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Synaptic Scaling—An Artificial Neural Network
Regularization Inspired by Nature

Martin Hofmann and Patrick Mäder

Abstract— Nature has always inspired the human spirit
and scientists frequently developed new methods based on
observations from nature. Recent advances in imaging and sens-
ing technology allow fascinating insights into biological neural
processes. With the objective of finding new strategies to enhance
the learning capabilities of neural networks, we focus on a
phenomenon that is closely related to learning tasks and neural
stability in biological neural networks, called homeostatic plas-
ticity. Among the theories that have been developed to describe
homeostatic plasticity, synaptic scaling has been found to be the
most mature and applicable. We systematically discuss previous
studies on the synaptic scaling theory and how they could be
applied to artificial neural networks. Therefore, we utilize infor-
mation theory to analytically evaluate how mutual information
is affected by synaptic scaling. Based on these analytic findings,
we propose two flavors in which synaptic scaling can be applied
in the training process of simple and complex, feedforward, and
recurrent neural networks. We compare our approach with state-
of-the-art regularization techniques on standard benchmarks.
We found that the proposed method yields the lowest error in
both regression and classification tasks compared to previous
regularization approaches in our experiments across a wide range
of network feedforward and recurrent topologies and data sets.

Index Terms— Computational neuroscience, homeostatic
plasticity, information bottleneck, mutual information, neural
network, regularization, synaptic scaling.

I. INTRODUCTION

IN 1943, McCulloch and Pitts [1] gained insights into
brain function by formalizing the neuron concept describ-

ing the activity of nerve cells (McCulloch-Pitts-Cell). Later,
machine learning concepts were frequently inspired by nature.
Examples are Hebb’s learning rule [2] that inspired learn-
ing algorithms [3] since 1949 and receptive fields in the
visual cortex that inspired the convolution concept [4], [5],
improving the accuracy of neural networks and reducing
the computational cost due to a significant reduction of a
network’s parameters making neural networks suitable for a
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wide variety of hardware, including mobile devices. Even
sexual procreation [6] inspired researchers to propose the
dropout [7] regularization technique. In the meantime, neural
networks exceeded human abilities in simple tasks, such as
image recognition, and complicated tasks, such as the ancient
game of Go. Prominent remaining problems are relatively
slow learning and a high demand for labeled input data to
train artificial neural networks (ANNs), while the human brain
is able to learn from few examples and constantly learns
from trial and error. Especially in edge and mobile computing
scenarios with limited computational and memory resources,
such as autonomous driving [8] and digital assistants [9], [10],
methods improving generalization are a constant sought after.
Aiming for advances in these problems, we study parallels and
differences between natural and ANNs.

An important difference between artificial and natural neural
networks is sleep. Sleep has many functions, is especially
relevant for learning [11], and is, therefore, our key inspiration
for further improving the generalization of ANN’s. Natural
learning and its link to sleep have been the subjects of a great
variety of experiments discovering mechanisms that enable
brains to learn faster from fewer examples. Initial experiments
have shown that sleep greatly impacts humans’ ability to
build and save memories making the study of sleep phases
an important research topic. A mechanism observed at sleep
phase IV is slow wave sleep (SWS) [12], [13]. SWS is a
brain state dominated by low strength noise resulting in slow
and low-amplitude brain waves. Human subjects [14] and
mice [15] not reaching this sleep phase suffer severe memory
problems. This observation is linked to the role of homeostatic
plasticity [16] in memory consolidation. Researchers observed
that memories learned in connection with a special odor are
better recognized later on if the learner is exposed to the
flavor during the SWS sleep. No effect was found when the
flavor was exposed in another sleep phase highlighting the
importance of the SWS phase [17], [18].

Homeostatic plasticity [19] is considered a key concept
during SWS and refers to a process of auto regulating
synaptic connection strength. Today, the most mature and
applicable theory describing homeostatic plasticity is synaptic
scaling [20], [21]. Tetzlaff et al. [22] propose a mathematically
stable description of natural synaptic scaling. The authors
build on the theory that firing rates in natural neural networks
are regulated through synaptic weights w that are scaled
proportionally to the difference between the actual activity
and certain target activity. They demonstrate that synapses
are strictly stabilized in an input-determined way and also
found that natural neural networks still learn when synaptic
scaling takes place, even for random or recurrent network
topologies.

In this article, we study the scaling of artificial neurons’
activity and propose two methods for incorporating the scaling
approach in a network’s training process. We denote the first
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method SynScaW, performing layerwise update according to
Tetzlaf et al.’s rule. The second method, SynScaL, is a loss
function that penalizes the difference between the mean output
of a network and a specific target activation.

II. MUTUAL INFORMATION IN NEURAL NETWORKS

Mutual information is a fundamental concept in informa-
tion theory and is, e.g., used to find parameters for optimal
learning [23] or maximized in order to perform unsupervised
learning [24]. Ben-David et al. [25] argue that compression
and learning are equivalent through a proof that learnability of
the family of sets F∗ over the class of probability distributions
P∗ is undecidable. The authors describe learning as a game
between compressor and reconstructor. While the compressor
tries to find more efficient representations, the constructor tries
to make sense of them. The construction is bound by the
efficiency of the representation and the remaining amount of
important information. Since the amount of information that
can be passed to the reconstructor is limited, the compressor
has to neglect less important information. Mutual information
is a measure for the information of the input distribution that
is passed to the reconstructor and has, therefore, been used
to study the superior generalization of deep neural network
topologies over shallow ones before [26], [27]. More precisely,
mutual information I (X; Y ) measures the dependence of two
random variables quantifying the information on a variable
that is obtained if the other is known [28] and is formally
defined as

I (X; Y ) = I (Y ; X)=
∫

X

∫
Y

p(z, y) log
p(x, y)

p(x)p(y)
dxdy. (1)

A simple example illustrating the concept is rolling a die with
six sides. As we roll the die, the number on the upper side
is odd or even and, at the same time, prime or not prime.
If someone, for example, tells us that she or he rolled prime,
we know that the number is either 2, 3, or 5 and that the
probability for being even is 33%. No matter what number is
rolled and what property of the number we observe, we gain
information on the other property too. Given x being prime or
not prime and y being even or odd, the amount of information
shared is the mutual information, which can be calculated for
this example as

I (X; Y ) =
1∑

n=0

1∑
m=0

p(xn, ym) log
p(xn, ym)

p(xn)p(ym)

= 2 × −0.097 + 2 × 0.138 = 0.0817. (2)

In our example, two bits of information are needed to accu-
rately describe each possible outcome: one bit distinguishing
odd and even, and one bit distinguishing prime and not prime.
The computed mutual information is a measure for how much
information about one bit is gained if the other is observed.

Tishby and Zaslavsky [26] and Shwartz-Ziv and Tishby [29]
discuss how mutual information can be used for examin-
ing the capabilities of neural networks. Fig. 1 illustrates
how a single layer can be understood as a probability
process, with mutual information being the difference between
the input entropy H (X) and the lost entropy H (X |Z).
Shwartz-Ziv and Tishby [29] discuss two major sources of
entropy induced by a network’s training process. The first
source is randomly created training batches that only represent
an estimated input distribution based on a small sample,
leading to a distortedly learned target distribution and added
noise in a network’s weights. The second source is randomly

Fig. 1. Entropy H (X) diminished by the conditional entropy H (X |Z) is
the mutual information I (X; Z) that passes through a probability process,
for example, a signal process or a layer of a neural network. Meanwhile,
the conditional entropy H (Z |X) is inserted into the process leading to the
entropy H (Z).

