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ABSTRACT.

Purpose: To investigate the spectral characteristics of fundus autofluorescence

(FAF) in AMD patients and controls.

Methods: Fundus autofluorescence spectral characteristics was described by the

peak emission wavelength (PEW) of the spectra. Peak emission wavelength

(PEW) was derived from the ratio of FAF recordings in two spectral channels at

500–560 nm and 560–720 nm by fluorescence lifetime imaging ophthalmoscopy.

The ratio of FAF intensity in both channels was related to PEW by a calibration

procedure. Peak emission wavelength (PEW) measurements were done in 44

young (mean age: 24.0 � 3.8 years) and 18 elderly (mean age:

67.5 � 10.2 years) healthy subjects as well as 63 patients with AMD (mean

age: 74.0 � 7.3 years) in each pixel of a 30° imaging field. The values were

averaged over the central area, the inner and the outer ring of the ETDRS grid.

Results: There was no significant difference between PEW in young and elderly

controls. However, PEW was significantly shorter in AMD patients (ETDRS

grid centre: 571 � 26 nm versus 599 � 17 nm for elderly controls, inner ring:

596 � 17 nm versus 611 � 11 nm, outer ring: 602 � 16 nm versus

614 � 11 nm). After a mean follow-up time of 50.8 � 10.8 months, the PEW

in the patients decreased significantly by 9 � 19 nm in the inner ring of the grid.

Patients, showing progression to atrophic AMD in the follow up, had

significantly (p ≤ 0.018) shorter PEW at baseline than non-progressing patients.

Conclusions: Peak emission wavelength (PEW) is related to AMD pathology

and might be a diagnostic marker in AMD. Possibly, a short PEW can predict

progression to retinal and/or pigment epithelium atrophy.
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Introduction

Although fundus autofluorescence
(FAF) imaging is part of routine clinical

diagnostics now, there is still limited
knowledge on the involved fluorophores
and their role in the pathophysiology of
retinal diseases. Most of our knowledge

comes from post mortem isolation and
analysis of fluorophores (Marmorstein
et al. 2002; Han et al. 2006; Warburton
et al. 2007; Sparrow et al. 2010; Feldman
et al. 2015, 2018; Ben Ami et al. 2016;
Tong et al. 2016; Guan et al. 2020;
Yakovleva et al. 2020), from investiga-
tions in transgenic mice with specific
alterations in the visual cycle (Boyer et al.
2012, 2021; Stremplewski et al. 2015;
Meleppat et al. 2020; Palczewska et al.
2020), and from cell culture experiments
using bisretinoids and their oxidation
products as known fluorophores of
lipofuscin of the retinal pigment epithe-
lium (RPE) (Ben-Shabat et al. 2002;
Sparrow et al. 2002; Hammer et al.
2006, 2008a, 2008b). In these investiga-
tions, the molecule N-retinylidene-N-
retinyl-ethanolamine (A2E) got the most
attention as it was regarded the most
fluorescent component of lipofuscin. But
also the possibility to synthesise A2E
(Parish et al. 1998) for the use in cell
culture experiments might have contrib-
uted to its popularity. In fact, the
molecular composition of lipofuscin is
much more complex. Ten different com-
pounds have been isolated by thin-layer
chromatography (Eldred & Katz 1988)
and taking precursor and oxidation
products into account, about 25 mole-
cules are reported (Sparrow et al.
2012).

Differentiation of fluorophores in
vivo needs a description of the fluores-
cence beyond fluorescence intensities.
Two parameters of the fluorescence
have been investigated so far, the
fluorescence lifetime and the emission
spectrum. Whereas several recent
reports show alterations of fluorescence
lifetimes in various retinal diseases
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(Dysli et al. 2015, 2016, 2016, 2017,
2017; Sauer et al. 2016, 2018a, 2018b,
2018c, 2019; Solberg et al. 2019;
Hammer et al. 2020; Schultz et al.
2020a, 2020), there are relatively few
publications on in vivo measurements
of FAF spectra. Delori et al. (1995)
reported a fundus camera based instru-
ment measuring FAF spectra at single
locations of the retina in 1994 (Delori
1994) and measured spectra of a cohort
of healthy subjects. This technique was
applied to a series of seven patients
suffering from age-related macular
degeneration (AMD; Arend et al.
1995). However, the patient group
was divers, no conclusion on spectral
changes by AMD could be drawn with
statistical evidence. Investigations in
AMD and diabetic patients, using two
spectral channels only, revealed general
long wavelength fluorescence, resulting
from Lipofuscin, and additional short
wavelength emission, which could be
addressed to collagen in disciform scars
secondary to AMD, drusen, and
advanced glycation end products in the
diabetic patients (Hammer et al. 2008a,
2008b). Borrrelli et al. used a slit-
scanning camera to record colour FAF
images showing that the assessment of
green-emitting fluorophores is repeat-
able and in areas of macular atrophy,
shortwave fluorophores are present and
appear to correspond to residual debris
or drusenoid materials (Borrelli et al.
2018, 2020; Borrelli et al. 2018).

