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Abstract
In this thesis, we study quantum theories of gravity and matter in the Renormalization
Group approach.
We observe light fermions in our universe which feature a remnant of chiral symmetry.

While chiral symmetry appears to remain intact along the Renormalization Group flow of
asymptotically safe approaches to quantum gravity, these computations are performed on a
flat background. Mean field studies performed on negatively curved backgrounds however
indicate chiral symmetry breaking in the form of gravitational catalysis. The study of the
mean field RG flow on negatively curved spacetime leads to an upper bound for the ratio
of curvature of local patches of spacetime to the RG scale. If this ratio does not exceed
said bound, gravitational catalysis does not trigger chiral symmetry breaking. We extend
these calculations to finite temperature and study how thermal fluctuations affect this bound
from gravitational catalysis. Applying this thermal extension of the curvature bound to the
asymptotic safety scenario of quantum gravity, it translates into an upper bound of numbers
of fermion species allowed in our universe for asymptotically safe quantum gravity to be
compatible with the existence of light fermions.
Most approaches towards a UV complete quantum theory of gravity start with General

Relativity as its classical theory. Einstein’s formulation of gravity can be summarized as
pseudo-Riemannian geometry on a manifold equipped with a metric and a connection. While
this connection is restricted to the Levi-Cevita connection in Einstein gravity (which is
torsionless and compatible with the metric) and therefore is fully determined by the metric,
there is a priori no fundamental reason to not use a general connection. This formalism, in
which the metric and the general connection are treated as independent degrees of freedom,
is referred to as Hilbert-Palatini gravity. In this thesis, we compute the most general solution
to the connection for the Einstein-Hilbert-Palatini action and use it in an on-shell reduction
scheme to compute the RG flow for the subsequent order in the truncation. We find a UV-
attractive fixed point similar to the Reuter fixed point in quantum Einstein gravity that is
connected to the Gaussian fixed-point in the IR through an RG trajectory. Our scenario
therefore provides evidence for the existence of a corresponding UV complete quantum theory
of Hilbert-Palatini gravity that has a long-range limit compatible with classical Einstein
gravity.





Zusammenfassung
In dieser Promotionsschrift untersuchen wir Quantentheorien der Gravitation und Materie
im Renormierungsgruppenansatz.
Wir beobachten leichte Fermionen in unserem Universum, die ein Überbleibsel der chira-

len Symmetrie darstellen. Die chirale Symmetrie scheint zwar im Renormierungsgruppenfluss
von asymptotisch sicheren Herangehensweisen der Quantengravitation erhalten zu bleiben,
jedoch werden diese Berechnungen auf einem flachen Hintergrund durchgeführt. Studien im
Mean Field Formalismus auf negativ gekrümmten Hintergründen deuten jedoch eine Bre-
chung der chiralen Symmetrie in Form der Gravitationskatalyse an. Die Untersuchung des
Mean Field Renormierungsgruppenflusses auf einer negativ gekrümmten Raumzeit führt zu
einer oberen Schranke für das Verhältnis der Krümmung lokaler Raumzeitflecken zur Renor-
mierungsgruppenskala. Falls dieses Verhältnis die besagte Schranke nicht überschreitet, wird
die chirale Symmetriebrechung durch die Gravitationskatalyse nicht ausgelöst. Wir erwei-
tern diese Berechnungen auf endliche Temperaturen und untersuchen, wie sich thermische
Fluktuationen auf diese Schranke der Gravitationskatalyse auswirken. Wenn wir diese ther-
mische Erweiterung der Krümmungsschranke auf die asymptotisch sichere Herangehensweise
der Quantengravitation anwenden, lässt sie sich in eine obere Schranke der Anzahl der Fer-
mionenarten übersetzen, die in unserem Universum erlaubt sind, damit asymptotisch sichere
Quantengravitation kompatibel mit der Existenz leichter Fermionen ist.
Die meisten Herangehensweisen an eine UV-vervollständigte Quantentheorie der Gravita-

tion starten mit der Allgemeinen Relativitätstheorie als klassische Theorie. Einsteins Formu-
lierung der Gravitation kann als eine pseudo-riemannsche Geometrie auf einer Mannigfaltig-
keit aufgefasst werden, die mit einer Metrik und einem Zusammenhang ausgestattet ist. Zwar
ist dieser Zusammenhang in der einsteinschen Formulierung der Gravitation auf den Levi-
Cevita-Zusammenhang eingeschränkt und folglich durch die Metrik vollständig bestimmt,
gibt es jedoch a priori keinen fundamentalen Grund, keinen allgemeinen Zusammenhang zu
wählen. Dieser Formalismus, in dem die Metrik und der Zusammenhang als unabhängige
Freiheitsgrade behandelt werden, wird als Hilbert-Palatini-Gravitation bezeichnet. In die-
ser Promotionsschrift berechnen wir die allgemeinste Lösung des Zusammenhangs für die
Einstein-Hilbert-Palatini-Wirkung und nutzen sie in einem Bewegungsgleichungreduktions-
schema, um den Renormierungsgruppenfluss der nächsthöheren Ordnung in der Trunkierung
zu berechnen. Wir finden einen UV-attraktiven Fixpunkt, der dem Reuterfixpunkt der ein-
steinschen Gravitation ähnelt und mit dem gaußschen Fixpunkt im IR durch eine Renormie-
rungsgruppentrajektorie verbunden ist. Unser Szenario liefert daher einen Nachweis für die
Existenz einer entsprechenden UV-vervollständigten Quantentheorie der Hilbert-Palatini-
Gravitation, die einen langreichweitigen Limes besitzt, welcher mit der klassischen, einstein-
schen Gravitation kompatibel ist.
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1. Introduction

In our current understanding of physics, all phenomena in the universe underlie four fun-
damental forces: the electromagnetic interaction that we feel when our hands are too close
to the TV, the weak interaction that is involved in radioactive decay, the strong interaction
that binds the particles in an atomic nucleus together and the gravitational interaction that
chains us to the surface of this very Earth. On a macroscopic level, we use field theories
to accurately model these interactions, e.g. the electric and magnetic field in the Maxwell
equations for electrodynamics, and the metric tensor (which represents spacetime itself as
a field) in the Einstein field equations in General Relativity (GR). Since the effects of the
weak and the strong interaction are not directly observable in our day-to-day life, a classical
field theoretical description of these two interactions was initially not formulated.
As we went to smaller and smaller length scales, new phenomena emerged that could not be

explained by classical field theories, like the spontaneous emission in which an electron within
an atomic shell moves from an excited state to the ground sate and emits a photon. Instead,
a quantized version of electrodynamics was formulated, coined Quantum Electrodynamics
(QED) and the classical field theory was instead substituted by its Quantum Field Theory
(QFT) version to accurately describe the effects of the electromagnetic interaction at smaller
length scales with great success [1]. As a result, the effects observable at smaller length scales
of the weak and the strong interaction could also be well understood through a description
of a Quantum Field Theory with the quantum fields exhibiting a local gauge symmetry (an
abelian one for QED and a non-abelian one for the latter two).
In the computation of observables within these theories divergences appeared, that had

to be removed by hand trough the introduction of counter terms. The idea was that the
couplings (like the gauge couplings g for the interactions of the gauge fields) appearing in
the Lagrangian of the QFT were not the actually measurable couplings, but instead just
some bare couplings that can be split into the real, actually measurable parameters (called
renormalized couplings) and a counter term that cancels the appearing divergence [1]. While
this method of perturbative renormalization was mathematically successful in removing the
divergences, it was initially deeply unsatisfactory on a fundamental physics level, as the
physical understanding of this renormalization procedure was not well developed .
This lead to the Wilsonian interpretation of renormalization [2], in which the couplings

of the theory were a priori not treated as constant-valued couplings but instead as running
couplings that could change their values depending on the length scale at which one observes
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1. Introduction

the corresponding interaction. Using this Renormalization Group (RG) technique, only
interactions up to a certain length scale (inversely related to the coarse-graining scale k of
the RG) were considered and a cutoff was naturally introduced to the integrals one would
have to take to compute observables in the QFT formulation. The introduction of the RG
not only got rid of the divergences appearing in QFTs, but its foundation in the Wilsonian
approach to renormalization also delivered a satisfactory interpretation that could be verified
in experiments, as the couplings indeed seemed to change their values depending on the
energy scale (inversely related to the length scale) at which the interaction was considered.
While the formulation of a QFT within perturbative renormalization was successful in

quantizing three of the four fundamental interactions, it failed for the case of gravity, ren-
dering the gravitational interaction at the lowest order (Einstein-Hilbert action which classi-
cally leads to the Einstein field equations) perturbatively non-renormalizable [3]. As a result,
other attempts at quantizing gravity were formulated, most notably String Theory [4] and
Loop Quantum Gravity [5].
The physicist Steven Weinberg suggested the idea that while gravity may be perturbatively

non-renormalizable, we might find a non-perturbative formulation of gravity in which it
would be renormalizable [6]. He coined this scenario asymptotic safety.
With the introduction of the Functional Renormalization Group (FRG) a non-perturbative

approach to renormalization was formulated and initially applied to the Quark-Meson model
(a low energy effective model for QCD, the QFT of the strong interaction) to study the
chiral phase transition in QCD [7]. Applying this new formulation to gravity yielded a UV-
attractive fixed-point in the RG flow, rendering the theory non-perturbatively renormalizable
and therefore asymptotically safe [8]. Finally, a QFT description of gravity was formulated.
Further studies on the Asymptotic Safety (AS) approach to Quantum Gravity (QG) were

performed to include higher order gravitational interactions (beyond the Einstein-Hilbert
action) to great success [9–11] (though there still are open questions, especially regarding
unitarity in Quantum Gravity, see [12–14] for more information).
Since the Asymptotic Safety approach to Quantum Gravity is a QFT formulation, the

inclusion of matter degrees of freedom to study its effects on the gravitational sector is a
rather straightforward task as we can use the preexisting quantum field theory formulations of
matter degrees of freedom and extend them to curved spacetime. Studies on asymptotically
safe gravity and matter have shown that the Einstein-Hilbert action exhibits a UV-attractive
fixed-point in the presence of matter, even so for the types and numbers of particles that are
contained in the Standard Model of particle physics [15].
Additionally, the effects of asymptotically safe quantum gravity on the matter sector of