Fig. 2. Mutual information flow through a neural network in encoder–decoder
scheme. The blue bar illustrates the loss of mutual information on the input
from layer to layer. The true label Y forms the input X through a probability
process. The mutual information on the input X in a hidden layer Hn decreases
from layer to layer.

initialized weights and the noise that they induce into a net-
work from the beginning of the training process. The authors
further describe an ANN as a cascade of such probabilistic
functions Z that processes a signal from the input X to the
output Ŷ . Based on the process per layer, Fig. 2 shows that new
entropy is added in every layer of a network, while the other
entropy is filtered out leading to decreased mutual information
on the input with every succeeding layer. When new input
information passes through these partly noisy layers, additional
entropy is added to them, and this entropy accumulates over
a network’s depth.

Tishby and Zaslavsky [26] systematically analyze ANNs’
learning process using the mutual information concept. More
specifically, the authors study how deep learning ANNs are
able to generalize and to converge faster than shallow learning
ANNs while having a comparable number of parameters.
Thereby, the information about the true label I (X; Y ) cor-
responds to a network’s generalization error [29]. They found
that, in successfully trained networks, mutual information
inserted into the network X̂ is decreasing from layer to layer.
Each succeeding layer aims to maximize the utilization of the
remaining information toward predicting an output label Ŷ .
Therefore, an efficient training process needs to train layers
toward finding a minimum sufficient statistic. This goal is
formulated as an information bottleneck objective

L[p(z|x)] = I (Z; Y ) − β I (Z; X) (3)

where β is a positive parameter representing a trade-
off between the complexity of the representation R =
I (Z; X) and the amount of relevant information preserved
IY = I (Z; Y ).
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The authors observed that ANNs are trained in two phases.
In a memorization phase, weights are initially filled, whereby
R = I (Z; X) and IY are increasing until the network’s
degree of freedom in terms of parameters is reached. In a
subsequent forgetting phase, the input X is compressed, and R
gradually decreases due to a lack of storage left in the weights.
Shwartz-Ziv and Tishby [29] report that, in the forgetting
phase, the weight gradients’ standard deviation is larger than
their mean. The authors argue that gradients begin to behave
like Gaussian noise with small means, meaning that random
noise is added to the weights under the label constraint.
Since random noise is not compressible, the information on
the input left in the weights must be further compressed in
order to store additional information. In practice, for example,
the smaller a training batch size is chosen, the shorter the
memorization phase will be, and the forgetting phase will
be more distinctive. Worse gradient estimations will sooner
lead to learning superimposed by induced random entropy and
subsequent less comprehensively learned representation since
the level of random entropy dominates the information present
in the data set. A large batch size, however, will lower the
influence of the entropy induced by the gradient descent and
will lead to a longer memorization phase and a later forgetting
phase [30]. Shwartz-Ziv and Tishby [29] found no significant
dependence between mutual information of a layer and its
width measured as the number of neurons (see [29, Fig. 5]),
but they did find a significant dependence on the depth of
a network measured as the number of layers leading to a
pronounced forgetting phase (see [29, Fig. 5]).

Tishby and Zaslavsky [26] argue that compression behavior
leads to special generalization bounds explaining the supe-
rior convergence of deep neural networks compared to shal-
low ones. The authors discuss that the generalization error
ε decreases with increasing partition of the input space’s
entropy Xε . They further argue that the cardinality of dis-
tribution Zε represented by an ANN is two to the power
of the mutual information of itself on X (|Zε| ∼ 2I (Zε ;X )).
Furthermore, they state that Hε, the entropy of the input
covering partition covered on X , is similar to two to the
power of the cardinality of Xε and conclude that this entropy
is similar to the cardinality of Zε ( |Hε| ∼ 2|X | → 2|Zε |).
Eventually, Tishby et al. [31] conclude that the conventional
generalization bounds

ε2 ≤ log |Hε| + log 1
δ

2m
are updated in deep learning to

ε2 ≤ 2I (Zε ;X ) + log 1
δ

2m
(4)

with ε being the generalization error, δ being the confidence,
and m being the number of training examples. That is,
the compression of a network’s information on the input leads
to a reduction in the number of necessary training samples
for reaching the same generalization error ε by the power of
two [32], [33].

The information theoretical analysis of ANNs has also
been discussed controversially. For example, Saxe et al. [34]
criticize the forgetting phase concept and argue that, in their
experiments, nonlinearities were causing compression rather
than noise induced by stochastic gradient descent in combina-
tion with minibatch entropy. However, Yu et al.’s [35] follow-
up study supports Tishby et al.’s initial findings and shows that

saturating nonlinearities were not causing compression. There-
fore, we consider the information-theoretical approach valid
for exploring synaptic scaling, a novel regularization approach
that we propose in this article. In addition, we evaluate the
application of synaptic scaling in a series of experiments.

III. REGULARIZATION APPROACHES FOR ANNS

Regularization aims to improve the generalization abilities
of ANNs. In recent years, various regularization techniques
have been proposed. A prominent approach is dropout [7] and
its successor DropConnect [36] that disable each neuron’s out-
put with a certain probability, thereby introducing noise into a
network’s hidden units. Another regularization concept is label
smoothing [37], [38] where the training labels’ distribution
and, accordingly, the learned output distribution are smoothed.
All these techniques have been shown to reduce generalization
error. Another research direction is the loss function that
also aims to reduce generalization error. Alemi et al. [39]
propose the variational information bottleneck (VIB) approach
that utilizes variational embedding. Pereyra et al. [40] build
upon this work and propose a technique called confidence
penalty that adds the output entropy to the cross-entropy loss.
They demonstrate that their approach outperforms previous
regularization techniques.

In the following, we discuss relevant approaches in detail.
Dropout [7] adds artificial noise into the training process
of neural networks by randomly deactivating neurons. The
approach stabilizes the training process and also scales the
nondeactivated neurons according to the dropout rate for
achieving a constant average activity. Training a neural net-
work with dropout can be seen as training a large ensemble
of different neural networks that share most of their weights.
In the inference phase, dropout is not used and, therefore,
allows the network to make a joined decision in the virtual
ensemble that has been shown to reduce generalization error.

The remaining regularization techniques, which we want
to discuss, operate by changing the loss function of neural
networks. For a better understanding how all these techniques
work, we first briefly introduce a major problem of the
common cross-entropy loss function and then explain how the
proposed approaches aim to mitigate this problem. The cross-
entropy loss function is defined as

L = 1

N

N∑
n=1

[H (p(y|yn), p(y|xn]))] (5)

where (1/N)
∑N

n=1 is the mean over the batch with N being
the number of training samples. Cross-entropy H (p, q) is
defined as

H (p, q) = −
∑

y

py log qy. (6)

The output distribution qy = p(y|xn) of a neural network is
typically given by logsoftmax of its output. The first argument
py of the cross-entropy is the input distribution p(y|yn), which
is a discrete probability distribution of only one nonzero
probability. Hence, it is a one-hot encoding of the target
label p(y|yn) = δyn(y) and trained to be as discriminative
as the target’s output distribution. Therefore, the network is
trained to emphasize single low entropy outputs that are highly
discriminative even if the decision is uncertain.