In this study, we used the fluorescence
lifetime imaging ophthalmoscopy
(FLIO) device; however, the temporal
resolution was neglected. Photons from
all time channels were binned and only
their distribution over the two spectral
channels was considered. This way, the
peak emission wavelength (PEW) per
pixel was determined for healthy sub-
jects of different age and AMD-patients.

Methods

First, we tested the test re-test reliabil-
ity of the PEW measurement. We
performed FLIO measurements of
FAF in 22 eyes of 11 young healthy
subjects (age: 28.7 � 3.6 years).
Within two weeks, all subjects were
measured twice on two days by the
same operator using the same device
with identical settings. Peak emission
wavelength (PEW) were averaged over
standardised areas at the fundus by
centering the standard ETDRS grid at

the fovea manually and calculating the
mean values in the centre, the inner,
and the outer ring of the grid.

Forty-four young (<40 years, mean
age: 24.0 � 3.8 years) and 18 elderly
(>40 years,meanage: 67.5 � 10.2 years)
healthy subjects aswell as 63patientswith
AMD (mean age: 74.0 � 7.3 years) were
included. Patients were seen repeatedly
and assigned to two follow-up intervals
(12–36 and 37–72 months); demographic
data is given in Table 1. Mean ages of all
groups were significantly different. The
study was approved by the ethics com-
mittee of the University Hospital Jena
and adhered to the tenets of the declara-
tion of Helsinki. All participants gave
written informed consent prior to study
inclusion and underwent a full ophthal-
mologic examination including best cor-
rected visual acuity, OCT (Cirrus-OCT,
Carl-Zeiss Meditec AG, Jena, Germany)
and CFP (Visucam, Carl-Zeiss Meditec
AG, Jena, Germany). Pupils were dilated
using tropicamide (Mydriaticum Stulln,
Pharma Stulln GmbH, Nabburg, Ger-
many) and phenylephrine-hydrochloride
(Neosynephrin-POS 5%, Ursapharm
GmbH, Saarbrucken, Germany). After
pupil dilation, patients underwent FLIO
imaging, OCT, and CFP. No sodium
fluorescein was administered topically
or intravenously prior to FLIO
investigation.

Fluorescence lifetime imaging oph-
thalmoscopy (FLIO) image capture is
based on a picosecond laser diode
coupled with a laser scanning ophthal-
moscope (Spectralis, Heidelberg Engi-
neering, Heidelberg, Germany),
exciting retinal autofluorescence at
473 nm with a repetition rate of 80
Mhz. Fluorescence photons were
detected by time-correlated single pho-
ton counting (SPC-150, Becker&Hickl
GmbH, Berlin, Germany) in short-
wavelength (SSC: 498–560 nm) and
long-wavelength (LSC: 560–720 nm)
spectral channel. Fluorescence lifetime
imaging ophthalmoscopy (FLIO) pro-
vides 30° field images with a frame rate
of nine frames per second and a
resolution of 256 9 256 pixels. In this
study, we neglected the time resolution
of the measurement and only counted
all photons per spectral channel and
pixel. The ratio of the photons in SSC
and LSC was calculated and calibrated
to the PEW as described previously
(Schultz et al. 2021). Briefly, the cali-
bration used the known fluorescence
emission spectra of healthyRPE (Delori

et al. 1995) in vivo and the human lens
(Zuclich et al. 2005), compared thatwith
the SSC/LSC ratio from FLIO mea-
surements at the fundus and lens in a
cohort of healthy young subjects, and
established a linear relationship
between the ratio and the PEW.

SPSS 27.0 (IBM, SPSS Inc., Chicago,
IL, USA) was used for statistical anal-
ysis. Mann-Whitney U-test was used for
the comparison of group median values
if data in the groups was not normally
distributed (tested by Kolmogorov-
Smirnov test). Otherwise, mean values
were compared by t-test or ANOVA
with post-hoc tests using Bonferroni
correction for multiple comparisons.
Wilcoxon test was used for the paired
testing of median values of the test re-
test PEW measurements, the intraclass
correlation coefficient was determined
and a Bland-Altman plot was produced.