the Standard Model have been studied. An issue of concern that the Standard Model has is
that the abelian sector contains a Landau pole in its gauge coupling and it therefore diverges
at a certain energy scale. With the inclusion of gravitational interactions, a UV-attractive
fixed-point was found, rendering QED in a scenario of quantized gravity asymptotically safe
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and therefore UV-complete [16].
The interplay between quantum gravity and matter and its phenomenological applications

to our universe are of great interest. One of those cases of an interplay is gravitational
catalysis [17] . It is a mechanism that is triggered by negatively curved backgrounds and
induces chiral symmetry breaking, which would generate fermionic masses on the order of
the curvature scale. If the high energy-regime of gravity was characterized by such an
average curvature, we would expect all fermions to have Planck scale mass. Since we do not
observe these types of massive fermions in our universe, we have to prevent this scenario of
gravitational catalysis emerging in our theories.
Studies of the RG flow of fermionic interactions on a negatively curved background indicate

that chiral symmetry is intact if the ratio of the curvature of local patches of spacetime does
not exceed a certain bound [18]. Any UV-complete quantum theory of gravity has to obey
this curvature bound from gravitational catalysis to be compatible with the existence of light
fermions in our universe. This bound can henceforth be used as a litmus test to constrain
various approaches to quantum gravity.
In this thesis, we are interested in how thermal fluctuations might affect this bound and

study the effects of gravitational catalysis on a manifold that is curved in its spatial compo-
nents and compactified in the temporal direction. This ensures that the negative curvature is
included, which would trigger gravitational catalysis, while also allowing thermal fluctuations
according to the Matsubara formalism.
We then apply this result phenomenologically to the Asymptotic Safety scenario of quan-

tum gravity. The thermal bound from gravitational catalysis is translated into an upper
bound on the absolute value of the cosmological constant in the UV through the Einstein
field equations. Matter degrees of freedom cause the absolute value of the cosmological con-
stant in the UV to increase. At a certain critical number of fermion species, the cosmological
constant will exceed this thermal bound and gravitational catalysis may be triggered.
To avoid this scenario, the number of fermion species in our universe should not surpass this

critical value for our theory to be compatible with the existence of light fermions. Therefore,
this bound on the curvature can be translated into a bound on the maximal number of
fermion species. Even in the limit of infinitely high temperature, we obtain a finite number
for the maximum number of fermion species allowed in our universe to prevent gravitational
catalysis. We find that the particle content of the standard model (SM) is compatible with
an asymptotic safety approach to quantum gravity and matter that allows light fermions to
exist in our universe.
Another field of interest of this thesis is Hilbert-Palatini gravity [19, 20]. General Relativity

(GR) is formulated as pseudo-Riemannian geometry on a manifold equipped with a metric
and a connection. While in Einstein’s formulation of gravity, this connection is set to the
Levi-Cevita connection (which is torsionless and compatible with the metric), there is a priori
no particular reason to restrict oneself to such a case. In the Hilbert-Palatini formulation
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1. Introduction

of gravity, the metric and the connection are treated as independent degrees of freedom,
similar to how the connection of a non-abelian gauge theory is treated as an independent
degree of freedom from the metric in Yang-Mills theories. This causes the connection in the
Hilbert-Palatini formalism to have additional contributions to Levi-Cevita which introduce
torsion and non-metricity to the manifold.
The most general case of the connection that is constrained by the equations of motion

of the Einstein-Hilbert-Palatini action contains an abelian gauge field in addition to the
Levi-Cevita connection [21]. With this solution, Palatini curvature tensors can be expressed
in terms of ordinary curvature tensors and an additional field strength tensor emerging from
the abelian sector of the connection. This additional contribution vanishes at the level of
the Einstein-Hilbert-Palatini action.
Additionally, the geodesic equation in this formulation of Hilbert-Palatini gravity can

be mapped onto the geodesic equation of Einstein gravity by the introduction of a modified
eigentime parameter [22]. This means that the geodesic trajectory in Hilbert-Palatini gravity
does not differ from the one in Einstein gravity. The velocity along the trajectory is changed
by a scaling parameter though. Therefore, the time it takes for a test particle to move
along a geodesic trajectory varies from Hilbert-Palatini gravity to Einstein gravity. This is a
possible scenario through which one could observe and even measure the effects of classical
Hilbert-Palatini gravity in nature.
To obtain a quantum theory of this formulation of gravity, we therefore study the RG

flow of the subsequent order in the truncation of the Hilbert-Palatini gravity in an on-shell
reduction scheme using the Functional Renormalization Group. We observe a UV-attractive
fixed point of Reuter type with more stabilized critical exponents at a smaller value of the
Newton coupling G compared to the same order in truncation in Einstein gravity. It is
connected to the Gaussian fixed-point in the IR through an RG trajectory. Our scenario
therefore provides evidence for the existence of a corresponding UV complete quantum theory
of Hilbert-Palatini gravity that has a long-range limit compatible with classical Einstein
gravity
This thesis is structured as followed: Chapter 2 explains the methods of non-perturbative

quantum field theories we use. It starts with a description of functional integrals for fermions
and bosons – including gauge fields – and also illustrates how to include thermal fluctuations
in a quantum field theory approach. After discussing various generating functionals and the
Wilsonian interpretation of renormalization, we introduce the Functional Renormalization
Group and how to compute flow equations through a truncation ansatz. We conclude with
an explanation of the Asymptotic Safety scenario. Chapter 3 starts with a summary of
General Relativity and a description of fermions in curved spacetime. After the formula-
tion of gravity as a gauge theory, we quantize it with the Asymptotic Safety approach to
quantum gravity. Chapter 4 discusses spontaneous chiral symmetry breaking and fermion
mass generation through an interplay with a scalar field thoery. We study the effects of
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thermal fluctuations on the curvature bound from gravitational catalysis in Chapter 5 and
apply it to the Asymptotic Safety approach to quantum gravity. In Chapter 6, we discuss
the Hilbert-Palatini formulation of gravity and quantize it in the Asymptotic Safety scenario
via an on-shell reduction scheme.

The compilation of this thesis is solely due to the author. However, parts of this work
have been developed in collaboration with members of the Theoretical Physical Institute in
Jena. The study of the thermal influence on the curvature bound from gravitational catal-
ysis described in Chapter 5 and concluded in Chapter 7 and the study on asymptotically
safe Hilbert-Palatini gravity described in Chapter 6 and concluded in Chapter 7 have been
elaborated together with H. Gies and published in [23] and [24], respectively.
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2. Non-perturbative Quantum Field
Theory

In this chapter, we discuss the mathematical techniques we use to include quantum and
thermal fluctuations for fermions and bosons including gauge bosons and study quantum
fields non-perturbatively with means of the Functional Renormalization Group [25]. Parts
of this introductory chapter follow the introduction to the Functional Renormalization Group
presented in [26].

2.1. Functional Integral Formulation
The approach to quantum field theories in the path integral formalism is based on the idea
of performing a functional integral defined by the classical action over all possible field
configurations [27]. It portrays an alternative approach to canonical quantization in which
the classical fields are substituted by generically non-commutable operators.
For a better understanding of the general idea of a path integral, we start with a test

particle at the initial time ti. It propagates through spacetime and eventually arrives at a
different point at the eventual time tf . In quantum mechanics, the dynamics of the test
particle from the state |ti〉 to the state |tf〉 can be described by the time evolution operator
Û(tf , ti),

|tf〉 = Û(tf , ti) |ti〉

= e−i
∫ tf
ti

dt Ĥ |ti〉, (2.1)

where Ĥ is the Hamiltonian of the system. In a QFT approach however, this evolution is
described by a functional integral D

[
Ψ̄,Ψ

]
, in which we integrate over all physically possible

field configurations of Ψ and its adjoint Ψ̄ from ti = 0 to tf =∞,

Z =
∫
D[Ψ̄,Ψ]eiS[Ψ̄(x),Ψ(x)]. (2.2)

S
[
Ψ̄(x),Ψ(x)

]
represents the action of the classical field theory in a metric with a Lorentzian
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2. Non-perturbative Quantum Field Theory

signature,

S
[
Ψ̄(x),Ψ(x)

]
=

∫ ∞
0

dt
∫
d3xL(Ψ̄(x),Ψ(x)), (2.3)

and is expressed in terms of the Lagrangian density L(Ψ̄(x),Ψ(x)) of the classical field theory.
The path integral measure reads

D
[
Ψ̄,Ψ

]
=

∏
α

∫
dΨ̄αΨα (2.4)

The label α collects all continuous and discrete degrees of freedom of our fields, like their
spacetime coordinate, flavor, internal spin (in case of fermions), etc. Each value of the
amplitude of each label (even the continuous spacetime coordinates) represents a different
field configuration in the path integral, which is integrated out and then encoded in the
kernel Z.
Since path integrals with complex densities eiS are difficult to define rigorously, we perform

an analytical continuation of the time coordinate into the complex plane and proceed with
an imaginary time,

t→ iτ. (2.5)

Our metric now receives a Euclidean signature and our coordinates are now expressed in
terms of Euclidean ones,

xE = (τ, ~x). (2.6)

The path integral in its final form reads

Z =
∫
D[Ψ̄,Ψ]e−

∫
dτ

∫
d3x LE(Ψ̄(xE),Ψ(xE)), (2.7)

with LE being the Lagrangian that uses the metric with the Euclidean signature. From now
on, we omit the subscript that indicates the Euclidean signature of the metric and – unless
stated otherwise – always assume our path integral to be in the Euclidean setting.