Label smoothing [37] is a simple attempt to conquer this
behavior by filling the probability distribution p(y|yn) with
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random nonzero elements 0 < e < ε and by normalizing
p(y|yn) afterward. Confidence penalty [40] is an approach
that adds negative entropy of the output distribution to the
cross-entropy loss in order to penalize models that have low
entropy output distributions. The proposed confidence penalty
loss function is defined as

L = 1

N

N∑
n=1

[H (p(y|yn), p(y|xn)) − β H (p(y|xn))] (7)

where H (p(y|yn), p(y|xn)) refers to the cross-entropy and
H (p(y|xn)) denotes the entropy. With this loss function,
a network will be trained to prefer high entropy distributions
without changing the target distribution, thereby overcoming
the limitations of label smoothing.

The VIB approach [39] utilizes variational encoding, which
adds the mutual information on the input to the cross-entropy
loss. VIB was demonstrated to improve predictive accuracy
while hardening the network against adversarial attacks. The
proposed loss function is directly related to the information
bottleneck objective [see (3)]. Due to the missing conditional
output distribution p(y|z), the exact calculation of mutual
information is not affordable. The authors conquer this prob-
lem by using a variational approximation q(y|z) for the mutual
information [see 1]

I (Z; Y ) =
∫

dydzp(y, z) log
q(y|z)
p(y)

. (8)

Based on this representation of mutual information, an upper
bound for I (Z; Y ) can be derived as

I (Z; Y ) ≥
∫

dydzp(y, z) log q(y|z) + H (Y ). (9)

H (Y ) can be neglected since it is not dependent on the
input. An upper bound can be computed since the Kullback–
Leibler divergence between the true distribution p(Y |Z) and
its approximation q(Y |Z) is always positive. Treating the
distributions of X , Y , and Z as a Markov chain (Y ↔ X ↔ Z )
allows to formulate the upper bound in a form that is solely
dependent on distributions that are readily available

I (Z; Y ) ≥
∫

dxdydzp(x)p(y|x)p(z|x) logq(y|z). (10)

Alemi et al. [39] substitute the unknown marginal distribution
p(z) with a variational approximation r(z) to compute mutual
information on the output I (Z; X) = ∫

dz dx p(x, z) log
(p(z|x)/p(z)). Analogously, the upper bound can be formu-
lated as

I (Z; X) ≤
∫

dxdyp(x)p(z|x)log
p(z|x)

r(z)
. (11)

Utilizing the derived bounds, the VIB loss function is
defined as

L = I (Z; Y ) − β I (Z; X)

≥
∫

dxdydzp(x)p(y|x)p(z|x) logq(y|z)

−β

∫
dydzp(x)p(z|x) log

p(z|x)

r(z)
. (12)

The authors use a multilayer perceptron to approximate the
distribution p(z|x). To approximate the marginal r(z), they

chose a normal distribution with a zero mean and a scale of 1.0

L = 1

N

N∑
n=1

Eε∼p(ε)[− log q(yn| f (xn, ε))]
+βK L[p(Z |xn), r(Z)]. (13)

In conclusion, Alemi et al. [39] show that an information
theory-based approach yields improvements to both the under-
standing of neural networks and its quality measures.

IV. SYNAPTIC SCALING CONCEPT

Bi and Poo [41], Sjöström et al. [42], and
Froemke et al. [43] observed that synaptic weights in natural
neural networks only increase in particular directions and with
a reduced growth of strong neurons. Researchers refer to this
activity of neurons as homeostatical regulation [20], [21], [44].
Homeostatically regulated neurons downscale strong weights
in dependence to their activity resulting in a competition that
improves synaptic sensitivity [45], [46]. Neurophysiologists
studied natural neural networks and observed higher neural
sensitivity when synaptic weights were regulated by a process
following homeostatic plasticity [47]. Other researchers
found the existence of homeostatic plasticity to be linked
with the success of natural learning processes [48]–[54].
We hypothesize that synaptic scaling, a process that leads to
homeostatic plasticity in natural neurons, could also support
the decision on which information to remember and which to
forget in ANNs.

Tetzlaff et al. [22] define a synaptic scaling mechanism
that regulates a living neuron’s activity and maintains a stable
network, not being dominated by a single or a small group
of neurons, as H = γ (vT − F(u))wn , where vT refers to the
target activation that we denote as zT and F(u, w) refers to
the nonlinear activation (see [21, eq. (4)], [22, eq. (4)], and
[52, eq. (4)]). Derived from this definition, we denote a scaling
term for ANNs as

wscaled = w + w2 ẑγ (14)

where the scaling rate γ adjusts the impact of the scaling,
while ẑ is the difference of the mean target activity z̄T and a
neuron’s actual mean activation z̄. The mechanism regulates
strong neurons based on the difference between the actual
and the target activity. That is synaptic scaling changes the
distribution of synaptic weights, which may also be a viable
approach for ANNs.

Teramae and Fukai [55] studied synaptic weight distrib-
utions in natural neurons and found that positive weights
in the neocortex and hippocampus, where the learning is
located, are log-normal distributed. The analysis is restricted
to positive weights as only those are measurable today. The
authors hypothesize that the discovered log-normal distrib-
ution could be the reason for the superior computational
capabilities of natural neural networks over artificial ones.
Buzsáki and Mizuseki [56] describe brain regions where
activation patterns of principal cells are long-tail, typically
log–normal distributed as a result of the weights’ distribution.
Another interesting finding is that not only the analyzed natural
neural networks show this log-normal distribution of weights
but also the ever-present noise in natural networks is consid-
erably stronger than in natural networks with not log-normal
distributed weights. This finding is interesting since it has
been demonstrated that training noise significantly improves
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Fig. 3. Strength of synaptic weights for three popular topologies of ANNs. All three topologies have an over proportional number of weights close to zero.
The line denotes a log-normal distribution.

on the generalization error of ANNs [57]. The other finding
that effective natural networks show a log-normal distribution
of weights is no less interesting and stimulated our initial study
of weight distributions in trained ANNs.

Fig. 3 illustrates the distribution of positive weights for three
common deep neural network topologies (VGG19, ResNet152,
and Inception V4)1 trained on the ImageNet [58] 1000-class
data set. All three topologies show a similar weight distribution
that appears almost log-normal distributed (see the red line
in the figure), but statistical tests show significant differences
in all three cases. Discovering this difference in weight dis-
tribution between trained artificial networks and their natural
counterpart, we hypothesize that an artificial synaptic scaling
mechanism that actively influences weight distribution may
yield improved generalization error of an ANN much like its
natural counterpart.