Results

In the repeatability investigation, a
significant correlation between the first
and the second measurement was
found in the inner and the outer ring
as well as the centre of the ETDRS grid
(Fig. 1, p = 0.003, p < 0.001, and
p < 0.001, respectively). In a test re-
test analysis (see Bland-Altman plots in
Fig. 1), the intraclass correlation coef-
ficient was 0.577 (95% CI 0.219–0.799)
for the centre of the ETDRS grid, 0.800
(95% CI 0.575–0.912) for the inner,
and 0.826 (95% CI 0.627–0.924) for the
outer ring. The median values of the
first and the second measurement did
not differ significantly (p = 0.154,
0.765, and 0.527 for the respective grid
areas in Wilcoxon test).

The PEW tends to shift towards
shorter wavelengths with ageing. A
significant difference for subjects of
<40 and >40 years of age, however,
was only found in the outer ring of the
ETDRS grid (t-test, p = 0.017). In an

Table 1. Survey of patient demographics

Patient information

Patients at baseline 63 (100%)

Female 35 (56%)

Male 28 (44%)

Age (years, mean�SD) 74.0�7.3

Patients with drusen 50 (79%)

Patients with SDD 18 (29%)

Patients at follow up 1 39 (62%)

Patients at follow up 2 25 (40%)

Eyes progressed to atrophy 10 (16%)
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ANOVA, accounting for multiple com-
parisons, there was no significant dif-
ference found for healthy subjects of
both age groups, however the AMD-
patients had significantly shorter PEW
in all areas of the ETDRS grid (see
Table 2 and Fig. 2). As a typical
example, FAF and PEW-images
(colour-coded from 560 to 650 nm
according to the scale bar) of a 68-
year-old AMD patient and a 65-year-
old control are shown in Fig. 3. The
difference of the PEW is clearly seen.
Both subjects were phacic. In our

AMD-cohort, 27 subjects were pseu-
dophacic (clear lenses only, yellow
lenses were excluded). There was no
difference in the median PEW between
phacic and pseudophacic patients
(p = 0.738 in Mann-Whitney U-test).

Thirty-nine patients had follow-up
investigations, 30 within 12–36 months
(mean follow-up time: 24.0 � 8.7
months), 25 within 37–72 months
(mean follow-up time: 50.8 � 10.8
months), and 16 had repeated visits in
both follow-up intervals. Ten cases
were excluded from the follow-up since

they progressed to retinal or RPE
atrophy. A further shortening of the
PEW was seen for both follow up
intervals in all areas of the ETDRS
grid (Table 2 and Fig. 4) which, how-
ever, was significant for the centre of
the ETDRS grid and inner ring at the
last follow-up (37–72 months) only.

A hypsochromic shift of the PEW
may precede the advent of ORA or
cRORA. Figure 5 shows a 78-year-old
patient who developed cRORA in the
follow up. Already at baseline, shorter
PEW was found superior to the fovea

Fig. 1. PEW measures in the second versus the first imaging session (left) and Bland-Altman plots (right) in the centre (top), the inner ring (middle),

and the outer ring (bottom) of the ETDRS grid.

e1225

Acta Ophthalmologica 2022



where atrophy developed later. The 10
subjects, showing AMD progression to
ORA or cRORA, showed significantly
shorter PEW in all areas of the
ETDRS-grid at baseline than the 39
subjects who did not progress (Table 3
and Fig. 6).

Eighteen eyes (29% of all eyes) had
subretinal drusenoid deposits (SDD).
The PEW tended to be shorter in the
SDD cases than in the drusen-
dominated eyes (centre: 564 � 27 nm
versus 574 � 25 nm, inner ring:
591 � 15 nm versus 598 � 18 nm,
outer ring: 597 � 12 nm versus
604 � 17 nm) but none of these differ-
ences were significant. The rate of
progression to ORA or cRORA was
higher in eyes with SDD (5 out of 16
eyes in follow up, 31%) than in eyes
without SDD (5 out of 33 eyes, 15%).