2.2. Thermal Quantum Field Theory
If we are interested in the effects of finite temperature on a system within the path inte-
gral formulation of quantum field theory, we can include thermal fluctuations through the
Matsubara formalism [28].
We start with an approach from quantum statistical mechanics (similarly to how we started
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2.2. Thermal Quantum Field Theory

with quantum mechanics in the case of the functional integral). Suppose we have a Hamilto-
nian operator Ĥ that describes our system at finite temperature T . The partition function
Zth that includes all possible configurations of our system in a canonical ensemble reads

Zth = tr e−βĤ , (2.8)

with the trace going over all possible states of the system and β = 1/T being the inverse
temperature.
A trivial introduction of integration through a new parameter τ of Eq. (2.8),

e−βĤ = e−
∫ β

0 dτĤ , (2.9)

shows the similarity of this expression to the time evolution operator of Eq. (2.1), with the
newly introduced parameter τ interpreted as an imaginary time.
We can now proceed from a quantum statistical mechanics approach to a quantum field

theory approach similar to Sec. 2.1 with the introduction of a path integral, and obtain the
expression,

Zth =
∫
D[Ψ̄,Ψ]e−

∫ β
0 dτ

∫
d3x LE(Ψ̄(τ,~x),Ψ(τ,~x)). (2.10)

Eq. (2.10) resembles Eq. (2.7) with the difference at finite temperature being that the
integral of the imaginary time is restricted to the region [0, β].
What needs to be taken into consideration though, is that the initial expression within

a quantum statistical mechanics approach in Eq. (2.8) contains a trace. This results in a
compactification of the temporal direction of our theory in a thermal quantum field theory
approach and our fields now obey the following constraints,

Ψ(τ + β, ~x) = ζΨ(τ, ~x). (2.11)

Bosonic fields (ζ = 1) are constrained by periodic boundary conditions and fermionic fields
(ζ = −1) by anti-periodic boundary conditions. This compactification also leads to the
energy spectrum of our theory to be discretized into so-called Matsubara frequencies,

ωn =

 2πTn if Ψ is bosonic ,

2πT (n+ 1/2) if Ψ is fermionic .
(2.12)

In D = 1 +d spacetime dimensions, integrals over the energy spectrum are now transformed
into a summation of discrete Matsubara frequencies,∫ dDp

(2π)D f(p0, ~p) → T
∑
n

∫ ddp
(2π)d f(ωn, ~p). (2.13)
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2. Non-perturbative Quantum Field Theory

In conclusion, this implies that if we want to describe a system at finite temperature within a
quantum field theory approach, we compactify the temporal direction of our original quantum
field theory to a sphere with circumference β,

τ ∈ R+ → τ ∈ S1, (2.14)

and thereby constrain our quantum fields to the boundary conditions of Eq. (2.11).

2.3. Treatment of Gauge Fields
Suppose we have a gauge theory with an action S[Aµ], that depends on the gauge field Aµ
and is therefore invariant under the (infinitesimal) gauge transformation

Aµ → Aµ + δAµ, (2.15)

S[Aµ] → S [Aµ + δAµ] = S[Aµ]. (2.16)

A quantization of this theory via the above introduced path integral approach yields the
difficulty that one would integrate over different configurations of gauge fields that yield
the same physical configurations, e.g. one overcounts the redundant degrees of freedom
originating from the gauge symmetry.
One now has to efficiently extract those redundant degrees of freedom (also referred to as

gauge orbits) from the path integral DAµ by choosing physically unique configurations of
gauge fields. To do so, we insert a gauge-fixing condition G[(A)] into the path integral and
use the Faddeev-Popov procedure [1, 29],

1 =
∫
D[G] δ [G(A)] =

∫
D[α] δ [G(Aα)]Det

[
δG(Aα)
δα

]
, (2.17)

to reparameterize our newly introduced path integral
∫
D[G] in terms of an auxiliary field

α, which gives rise to the Jacobian in the form of a functional determinant Det[. . . ]. This
auxiliary field α parameterizes all gauge fields that are physically equivalent by means of a
gauge transformation and therefore characterizes our gauge transformation,

δAµ = δAαµ. (2.18)

We now have constrained our path integral over the gauge fields Aµ to those of physically
distinct gauge field configurations Aαµ and extracted the redundant degrees of freedom in the
form of the gauge orbits in the additional path integral D[α].
Since we introduce these gauge-fixing terms in the path integral over an exponentiated

action, it would be useful to express them in a similar manner. For the first expression,
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2.3. Treatment of Gauge Fields

we use the representation of a functional delta distribution as a limit of a Gaussian with
decreasing width ξ,

δ [G(Aα)] = lim
ξ→0

e−Sgf , (2.19)

to identify the so-called action Sgf for the gauge-fixing term,

Sgf = 1
2ξG(Aα)2. (2.20)

Said action includes the gauge-fixing condition G(Aα) and the gauge-fixing parameter ξ,
which corresponds to various gauges one could chose. Typical choices are the Landau gauge
(ξ → 0), which strictly enforces the gauge fixing condition G(Aα), or the Feynman gauge
(ξ = 1).
The second expression in Eq. 2.17 is a functional determinant in the numerator and can

therefore be expressed as a result of a path integral over newly introduced Grassmann fields
c and c̄,

Det
[
δG(Aα)
δα

]
=
∫
D [c̄, c] e−Sgh , (2.21)

with the new action

Sgh = c̄
δG(Aα)
δα

c. (2.22)

The auxiliary fields c and c̄ are spin-0 fields, e.g. transform like a scalar under Lorentz
transformation, but are Grassmannian bosons. They do not satisfy the spin-statistics the-
orem, rendering these fields unphysical. Because of this, they are called ghosts and not
treated as real, physical particles but instead as just auxiliary fields that adequately treat
the redundant degrees of freedom of gauge fields during the quantization procedure.
We can now combine all of these results to properly compute the path integral over gauge

fields and obtain∫
D [Aµ] e−S[Aµ] =

∫
D[α]

{∫
D
[
c̄, c, Aαµ

]
e−S[Aαµ ]−Sgf [Aαµ ]−Sgh[c̄,c]

}
. (2.23)

The path integral over the redundant degrees of freedom D[α] which yields the gauge orbits
is now properly extracted and can now be omitted for the correct computation of the path
integral without any overcounting of the field configurations occurring. From now on, gauge
fields in the path integral are understood as physically unique trajectories and the explicit
marking of that is omitted in the notation,

Aαµ → Aµ. (2.24)
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2. Non-perturbative Quantum Field Theory

This gives rise to the final expression for the path integral of gauge fields,∫
D [c̄, c, Aµ] e−S[Aµ]−Sgf [Aµ]−Sgh[c̄,c]. (2.25)

As an example for an abelian gauge theory with the action

S[Aµ] = −1
4F

µνFµν , F µν = ∂µAν − ∂νAµ, (2.26)

we introduce the gauge-fixing condition

G(Aµ) = ∂µAµ, (2.27)

which classically corresponds to a Lorenz gauge (∂µAµ = 0). The gauge transformation
parameterized by the redundant degree of freedom α reads

δAαµ = ∂µα, (2.28)

and the operator in the ghost sector

δG(Aαµ)
δα

= ∂µ∂µ, (2.29)

directly yielding the final expression for the gauge-fixing and ghost action, respectively,

Sgf [Aµ] = 1
2ξ (∂µAµ)2 , Sgh[c̄, c] = c̄ ∂µ∂µc. (2.30)

While this Faddeev-Popov technique is a useful tool for the quantization of gauge theo-
ries through the introduction of ghosts, its validity in the most general case is contested.
Due to the Gribov ambiguity, one does not restrict the path integral to physically unique
configurations in this way [30]. While this issue is not relevant in perturbative settings, non-
perturbative continuum formulations addressing this problem are an active field of research
[31].

2.4. Generating Functionals
With the formulation of the functional integral in Sec. 2.1, we can compute correlation
functions of quantum fields [1, 25, 32], like the propagator,

〈φαφβ〉 = 1
Z

∫
D[φ] φαφβ e−S[φ], (2.31)

14



2.4. Generating Functionals

which characterizes how the "points" α and β are correlated by virtue of the quantum theory.
The superlabel α collects all continuous and discrete degrees of freedom of the field, like the
spacetime position, the flavor, the spin etc. A computation of higher order correlation
functions is done accordingly,

〈φα1 . . . φαn〉 = 1
Z

∫
D[φ] φα1 . . . φαn e−S[φ], (2.32)

but the functional integration for each case becomes rather tedious. Instead, we compute
the correlation functions by means of differentiation.
We introduce a source term J for our functional integral and define the generating func-

tional

Z[J ] :=
∫
D[φ] e−S[φ]+

∫
α Jαφα . (2.33)

The operation
∫
α
integrates over the continuous degrees of freedom of the superlabel and

sums over the discrete ones. Using the Feynman trick of differentiation under an integral,
we obtain

〈φα1 . . . φαn〉

= 1
Z[0]

∫
D[φ]φα1 . . . φαn e

−S[φ]+
∫
α Jαφα

∣∣∣∣
J=0

= 1
Z[0]

∫
D[φ] δ

δJα1

. . .
δ

δJαn
e−S[φ]+

∫
α Jαφα

∣∣∣∣
J=0

= 1
Z[0]

δ

δJα1

. . .
δ

δJαn
Z[J ]

∣∣∣∣
J=0

=: Z(n)
α1...αn . (2.34)

We now have an expression for the computation of higher order correlation functions,
Z(n)
α1,...,αn , by taking functional derivatives of the generating functional with respect to the

source term J . The issue with this formalism is that the correlation functions derived by the
generating functional also include disconnected diagrams and even vacuum bubbles. But if
we are interested in the propagation of a particle from point A to point B, we want to analyze
correlation functions with connected diagrams. To derive a formalism for the computation
of connected diagrams, we first remark that the generating functional can be written as a
summation over connected diagrams,

Z[J ] =
∑
n

1
n! (W [J ])n = eW [J ], (2.35)

with W [J ] being the Schwinger functional that represents the generating functional for con-
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2. Non-perturbative Quantum Field Theory

nected diagrams and can be inversely expressed through

W [J ] := log(Z[J ]). (2.36)

We can now similarly compute connected diagrams by taking the derivatives of the Schwinger
functional with respect to the source terms J ,

〈φα1 . . . φαn〉c

= δ

δJα1

. . .
δ

δJαn
W [J ]

∣∣∣∣
J=0

=: W (n)
α1...αn . (2.37)

For example, the connected 2-point function reads

〈φαφβ〉c = W
(2)
αβ = δ

δJα

δ

δJβ
W [J ]

∣∣∣∣
J=0

= δ

δJα

δ

δJβ
log(Z[J ])

∣∣∣∣
J=0

= 1
Z[J ]

δ2Z[J ]
δJαδJβ

∣∣∣∣
J=0
− 1

(Z[J ])2
δZ[J ]
δJα

δZ[J ]
δJβ

∣∣∣∣
J=0

= Z(2)
αβ −Z

(1)
α Z

(1)
β

= 〈φαφβ〉 − 〈φα〉〈φβ〉, (2.38)

illustrating how the vacuum bubbles have been extracted from the disconnected diagram to
obtain the connected one.
Later on, we want to compute flow equations within the Functional Renormalization Group

to describe certain physical phenomena at different scales. As it turns out, using connected
diagrams can lead to some technical issues depending on the choice of regulator [33]. This
problem can be circumvented by using irreducible diagrams generated from the effective
action Γ.
For this, we want to express our generating functionals in terms of fields instead of sources.