We propose a synaptic scaling technique for ANNs that
follow its natural counterpart [22] and study two alternative
ways of implementing this approach. For the SynScaW real-
ization, the mean target activity z̄ is calculated as activation of
a uniformly distributed random batch of inputs. The weights
are updated by iterating over the layers in between training
steps

z̄ := 1

N

N∑
n=0

f (xn) with f (x) = φ(wx − b) (15)

where φ denotes the activation function of one layer. After-
ward, we calculate the difference of the mean activation of the
layer ẑ and the mean activation of the random input z̄target as
ẑ = z̄target − z̄ with

z̄target = 1

N

N∑
n

φ(un), un ← U(1,−1). (16)

As another way to achieve synaptic scaling, we propose
a synaptic scaling loss function SynScaL. The loss function
encourages optimizers to train neural networks by exciting
neurons that are less active than the mean and inhibiting
overly active neurons. Propagating this error back through the
network’s layers efficiently affects every neuron without updat-
ing every single weight separately. For classification tasks,
we assume training batches with equally distributed labels and
denote the target mean activation as ET = 1/#classes. In the
case of regression, the target activation is calculated as mean
of the regression target, i.e., zT = 1/N

∑N
n yn , where yn is the

1https://pytorch.org/docs/stable/torchvision/models.html

nth sample regression target. The target mean activation for
regression tasks is the mean of the output scalar. We jointly
denote the synaptic scaling loss function for classification and
regression cases as

L′ = 1

N

N∑
1

[L + γLscal
]

(17)

Lscal =




(
1

#classes
− p(x, z)

)2

, classification((
1

N

N∑
m=0

ym − ŷ

))2

, regression.

(18)

The two proposed synaptic scaling methods act as regular-
izers by reducing overfitting. SynScaW and SynScaL penalize
neurons with disproportionately high and low activity stimu-
lating them to decrease or increase their activity, respectively.
In this process, initially less important features become
more relevant having a regulatory effect on the model’s
training.

A. Convergence Properties

In order to ensure that our synaptic scaling methods do
not destabilize the training process, we evaluated their con-
vergence properties. Sangari and Sethares [59] examined the
convergence of mean squared error logistic regression and
showed that it almost certainly converges. The logistic regres-
sion criterion ex p(x)− p(x̂) = (ex

i /
∑

ex
i )− p(x̂) corresponds

to our SynScaL method with a constant target probability of
ET = x̂ giving us confidence in claiming that our method does
not negatively influence convergence of a network’s training.
In contrast, we are not able to discuss the convergence of
SynScaW in the same manner since a unique solution for
a quadratic stochastic differential equation cannot be easily
found. Alternative methods to examine convergence depend
on distinct properties [60], [61] that are violated for the
problem addressed in our case. However, a linearization leads
to fixed-point solutions that have previously been presented by
Tetzlaff et al. [22] to demonstrate convergence. We consider
a profound proof of convergence further exercise and beyond
the scope of this publication.

B. Analytical Evaluation on SynScaW

To initially explore the effect of synaptic scaling, we use
a simple theoretic evaluation based on information theory.
We formally describe the mutual information of a single layer
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Fig. 4. Influence of synaptic scaling on the mutual information in a single-
neuron layer and sigmoid activation. The abscissa shows the synaptic strength,
i.e., the synaptic weight, the ordinate, and the difference between target and
actual activities ẑ. Color indicates the change in mutual information �I with
values between −1 and 1.

containing a single neuron with and without synaptic scaling
and then compare both formulae. In this analysis, we use a
sigmoid activation function and define the output distribution
of the neuron analogous to [26] as

p(z|x) = 1

1 + e(−w p(x|z)−b)
. (19)

We have already defined mutual information using a joint
probability distribution [see (1)]. Since an ANN exposes
a conditional distribution, we reformulate (1) using Bayes’
theorem into

I (X; Z) = I (Z; X) =
∑

x∈X,z∈Z

p(z, x) log

(
p(z|x)

p(z)

)
(20)

which is the definition of the Kullback–Leibler divergence
I (X; Z) = I (Z; X) = DK L [p(z, x)||p(z)p(x)]. We can now
insert the sigmoid activated example [see (19)] into this
formula resulting in

I (Z; X) =
∑

x∈X,z∈Z

p(z, x) log

(
1

p(z)(1 + e−w p(x|z)−b)

)
. (21)

Equation 21 represents a simple neuron without scaling.
To introduce synaptic scaling into this model we incorpo-
rate 14 as follows:
I (Z; X)scaled =

∑
x∈X,z∈Z

p(z, x)

× log

(
1

p(z)(1 + e−p(x|z)(w +w2 ẑγ )−b

)
. (22)

We compare the example with and without scaling by
computing �I := I (Z; X)scaled − I (Z; X). Appendix VII-A
provides additional details on the computations.

Fig. 4 shows the of plots �I in relation to synaptic strength
and ẑ. For this plot, we set p(x |z) to 0.5 because changing
p(x |z) results just in a scaled absolute value. For p(x |z) = 0,
the �I shrinks to 0. We also set ztarget to 0.5 since the
mean activation of a sigmoid activated neuron with uniform
random inputs between −1 and 1 is 0.5. The plot shows
that the way synaptic scaling affects the mutual information
depends on ẑ, the divergence of the actual activation z̄ from

the expected mean activation z̄target, and whether the synaptic
strength is positive or negative. Negative values of �I indicate
a reduction of mutual information when using synaptic scaling.
To further explore the figure, we divide the discussion into
two cases. The first case refers to positive synaptic strengths
and corresponds to the first and the fourth quadrants of the
plot. The second case refers to negative synaptic strengths
and corresponds to the second and third quadrants of the
plot. Studying the first case, we find that �I is negative over
the whole two quadrants. This means that scaling neurons
with positive synaptic strength leads to a reduction in mutual
information in our setup. The opposite is true for negative
strengths and the second case. Since the minimum value in the
first case is lower than the maximum in the second case, our
conclusion is that synaptic scaling at least lowers the average
mutual information. Scaling only positive weights will lead to
a reduction of mutual information in this scenario. Changing
mutual information while training ANNs is assumed to alter
the training process and the generalization error.

C. Network’s Mutual Information With SynScaW

For a better understanding of how synaptic scaling affects
ANNs, we study its effect on the mutual information captured
in two trained ANN topologies. We considered two classes of
algorithms: sample-based methods and variational approxima-
tion to estimate this mutual information. Sample-based meth-
ods record neurons’ activations across many samples in order
to estimate mutual information. Marginal distributions are then
derived by binning recorded activations making the estima-
tion highly dependent on the way bins to be formed [62].
Variational approximation aims to overcome this problem
by learning the distribution of layer activations through an
additional VIB layer consisting of n neurons representing
means and n neurons representing variances of the desired
marginal distribution p(z) [39]. We decided to obtain varia-
tional approximations of mutual information [see (1) and (8)]
by adding VIB layers to the networks under inspection. During
training, we compute a loss for each VIB layer inserted into a
network’s topology [see (13)] and add this loss to the output
loss of the network. Each VIB layer consists of 2× N neurons
encoding N means and N variances. N×12 samples are drawn
from the encoded distributions with the reparameterization
trick [63] and fed into a decoder. The decoder consists of
one neuron per target class. For the calculation of the upper
bound of mutual information, the Kullback–Leibler divergence
between the sample and the normal distribution is calculated.
Since the variational encoder requires its own loss function
[see (3)], we restrict this analysis to SynScaW.