Discussion

Good repeatability of the PEW mea-
surement was shown for the inner and
outer ring of the ETDRS grid. In the
centre, the inter-individual variance
was higher. This can be accounted to

differences in the Xanthophyll concen-
tration between subjects (Delori et al.
2001). However, also the Pearson
correlation coefficient and the intra-
class correlation coefficient were lower
here than in the other areas, the PEW
measurement has to be considered less
repeatable. The reason might be the
lower fluorescence intensity due to
Xanthophyll absorption of the excita-
tion light.

This is the first report of PEW
measurements from FLIO in healthy
eyes and that of AMD patients. Our
findings indicate a slight hypsochromic
emission shift with ageing and signifi-
cantly shorter emission wavelengths in
AMD versus controls. Patients with
progression to ORA or cRORA at
follow up show shorter PEW in the
baseline measurement already. Fur-
thermore, in agreement with the litera-
ture (Smith et al. 2009;Heesterbeek et al.
2020), the rate of disease progression
was higher in the patients showing SDD
and these patients had insignificantly
lower PWE. It remains to be deter-
mined in further prospective studies,
adjusting for disease stage and

duration, whether PEW is indicative
for AMD progression.

Our measurements should be refer-
enced to such of full spectra as
described by Delori (1994). His instru-
ment uses a sophisticated procedure for
the compensation of the spectral trans-
mission of all optical media and the
sensitivity of the detector. Thus, these
spectra are considered the gold stan-
dard; however, the spectral resolution
is achieved on cost of spatial resolu-
tion. Due to the limited number of
fluorescence photons, it provides spec-
tra at single spots (minimal size 1.3°)
but no two-dimensional images. Using
this technique, Delori et al. (1995)
determined lipofuscin as the dominant
retinal fluorophore, but also found a
minor fluorophore with peak emission
at 520–540 nm, possibly related to
flavin adenine dinucleotide (FAD).
This fluorophore was seen most clearly
where lipofuscin fluorescence was low,
e.g. in the macula. This is in agreement
with our findings of shorter PEW in the
macula in healthy subjects. These
authors reported an increase of the
fluorescence intensity with age, but no
spectral shift. Arend et al. performed
spectral measurements in seven AMD
patients and two controls (Arend et al.
1995). Unfortunately, the sample size
and the diversity of AMD stages did
not allow conclusions on spectral
differences between patients and con-
trols. However, they reported shorter
emission wavelengths (maximum emis-
sion at 560 nm) in cases with drusen at
the location of the measurement.
Although in the current investigation,
we sought for global differences rather
than local ones, Figs 3 and 5 show
shortwave emission at drusen as well.
This is in agreement with our previous
findings (Hammer et al. 2020). Shortest
PEW were found in the central subfield
of the ETDRS grid (Fig. 2, Table 4).
As this holds especially for AMD
patients and soft drusen have highest
abundance in the central macula, they
might contribute to these short PEW.

Colour-CCD based measurements
of FAF in two spectral channels are
reported previously. We investigated
pseudophacic AMD and diabetic reti-
nopathy patients as well as healthy
controls (Hammer et al. 2008a, 2008b).
In agreement with the current investi-
gation, we found a slight, non-
significant green-shift of the emission
with age. Generally, the emission

Table 2. Mean values and standard deviations of PEW for healthy subjects <40 years and

>40 years of age as well as AMD patients.

Healthy < 40 years Healthy < 40 years AMD

ETDRS centre 602 � 16 nm 599 � 17 nm 571 � 26 nm

ETDRS inner ring 614 � 12 nm 611 � 11 nm 596 � 17 nm

ETDRS outer ring 621 � 11 nm 614 � 11 nm 602 � 16 nm

Fig. 2. Boxplots of emission peak wavelengths for healthy controls younger and older than 40

years as well as AMD patients in the center, inner, and outer ring of the ETDRS grid. p-values

from ANOVA and post-hoc test with Bonferroni correction for multiple testing are given for

significant differences.
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wavelength was shortest in the dia-
betics, intermediate in AMD, and
longest in the controls; however, the
differences were not significant. A

reason could be that this fundus
camera based approach lacks confo-
cality and all structures anterior to the
retina contributed to the fluorescence

as well. Using a slit-scanning device
with fluorescence detection in a green
and a red camera channel upon excita-
tion at 450 nm, Borrelli et al. (2018)
reported a good visibility of areas of
geographic atrophy in a red-filtered
image of FAF and a remaining green
fluorescence in areas of macular atro-
phy, associated with hyperreflective
material atop Bruch’s membrane seen
in OCT (Borrelli et al. 2018). All
studies so far indicate a weak, short-
wave emission in RPE atrophy (Arend
et al. 1995; Hammer et al. 2008a,
2008b; Borrelli et al. 2018). When
lacking lipofuscin fluorescence, FAF
is dominated by contributions of
Bruch’s membrane and remaining
basal linear and laminar deposits,
eventually also from the retina and
deeper layers such as choroid and
sclera. For this reason, we excluded
patients with ORA and cRORA from
the comparison with healthy controls
as well as from the analysis of spectral
changes of FAF in the follow up of
AMD.

