an ideal Gaussian chain with the mean-squared
length of the primitive segment a2 = b2Ne.

In this work, due to the limitations of the experimental proce-
dure, we are mainly interested in regimes II and III. The curvilinear
mean-squared displacement inside the tube of polymer segments
at corresponding times can be approximated by the following
expression:28

⟨s2(t)⟩ =
2a2

3π3/2
(
t
τe
)
1/2 1

1 + 6
π3/2

1
Z (

t
τe
)
1/2 +

2
3π2

a2

Z
t
τe
. (1)

The normalized HE amplitude of 2H spins [i.e., gD(t = 0) =
1] at times t ≫ τs can be represented through the spatial orienta-
tions of Kuhn segments by the following relation (see, for example,
Refs. 11, 12, and 18):

gD(t) =
1
N∑k

Re⟨exp
⎧⎪⎪
⎨
⎪⎪⎩

iωQ

t

∫

0

dt1(3 cos2(θk(t1)) − 1)
⎫⎪⎪
⎬
⎪⎪⎭

⟩, (2)

where ωQ is the intensity of quadrupole interaction expressed in fre-
quency units, θk(t1) is the angle between the vector connecting the
ends of the segment of number k and the direction of the external
magnetic field at time moment t1, and ⟨⋅ ⋅ ⋅⟩ represents the aver-
age over all stochastic trajectories of the polymer chains during the
experimentally investigated time interval t. The quadrupole cou-
pling constant in frequency units ωQ in expression (2) is related to
the quadrupole coupling constant e2 qQ

2πh̵2 , which is contained in the
Hamiltonian of the spin–lattice and spin–spin interactions, where
eQ is the quadrupole moment of the nucleus and eq is the elec-
tric field gradient at the location of the nucleus (see, for example,
Refs. 15–19). Our ωQ is proportional to this quantity, ωQ =

αs−s
√

5
2
3
4
e2qQ
h̵2 , where αs−s < 1 is a constant taking into account the

fast intrasegmental motions averaging the major part of quadrupole
interactions at times t ≫ τs. The numerical factor αs−s < 1 is not eas-
ily calculated from the first principles; therefore, we will consider
ωQ as a fitting parameter. This, of course, leaves the question about
the actual meaning of a numerical coefficient such as αs−s that, in
the end, is obtained from comparing an expression with the experi-
mental data. We will adhere, as in previous studies, to the following
strategy: we will keep all the numerical coefficients that can be cal-
culated exactly or estimated with sufficient accuracy. In the end, we
will always be able to examine their importance by comparing the
calculations with experimental results.

In the tube-reptation model, it is assumed that at times
t ≤ τe, the polymer segments carry out the fast fluctuations inside the
tube about their primitive paths. At temperatures when the polymer
is in the molten state, in all realistic experimental conditions, the
entanglement time τe ≪ Teff

2 , allowing to rewrite expression (2) as
follows:22

gD(t) = gDfast(t)g
D
tb(t)

= exp
⎛

⎝
−

t
Tfast
2

⎞

⎠

1
Z

×
Z

∑
k=1

Re⟨exp{iω̃Q∫

t

0
dt1(3 cos2(θk(t1)) − 1)}⟩

rep
, (3)

where

gDfast(t) = exp
⎛

⎝
−

t
Tfast
2

⎞

⎠
(4)

is the factor connected with the fast fluctuations of polymer
segments inside the tube and

gDtb(t) =
1
Z

Z

∑
k=1

Re⟨exp{iω̃Q∫

t

0
dt1(3 cos2(θk(t1)) − 1)}⟩

rep
(5)

is the factor connected with reptation motions along the primitive
path. The time Tfast

2 is expected to be of the order of the effective
spin–spin relaxation time in polymer melts with a molecular mass
measured in units of Kuhn segments of aboutNe, and is, in situations
where N ≫ Ne, much longer than the corresponding Teff

2 (N), i.e.,
Tfast
2 ≈ Teff

2 (Ne)≫ Teff
2 (N ≫ Ne).

In our recent work,21 the HE of deuteron spins in non-
entangled polymer melts, i.e., with molecular masses N ≤ Ne, was
considered in the light of the dynamical heterogeneity of linear poly-
mer chains, i.e., taking into account the end effects (some additional
materials connected with the influence of dynamical heterogeneity
on NMR spin relaxation can be found in the literature29–33). Assum-
ing that the chains under these conditions are moving as Rouse
chains, it was shown that the time dependence of the HE can be
represented in the notation of this paper by the following relation:

gDRouse(t) =
2
N ∑n≤ N

2

exp(−
t

T̃R
2,n
),

with
1

T̃R
2,n
=
4π
9
ω2
Qτs ln(2πn).