Let us define

Φα = δW [J ]
δJα

= 〈φα〉J , (2.39)

which can be understood as the expectation value of the field φ in the presence of the source
J . We perform the Legendre-transformation of W [J [Φ]],

Γ[Φ] =
∫
α

ΦαJα[Φ]−W [J [Φ]]. (2.40)
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2.5. Wilsonian Interpretation of Renormalization

and compute correlation functions by taking derivatives with respect to the fields Φ,

Γ(n)
α1...αn = δnΓ[Φ]

δΦα1 . . . δΦαn

∣∣∣∣
Φ=0

. (2.41)

This way, only 1PI-diagrams can emerge from the computations. They have the advan-
tage, that if one cuts one internal line off, the resulting diagram is still connected, gifting
the 1PI-diagrams with a loop-like structure that is advantageous for the calculation of flow
equations through the effective action Γ[Φ] compared to the computation with the Schwinger
functional W [J ] [33].

2.5. Wilsonian Interpretation of Renormalization
The computation of diagrams through the correlation functions introduced in the previous
section faces the problem, that some of the contributions might diverge, depending on the
system and underlying types of interactions one wants to study. Early historic attempts to
solve this problem introduced the concept of perturbative renormalization [1].
The idea is, that the couplings gi appearing in the action are not the real, actually physi-

cally measurable couplings, but instead just s ome bare parameter gb,i, that can be split into
a renormalized coupling gr,i and a counter term ∆gi,

gb,i = gr,i + ∆gi. (2.42)

The counter terms adequately treat the divergences, rendering them obsolete. Thus, the
remaining renormalized couplings gr,i represent the final result for the couplings that could
actually be measured in experiments.
While this procedure of perturbative renormalization would mathematically solve the is-

sue, it was a deeply unsatisfying approach from a fundamental physics point of view, as the
physical meaning of this renormalization procedure was not well understood. This changed
with the Wilsonian interpretation of renormalization [2] which is based on Kadanoff’s idea
of a block-spin transformation [34] (see Fig. 2.1).
We start with a squared lattice in two dimensions with lattice spacing a. Each lattice

site contains a spin that interacts with its neighboring lattice site spin. We only consider
nearest-neighbor interactions here, rendering direct long-range interactions obsolete. The
strength of the interaction is characterized by the coupling g. In the next step, we coarse-
grain the lattice and combine a block of 4 lattice sites into one effective lattice site with
lattice spacing a′ = 2a. The nearest-neighbor interaction between the spins on the new
lattice sites are now characterized by the new coupling g′ = g′(g) that depends on the initial
coupling g of the previous lattice space a. Although we still just consider nearest-neighbor
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2. Non-perturbative Quantum Field Theory

Fig. 2.1.: Schematic illustration of the Kadanoff block-spin transformation on a two-dimensional
square lattice, taken from [35].

interactions, the effective range of the interaction has increased from a to a′ = 2a. If we
now perform this procedure of coarse-graining iteratively, we can include interactions at
larger and larger ranges, effectively gaining a macroscopic understanding of the system, even
though we started from a microscopic model.
Wilson applied this idea of coarse-graining to the path integral, but interpreted it in mo-

mentum space. Kadanoff’s idea of effectively increasing the range of the interaction trans-
lates into a successive integration of momenta in the path integral, effectively introducing a
momentum-shell cutoff Λ up to which interactions are considered. For a better illustration,
we split our field φ into modes of high and low momenta [25],

φ = θ(Λ− p)φ+ θ(p− Λ)φ

= φp<Λ + φp>Λ. (2.43)

The measure in the path integral can now be split into those two contributions,

Z =
∫
D[φ] e−S[φ] =

∫
D[φp<Λ]

∫
D[φp>Λ] e−S[φp<Λ+φp>Λ]

=
∫
D[φp<Λ] e−SΛ[φp<Λ]. (2.44)

If we perform the integration over the higher momentum modes, we obtain a term SΛ[φp<Λ]
in which the information of the high momentum modes is encoded. The expression SΛ[φp<Λ]
acts as an effective action at the coarse-grained scale Λ. The bare couplings gb,i, that
previously appeared in the bare action S[φ], also transform into new couplings at the coarse-
grained scale Λ,

gb,i → gΛ,i = gΛ,i(gb,i), (2.45)

and depend on the bare couplings. We can now perform another step of coarse-graining at
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the scale Λ′ < Λ

Z =
∫
D[φp<Λ′ ] e−SΛ′ [φp<Λ′ ] (2.46)

and obtain a new effective action SΛ′ [φp<Λ′ ] at scale Λ′ with new couplings

gΛ,i → gΛ′,i = gΛ′,i(gΛ,i). (2.47)

This procedure of coarse-graining can be performed successively until one arrives at Λ = 0
and has effectively integrated out all momentum-shells, therefore reaching a description of
the theory at infinitely large distances.
The transformation of the couplings at each step of coarse-graining can be described in

terms of a (semi) group, which is now referred to as Renormalization Group (RG). The
couplings in the theory are not some bare parameters anymore that treat the divergences of
the diagrams, but are instead referred to as running couplings that change their values with
the Renormalization Group scale up to which interactions are considered.

2.6. Functional Renormalization Group
The Functional Renormalization Group introduces a so-called regulator function Rk that
depends on an infrared regulator scale k and controls the flow of the underlying system [25].
We define a regulator term,

∆Sk[φ] = 1
2

∫
α

∫
β

φαRαβ
k φβ, (2.48)

in which the regulator Rk effectively acts as a mass term. The generating functionals of
Sec. 2.4 are modified accordingly [32],

Zk[J ] :=
∫
D[φ] e−S[φ]−∆Sk[φ]+

∫
α Jαφα , (2.49)

Wk[J ] := log (Zk[J ]), (2.50)

Γk[Φ] := −Wk[J [Φ]] +
∫
α

JαΦα −∆Sk[Φ], (2.51)

and now also depend on the RG scale k.
The regulator function Rk has several useful traits that can be best demonstrated in

momentum space (in practical calculations we either do that or use the heat kernel techniques
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2. Non-perturbative Quantum Field Theory

discussed in Sec. 3.3). For instance, it has the following high and low energy behavior,

Rk(p) =

0 for p2 � k2

k2 for p2 � k2
, (2.52)

which ensures that the high energy modes are integrated out in the path integral, while the
low energy modes are suppressed, with the regulator function effectively acting as a mass.
The limit

lim
k→0
Rk = 0 (2.53)

ensures that the effective average action, Γk, reaches the effective action, Γ. On the other
hand, the limit

lim
k→Λ→∞

Rk =∞ (2.54)

ensures that the effective average action coincides with the bare action in the UV, SΛ (see
Fig. 2.2). The boundary conditions of the regulator function Rk constrain the effective
average action Γk such that it interpolates between the bare action in the UV and the
effective action in the IR,

Γ k→0←−− Γk
k→Λ−−−→ SΛ, (2.55)

with the exact shape of the trajectory of the flow depending on the specific choice of the
regulator function.
Since we are interested in the behavior of systems at different RG scales, we want to study

the RG flow of our action. For this, we define a slightly modified action,

Γ̃k[Φ] := Γk[Φ] + ∆Sk[Φ],

= −Wk[J [Φ]] +
∫
α

JαΦα (2.56)

and compute its flow equation,

∂kΓ̃k[Φ] = −∂kWk[J ] = −∂kZk[J ]
Zk[J ]

= 1
Zk[J ]

∫
D[φ] (∂k∆Sk[φ]) e−S[φ]+

∫
α Jαφα−∆Sk[φ]

= 〈∂k∆Sk[φ]〉

= 1
2

∫
α

∫
β

∂kRαβ
k 〈φαφβ〉. (2.57)

The second line of Eq. (2.57) can be expressed in terms of the expectation value of the
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2.6. Functional Renormalization Group

Fig. 2.2.: Schematic sketch of the flow of the effective average action Γk in the theory space spanned
by the couplings. The flow starts from the bare action SΛ (pink circle) in the UV and
ends at the effective action Γ (red circle) in the IR. Taken from Ref. [35].

regulator term Sk[φ] and the last line as a two-point correlation function. We can write this
expression in terms of a connected two-points function,

〈φαφβ〉 = 〈φαφβ〉c + 〈φα〉〈φβ〉

= W
(2)
k,αβ + ΦαΦβ. (2.58)

Inserting this term into Eq. (2.57) yields

∂kΓ̃k[Φ] = 1
2

∫
α

∫
β

∂kRαβ
k W

(2)
k,αβ + ∂k∆Sk[Φ]. (2.59)

The second expression in Eq. (2.59) exactly cancels the difference between Γk and Γ̃k and
we obtain for the flow of the effective average action

∂kΓk[Φ] = 1
2

∫
α

∫
β

∂kRαβ
k W

(2)
k,αβ. (2.60)