In the first experiment, we apply synaptic scaling to a simple
MLP topology with 784-1024-1024-10 neurons that have also
been used by Alemi et al. [39] and train it on the MNIST data
set. In this setup, the bounds of mutual information compute
to I (Z; X) = 55.99 on the input and I (Z; Y ) = 3.22 on
the output at an error rate of 1.17% without synaptic scaling
and to I (Z; X) = 28.38 on the input and I (Z; Y ) = 3.19
on the output at an error rate of 1.14% with synaptic scaling.
In conclusion, we observe that the information on the input
drops by half with synaptic scaling, while the information
on the output remains almost unchanged. At the same time,
the error rate decreases with synaptic scaling from 1.17% to
1.14%. This observation supports the hypothesis that lower
mutual information on the input, i.e., a higher compression,
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Fig. 5. Visualization of the information plane for two training setups. Darker colors indicate earlier epochs. Blue indicates the first layer, yellow the last.
The yellow layer learns the least bits of information on the output and the input, while the blue layer learns the most. Synaptic scaling leads to superior
compression [lower I (Z; X)] and equal I (Z; Y.). The accuracies are 64.48% without Synaptic Scaling and 71.39% with scaling every epoch. Every dot is a
mean of 50 runs and 10 epochs. The most information on the output is shown by the ResNet32 setting without synaptic scaling with I (Z; Y ) = 38.38 in its
last layer. The highest and fastest compression is shown by the last layer of ResNet32 scaling, with I (Z; X) = 34.31.

yields a lower generalization error and that synaptic scaling
improves compression.

In the second experiment, we visualize the effects of
synaptic scaling in the information plane, as proposed by
Shwartz-Ziv and Tishby [29]. The information plane shows
the information on the output I (Z; Y ) over the information on
the input I (Z; X) per epoch of a network’s training process.
This kind of analysis allows additional insight into the training
process of a network. Accordingly, we apply the same method
as in the previous experiment for estimating the bounds of
mutual information [39]. We insert three VIB layers between
bottleneck blocks into a residual network with 32 layers [64].
We study a ResNet topology since it makes use of state-of-
the-art techniques, such as residuals and batch normalization in
contrast to the simple MLP topology studied above. We train
these networks for 2000 epochs. Fig. 5 shows that the mutual
information changes quickly in the first of the 2000 epochs of
the training and then slowly but steadily further changes into
the same direction. Finally, mutual information follows the
training behavior of the neural network. In comparison, both
ResNet32 configurations show similar behavior but different
levels of compression and accuracies. All layers of the setting
without synaptic scaling show higher information on both the
input and the output, while the accuracy of the setup with
synaptic scaling is considerably higher 71.39% compared to
the one without 68.48%.

Concluding from these evaluations, we found that layers
trained with the proposed synaptic scaling approach show
less information on the input compared to regularly trained
ones. Our observations are also conclusive to the hypothesis
of Tishby et al. that lower information on the input causes
a lower generalization error [see (4)]. In Section V, we will,
therefore, study whether and how synaptic scaling impacts the
generalization error of trained networks and compare these
results to other regularization techniques.

D. Network’s Weights’ and Activations’ Distribution

The observation that synaptic weights are log-normal
distributed in biological neural networks raises the ques-
tion of how synaptic weights in ANNs are distributed and

how synaptic scaling affects their distribution. Therefore,
we exemplarily evaluate the Jensen–Shannon divergence of
the synaptic weights’ distribution of an ANN from the log-
normal distribution under different scaling rates and during
training. We report the Jensen–Shannon divergence, essentially
a two-sided Kullback–Leibler divergence, since it can be
interpreted as s metric. Specifically, we evaluated the test
error and the synaptic weights and the synaptic activations
distributions’ Jensen–Shannon divergence from the log-normal
distribution averaged over ten training runs of a two-layer MLP
on the MNIST data set [see Fig. 6(a) and (c)]. To evaluate the
synaptic activity, we recorded all activations for the whole
test set of the experiment. We observe that the divergence
decreases over time until it starts to alternate. At this time,
the testing error is already saturated. This might indicate the
compression phase described by Tishby et al., an observation
that could be further explored in the future. Especially, when
comparing the Jensen–Shannon divergence of activations with
and without synaptic scaling, we observe substantially more
log-normal distributed activations with our proposed methods.
Fig. 6(b) and (d) presents test error rates and the synaptic
weights and synaptic activation distributions’ divergence from
the log-normal distribution for a parameter variation of the
scaling rate γ . We observe that the scaling rate influences
divergence and test error in our example. The lowest test
error was achieved at a scaling rate of 0.085 for SynScaW
and 0.74 for SynScaL.

V. EVALUATION

In this section, we discuss multiple empirical studies that
we conducted in order to evaluate the effect of SynScaW and
SynScaL on different network topologies trained with different
data sets and varying parameterization.2

A. Experimental Setup

1) Studied Data Sets: We utilize four data sets for
our experimentation: MNIST [65], CIFAR-10 [66],

2Example: https://github.com/SECSY-Group/SynapticScaling
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Fig. 6. Observed Jensen–Shannon divergence from the log-normal distribution shown on the primary ordinate and test error shown on the secondary ordinate.
Figures at the top show results for SynScaL and SynScaW at the bottom. Figures on the left-hand side present changes during training. On the right-hand
side, results for different scaling rates γ are shown. All values are averaged over ten training runs on the MNIST data set. (a) Classification error and
Jensen–Shannon divergence during training with SynScaW. (b) Classification error and Jensen–Shannon divergence for different scaling rates γ and SynScaW.
(c) Classification error and Jensen–Shannon divergence during training with SynScaL. (d) Classification error and Jensen–Shannon divergence for different
scaling rates γ and SynScaL.

CIFAR-100 [66], and ImageNet [58]. These data sets
are characterized by increasing complexity in terms of classes
to be separated. MNIST, the smallest data set, consists
of 70 000 square, gray-scale images of handwritten digits with
a size of 28 × 28 pixels, and a depth of one byte, split into
60 000 training and 10 000 test images. The CIFAR-10 and
CIFAR-100 data sets are nonoverlapping labeled subsets
of the 80 million tiny images data set [67] with ten and
100 classes, respectively. They contain 60 000 square color
images with a size of 32 × 32 pixels and a depth of 3 bytes
split into 50 000 training and 10 000 test images. Accordingly,
CIFAR-100 contains exactly 500 training images per class
and CIFAR-10 exactly 5000. ImageNet, the largest data set,
consists of 1 281 167 high-resolution images downloaded
from the internet belonging to 1000 classes that were filtered
and afterward labeled by a human. All four are well-known
benchmarks and, therefore, allow for easy comparison of
results with other authors.

2) Studied Network Topologies: We study the synaptic
scaling approach on three network topologies with increas-
ing complexity. As the most simple topology, we study an
MLP consisting of two dense hidden layers in a topology of
784-1024-1024-10 neurons. We include this configuration to
gain comparable results especially to Alemi et al. [39] and

Pereyra et al. [40]. To provide results on a common und
broadly available topology, we choose two versions of the
ResNet architecture [64] that incorporates convolution [68],
batch normalization [69], and residuals [64]. In order to
evaluate the VIB method [39], we modified the topologies by
replacing the last dense layer with a variational encoder block.
In both cases, MLP and ResNet32, neither input augmentation
nor input normalization, were utilized. The last topology that
we use is the original ResNet50 [64] topology, including input
normalization and input augmentation. Since all four data
sets pose classification problems, we use a cross-entropy loss
function (see Appendix VII-B).