(6)

This case takes into account a distribution of the spin–spin
relaxation times T̃R

2,n: spins located at different segments have differ-
ent relaxation times, i.e., the faster relaxing spins are in the central
regions of the chain. The dependence of the relaxation times T̃R

2,n is
logarithmic, and the initial rate of decay is approximately

1
T̃R
2
≈
4π
9
ω2
Qτs ln(

πN
e
). (7)

The molecular mass dependence of expression (7) is consistent
with the well-known result for intramolecular proton relaxation.30,31

The logarithmic dependence is rather weak, and thus Tfast
2 in

expression (4) can be estimated as

1
T̃fast
2

∼
4π
9
ω2
Qτs ln(

πNe

e
). (8)
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The most important factor in expression (3) that totally con-
trols the deuteron spins HE at long times, but still t ≪ Tfast

2 , is the
gDtb(t) connected with slow reptation of polymer molecules inside
the tube. The formal mathematical construction of expression (5)
is identical with the initial expression (2). The difference lies in the
meaning of the mathematical variables. The summation in expres-
sion (5) is carried out not over Kuhn segments, as in relation (2),
but over primitive segments—ω̃Q is the residual part of the deuteron
spins quadrupole interactions after averaging over the fast local fluc-
tuations inside the tube during times of order τe, θk(t1) is the angle
between the vector connecting the ends of the primitive segment
with number k with the direction of the external magnetic field
at time moment t1, and the averaging ⟨⋅ ⋅ ⋅⟩rep is performed over
all reptation motions of the primitive chain. The residual part of
the quadrupolar interaction constant ω̃Q, describing the coupling
of deuteron spins with orientations of primitive segments, is related
to the corresponding quadrupole coupling constant ωQ of deuteron
spins with Kuhn segment orientations, which, in usual treatment, is
evaluated as ω̃Q ≈ ωQ/Ne (see, for example, Refs. 1 and 29). There-
fore, we will introduce here a numerical factor β that depends on the
specific assumptions about the configuration of the primitive path,

ω̃Q ≈ β
ωQ

Ne
. (9)

The treatment of gDtb(t) is essentially different for short chains,
for which the so-called Redfield limit (or the limit of fast motions)
Teff
2 ≫ τd holds, and for long chains in the opposite case when Teff

2
≪ τd.

In the first case, the dynamic heterogeneity of linear macro-
molecules was considered in a recent paper21 (some additional
materials can be found in Refs. 32–36). The deuteron FID/HE of
polymer chains is totally dominated by the end effects and can be
expressed by the following relation:

gDtb(t) =
1
Z

Z

∑
k=1

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
6k

Z + 1
(1 −

k
Z + 1

)
1

T̃eff
2

⎫⎪⎪
⎬
⎪⎪⎭

,

with
1

T̃eff
2

≈
4π2

9
ω̃2
QτeZ

2.

(10)

Note that here we corrected the denominators inside the expo-
nent in expression (10) in comparison to Ref. 21 by changing Z to
Z + 1. This is done because a chain containing Z segments has Z + 1
segment ends. This difference is not important when the segment
number k is considered as a continuous variable ranging from 0 to Z,
as is done in the classical book,23 but can produce artifacts in numer-
ical calculations, when the integration over kwill be implemented by
a summation as in expression (10), at long times when gDtb(t) < Z

−1.
For Z ≫ 1, the discussed expression (10) has the following

asymptotic values:

gDtb(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
t

T̃eff
2

+ ⋅ ⋅ ⋅ for t ≪ T̃eff
2 ,

T̃eff
2
3t

for T̃eff
2 ≪ t ≪

ZT̃eff
2
6

,

2
Z
exp
⎛

⎝
−

6
Z + 1

t
T̃eff
2

⎞

⎠
for

ZT̃eff
2
6
≪ t.

(11)
The initial decay is an exponential function with the aver-

age relaxation rate 1/T̃eff
2 = ω̃

2
QτeZ24π2/9, followed by a drastically

decreasing decay that follows a power law with exponent −1, again
turning into an exponential decay at even longer times.

In the Redfield limit, the magnetizations of all subsets of spins
are decaying exponentially, but spins located on different segments
have different spin–spin relaxation rates. As a result, during the time
interval T̃eff

2 ≪ t ≪ ZT̃eff
2 /6, the decay transforms into a power-law

with exponent −1. At longer times, the decay again becomes expo-
nential with the longest spin–spin relaxation time T long

2 ≅ 6T̃eff
2 /Z,

which has a molecular mass dependence different from that of T̃eff
2 .

The Redfield limit is actually a special limit of the Anderson–Weiss
approximation, which in general form for the reptation factor of the
HE, i.e., gDtb(t), can be described by the following expression (see, for
example, Ref. 21):

gDtb(t) =
1
Z

Z

∑
n=1

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
16
9
ω̃2
Q

Z
τd

Z

∑
p=1

1
p2

sin2(
πpn
Z + 1

)

× (t −
τd
p2
(1 − exp[−

tp2

τd
]))

⎫⎪⎪
⎬
⎪⎪⎭

. (12)

Note that expressions (10) and (11) follow asymptotically from
(12) in the limit τd ≪ Teff

2 .
For longer chains, when Teff

2 ≪ τd, the Redfield limit is violated
and the HE decay is essentially more complex than expressions (10)
and (11). The usual approach for such situations is to use the so-
called Anderson–Weiss or second cumulant approximation, which,
as mentioned above, is given for the reptation model by expression
(12) but can be justified only for short times t ≪ Teff

2 . However, as
has been shown in Refs. 20 and 22, the reptation model allows us to
go significantly beyond the Anderson–Weiss approximation. This is
possible because the Doi–Edwards tube reptation model is based on
very strong assumptions.