For the final step, we express W (2)
k,αβ in terms of Γ(2)

k,αβ. Since we also want to include the case
of fermionic fields, we have to distinguish between derivatives taken from the right and the
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Fig. 2.3.: Schematic sketch of the regulator function Rk (red) and its derivative ∂tRk (purple).
Taken from Ref. [35]

ones taken from the left,

W
(2)
k,αβ =

~δ

δJα
Wk[J ]

~δ

δJβ
=
(

~δ

δJα
Wk[J ]

)
~δ

δJβ

= Φα

~δ

δJβ
= 1(

Φα

~δ

δJβ

)−1

= 1
~δ

δΦα

Jβ

= 1
~δ

δΦα

Γ̃k[Φ]
~δ

δΦβ

= 1
Γ̃(2)
k,αβ

= 1
Γ(2)
k,αβ +Rk,αβ

. (2.61)

Inserting this into Eq. (2.60), we obtain the final form of our flow equation,

∂kΓk = 1
2

∫
α

∫
β

∂kRαβ
k

Γ(2)
k,αβ +Rk,αβ

= 1
2

∫
α

∫
β

(
1

Γ(2)
k +Rk

)
αβ

∂kRαβ
k

= 1
2

∫
α

∫
β

ζαβ

(
1

Γ(2)
k +Rk

)
βα

∂kRαβ
k

= 1
2STr

(
1

Γ(2)
k +Rk

∂kRk

)
(2.62)
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The switch of the indices in the second to last line of Eq. (2.62) has to be taken with caution,
as fermionic fields receive an additional negative sign in this step. This is manifested in the
statistical operator

ζαβ = δαβζα, (2.63)

with

ζα =

+1 if α is a bosomic label ,

−1 if α is a fermionic label,
(2.64)

that emerges from the switch of indices. If we suppress all internal indices, we can also use
the operator STr to sum over all discrete internal labels and integrate over the continuous
internal ones, with fermionic labels contributing with a negative prefactor.
Eq. (2.62) is referred to as the Wetterich equation [7] and is an exact evolution equation

for the RG flow of the effective average action. It is usually written in terms of a logarithmic
scale,

t = log(k) → ∂t = k∂k. (2.65)

The controlled flow of the effective average action Γk can best be shown through the sharp
cutoff regulator [36] with the shape function rk(p),

Rk(p) ∼ rk(p) = (k2 − p2)θ(k2 − p2), (2.66)

and θ(x) being the Heaviside step function. On one hand, the derivative of the regulator
function in the numerator of the Wetterich equation effectively acts as a cutoff function and
takes care of the UV divergences. On the other hand, the regulator in the denominator of
the Wetterich equation effectively acts as a mass term and adequately treats IR divergences.
Thus, the RG flow of the effective average action is well defined and can be used to compute
the flow equations of running couplings within the Functional Renormalization Group.

2.7. Truncation Ansatz
While the Wetterich flow equation, Eq. (2.62), is an exact functional differential equation,
its treatment in applications to physical systems requires some approximations [25]. The
flow of the effective average action Γk is characterized by the second functional derivative of
said action with respect to the underlying quantum fields of the system Γ(2)

k . To properly
solve the flow equation, one now has to formulate a functional differential equation for Γ(2)

k as
well. This can be obtained by taking the second functional derivative of the above mentioned
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Wetterich equation, yielding

∂tΓ(2)
k,σρ = 1

2
∫
α,β,γ,δ,µ,ν

ζνα Gk,αβ Γ(3)
k,βγσ Gk,γδ Γ(3)

k,δµρ Gk,µν ∂tRk,να + σ ↔ ρ

−1
2
∫
α,β,γ,δ

ζδα Gk,αβ Γ(4)
k,βγσρ Gk,γδ ∂tRk,δα. (2.67)

The flow equation for Γ(2)
k includes the higher order vertices Γ(3)

k and Γ(4)
k , demonstrating

that in order to solve that functional differential equation, we have to formulate additional
ones for Γ(3)

k and Γ(4)
k . It becomes obvious that this is an endless endeavor in which the flow

equation for Γ(n)
k includes expressions up to order Γ(n+2)

k , resulting in an infinite tower of
functional differential equations which - in practice - cannot be solved analytically exactly.
Due to this, one truncates the number of operators Oi with canonical mass dimension

di = dim [Oi[Φ]] , (2.68)

appearing in the action at an finite order n,

Γk[Φ] =
∫

dDx
n∑
i=1

ũi,kOi[Φ], (2.69)

rendering all remaining vertices of order higher than n unconsidered. This effectively breaks
down the infinite number of flow equations to a finite number of n ones. Those operators
Oi[Φ] can appear in various forms, one of them being a power series of the quantum fields
Φi as a possible ansatz.
Each operator appears in the action with an independent dimensional running coupling

ũi,k that determines the underlying interaction of the operator Oi. To compute the flow equa-
tions for each ũi,k, we have to adequately project them out of the action using appropriate
projectors Pi for their corresponding interaction operators Oi,

ũi,k = Pi{Γk[Φ]}. (2.70)

If the operators Oi are a power series of quantum fields Φ, functional derivatives with respect
to said quantum fields would be a suitable choice as a projector to properly extract the
running couplings from the action.
We can apply the appropriate projector to the Wetterich equation to compute the flow

equation of the corresponding running coupling,

∂tũi,k = Pi{∂tΓk[Φ]}

= 1
2Pi

{
STr

(
1

Γ(2)
k +Rk

∂kRk

)}
. (2.71)

24



2.7. Truncation Ansatz

Fig. 2.4.: Schematic sketch of the flow of the meson masses Mσ,k (blue) and Mπ,k (red), the quark
mass Mψ,k (yellow) and the pion decay constant fπ (purple). Taken from [37].

Defining dimensionless running couplings in D-dimensional spacetime

ui,k = k−(D−di)ũi,k, (2.72)

we can now compute the flow equations for the dimensionless couplings ui,k,

∂tui,k = βi(u1,k, . . . , un,k), (2.73)

also referred to as beta functions. In addition to the dimensional rescaling in Eq. (2.72), also
field rescalings are often included.
The flow equations characterize the RG scale evolution of our running couplings and

determine how strong or weak various interaction channels become at certain scales. Once
the flow equations of a system are computed, one could potentially solve them analytically
or numerically starting with some initial condition at a reference scale k0 and observing their
behavior with varying RG scale k.
For example, this could be the initial strength of the couplings in the UV, at small length

scales, if one starts with a microscopic theory. With increasing renormalization scale k,
one would now include fluctuations with larger and larger length scales and determine the
effective interaction at larger ranges to eventually have a macroscopic understanding of the
theory in the IR. Through the Renormalization Group one could then describe macroscopic
phenomena like magnetization [25], superconductivity [25], or even fermionic mass generation
[37] through a coarse-graining of microscopic degrees of freedom (see Fig. 2.4 for an example
of a low-energy model of QCD).
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It should be noted though that a general recipe for truncations of arbitrary theories does
not exist and one does not a priory know, how many orders of interaction operators one has
to include in their truncation to adequately describe the underlying theory. It is a process
that can at least be systemized, where one starts with a certain truncation in an expansion
scheme, computes the flow equations, applies them to a specific physical system - and then
repeats this procedure with higher order operators in the truncation. If the results do not
meaningfully change, this signals at least apparent convergence indicating that the initial
truncation already describes the system well enough. If the results however meaningfully
change, one has to include higher and higher order of operators, until the system "stabilizes"
and an inclusion of further truncations does not drastically change the results (see [9–11]
as possible examples in the case of asymptotically safe quantum gravity), or use a different
expansion scheme.

2.8. Asymptotic Safety
An important question within the renormalization group study of field theories is whether
or not a theory can be accurately described to arbitrarily large RG scales k, e.g. do the
couplings of the theory remain finite along the RG flow, even in the limit of infinitely large
k. If that is the case, said theory is UV complete and can be asymptotically safe [6]. For a
theory to be asymptotically safe, the running couplings therefore have to converge towards
a point of finite values in the UV, ~u? (ignoring scenarios of strictly oscillating couplings).
This means, that if we set our couplings ~uk to these specific values of the point ~u? at an
initial reference scale k0, the running couplings would remain constant along the RG flow.
We have therefore discovered a so-called fixed point of the RG flow, that represents a specific
configuration of our couplings for which our theory is scale invariant.
For the sake of a more convenient visualization, we collect the dimensionless running

couplings and their corresponding beta-functions into two separate vectors,

~uk = (u1,k, . . . , un,k)T , ~β = (β1(~uk), . . . , βn(~uk))T . (2.74)

A fixed point ~u? is defined as the root of the beta functions,

~β(~u?) = 0. (2.75)

A trivial solution for the fixed point of the beta functions, e.g. ~u? = 0, is a Gaussian fixed
point. If we describe our theory in the vicinity of a Gaussian fixed point, an approach
within perturbative renormalization is possible. For a so-called non-Gaussian fixed point,
e.g. ~u? 6= 0, a perturbative approach is generically not possible.
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Fig. 2.5.: Schematic sketch of a beta function βλ in dependence of its coupling λ with the root
being at the fixed point λ?. The arrows point towards the UV. Taken from [35].

While our theory is scale invariant at the fixed point, it is a priori not clear how the flow
behaves in the vicinity of the fixed point, e.g. does it move towards or away from it. We
therefore make a stability analysis and expand the flow equations up to linear order in the
couplings,

βi(~u) =Mij · (uj,k − uj,?) +O
(
(uj,k − uj,?)2) , with Mij = ∂βi(~uk)

∂uj,k

∣∣∣∣
~uk=~u?