The PyTorch framework was used for all experimentation.
For various configurations, we discovered subtle differences
between previously published and our results possibly due to
nonpublished hyperparameters in the original study. In order
to facilitate overall comparability, we decided to rely on our
replicated results.

3) Hyperparameter Search: To identify appropriate values
for the hyperparameters learning rate and scaling rate γ ,
we performed a parameter search [70] trained on a 20% split of
the MNIST training set while validating on the remaining 80%.
We found that a learning rate of 0.0005 and an exponential
decay of 94%, every 5 epochs yielded the best results. We used
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TABLE I

CLASSIFICATION ERROR OF SYNAPTIC SCALING WEIGHTS (SYNSCAW) AND SYNAPTIC SCALING LOSS (SYNSCAL) ON THE
MNIST, CIFAR-10, CIFAR-100, AND IMAGENET DATA SETS IN COMPARISON TO THE BASELINE

WITHOUT SYNAPTIC SCALING AND OTHER REGULARIZATION METHODS

TABLE II

JENSEN–SHANNON DIVERGENCE OF THE TRAINED WEIGHTS DISTRIBUTION PER REGULARIZATION–DATA SET–TOPOLOGY
COMBINATION FROM THE IDEAL LOG-NORMAL DISTRIBUTION (SMALLER IS BETTER)

this learning rate for the MLP and ResNet32 topologies. For
the ResNet50, we followed He et al.’s [64] training procedure
and hyperparameters as closely as possible, initializing the
learning rate to 0.1 and divided by 10 on plateauing error.
The ResNet50 model was trained for 600 000 iterations with
a weight decay of 0.0001 and a momentum of 0.9.

We discovered the optimal scaling rates for SynScaW and
SynScaL as 0.01 and 1.0, respectively. In these experiments,
γ remained constant throughout an entire training proce-
dure. Both configurations use the ADAM optimizer [63],
and training was terminated after 200 epochs, making results
comparable to those of [39] and [40]. The batch size was set
to 100.

B. Synaptic Scaling of Weights SynScaW

Table I summarizes the results for the examined combi-
nations of network topologies and data sets (columns) and
regularization approaches (rows). The table’s cells show the
absolute classification error and the relative change as a per-
centage (green—improvement; red—degradation) compared to
the baseline without regularization (first row).

The SynScaW approach lowers the classification error com-
pared to the baseline on all evaluated combinations though,
for one combination, it remains almost identical. The MNIST
classification error shrinks from 1.21% to 1.14% for the MLP
being a 5.8% relative improvement, while it remains almost
unchanged for the ResNet32. The CIFAR-10 classification
error shrinks relatively by 0.8% for the MLP and by 6.2%
for the ResNet32, the latter being the largest improvement
for this data set in our study. The CIFAR-100 classification

error shrinks from 68.58% to 67.88% for the MLP being a
1.0% relative improvement and from 40.85% to 38.07% for
the ResNet32 being a 6.8% relative improvement. Both are
the highest measured improvements for the respective data set
in our study.

After training with SynScaW, we observe, for five out of six
combinations, the lowest divergence of the synaptic weights’
distribution from a log-normal distribution, the only exception
being the MLP trained on MNIST (see Table II). The neural
activations’ divergence was observed the lowest, training with
SynSvaW in every experiment and decreasing from CIFAR-10
to CIFAR-100 (see Table III).

When comparing the SynScaW results to previously pro-
posed regularization approaches, we observe that the proposed
approach results in lower classification error for the MLP
and the ResNet32 trained on CIFAR-10 and CIFAR-100. For
the MLP trained on MNIST, confidence penalty provides
equal results; for the ResNet32 trained on MNIST, confidence
penalty and VIB achieve higher improvements in classification
error. We also evaluated the confidence penalty in combination
with SynScaW since these are applicable at the same time.
However, only for the smallest combination of the MLP
trained on MNIST, we observe an improvement over SynScaW
by itself.

Applying SynScaW while training a ResNet50 on the Ima-
geNet data set (see Table I) results in a classification error
that is relatively 3.0% lower than the baseline (see Fig. 7).
Fig. 7 compares classification error throughout the training
process for the baseline and two proposed synaptic scal-
ing approaches. The figure shows the classification error
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TABLE III

JENSEN–SHANNON DIVERGENCE OF THE TEST ACTIVATION DISTRIBUTION PER REGULARIZATION–DATA SET–TOPOLOGY
COMBINATION FROM THE IDEAL LOG-NORMAL DISTRIBUTION (SMALLER IS BETTER)

Fig. 7. Test error for a ResNet50 trained on the ImageNet data set without
synaptic scaling (baseline), with SynScaW, and with SynScaL.

continuously lower than the baseline, especially in the later
training epochs.

C. Synaptic Scaling Loss Function SynScaL
Table I also shows results for the proposed SynScaL

approach evaluated on the same combinations of network
topologies and data sets. Similar to SynScaW, the SynScaL
approach lowers the classification error compared to the base-
line on all but one of the evaluated combinations. We observe
improvements in terms of reduced classification error, espe-
cially for the MNIST and CIFAR-10 data sets. The MNIST
classification error shrinks from 1.21% to 1.12% for the MLP
being a 7.4% relative improvement and from 0.33% to 0.29%
for the ResNet32 being a 12.1% relative improvement. The
CIFAR-10 classification error shrinks from 41.47% to 40.80%
for the MLP being a 1.6% relative improvement and from
12.50% to 12.28% for the ResNet32 being a 1.8% relative
improvement. For CIFAR-100, the classification error remains
almost identical compared to the baseline. For the MLP
trained on the MNIST data set, we observe even better results
when combining SynScaL with confidence penalty yielding
the lowest overall error of 1.05% for this topology.

Evaluations of the Jensen–Shannon divergence (see Table II)
between the synaptic weights’ distribution of the network
trained with SynScaL and a log-normal distribution show
lower divergence than the baseline for only two of the
six trained combinations. The activations’ divergence was

observed lower than the baseline and increasing from
CIFAR-10 to CIFAR-100 (see Table III).

Applying SynScaL while training a ResNet50 on the Ima-
geNet data set (see Table I) results in a classification error that
is relatively 0.5% lower than the baseline. Fig. 7 compares
classification error throughout the training process for the
baseline and the two proposed synaptic scaling approaches.
The figure shows that the classification error is continuously
lower than the baseline, especially, in the later training epochs,
but higher than the SynScaW classification error.

VI. DISCUSSION

We evaluated the concept of synaptic scaling and its effect
on the training of ANNs by assessing: 1) the flow of mutual
information throughout a network’s layers; 2) the distribution
of trained weights; and 3) the accuracy of trained classi-
fiers in an experimental setup with different topologies and
data sets.