One of these assumptions is the postulate that during the wide
range of times τe ≪ t ≪ τd, the polymer chains are mainly confined
inside tubes and are escaping from them by one-dimensional Rouse-
like motions along primitive paths. Another postulate is that the
primitive path possess the conformation of an ideal chain, which
corresponds to the requirement that the spatial orientation of its dif-
ferent primitive segments is statistically independent of each other.
The latter allows us to perform averaging over the orientations of
primitive segments in expression (5) independently of each other.
Then, knowing that diffusion inside the tube is Rousean, by using
mean field-like approximations, one can calculate the time in which
the segment of the macromolecule initially localized on the kth
primitive segment of the tube spent during the observation time t
on the nth primitive segment of the initial tube.
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The final result for gDtb(t) caused by reptation motions inside
the tube is as follows:22

gDtb(t) =
1
Z

Z

∑
k=1

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
Z

∑
n=1

ln
⎛

⎝
1 +

2
5

⟨φkn(t̃ (k, t))⟩
2

1 + 2π
5
√

12
⟨φkn(t̃(k, t))⟩

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (13)

Summation over k in expression (13) is the signal contribu-
tion from the spin that, at the initial time moment t = 0, was located
inside the primitive segment with number k of the initial tube. Sum-
mation over n inside of the exponents in expression (13) reflects the
one-dimensional Rousean displacements of it inside the initial tube.
With an increase in the observation time t, the polymer segments
change their positions inside the initial tube and can be located in
the position where the primitive segment with number nwas located
initially. Generally speaking, the segment with number k does not
spend the complete observation time t inside the initial tube since
it can exit from it. We call t̃(k, t) the period that segment k spends
inside the tube during t, so that it has spent t − t̃(k, t) outside of it.
For t̃(k, t), one can make the following approximation22 for times
t ≪ τd:

t̃(k, t) =
t

1 +
√

9π
32 ñ(t)(

1
k +

1
Z+1−k)

, (14)

where ñ(t) = ⟨s2(t)⟩1/2/a is the characteristic number of primitive
segments on which polymer segments are displaced inside the tube
during time interval t and ⟨s2(t)⟩ is the mean squared displacement
of polymer segments inside the tube, which can be approximated by
relation (1).

The quantity ⟨φkn(t̃(k, t))⟩ is defined by the following
relation:22

⟨φkn(t̃(k, t))⟩ = ω̃Q∫

t̃(k,t)

0
dt1

√
a2

2π⟨s2(t1)⟩
[exp{−

1
2
(n − k)2a2

⟨s2(t1)⟩
}

− exp
⎧⎪⎪
⎨
⎪⎪⎩

−
1
2
(n + k)2a2

⟨s2(t1)⟩
(1 −

n + k
2(Z + 1)

)

2⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

. (15)

As has been discussed above, in comparison to expression (32)
in Ref. 22, Z has been replaced by Z + 1 in the second exponent. The
second term inside the integral depending on the sum of the num-
bers n + k of primitive segments, i.e., on the position relative to the
ends of the polymer chain, describes the dynamical heterogeneity of
the polymer chain arising from end segments. As time increases, this
contribution increases as well, since an increasing number of seg-
ments can be considered as end segments; in other words, the effect
of end segments has a frequency nature, i.e., depends on observation
time.

The expressions (1), (3), and (13)–(15) allow a closed descrip-
tion of the HE of reptating chains for long time interval τe ≪ t ≪ τd
in terms of ω̃Q, Z, τe, and a. For qualitative comparison, some ana-
lytical asymptotic expressions following from expression (13) are of
interest:22

The initial (τe ≪ t ≪ Teff
2 ) behavior of the HE depends on the

relationships between the effective spin–spin relaxation time Teff
2

and the characteristic relaxation times of the tube-reptation model
τe, τR, and τd. If the polymer chains are long enough, then, at tem-
peratures typical for melts, the relation τe ≪ Teff

2 ≪ τR is valid. For

this case, the deuteron HE reflects motions of polymers in the region
of incoherent reptation, i.e., in region II. The initial HE will be a
pseudo-Gaussian with exponent 7/4,

gDtb(t) = 1 −
⎛

⎝

t
T̃ eff

2

⎞

⎠

7/4

+ ⋅ ⋅ ⋅ , (16)

with an effective spin relaxation time

T̃eff
2 =
⎛

⎝

105
32
√
3π1/2(2 −

√
2)

⎞

⎠

4/7
1

ω̃Q(ω̃Qτe)1/7
≈

1.66
ω̃Q(ω̃Qτe)1/7

.

(17)
For shorter chains satisfying the relation τR ≪ Teff

2 ≪ τd, the
HE reflects motions of the polymer chains in the region of
coherent reptation, i.e., in region III. The initial time dependence of
the HE is again pseudo-Gaussian, but with an exponent 3/2,

gDtb(t) = 1 −
⎛

⎝

t
T̃ eff

2

⎞

⎠

3/2

+ ⋅ ⋅ ⋅ , (18)

with the effective spin-relaxation time

T̃eff
2 =
⎛

⎝

5
4

√
3
4π
⎞

⎠

2/3
1

ω̃Q(ω̃Qτe)1/3Z1/3
≈

0.72
ω̃Q(ω̃Qτe)1/3Z1/3

. (19)