As FAF emission wavelengths
shorten in AMD (eventually in normal
ageing as well) and short wavelength
emission seems to be predictive for
AMD progression, reasons for short-
wave FAF would be of utmost interest.
Related fluorophores were studied in in
vitro experiments or from post mortem
donor eyes. However, wavelengths are
not entirely comparable. Already
Delori et al. found a hypsochromic
shift of FAF spectra post mortem
versus in vivo (Delori et al. 1995). An
effect of tissue fixation was not found
(Delori et al. 1995; Schultz et al. 2020a,
2020), however, altered FAD concen-
trations post mortem as well as oxida-
tion of fluorophores upon oxygen
exposure of tissue during the prepara-
tion process may account for this shift
(Hammer et al. 2018). Marmorstein et
al. (2002) reported a maximal emission
at 555 nm for RPE and 545 nm for
sub-RPE deposits from histologic sec-
tions upon excitation at 488 nm. There
was no difference between AMD- and
control donor eyes. In contrast, we
found a considerable difference in RPE
and sub-RPE emission (610 versus
570 nm) upon 2-photon excitation
(960 nm), but also only minor differ-
ences between AMD patients and
controls (Schultz et al. 2020a, 2020).
From slices of mouse eyes, broad
emission spectra upon 3-photon

Fig. 4. Change of the EPW during follow up of 12–36 or >36 months compares to baseline. A

hypsochromic shift of the EPW was observed. This was significant for the follow up >36 months

in the inner ring of the ETDRS grid.

(A) (B)

(C) (D)

Fig. 3. (A) FAF images of a 65-year-old control and (B) a 68-year-old AMD patient. (B) and (C):

colour-coded PEW for both subjects. The patient shows shorter FAF emission wavelength than

the control.
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excitation at 1.07 µm with very short
pulses (40 ps) are reported with a
strong contribution of retinal layers,
which, however, is not well explained

(Murashova et al. 2017). Han et al.
(2006) found RPE cells with “abnormal
lipofuscin granules” showing short-
wavelength autofluorescence at

520 nm versus 556 nm in other cells
upon 436 nm excitation in RPE flat-
mounts. This corresponds to the find-
ing of lipofuscin granules of different
density and fluorescence properties
(Guan et al. 2020) as well as to the
finding of large granules with short-
wavelength emission in RPE cells of an
elderly donor (Han et al. 2007). How-
ever, it could not be stated whether
cells containing larger granules with
shortwave emission are associated with
pathology.

Several authors report measurements
in mouse strains overexpressing or
lacking lipofuscin. Abca4�/� mice, a
model for Stargardt’s disease, show a
massive accumulation of lipofuscin with
same emission spectra as wild type
animals in RPE flat mounts (emission
peak at 610 nm upon 488 nm excita-
tion; Boyer et al. 2012; Meleppat et al.
2020). The major source of fluorescence
is regarded to be A2E generated from
11-cis-retinal rather than all-trans-
retinal (Boyer et al. 2021). However, as
the fluorescence intensity in different
mouse strains is not proportional to the
A2E level (Boyer et al. 2012), other
fluorophores have to be considered as
well. RPE65�/� mice, in which the
visual cycle is blocked due to lack of
the enzyme RPE65, which converts all-
trans-retinal to 11-cis-retinal, do not
accumulate bisretinoids but retinyl
esters in the retinosomes of RPE cells.
For these mice, a different fluorescence
emission peaking at 524 nm upon 2-
photon excitation at 730 nm in vivo, was
found (Stremplewski et al. 2015). Two-
photon fluorescence (excitation at
730 nm) was able to distinguish bisreti-
noids and retinyl esters by their emission
spectra in Rdh8–/–Abca4PV/PV mice
(Palczewska et al. 2020).