In an analytical evaluation, we found that the biologically
inspired synaptic scaling approach is able to influence mutual
information in artificial neurons. We further explored this
result and exemplarily visualized mutual information in the
information plane. We found that layers in networks trained
with synaptic scaling show less mutual information on the
input and conclude that potentially more generalizing feature
representations can be trained with these networks ultimately
resulting in higher classification accuracies.

Biological observations show that synaptic weights and
the activity of natural neurons in the cortex are log-normal
distributed. We, therefore, evaluated the divergence of trained
weights’ and activations’ distribution from a log-normal dis-
tribution and found that, throughout the training with synaptic
scaling, the distribution of weights becomes more and more
log-normal distributed. Once converged, the network’s acti-
vations that are trained with synaptic scaling (SynScaW and
SynScaL) are more log-normal distributed than the tradition-
ally trained counterpart suggesting a connection analogous
to the observation from neurobiology. We also observed that
measured accuracies tend to correlate with the divergence of
neurons’ activations from a log-normal distribution, and this
divergence is dependent on the scaling rate.

Experiments with benchmark data sets and common
network topologies suggest that a regularization through
SynScaW has a positive effect on the classification accuracy
of the trained classifier in general. We observe, however, that
the positive effect of SynScaW on the error tends to increase
with the number of classes in the classification problem.
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We also observe a positive effect on the classification error
for the SynScaL regularization, which, however, tends to
decrease with a growing number of classes in the problem,
i.e., CIFAR-100 and ImageNet. For a large number of classes,
the effect of synaptic scaling, when applied via the loss
function, is distributed across more classes resulting in an
overall lower target activation, i.e., ET [see (17)] decreases
with a growing number of classes. In contrast to previous
regularization approaches, we found especially SynScaW to
yield superior results. A combination of our synaptic scaling
approaches with the confidence penalty approach was only
beneficial for the smallest evaluated combination of an MLP
trained on MNIST. We also found that the scaling rates that we
had determined for the MLP trained on MNIST were transfer-
able to other topologies and data sets leaving room for further
improved results in a data set topology-specific hyperparame-
ter search. We successfully applied synaptic scaling to a larger
classification problem by training a ResNet50 on the ImageNet
data set with augmentation. We did by purpose not tune any
hyperparameter and transferred the scaling rate from a much
smaller data set and topology. Nonetheless, we found that
both synaptic scaling regularizations yielded improved accu-
racy compared to our baseline, which followed the initially
published training procedure as close as possible. Furthermore,
we performed an extensive evaluation of a variety of smaller
data sets, topologies, and tasks (see Appendix VII-B) to
further substantiate our results. In this evaluation, SynScaW
showed the lowest test errors across various classification and
regression tasks and across feedforward and recurrent network
topologies.

VII. CONCLUSION

Inspired by homeostatic plasticity observed as an essential
mechanism in vertebrates’ sleep to realize effective learning
processes, we found synaptic scaling to be a concept that
describes its origin from the perspective of neurons’ intercon-
nections. We successfully transferred the concept of synaptic
scaling to ANNs and studied its effect on network weight
distribution. Our comparative experiments demonstrated ben-
eficial effects in every studied configuration ranging from
small data sets and simplistic network topologies to large data
sets and complex topologies. Synaptic scaling also showed
superior regularization compared to other techniques in both
feedforward and recurrent topologies for either classification
or regression.

Further research is needed to investigate how synaptic
scaling affects the derivative of the loss function to allow
the optimizer to reach a lower minimum. A good candidate
regarding this analysis is the exploration of singularities. It is
also highly interesting to find convergence proof for the
algorithm that resulted from Tetzlaff et al. [22]’s rule since
the proposed fixed-point solutions are not considered final.
In addition, the influence of synaptic scaling on the conver-
gence rate should be further examined. A useful method for
convergence analysis come from dynamic programming–based
methods outstandingly demonstrated by Arora et al. [72] and
Reddy et al. [73] evaluating learning schemes. Another inter-
esting point is that homeostatic plasticity and synaptic scaling
are but two observations in natural neural networks connected
to sleep. Further research could examine additional processes
appearing during sleep. Another direction is the visualization
and description of changes and states in neural networks with
other techniques. Further research will also pay more attention

to synaptic activations and what similarities and differences are
observable in natural and artificial models and how synaptic
scaling changes these similarities.

APPENDIX

A. Calculus Concerning (25)

We did a short analytical examination of synaptic scaling
(see Section IV-B). The starting point was the definition of
the mutual information [see (20)]. We inserted a sigmoid
activation function [see (19)] resulting in

I (Z; X) =
∑

x∈X,z∈Z

p(z, x) log

(
1

p(z)(1 + e−w p(x|z)−b)

)
. (23)

Accordingly, we formulated the mutual information in our
example neuron, by inserting the scaled weight [see (14)]

I (Z; X)scaled =
∑

x∈X,z∈Z

p(z, x)

× log

(
1

p(z)(1 + e−p(x|z)(w +w2 z̄γ−b))

)
. (24)

We substitute (1 + e−w p(x|z)−b) with ξ for simplification

I (Z; X) =
∑

x∈X,z∈Z

p(z, x) log

(
1

p(z)ξ

)

and (1 + e−w p(x|z)+w2 z̄γ−b) with δ to receive

I (Z; X)scaled =
∑

x∈X,z∈Z

p(z, x) log

(
1

p(z)δ

)
.

Now, we can calculate the difference between mutual
information with and without synaptic scaling

I (Z; X)scaled − I (Z; X) := �I

=
∑

x∈X,z∈Z

p(z, x) log

(
1

p(z)δ

)

−
∑

x∈X,z∈Z

p(z, x) log

(
1

p(z)ξ

)
.

Since the same elements are summed up, we can conclude

�I =
∑

x∈X,z∈Z

p(z, x)

[
log

(
1

p(z)δ

)
− log

(
1

p(z)ξ

)]
.

Using − log(1/x) = log x results in[ ∑
x∈X,z∈Z

p(z, x) log

(
1

p(z)δ

)
+ log(p(z)ξ)

]
.

Using log a − log b = log(a/b) results in

�I =
∑

x∈X,z∈Z

p(z, x) log

(
p(z)ξ

p(z)δ

)
.

Applying back substitution, the eventual result becomes

�I =
∑

x∈X,z∈Z

p(z, x) log

(
ξ

δ

)
.
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TABLE IV

OVERVIEW OF THE STUDIED BENCHMARK DATA SETS. FOR CLASSIFICATION TASKS, WE LIST THE ACCURACY OF THE REFERENCE IMPLEMENTATION.
FOR THE REGRESSION TASK, I.E., THE PARKINSON DATA SET, WE REPORT THE MEAN ABSOLUTE ERROR (MAE). THE LETTERS s AND c DENOTE

SCALAR AND CATEGORICAL VALUES, RESPECTIVELY, WHILE CLASS AND REG REFER TO CLASSIFICATION AND REGRESSION TASKS

In conclusion, the term for the difference in mutual
information is

�I =
∑

x∈X,z∈Z

p(z, x)[I (Z; X)scaled − I (Z; X)]

=
∑

x∈X,z∈Z

p(z, x) log

×
(

1 + e−w p(x|z)−b

1 + exp
(−p(x |z)(w + w2 z̄γ ) − b

)
)

. (25)

B. Additional Evaluation on Various Benchmark Data Sets

In this section, we present further experiments with the pro-
posed synaptic scaling approaches on a variety of benchmark
data sets.