At longer times Teff
2 ≪ t ≪ τd, the time dependence of

gDtb(t)—within an accuracy of logarithmic corrections—becomes a
stretched exponential with the detailed properties differing between
the regions of incoherent and coherent reptation. In the region of
incoherent reptation, when τe < t < τR, the decay of gDtb(t) can be
approximated by the following expression:

gDtb(t) ≈
⎛

⎝
1 −

√
8

3π3/2Z2 (
t
τe
)
1/4⎞

⎠

× exp
⎧⎪⎪
⎨
⎪⎪⎩

−

√
8

3π3/2
(
t
τe
)
1/4

ln(
16

√
2π3/2

ω̃Qt3/4τ1/4e )

⎫⎪⎪
⎬
⎪⎪⎭

+
8
Z

exp{−( 2
3π3/2 )

3/8
( t
τe
)
3/16

ln( 16
π5/8

33/4
e ω̃Qt5/8τ3/8e )}

( 2
3π3/2 )

3/8
( t
τe
)
3/16

ln( 16
π5/8

33/4
e ω̃Qt5/8τ3/8e )

.

(20)

On the other hand, in the region of coherent reptation, when
τR < t < τd, the decay of gDtb(t) can be described as

gDtb(t) ≈
⎛

⎝
1 −

√
8

3π2Z2 (
t

Zτe
)
1/2⎞

⎠

× exp
⎧⎪⎪
⎨
⎪⎪⎩

−

√
8
3π2
(

t
Zτe
)
1/2

ln
⎛

⎝

√
6
π
ω̃Qt1/2τ1/2e Z1/2⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

+
1
Z

exp{−( 16t
3π3 Zτe

)
1/4

ln( 2
5/239/4

e
√

π ω̃Qt1/4τ3/4e Z1/4
)}

( 16t
3π3Zτe

)
1/4

ln( 25/239/4e
√

π ω̃Qt1/4τ3/4e Z1/4)

. (21)
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The first terms on the right-hand side of expressions (20) and
(21) are connected with central segments, and the second terms
represent the end effects.

III. METHODS
For the experimental part of this study, perdeuterated polyethy-

lene oxide of different molar masses (see Table I) was purchased
from Polymer Standards Service GmbH, Mainz, Germany. The PEO
samples were placed in 3 mm outer diameter NMR tubes, covered
with argon, and flame sealed. The transverse relaxation decay of the
deuterons was measured with a Bruker Avance III NMR spectrom-
eter operating at a 2H resonance frequency of 46.1 MHz equipped
with a solid state probe head, using a Hahn echo pulse sequence
(90○x − τ – 180○x − τ) with appropriate phase cycling. The duration of
the π-pulse, typically 10 μs, was twice the length of the π/2-pulse. The
measurements were carried out in completely molten state of the
polymers at different temperatures between the melting point (see
Table I) and 373 K. The longitudinal relaxation time T1 increases for
all samples with temperature, i.e., from roughly 40 ms (Tm) to about
100 ms (373 K). A recycle delay of 5 T1 was applied between the rep-
etitions of the pulse sequence to allow for a complete spin–lattice
relaxation. Starting from the end of the second waiting time τ, the
second half of the spin-echo was acquired. The transverse relaxation
decay is then given by the evolution of the PEO echo intensity at
time t = 2τ + tπ . The measurements were repeated up to five times,
normalized to their maximum, and then averaged (for details, see
Ref. 37).

IV. RESULTS AND DISCUSSION
In the following, the relevant time scales (τs, τe, τR, and τd)

are estimated, before the experimental results are being discussed
in the context of the presented theory. The segmental relaxation
time can be estimated by using the entanglement molecular massMe
= 1730 g/mol,38 the center of mass diffusion for the reference
molecular weight Dcm(12.3k) = 3 × 10−13m2

/s,39 the Kuhn length b
= 11Å, and the molecular mass of a Kuhn segmentmk = 137 g/mol25
as follows:

τs =
1
9π2

b2Ne

DcmN2
cm
≅ 7.1 × 10−11s, (22)

TABLE I. Sample overview. Samples, as well as molecular weight and polydispersity
index data, were provided by Polymer Standards Service GmbH, Mainz, Germany.
The melting temperatures Tm were determined by dynamic scanning calorimetry
using a Perkin Elmer DSC 6000 instrument. The specified melting temperatures cor-
respond to the peak temperature in the second heating run at 1 K/min (for details,
see Ref. 37).

Tm (○C) Mw (g/mol) Mp (g/mol) Mn (g/mol) PDI

PEO-d4 300k 56.0 310 000 289 000 242 000 1.28
PEO-d4 75k 57.6 74 100 79 500 61 000 1.21
PEO-d4 33k 55.7 34 400 34 700 31 300 1.10
PEO-d4 3.5k 48.4 3 410 3 600 3 080 1.11

with Ne =Me/mk ≅ 12.6 and Ncm =Mcm/mk ≅ 89.8. Correspond-
ingly, the entanglement time is estimated as follows:

τe = τsN2
e ≅ 1.1 × 10

−8s. (23)

From this, we can now estimate the Rouse relaxation and
tube disengagement times for the investigated molecular weights
according to τR = τsN2

= τeZ2 and τd = 3τeZ3.
By comparing τd with Teff

2 in Table II, it is obvious that the
samples PEO-d4 3.5k and PEO-d4 33k satisfy the conditions of the
Redfield limit (Teff