. (2.76)

M is the stability matrix of the flow around the fixed point,

{θ1, . . . , θn} = −eig (M) , MVi = θiVi, (2.77)

θi are its eigenvalues and Vi its right-eigenvectors. We now formulate a set of couplings
ûi,k = ui,k − ui,? with respect to a basis spanned by the right-eigenvectors of M that are
centered around the fixed point ~u? and are constrained by the flow equations

∂tûi,k = −θiûi,k. (2.78)

Directly solving them to obtain the behavior of the running couplings around the fixed point
yields

ûi,k = ûi,? + ci

(
k

k0

)−θi
, (2.79)

with the parameters ci being degrees of freedom in the form of a constant of integration
and the eigenvalues of the stability matrix θi appearing in the form of a so-called critical
exponent. We can use this to solve the linearized flow equations for the original couplings
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2. Non-perturbative Quantum Field Theory

Fig. 2.6.: Schematic illustration of an RG flow in a theory space spanned by two couplings with the
flow pointing towards the IR, taken from [38]. U represents a fixed point with two relevant
directions, I represents a fixed point with one relevant and one irrelevant direction. The
points S1 to S4 represent different positions in the theory space along their corresponding
RG trajectories.

ui,k and obtain

ui,k = ui,? +
n∑
j=1

cj(Vj)i
(
k

k0

)−θj
. (2.80)

Here, (Vj)i denotes the i-th component of the eigenvector Vj to each critical exponent θj.
If we want our theory to be asymptotically safe and therefore UV complete, the running

couplings of the system have to approach the fixed point for increasing k. For a positive
real part of the critical exponent Re{θi} > 0, the second expression in Eq. (2.79) vanishes
for deceasing k and the flow approaches the fixed point value from this specific direction.
This happens independently of the value of ci, making it a free parameter of our theory that
needs to be fixed by experiments. For a negative real part of the critical exponent however,
Re{θi} < 0, the second expression in Eq. (2.79) grows exponentially for increasing k, causing
the flow to divert from the fixed point. For the flow to emanate from the fixed point, the
parameter ci has to be zero for that specific direction. The resulting flow then remains
on a so-called UV critical hypersurface (see Fig. 2.7) within the theory space of running
couplings in which the asymptotically safe fixed point is located. The directions that span
this critical surface are the UV-attractive ones with positive critical exponents (so-called
relevant directions), whereas the UV-repulsive directions with negative critical exponents
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2.8. Asymptotic Safety

Fig. 2.7.: Schematic illustration of a UV critical surface in a theory space spanned by the three
couplings g1, g2, and g3, taken from [35]. FP (red dot) represents a fixed point, θ1 and
θ2 represent relevant directions, and θ3 an irrelevant direction. The arrows point towards
the UV.

(so-called irrelevant directions) are orthogonal to this hypersurface. The parameters ci of
the UV-attractive directions are free parameters of our theory, whereas the ones from the the
UV-repulsive directions are fixed ones if one demands the theory to be asymptotically safe.
This is a feature of asymptotic safety to predict the values of supposedly free parameters
of a system. This means that if we have a theory with even infinitely many couplings, and
therefore seemingly infinitely free parameters, only the relevant directions (the UV-attractive
ones), of which there might be just finitely many ones for a given theory, deliver actually
free parameters.
If those free parameters were to be fixed by experimental data, we would find the exact RG

trajectory of our system in the theory space spanned by the couplings and could accurately
describe the system at any given RG scale k.
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3. From Classical to Quantum Gravity

The gravitational force of the day-to-day life is well described by Newtonian dynamics, yet
it is still just a weak-field approximation of General Relativity (GR). While GR is a good
description of the gravitational interaction in the IR, a quantum theory of gravity is needed
to describe the theory at smaller scales, possibly even beyond the Planck scale.
In this chapter, we will use the non-perturbative approach of the Functional Renormal-

ization Group introduced in Chapter 2 to formulate a quantum field theory of gravity.

3.1. General Relativity
General relativity is a geometric interpretation of gravity relying on the idea that the curva-
ture of spacetime is the underlying origin of what we observe as an gravitational force [39].
In curved spacetime, we have to distinguish between covariant and contravariant vector fields
Vα and V α, respectively, which live on a tangent space or its dual of a manifoldM and can
be translated into one another using the metric tensor g,

Vµ = gµνV
ν . (3.1)

The metric tensor, as its name suggests, is used as a metric to compute the norm of a vector,

|V |2 = VµV
µ = gµνV

µV ν . (3.2)

In addition to the metric tensor, our manifold is equipped with a connection Γ that translates
vectors of a tangent space at one point on the manifold to vectors of a different tangent space
at another point on the manifold. While this connection can have a general form (see Ch.
6), we will restrict ourselves to the Levi-Cevita connection for now,

Γαµν = 1
2g

ασ (∂µgσν + ∂νgµσ − ∂σgνµ) , (3.3)

which is the most commonly used one in general relativity. It is torsion-free

Tαµν := Γαµν − Γανµ = 0, (3.4)

31



3. From Classical to Quantum Gravity

and compatible with the metric

Qαµν := ∇αgµν = 0. (3.5)

To properly describe the dynamics in curved spacetime (for which one moves from the tangent
space at one point of the manifold to the tangent space at another point of the manifold)
one has to use the covariant derivative instead of the partial derivative,

∂µ → ∇µ, (3.6)

which adequately encodes the connection for this specific purpose,

∇µV
α = ∂µV

α + ΓαµνV ν . (3.7)

The covariant derivative of a tensor adds contributions to the dynamics for each tensorial
degree of freedom,

∇µT
α1,...,αn
β1,...,βm

= ∂µT
α1,...,αn
β1,...,βm

+ Γα1
µν T

ν,...,αn
β1,...,βm

+ . . .+ Γαnµν T
α1,...,ν
β1,...,βm

−Γνµβ1
Tα1,...,αn
ν,...,βm

− . . .− Γνµβm Tα1,...,αn
β1,...,ν

, (3.8)

with the most trivial case being that of a tensor of rank 0, a scalar,

∇µφ = ∂µφ. (3.9)

Parameterizing a trajectory xα through its eigentime τ , the dynamic on a manifold

uα := ẋα(τ) = dxα(τ)
dτ

(3.10)

is given by geodesics, which are trajectories of covariantly constant motion,

uµ∇µu
α = 0 ⇒ duα

dτ
+ Γαµνuµuν = 0. (3.11)

Rewriting Eq. (3.11) into a form that is more analogous to Newtonian mechanics,

d2xα(τ)
dτ 2 = −Γαµνuµuν , (3.12)

it becomes clear that the trajectory of a test particle moving alongside the parameterized
curve xα(τ) is determined by the structure of spacetime encoded in the right-hand side of Eq.
(3.12). In Newtonian mechanics, one would interpret the right-hand side as a force acting
on a test particle of mass m, while in general relativity neither a force is acting nor a mass
is needed for the test particle to move along the trajectory. What we intuitively observe as
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3.2. Fermions in Curved Spacetime

a gravitational force is therefore just a consequence of the curved nature of spacetime.
To analyze the exact structure of spacetime, we define the Riemann curvature tensor given

by a commutator of covariant derivatives,

[∇µ,∇ν ]V α =: Rα
βµνV

β, (3.13)

which can be contracted into lower rank curvature tensors, namely the Ricci tensor and the
Ricci scalar, respectively,

Rµν = Rα
µαν , R = Rµ

µ. (3.14)

These tensors are needed for the Einstein field equations (at vanishing cosmological constant
Λ, for simplicity),

Rµν −
1
2Rgµν = κTµν , κ = 8πG. (3.15)

The left-hand side of Eq. (3.15) is a purely geometric quantity and depends on the metric
tensor, while the right-hand side consists of the energy-momentum tensor Tµν (with G being
the Newton coupling). Eq. (3.15) therefore illustrates how the specific structure of spacetime
is determined by the energy in the universe.

3.2. Fermions in Curved Spacetime
For an adequate description of the dynamics of fermions in curved spacetime, we need to
express the proper form of the covariant derivative ∇ acting on a spinor ψ (similar to how
we formulated the covariant derivative for scalars, vector fields, and higher rank tensors in
general).
It is important to understand that in curved spacetime, the gamma matrices that span

the internal space of spin degrees of freedom now depend on spacetime,

γµ → γµ(x). (3.16)

This is because the Clifford algebra connects the Dirac structure with the spacetime-dependent
metric tensor g, instead of the flat-spacetime metric η,

{γµ, γν} = 2gµν1. (3.17)

One can now formulate a map between the local general coordinate frame (characterized by
Greek indices) and the locally inertial frame (characterized by Latin indices) through the
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3. From Classical to Quantum Gravity

introduction of tetrads [40],

gµν = eµ
aeν

bηab. (3.18)

Through these tetrads, we can formulate the curved spacetime Dirac matrices in terms of
the well-known flat-spacetime ones,

γµ(x) = eµ
aγa, {γa, γb} = 2ηab1. (3.19)

The covariant derivative acting on a spinor now receives a so-called spin connection, ω,

/∇ψa = γµ(x)∇µψ
a = γµ(x)

(
∂µψ

a + ωµ
a
bψ

b
)

(3.20)

that can be expressed in terms of the above introduced tetrads and the Leci-Cevita connec-
tion Γ,

ωµ
a
b = −eνb∂µeνa + Γλµνeλaeνb. (3.21)

We can properly describe the dynamics of fermions in curved spacetime by substituting the
partial derivative with the covariant one,

/∂ ψa → /∇ψa. (3.22)

While we use the formulation of fermions in curved spacetime through the introduction of
tetrads, there alternative ways of doing so, one of them being the spin-base invariant for-
mulation in which not only general coordinate invariance, but also invariance under local
spin-base transformations is considered [41, 42].