1) Studied Data Sets: We selected a variety of data sets,
originating mostly from life sciences, which are frequently
used for evaluation and for which previous results are avail-
able. Table IV provides an overview of the seven utilized
data sets and their characteristics. The data sets vary in the
spatial input, the task, the number of classes, the balance of
training data, the number of input variables and their type,
and the number of training samples and, therefore, provide a
rich test set for the proposed synaptic scaling approach. The
Thyroid Disease data set consists of 7200 samples in three
highly imbalanced classes and a medium number of vari-
ables [85]. It represents the most imbalanced data set in our
selection. The Epileptic Seizure data set consists of five classes
with 100 samples each [86] and represents a large number
of samples and spatially variant features. We augment the
samples following scheme 1 proposed by Tzallas et al. [76],
reducing the dimensionality by slicing the 4097 scalar values
per sample in chunks of 512 with a stride of 64. Samples
for testing are obtained by slicing the 4097 scalar values into
four separately evaluated chunks. The medium-sized Breast
Cancer data set consists of 286 samples belonging to two
classes.3 Input data contain eight categorical variables inflated
into 32 binary variables. Low reference results [77] suggest

3The data are provided by M. Zwitter and M. Soklic from the University
Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia.

that the data lack important information about the classes,
making it a challenging test task. The medium-sized Breast
Cancer Wisconsin data set is imbalanced but includes a higher
number of data points to facilitate higher classification results.
The very small and highly balanced IRIS data set [87] consists
of three classes and four features with 50 samples per class.
Finally, the Mesothelioma [80] data set consists of a medium
number of samples belonging to two fairly imbalanced classes
and a high number of features. In total, these data sets cover
combinations from high dimensionality with limited samples
to low dimensionality with a high number of samples.

In the second set, we selected four regression data sets. The
Parkinson Tele Monitoring data set [81] poses a regression
task of two targets and provides a fairly large number of sam-
ples with a medium number of input variables. Furthermore,
we selected the red and white wine data sets [82] offering
fewer samples and fewer variables. A further data set [88] is
the Abalone data set, which consists of 4177 samples with
eight attributes. The last data set is a Life Expectation data
set [89] that consists of 2937 samples with 19 scalar variables
mined from WHO data. The data set is provided by Kaggle.4

Another data set is the diabetes disease progression data
set [90] that comes with 441 samples and ten scalar attributes.
In addition, we used the sequential MNIST data set [68]
that consists of a train and a test split with 60 000 samples
and 10 000, respectively, with 784 scalar variables and the
IMDB sentiment analysis data set [91], which consists of
2937 samples with 19 scalar variables.

2) Studies Network Topologies: We evaluated all data sets,
except for the Epileptic Seizure data set, with the same
network topology consisting of four hidden layers with the
same number of neurons per layer. Thereby, we calculated the
number of neurons, in relation to the problem, like ten times
the number of input features times the number of classes.
We used Leaky ReLU as the activation function. For the
Epileptic Seizure data set, we propose a novel topology that
first decomposes the input into its constituting frequencies
using stacks of dilated convolutions and then extracts features
using 2-D convolutions. The input is fed into every dilated
convolution in the stack at the same time and stacked to a

4https://www.kaggle.com/kumarajarshi/life-expectancy-who/metadata
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TABLE V

EVALUATION RESULTS FOR THE STUDIED BENCHMARK DATA SETS. SIGNIFICANCE LEVELS ARE DENOTED BY “*,” “‘**,” AND “***” REFERRING
TO A STUDENT’S T-TEST WITH A P-VALUE EQUAL OR BELOW 0.1, 0.01, AND 0.001, RESPECTIVELY, WHILE *−* DENOTES NO SIGNIFICANT

DIFFERENCE BETWEEN THE VALUE AND THE BASELINE. + REFERS TO THE RELATIVE ERROR MAE/MADMEDIAN

2-D representation afterward. To make sure that the outputs
that are stacked together share the same length, we limit
the length of the input that is fed into every convolution
separately. We refer to the network topology as the frequency
decomposition network (FDN). For the Epileptic Seizure data
set, we used 128 dilated convolutions with a kernel size of 2
and a dilation ranging from 1 to 128. The stacked outputs
yield a 128 × 128 feature map with three channels. On top of
this, we perform a common convolutional feature extraction
consisting of four stacks of two 2-D convolutional layers
separated by max-pooling layers. The convolutional layers
have a kernel size of three each and a stride of one, while
the maximum pooling layers have a kernel size of two and
a stride of two. The classifier is one single linear classifier.
All outputs except the last are batch normalized and Leaky
ReLU activated. In total, the FDN has 1.9 million parameters.

3) Experimental Setup: We used Adam as an optimizer for
all data sets with a learning rate of 0.01, betas of 0.9 and 0.999,
ε of 1E −08, and a weight decay of 0. We use a cross-entropy
loss function weighted by the classes’ prevalence. The learning
rate is decayed by 10% every 40 epochs. The scaling rate for
SynScaW was set to 0.01 and 0.5 for SynScaL following a
hyperparameter search on a randomly chosen 10% validation
split of the Epileptic Seizure data set. To further stabilize
the training process, we decayed the SynScaW scaling rate
analogous to the learning rate. For the dropout experiments,
probabilities were set to 0.2 for input neurons and 0.5 for
all other neurons. For the confidence penalty experiments,
the parameter β was set to 1.0. All networks are trained for
100 epochs. We perform tenfold cross-validation to evaluate
test accuracy as a fair trade between classifier stability and
data set variance estimation [92], [93]. Especially, to be able
to differentiate results in case of 100% accuracy, we also
analyze and report the average number of epochs resulting
in the highest accuracy.

4) Evaluation Results: Table V presents results of
our experiments either in terms of computed accuracy
(classification task) or mean absolute error (regression task)

and standard deviation across the ten-fold cross-validation.
In a second column per evaluated regularization approach,
we report the highest accuracy averaged over all runs and the
average epoch in which it was observed. We statistically tested
the results of all methods against the respective baseline and
report the computed significance level next to the result. Per
data set (rows), we report from left to right results for the
baseline without regularization, for the dropout approach [7],
the confidence penalty approach [40], the proposed SynScaW
approach, and the proposed SynScaL approach.

SynScaW yields superior classification and regression
results for all seven data sets with accuracies significantly
above the baseline for four data sets. SynScaL yields similar
results that are also above the baseline for the classification
tasks but is comparable or worse than the baseline for the
regression tasks. Dropout achieves the worst MAE on the
Parkinson data set and also delivers results below the baseline
for the other data sets. Confidence Penalty provides results
comparable to the baseline for the classification tasks but
does not support regression tasks. For the regression exper-
iments, we observe that synaptic scaling leads to lower errors.
We noticed that SynScaL reduced the epochs in most cases and
that SynScaW did not. Finally, we gained a few observations
on recurrent networks. In these recurrent setups, SynScaW
produced the highest accuracies among the methods.
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