2 ≫ τd), while PEO-d4 75k is in the crossover

region (Teff
2 ≈ τd), and the sample with the largest molecular mass

PEO-d4 300k is beyond the Redfield limit (Teff
2 ≪ τd). For this

molecular mass, the Rouse relaxation time is in the order of Teff
2 ,

and therefore most of the experimental time scale lies in the region
of coherent reptation, i.e., in region III, as one can see on the left side
of Fig. 1. In contrast, for the samples with a lower molecular mass,
Teff
2 ≳ τd so that most of the experimental time scale lies in region

IV.
From expression (7), consequently, the temperature depen-

dence of Teff
2 is determined by the temperature dependence of the

segmental relaxation time τ−1s , which also defines the temperature
dependence of the self-diffusion coefficient. In the regions of inco-
herent and coherent reptation, the temperature dependence of Teff

2

is expected to be weaker, following τ−1/7s and τ−1/3s , as can be seen in
expressions (17) and (19), respectively.

Indeed, the experimental results seem to support these assump-
tions, as can be seen in Fig. 1(b) and Table III. The activation
energies obtained from Teff

2 for the three lowest molecular masses
(3.5k, 33k, and 75k) are close to each other and in agreement with
results of rheological measurements [Ea(10k)/kB = 3020 K].40 For
the largest molecular mass (300k), the effective activation energy is
significantly smaller. At least in a semi-quantitatively approach, this
is in accordance with tube-reptation predictions for region III, i.e.,
coherent reptation.

In the following, the theoretical predictions of the Hahn echo
decays will be compared to the experimental results at 358 K, since
the shape of the decay remains unchanged in the investigated tem-
perature regime and the used literature values are mainly valid for

TABLE II. Number of entanglements per chain, Rouse relaxation time, and tube dis-
engagement time of our samples based on the number average molecular mass Mn.
The comparison of τd with the experimental Teff

2 shows the validity of the Redfield
limit for the corresponding sample. Since the literature values in Refs. 38 and 39, and
thus the calculated times, are given for 353 K, we show our results for 358 K to ensure
the maximum possible comparability.

Z τR (s) τd (s) Teff
2 (358 K) (s)

PEO-d4 300k 140 2.2 × 10−4 9.3 × 10−2 8.8 × 10−4

PEO-d4 75k 35 1.4 × 10−5 1.5 × 10−3 2.2 × 10−3

PEO-d4 33k 18 3.7 × 10−6 2.0 × 10−4 7.0 × 10−3

PEO-d4 3.5k 2 4.5 × 10−8 2.7 × 10−7 5.6 × 10−2
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FIG. 1. (a) Hahn echo decay for PEO-d4 300k at four temperatures between 328 K and 378 K. Most of the investigated time scale lies between the estimated τR and τd
(dashed lines), i.e., within region III. The experimental Teff

2 increases with temperature, while the shape of the decay remains unchanged. (b) Temperature dependence of
Teff

2 in form of the negative logarithm of Teff
2 normalized to 373 K over the inverse temperature. In this representation, the activation energy Ea/kB results directly from the

slope of the regression line. A significant difference is observed between 300k and the other molar masses. The activation energy for each sample is listed in Table III.

353 K, assuming that the reptation model without the effects of con-
tour length fluctuations adequately describes the real chain motions
in polymer melts. Let us first investigate the 2H NMR response con-
sidering the lowest molecularmasses of 3.5k and 33k. Both situations
are within the validity of the Redfield limit. The measured spin–spin
relaxation rates can be represented as the sum of contributions from
the fast fluctuating Rouse modes inside the tube and slow fluctuating
reptation modes connected with diffusion inside tubes,

R2(Mi) = RRep
2 (Mi) + RRouse

2 (Mi)

=
1

TRep
2 (Mi)

+
1

TRouse
2 (Mi)

, (24)

where R2 are the experimentally measured effective spin–spin relax-
ation rates of samples with the molecular weights Mi. The Rouse
relaxation time depends only weakly on the molecular mass [see
expression (6)], and therefore, it seems reasonable to accept as a first
estimation RRouse

2 (M1) = RRouse
2 (M2). The contributions of reptation

TABLE III. Experimental effective spin–spin relaxation time Teff
2 , i.e., the time needed

for the signal to decay from the initial normalization 1 to 1/e and resulting activation
energies Ea/kB.

PEO-d4
300k

PEO-d4
75k

PEO-d4
33k

PEO-d4
3.5k

Teff
2 (373 K)(s) 1.02 × 10−3 3.1 × 10−3 9.8 × 10−3 7.8 × 10−2

Teff
2 (358 K)(s) 8.8 × 10−4 2.2 × 10−3 7.0 × 10−3 5.6 × 10−2

Teff
2 (343 K)(s) 7.5 × 10−4 1.6 × 10−3 5.3 × 10−3 4.0 × 10−2

Teff
2 (333 K)(s) 1.3 × 10−3

Teff
2 (328 K)(s) 6.3 × 10−4 3.9 × 10−3 2.6 × 10−2

Ea/kB (K) 1311 ± 2 2700 ± 100 2480 ± 120 2970 ± 70

modes can be estimated using expression (10), where the values of
two different molecular masses are related as follows:

RRep
2 (M2)

RRep
2 (M1)

= (
Z2

Z1
)

2
. (25)

Using expressions (24) and (25) in combination with the exper-
imentally measured values forM1 = 3.5k andM2 = 33k at 358K (see
Tables II and III), we can estimate the reptation contribution for
PEO-d4 3.5k as

RRep
2 (M1) =

R2(M2) − R2(M1)

( Z2
Z1
)
2
− 1

≈ 0.098R2(M1). (26)

Thus, the HE decay of 3.5k is dominated by the Rouse modes
(90.2%). We can now estimate β2 by dividing expression (7) by
expression (10),

β2 =
RRep
2 (M2)

RRouse
2 (M1)

ln( πN1
e )

πZ2
2
=
R2(M2) − RRouse

2 (M1)

RRouse
2 (M1)

ln( πN1
e )

πZ2
2

. (27)

Using RRouse
2 (M1) = 0.902R2(M1) and N1 =Mn(3.5k)/mk, one

finds β2 ≈ 1/40.
One possible explanation for this rather small value of β may

be related to the primitive chain conformation. It is very well known
that long-wavelength properties of sufficiently long ideal chains are
equivalent to each other.23–27 This means that it is irrespective of
the model, i.e., freely jointed chain of Kuhn, Gaussian chain, worm-
like chain (persistent chain or Kratky–Porod chain41), or some other
is being used for describing them. However, the situation may turn
out to be different if one addresses short-wavelength properties that
depend on the structure of the chain segment. The discussed para-
meter β connected with the residual part of quadrupole interactions
of deuterium spins [see expression (9)] seems to belong to these
short-wavelength properties.
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In the standard formulation of the tube-reptation model,23–27

the primitive path and the primitive chain are considered either
as a freely jointed chain consisting of Z Kuhn segments of length
a = bN1/2

e or as a Gaussian chain for discussing the effects connected
with contour length fluctuations. The primitive path is, by definition,
the line around which the fast Rouse-like motions of polymer seg-
ments are being performed at a distance about the tube diameter
a = bN1/2

e . This constitutes a very complex dynamical object of inter-
molecular entanglements formed during a time interval τe = τsN2

e .
Therefore, it seems more realistic to consider it as a continuous line
slowly changing in direction. The worm-like ideal chain (or per-
sistent, Kratky–Porod chain24,41,42) should be more realistic for a
description of the primitive path.

For the worm-like chains, as it is very well known,24,41,42 the
square of the Flory radius ⟨R2

F⟩ is connected with the persistent chain
length lp and the extended length of the chain L by the following
relation:

⟨R2
F⟩ = 2Llp − 2l

2
p(1 − exp{−

L
lp
}). (28)

From this relation, consequently, the length of the Kuhn
segment for the worm-like chain equals

bp ≡
⟨R2

F⟩

L
= 2lp −

2l2p
L
(1 − exp{−

L
lp
}). (29)

If the length of the worm-like chain is large, L≫ lp, then the
Kuhn segment is connected by simple relation with the persistence
length as follows:

bp ≅ 2lp. (30)

However, there exists an important difference between the
freely jointed chain with Kuhn segments of length bp and the worm-
like chain with the same length of the Kuhn segment. A freely jointed
chain consists of rectilinear segments with length bp = 2lp, while the
worm-like chain is curved on each of its points. As a result, the length
of the Kuhn segment in space and along the segment are identical,
while the Kuhn segment in the case of the worm-like chain is an
effective quantity where the separation of the segment in space and
along the segment differs (see Fig. 2). If we consider two points of a
worm-like chain separated in space by the distance bp = 2lp, the sep-
aration of the points along the chain s in comparison with the freely
jointed chain and in accordance with relation (28) would satisfy the
following equation:

bps f j = 4l2p = 2s
wllp − 2l2p(1 − exp{−

swl

lp
}). (31)

This transcendental equation can be solved numerically with
respect to swl and results in swl ≅ 2.9475lp ≈ 3lp. For two points inside
the worm-like chain at positions x1 and x2, the corresponding tan-
gent vectors u⃗(x1) and u⃗(x2) are not parallel to each other (see
Fig. 2), and the average cosine of the angle between them can be
calculated in the following way:

FIG. 2. Illustration of the differences between the worm-like (wl, dashed line) and
freely jointed (fj, solid line) chains regarding the length of the Kuhn segment for two
points separated in space by bp = 2lp and the orientation of the tangent vectors
Ð→

u 1(x1) and
Ð→

u 2(x2) at two positions x1 and x2, respectively.