3.3. Heat Kernel Techniques
The computation of flow equations through the Functional Renormalization Group requires
the evaluation of functional traces over an operator O. In the case of dynamical theories,
this operator is a kinetic one in the form of the Laplacian in D-dimensional spacetime,

O = ∆, (3.23)

and occasionally contains an additional endomorphism (for instance, if dynamical fermions
in curved spacetime are included).
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In flat spacetime, the covariant Laplacian boils down to a product of partial derivatives,

O = ∆ = −∂µ∂µ, (3.24)

with the plane wave being its eigenfunction and the four-momentum pµ containing its spec-
trum,

−∂µ∂µeipx = p2eipx. (3.25)

The computation of the functional trace in this case becomes straightforward through a
Fourier transformation (as the kernel of the Fourier transformation consists of a plane wave
e−ipx)

Tr [f(∆)] =
∫ dDp

(2π)D f(p2). (3.26)

In curved spacetime though, an analogous treatment of functional traces is not straightfor-
ward, as a general solution for the eigenfunctions and the spectrum of a covariant Laplacian
with arbitrary spacetime structure does not exist. Due to this, alternative methods need to
be considered, among them being the heat kernel techniques [43].
We assume a set of orthogonal eigenfunctions ξa of our operator O with eigenspectrum

λa,

Oξa = λaξa (3.27)

and perform a spectral decomposition of a general function of said Operator [38],

f (O) =
∫

dµ(λa)f(λa)Pa. (3.28)

Here, µ(λa) represents the spectral measure and Pa is a projection operator for the appro-
priate subspace of the eigenspectrum. Introducing the Laplace transformation,

f(t) =
∫ ∞

0
ds L−1{f}(s) e−ts, (3.29)

with L−1{f}(s) being the inverse Laplace transformation of f evaluated at s, we can apply

35



3. From Classical to Quantum Gravity

it to the spectral decomposition in Eq. (3.28),

f (O) =
∫

dµ(λa)
∫ ∞

0
ds L−1{f}(s) e−λasPa

=
∫ ∞

0
ds L−1{f}(s)

∫
dµ(λa)e−λasPa

=
∫ ∞

0
ds L−1{f}(s) e−Os. (3.30)

Taking the trace on both sides of Eq. (3.30), we obtain

Tr [f (O)] =
∫ ∞

0
ds L−1{f}(s) Tr

[
e−Os

]
. (3.31)

This means, that if we want to compute the trace of a general function of an operator, we
just have to compute the trace of one specific function of the operator, namely e−Os. That
function is a solution to the equation(

d
ds +O

)
e−Os = 0, (3.32)

which has the form of a modified heat flow equation (with s being interpreted as a time
parameter). The expression is therefore coined as a heat kernel trace, defined as

KO(s) := Tr
[
e−Os

]
. (3.33)

Solving the modified heat flow equation, Eq. (3.32), for the heat kernel and afterwards
applying it to Eq. (3.30), yields the result for the trace of a general function of an operator.
For our purposes, the underlying operator of interest would be the Laplacian in D-

dimensional curved spacetime (occasionally with an additional endomorphism),

O = ∆ = −∇µ∇µ. (3.34)

The corresponding heat kernel one has to compute is

K∆(s) = Tr
[
e−∆s] . (3.35)

While an exact solution of this heat kernel exists for specific spacetime structures (like
the spinor heat kernel in 3-dimensional hyperbolic spacetime [44]), a so-called early time
expansion of the heat kernel is usually performed to obtain an expression in successive
orders of the curvature using the Seeley-deWitt coefficients [43] ,

K∆(s) = 1
(4πs)D/2

(
1 + R

6 s+ · · ·
)
. (3.36)
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The coefficients themselves depend on the fields the Laplacian acted on in the original action
(scalars, fermions, (transversal) vectors, (transversal) tensors etc.) and are listed in [45, 46].
While the approximation of the heat kernel in the form of an early time expansion may

seem unsatisfactory at first, it turns out to be quite useful in the Asymptotic Safety ap-
proach to Quantum Gravity. Since we have to make a truncation ansatz to properly use the
Functional Renormalization Group in practice, we expand our effective average action Γk in
powers of the curvature operators, qualitatively illustrated as

Γk =
n∑
i=1

αi,k
i! R

i. (3.37)

For simplicity, we constrain ourselves to the Ricci scalar R and omit additional curvature
invariants that start to appear from the second order in the expansion. We then use the order
of the curvature to properly project the corresponding running coupling from the action and
compute its flow equations,

αi,k = ∂i

∂Ri
Γk
∣∣∣∣
R=0

. (3.38)

This implies, that even if we were to have an exact expression as a solution to the heat
kernel of the covariant Laplacian for general spacetime structures, we would have to expand
it in powers of the curvature anyway to obtain its contribution to the flow equation for each
running coupling. The heat kernel expansion is therefore well suited to be an efficient and
accurate method to compute flow equations in Asymptotic Safety approaches to Quantum
Gravity in an operator expansion.

3.4. Gravity as a Gauge Theory
The description of gravity in terms of General Relativity can also be understood as a gauge
theory of gravity with diffeomorphism invariance as its gauge symmetry [39].
For a better understanding of this, we start with the so-called Einstein-Hilbert action in

D = 4,

S[g] =
∫

d4x
√
g

1
16πG (R− 2Λ) , (3.39)

that depends on the metric tensor g with a Euclidean signature. Here, g = det(gµν) is
part of the integration measure, R is the Ricci scalar, G the Newton coupling and Λ the
cosmological constant. With a variation of the action with respect to the metric, we can
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derive the equations of motion that classically constrain our action,

δS[g]
δgµν

!= 0. (3.40)

In the case of the Einstein Hilbert action this leads to

Rµν −
1
2Rgµν + Λgµν = 0, (3.41)

which are the Einstein field equations. We can therefore derive the dynamics of General
Relativity through a Lagrangian Field Theory approach of gravity in the form of the Einstein-
Hilbert action.
In General Relativity, one can perform a so-called general coordinate transformation,

xµ → xµ + εµ(x) ⇒ δxµ = εµ(x), (3.42)

that does not change the description of physics in the new coordinates compared to the
old ones. This invariance under the general coordinate transformation is referred to as
diffeomorphism invariance and can be understood as a gauge symmetry. To check whether
this gauge symmetry is also encoded in our action, we have to analyze how general tensorial
quantities change under this transformation.
Luckily for us, this change is characterized by a so-called Lie-derivative of the tensorial

quantity along the direction εµ of the infinitesimal general coordinate transformation [39],

δ(. . . ) = Lε(. . . ), (3.43)

with the Lie-derivative on manifolds without torsion, e.g. Tαµν = 0, being defined as,

LεTα1,...,αn
β1,...,βm

= εν∇νT
α1,...,αn
β1,...,βm

− (∇νε
α1) T ν,...,αnβ1,...,βm

− . . .− (∇νε
αn) Tα1,...,ν

β1,...,βm

+(∇β1ε
ν) Tα1,...,αn

ν,...,βm
+ . . .+ (∇βmε

ν) Tα1,...,αn
β1,...,ν

. (3.44)

The expression √g of the integration measure transforms like a density under general coor-
dinate transformation. Under the integral, it remains invariant,

δ

(∫
d4x
√
g

)
= 0 ⇒

∫
d4x
√
g →

∫
d4x
√
g. (3.45)

The Ricci scalar also is invariant under this general coordinate transformation,

δR = 0 ⇒ R→ R. (3.46)
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Thus, the Einstein-Hilbert action also remains invariant under this transformation,

δS = 0 ⇒ S → S. (3.47)

What needs to be taken into consideration here, though, is that the metric tensor g is not
invariant under this transformation,

δgµν = Lε(gµν)

= εα∇αgµν + (∇µε
α)gαν + (∇νε

α)gµα
= ∇µεν +∇νεµ

6= 0, (3.48)

where we used the metric compatibility condition, ∇αgµν = 0, in the second to last line
of the equation and contracted the indices of the covariant derivative and the parameter
ε for infinitesimal general coordinate transformation with the metric. This implies that
two different metric tensors g and g′ that can be mapped onto one another via a general
coordinate transformation along the infinitesimal direction εµ,

g′µν = gµν + δgµν

= gµν +∇µεν +∇νεµ, (3.49)

could characterize the same manifold and describe the same physical system, as the action
is invariant under this transformation.
This symmetry of diffeomorphism invariance can be interpreted as a gauge symmetry and

its quantization through a functional integral approach,

Z =
∫
D[g] e−S[g], (3.50)

contains redundant degrees of freedom in the path integral measure that need to be treated
according to the Faddeev-Popov quantization method discussed in Sec. 2.3. As we discuss the
approach of asymptotically safe quantum gravity in Sec 3.5, we will perform our calculations
over all possible physically distinct field configurations of the metric g by computing the
metric fluctuations h around a background field ḡ which will from now on be treated as a
background metric tensor. This split is performed according to

gµν = ḡµν + hµν . (3.51)

The indices are now raised and lowered by the fixed background metric ḡ and the path
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integral measure is now reparameterized in terms of the the fluctuations h,∫
D[g] =

∫
D[h]. (3.52)

For the background metric ḡ to be fixed and the fluctuations h to carry over all of the
information of g, including its symmetries, both quantities need to transform in the following
way under a quantum general coordinate transformation,

δḡµν = 0 (3.53)

δhµν = δg = Lε(gµν) = Lε(ḡµν) + Lε(hµν). (3.54)

This ensures that no information is lost during the quantization procedure with the split
into the background ḡ and the metric fluctuations h.