Several studies report spectral mea-
surements on Chloroform/Methanol
extracts of lipid compounds from
human donor eyes. The separation of
compounds from the extracts by thin
layer chromatography revealed ten
fluorescent species (Eldred & Katz
1988). Three of them could be excited
at wavelengths above 400 nm and
showed yellow-orange fluorescence.
High Performance Liquid Chromatog-
raphy (HPLC) analysis revealed one of
them, A2E, as a strong fluorophore
which, subsequently, was widely stud-
ied in cell culture experiments as it
could be synthesised (Parish et al.
1998). A2E solution in PBS showed

(A)

(B)

(C)

(D)

(E)

(F)

(G)

Fig. 5. Fundus autofluorescence (FAF) of a 78-year-old AMD patient at (A) baseline and follow

up of (B) 19 and (C) 52 months. The development of geographic atrophy is seen. (E) and (F): OCT

at green lines in A and B revealing cRORA. (D): EPW image at baseline. Areas of later atrophy

show shorter FAF emission wavelengths at baseline already.

Table 3. Difference of PEW at follow-up investigations versus baseline.

Follow-up 12–36 months Follow-up 37–72 months

ETDRS centre �10 � 23 nm �17 � 26 nm

ETDRS inner ring �6 � 26 nm �9 � 19 nm

ETDRS outer ring �3 � 18 nm �4 � 16 nm

Note: Mean values and standard deviations, bold values show significant differences.
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an emission maximum at 610 nm
(excitation at 380 nm; Sparrow et al.
1999). However, the emission is sensi-
tive to the chemical environment
(Ragauskaite et al. 2001) and can be
shifted to shorter wavelengths by
photo-oxidation (Sparrow & Duncker
2014). Later studies, using HPLC for
compound separation, found A2E to
be only minor fluorescent but fluores-
cence of photo-degradation products
of bisretinoids was highest with fluo-
rescence from photo-oxidised A2E
(Feldman et al. 2015; Yakovleva et al.
2020). Furthermore, these authors
found a hypsochromic shift of the
fluorescence of RPE cells from AMD
donors compared to healthy controls
(Feldman et al. 2018; Yakovleva et al.
2020). Warburton et al. observed
shorter emission wavelength for
melano-lipofuscin, not related to pho-
toreceptor phagocytosis, than for lipo-
fuscin (Warburton et al. 2007).

Thus, the shorter PEW of AMD
patients versus controls, observed here,
could be attributed to changes in the
RPE fluorophore composition,

specifically a photo-oxidation of bisre-
tinoids or an increase of the ratio of
melano-lipofuscin to lipofuscin. How-
ever, other explanations should be
considered as well: As lipofuscin is
known to decrease in AMD (Ach et
al. 2015; Reiter et al. 2019), the relative
contribution of other fluorophores can
increase. These can be located in sub-
RPE drusen and basal-linear deposits,
known to have shortwave emission
(Ben Ami et al. 2016; Tong et al.
2016; Hammer et al. 2020; Schultz
et al. 2020a, 2020) or in the retina
(Murashova et al. 2017; Hammer et al.
2018). Furthermore, we consistently
observed shorter PEW in the macula
in all subjects. This might be related to
the fluorescence of the macular pig-
ment (Sauer et al. 2016, 2018a, 2018b,
2018c) or to a lack of A2E in the fovea
(Ablonczy et al. 2013).

This study has several limitations:
First of all, it has to be emphasised that
the reported PEW are subject to a
calibration procedure relying on
assumptions (Schultz et al. 2021).
Although these assumptions are

reasonable and well documented in
the literature, they might not be abso-
lutely correct. This could result in small
deviations of the absolute values of
PEW. The reported differences between
groups, however, will not be affected as
the calibration was used for all PEW
values. Another point, which can cor-
rupt the PEW, is background light in
the measurement. All measurements
were taken in a completely dark room
and background, usually, is very low.
However, as the detectors have single
photon sensitivity; few background
photons might have been recorded. If
their number, relative to that of the
fluorescence photons, is different in
both spectral channels, this will influ-
ence the PEW. Finally, the AMD
patients were on average 6.5 years
older than the elderly control subjects.
Considering the inter-individual vari-
ance of the PEW values, we do not
think that this age difference of the
subjects contribute much to the PEW-
difference between the groups, yet we
cannot exclude a certain age effect.

In conclusion, PEW might be a
diagnostic marker in AMD. It was
not only shorter in the patients than in
the controls but also shorter in
patients, who later progressed to
ORA or cRORA than in those, who
did not. Thus, short PEW might be an
indicator for AMD progression.
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