⟨cos θ12⟩ =
1
s̃ 2

s̃

∫

0

dx1
s̃

∫

0

dx2⟨
Ð→
u(x1) ⋅

Ð→
u(x2)⟩

=
1
s̃ 2

s̃

∫

0

dx1
s̃

∫

0

dx2 exp{−
∣x1 − x2∣

lp
}

=
2lp
s̃
(1 −

lp
s̃
+
lp
s̃
exp{−

s̃
lp
}) ≈ 0.460. (32)

Let us assume a case where the primitive path is the freely
jointed chain consisting of Z = N/Ne Kuhn segments, whereN is the
number of segments inside the real tagged polymer chain and Ne is
the number of Kuhn segments between two entanglements. The vec-
tors connecting the ends of the primitive segments are denoted as a⃗k
with k = 1, 2, . . . ,Z. Consider a situation when the segment of the
tagged chain with number m is located somewhere in the vicinity of
the primitive segment with number k. In this case, a residual part of
the projection of the vector connecting the ends of themth segment
of the tagged chain on the vector a⃗k does not depend on the posi-
tion inside the kth primitive segment where it is located because the
latter is a straight line. The situation is different for the case when
the primitive path has the structure of a worm-like chain because its
segments are curved. Therefore, this situation will lead to the appear-
ance of an additional numerical factor given by expression (32). The
Hamiltonian of deuteron quadrupole interactions depends quadrat-
ically with respect to the relative variables connected with segment
orientation (it is an irreducible tensor of the second order relatively
angle variables of the Kuhn segment), and therefore expression (9)
can be rewritten as

ω̃Q = β
ωQ

Ne
= β̃⟨cos θ12⟩2

ωQ

Ne
, (33)

where the numerical factor β̃ is retained to account for possible
additional factors.

The effective spin relaxation rate, as it is possible to see
from expression (10) in the Redfield limit, is proportional to ω̃2

Q

= β̃ 2
⟨cos θ12⟩4ω2

QN
−2
e , where ⟨cos θ12⟩4 ≈ 1/22 is comparable to the

value estimated from the experimental data β2 ≈ 1/40.
In the following, we attempt a comparison between the exper-

imentally observed HE decays of deuterated PEO melts (3.5k, 33k,
75k, and 300k) and the decays predicted by the discussed theory
using expressions (1)–(15) for an extended time interval t ≤ 10Teff

2 ,
as presented in Figs. 3–7.
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FIG. 3. Double logarithm of the normalized Hahn echo signal log(− ln(gD
exp(t)))

as a function of the logarithm of the normalized time log(t/Teff
2 ). The slopes of

the linear fit (solid lines) in the short- and long-time regions yield the exponents
of the pseudo-Gaussian and stretched exponential decays. The estimated Rouse
and tube disengagement times corresponding to 358 K are marked with dashed
lines.

One can see a qualitative correspondence between the predic-
tions of the reptation model and the experimentally observed 2HHE
decay, consisting of a strong attenuation of the initial decay at times
exceeding Teff

2 . This attenuation reflects both the frequency nature

FIG. 4. Deuteron Hahn echo decay of PEO-d4 3.5k at 358K (circles) in compar-
ison with the calculated decay for non-entangled polymer melts (line) accord-
ing to expression (6) using the corresponding numbers from Table II and ωQ
= 230 000 s−1. Note that the Rouse relaxation time τR ≈ 4.5 × 10−8 s and the
tube disengagement time τd ≈ 2.7 × 10−7 s for this molar mass are essentially
smaller than the presented time window.

FIG. 5. Deuteron Hahn echo decay of PEO-d4 33k at 358K (circles) in comparison
with the calculated decay for entangled polymers inside the Redfield limit (line)
according to expression (3) with expression (4) for gD

fast and expression (12) for
gD

tb. T fast
2 would be ideally determined in a sample with M < Me; however, the sam-

ple 3.5k is close to the limit of entanglements (M ≈ 2Me) and can, therefore, be
used as lower limit for T fast

2 , so that T fast
2 = Teff

2 (3.5k) = 56 ms. For gD
tb, the cor-

responding numbers from Table II were used with ω̃Q = 3300 s−1. The estimated
tube disengagement time is depicted by the dashed line. Note that the Rouse
relaxation time τR ≈ 3.7 × 10−6 s for this molecular mass is essentially smaller
than the presented time window.

of the end effect and the reptation movements of the polymer chains
within the tubes created by entanglements.

This qualitative agreement is displayed in Fig. 3, which shows
the time dependence of the Hahn echo signal measured in units of
the experimentally determined effective spin relaxation time Teff

2 in
double logarithmic coordinates for the PEO-d4 300k melt at differ-
ent temperatures. The time interval under discussion corresponds
to the coherent reptation region, i.e., regime III. Experimentally,
we observe a transition from a pseudo-Gaussian decay at short
times with an effective exponent of 1.34 to a stretched exponential
decay with an exponent of 0.26. This compares to a transition from
pseudo-Gaussian behavior given by expression (18) with the expo-
nent 1.5 at short times to the nearly (i.e., with accuracy of logarithmic
corrections) stretched exponential decay given by expression (21) at
longer times. The observed stretched exponent 0.26 corresponds to
the second term in the right-hand side of expression (21) reflecting
the frequency nature of the end effects.

As alreadymentioned, PEO-d4 3.5k and 33k satisfy the Redfield
limit, 75k is in the crossover region, and 300k is beyond the Redfield
limit. Furthermore, 3.5k has a molecular mass of about twice Me.
Therefore, for quantitative comparison, we attempt to describe 3.5k
with expression (6), 33k and 75k with expression (12), and 300k with
expression (13) in combination with expressions (1), (14), and (15).

In Fig. 4, one can see the Hahn echo decay of the PEO-d4
3.5k melt. Despite the fact that the discussed molecular weight is
approximately twice as large as Ne and we are dealing at least with
a weakly meshed melt, the echo signal decay is well described by
expression (6), derived for the Rouse model taking into account
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FIG. 6. Deuteron Hahn echo decay of PEO-d4 75k at 358K (circles) in comparison
with the calculated decay for entangled polymers inside the Redfield limit (line)
according to expression (3) with expression (4) for gD

fast and expression (12) for gD
tb,

using T fast
2 = 56 ms, ω̃Q = 4200 s−1, and the values from Table II. The estimated

Rouse and tube disengagement times are depicted by dashed lines.

the dynamical heterogeneity of polymer segments connected with
the end-effects. This is in agreement with the previously estimated
contributions of 90.2% Rouse and 9.8% reptation modes.

In Figs. 5–7, we present our attempts to match the experimen-
tally observedHE decays for PEO-d4 33k, 75k, and 300k at 358Kwith
the decays described by expressions (1) and (12)–(15) derived from
the tube-reptationmodel. One can see that amore or less satisfactory

FIG. 7. Deuteron Hahn echo decay of PEO-d4 300k at 358K (circles) in compar-
ison with the calculated decay for entangled polymers outside the Redfield limit
(line) according to expression (3) with expression (4) for gD

fast and expression (13)
in combination with expressions (1), (14), and (15) for gD

tb, using T fast
2 = 56 ms,

ω̃Q = 11 200 s−1, and the values from Table II. The estimated Rouse and tube
disengagement times are depicted by dashed lines.

description is achieved only in the initial part of the attenuation. At
longer times, the tube-reptation model predicts a faster decay than
is actually observed experimentally. This reflects an overestimation
by the tube-reptation model of anisotropic reptation modes, i.e., by
strong correlations of segment spatial displacements with the initial
polymer chain conformation, and a corresponding underestimation
of isotropic fluctuations of the remaining modes of motion, as is
postulated by the Renormalized Rouse models (see details in review
articles2,6,43).

This can also be seen in Fig. 8, where the experimentally
observed molecular mass dependence of Teff

2 is illustrated. A
nearly linear dependence on molecular mass 1/Teff

2 ∼ Z = N/Ne
is observed, while from expression (10), a quadratic dependence
1/T̃eff

2 ∼ Z
2 is expected for situations where the Redfield limit is met

and a dependence of 1/T̃eff
2 ∼ Z

1/3 for situations outside that limit,
according to expression (19).

Here, however, the difference between T̃eff
2 and Teff

2 needs to be
noted. The first one is defined by expression (10), which is actually
the initial decay rate of the HE. The second one is defined by the
equation gD(Teff

2 ) = 1/e. In our cases, when the conditions of the
Redfield limit are satisfied, this equation can be read as

gD(Teff
2 ) =

1
Z

Z

∑
k=1

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
6k

Z + 1
(1 −

k
Z + 1

)
Teff
2

T̃eff
2

⎫⎪⎪
⎬
⎪⎪⎭

=
1
e
. (34)

In the limit Z →∞, the equality Teff
2 = T̃

eff
2 will hold; however,

for small Z, both quantities will have a different dependence on
molecular mass. The described situation can partially be mitigated
by a small value of the numerical factor β in expression (9). To our
knowledge, this point has not yet been investigated necessarily but
could at least partially explain the aforementioned discrepancy in
the future.

FIG. 8. Dependence of the normalized experimental Teff
2 on Z = Mn/Me. For

comparison, a dependence on Z−1 is shown as solid line.
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In this paper, we have focused on the detailed discussion of the
most popular dynamic model of reptations, which is phenomeno-
logical in nature. In addition, there are microscopic approaches
based on the Zwanzig-Mori memory matrix formalism devel-
oped initially in the works of Schweizer44–46 and extended by
Kimmich and Fatkullin as a variant related to the renormalized
Rouse formalism.2,47–50 This approach is based on the pre-averaging
approximation in the derivation of the equations of motion of
the polymer chain, which absolutely exclude anisotropic reptation
motions along the primitive tube. The preliminary calculations
based on the thrice renormalized Rouse model show better agree-
ment with our experimental results for the molar masses up to 75k,
for which the Anderson–Weiss approximation can be used. Fur-
ther theoretical and experimental research, and mutual comparison
are required to improve the understanding of long-chain polymer
dynamics.

V. CONCLUSIONS
The phenomenological tube-reptation model is formulated for

the limit of infinitely long polymer chains. In melts of macro-
molecules for experimentally accessible finite molecular masses,
contributions from non-reptational modes of motion to experimen-
tally observed physical quantities, whose behavior differs signifi-
cantly from the predictions of the reptation model, turn out to be
important. Systematic studies of the dynamics of the spin echo sig-
nal decay of deuterium nuclei in polymer melts of various molecular
masses over long time intervals, significantly longer than the effec-
tive spin–spin relaxation time, and comparison with corresponding
decays from proton spins in undeuterated polymer melts, contains
unique and new information on the molecular mechanisms of the
intermolecular entanglement formation process. In our opinion, this
is still a poorly understood fundamental process of entanglement
formation that can be investigated by thorough NMR transverse
relaxation studies in polymermelts withmolecular masses of 50–100
kDa, for which the Anderson–Weiss approximation should be cor-
rect, and will make the interpretation of the experimental data more
reliable in order to allow for refinements of the current reptation
models.
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