3.5. Asymptotically Safe Quantum Gravity
We now formulate a quantum field theory of the gauge field formulation of General Relativity
[8, 47] according to the non-perturbative techniques we outlined in Chapter 2 and verify that
it indeed satisfies the conditions for Asymptotic Safety according to Sec. 2.8.
We start with the effective average action Γk for the Einstein-Hilbert truncation (which

goes to linear order in the curvature) in D = 4 spacetime dimensions,

ΓEH,k[g] =
∫

d4x
√
g

1
16πḠk

(R− 2Λ̄k). (3.55)

Here, √g is part of the integration measure with g = det(gµν), R the Ricci scalar, Ḡk the
Newton coupling and Λ̄k the cosmological coupling. The two couplings now dependent on
the RG scale k and are therefore running couplings. The bar on top of them emphasizes
that they are dimensional couplings and yet have to be rescaled accordingly to make them
dimensionless for a convenient study of their RG flow. As discussed in Sec 3.4, we now split
our metric field into a background metric ḡ, which is fixed and from now on represents the
metric tensor to raise and lower indices, and fluctuations around the background h that are
quantized and contain all of the information of the metric field g,

gµν = ḡµν + hµν . (3.56)

We want to stress that this does not indicate a perturbative expansion, in which h were to
be assumed small compared to the background ḡ, but instead just a split into a background
and fluctuations with the fluctuations being arbitrarily large.
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To properly treat the redundant gauge degrees of freedom tracing back to the diffeomor-
phism invariance discussed in Sec. 3.4, we introduce a gauge-fixing and a ghost term as
suggested in Sec. 2.3. The gauge-fixing condition reads

Gµ =
√

1
16πḠk

(
∇̄αhαµ −

1 + β

4 ∇̄µh
α
α

)
, (3.57)

and is contained in the gauge-fixing action

Γgf,k = 1
2α

∫
d4x
√
g ḡµνGµGν . (3.58)

Here, α and β are gauge-fixing parameters that can later on be set to certain values to
chose the appropriate gauge. Additionally, we obtain an action containing ghosts through
the Faddeev-Popov gauge-fixing procedure,

Γgh = −
∫

d4x
√
g c̄µ

(
∇̄αḡµσgσν∇α + ∇̄αḡµσgαν∇σ −

1 + β

2 ∇̄µḡαρgαν∇ρ

)
cν . (3.59)

Combining all of these contributions leads us to the effective average action of this theory,

Γk[ḡ, h, c̄, c] = ΓEH,k + Γgf,k + Γgh. (3.60)

To compute the RG flow of the couplings Ḡk and Λ̄k, we use the Wetterich flow equation
derived in Sec. 2.6,

∂tΓk[ḡ, h, c̄, c] = 1
2STr

(
1

Γ(2)
k +Rk

∂tRk

)
. (3.61)

Here, Rk is the regulator function that controls the RG flow and Γ(2)
k is a matrix spanned by

all possible combinations of second derivatives of the effective average action with respect to
the fields h, c̄ and c. All internal labels in the expression are suppressed and are understood
to be summed over or integrated out by the operator STr. If both internal labels in an entry
are fermionic, said contribution to the flow equation receives a negative sign. We perform
the computations of the flow equations on a spherical background, on which the expressions
for the curvature tensors simplify to

R̄µνρσ = R̄

12 (ḡµρḡνσ − ḡµσḡρν) , R̄µν = R̄

4 gµν . (3.62)

For a better understanding of the metric contributions to the flow equations, we split the
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metric fluctuation h into separate modes according to the York decomposition [48],

hµν = hTT
µν + ∇̄µξT

ν + ∇̄νξT
µ +

(
∇µ∇ν +∇ν∇µ −

1
2 ḡµν∇̄

2
)
σ + 1

4 ḡµνhTr. (3.63)

hTT represents the transverse, traceless tensor modes of the original metric fluctuation tensor
h, ξT the transverse vector modes, σ the conformal scalar mode and hTr the scalar trace mode.
The constraints

∇̄µhTT
µν = 0, ḡµνhTT

µν = 0, ∇̄µξT
µ = 0, (3.64)

ensure, that we adequately distributed the modes of the original degrees of freedom of the
metric fluctuation h onto the fields generated by the York decomposition. Since this split
generates Jacobians, we have to redefine our fields of the decomposition according to√

∆− R̄

4 ξT
µ → ξT

µ , (3.65)√
∆2 − 1

3R̄∆ σ → σ, (3.66)

to cancel the contributions from the Jacobians [48]. We expand our right-hand side of the
Wetterich equation in powers of the curvature and then use the powers of the Ricci scalar
(in our case, R0 and R1) to project the flow equations for the dimensionless couplings

Gk = k2Ḡk and Λk = Λ̄k

k2 . (3.67)

We set the gauge parameters to

α→ 0, β = 0. (3.68)

The Landau gauge (α → 0) strictly enforces the gauge fixing condition and omits any
contributions from the transverse vector modes ξT

µ , illustrating that those modes were pure
gauge contributions [49]. The second gauge fixing condition (β = 0) omits the contribution
of the scalar mode σ [49]. Thus, only the contributions of the transverse, traceless tensor
modes hTT

µν and the scalar trace mode hTr remain in the flow equations. At last, we use the
regulator shape function

rk(z) = (k2 − z)θ(k2 − z) (3.69)

to compute the flow equations for G and Λ in the same manner as Ref. [49] using the above
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Fig. 3.1.: Flow diagram in the theory space spanned by the couplings Λ and G. The red dot
represents the non-Gaussian UV fixed-point and the blue dot the Gaussian IR fixed-point.
The arrows flow towards the IR.

mentioned heat kernel techniques,

βG = −G (G (656Λ3 − 1652Λ2 + 1980Λ− 819)− 144π(1− 2Λ)2(4Λ− 3))
G (224Λ3 − 308Λ2 + 30Λ + 54) + 72π(4Λ− 3)(1− 2Λ)2 , (3.70)

βΛ =

(
−576π2Λ (8Λ2 − 10Λ + 3)2 +G2f

(2)
G − 4πGf (1)

G

)
8π(4Λ− 3) (G (112Λ3 − 154Λ2 + 15Λ + 27) + 36π(4Λ− 3)(1− 2Λ)2) , (3.71)

with the abbreviations

f
(1)
G = 6208Λ5 − 11584Λ4 + 9276Λ3 − 5328Λ2 + 2133Λ− 324, (3.72)

f
(2)
G = −640Λ4 − 5944Λ3 + 15738Λ2 − 12495Λ + 3231. (3.73)

The system of flow equations exhibits a non-Gaussian fixed point (Reuter fixed point) at

G? = 0.911, Λ? = 0.161, (3.74)
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with critical exponents

θ1 = 2.132± i · 2.700. (3.75)

The real part of both critical exponents is larger than zero, rendering this Gaussian fixed
point UV-attractive with both directions being relevant. This means, that the Functional
Renormalization Group applied to the Einstein-Hilbert action shows that the theory is
asymptotically safe in the universality class of the Reuter fixed point and therefore non-
perturbatively renormalizable. Thus, we have found a UV-complete quantum theory of
gravity. Upon further inspection, we find an additional Gaussian fixed point at

G? = 0, Λ? = 0, (3.76)

with critical exponents

θ1 = 2, θ2 = −2. (3.77)

The physics near the Gaussian fixed point describes the weak gravitational interaction at
large length scales with the critical exponents being the canonical mass dimension of the
couplings in the IR. The Gaussian fixed point in the IR is connected with the non-Gaussian
fixed point in the UV through a certain RG trajectory, see Fig. 3.1. Thus the weak long-
range interactions of General Relativity emerge from the quantum theory of gravity at the
UV-attractive fixed point.
While this calculation has been performed for the Einstein-Hilbert truncations, studies on

higher order truncations also detect a UV-attractive fixed-point with finitely many relevant
directions [9–11].
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A material can have several attributes that characterize its state of phase. It can be a liquid
and freeze if the temperature decreases beyond a certain value, it can become magnetic itself
after being exposed to an external magnetic field or it can become – if we consider more
exotic phases – superfluid with no viscosity whatsoever if the temperature is low enough and
the pressure high enough.
In this chapter, we discuss how a phase transition can be described within a quantum

field theory, how phases relate to the symmetries they exhibit and how fermionic masses are
dynamically generated through the spontaneous breaking of chiral symmetry [50].

4.1. Spontaneous Symmetry Breaking
Macroscopically, a phase is characterized by a so-called order parameter, that changes its
value depending on the current state of phase. The magnetization of a system for example is
the order parameter for whether the system is in a magnetic state. Its density tells us, if we
are dealing with a liquid or a solid. And for more exotic phases, like a superconductor, the
order parameter may be formed from a collective behavior of bound states such as a Cooper
pair condensate in the case of a superconductor, which is a bound state of electrons [51].
Different phases can often be characterized by different realizations of a symmetry groups

they exhibit. For a liquid for example, the symmetry would be a continuous translation
invariance, whereas for a solid, the symmetry breaks down into a discrete translation invari-
ance [25]. For a superconductor, the symmetry breaks down from a U(1) gauge symmetry
in the non-superconducting phase to a Z2 symmetry in the superconducting phase [52].
A phase transition is therefore characterized not only by a change in the value of the order

parameter, but also in the change of the residual symmetry group of the system considered.
The symmetry group generically breaks down in the phase transition from a group of higher
symmetry to one of lower symmetry or even no residual symmetry [1].
An interesting observation is, that the breaking of symmetries may not only be a feature

of a phase transition, but even strongly tied to the underlying mechanism of the transition
[53]. As an example, we consider an effective potential U(φ) that depends on a bosonic field
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ϕ

U (ϕ)

Fig. 4.1.: Schematic sketch of the potential U(φ) in the symmetric phase with the ground state at
the origin, φ0 = 0.

φ,

U(φ) = α

2φ
2 + λ

4!φ
4, α, λ > 0. (4.1)

It features a Z2 symmetry around the origin φ = 0,

U(−φ) = U(φ), (4.2)

and the global minimum φ0 of the potential also lies at said origin, see Fig. 4.1. It represents
the ground state of our system in which physical quantities are evaluated, like the curvature
mass

M2(φ0) = δ2U(φ)
δφ2

∣∣∣∣
φ=φ0

. (4.3)

In this particular case, where the ground state is located at the origin,φ0 = 0, and the system
is symmetric around the ground state, the curvature mass yields

M2(0) = α. (4.4)

The couplings α and λ may depend on external parameters like the RG scale k, the temper-
ature T , the pressure p, an external magnetic field h, the chemical potential µ, the curvature
of spacetime κ and many more. If those parameters are changed, the values of the couplings
α and λ may also change such that the conditions of Eq. (4.1) may not be valid anymore.
One of those cases of particular interest to us is if the coupling α becomes negative,

U(φ) = α

2φ
2 + λ

4!φ
4, λ > 0, α < 0. (4.5)

The qualitative shape of the potential now drastically changes, see Fig. 4.2, and the global
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ϕ

U (ϕ)

Fig. 4.2.: Schematic sketch of the potential U(φ) in the phase of broken symmetry with the ground
state φ0 6= 0.

minimum of the potential shifts from the the origin to

φ0 = ±
√
−6α
λ
6= 0. (4.6)

The prior ground state at the origin is not a stable state anymore and a small perturbation
through quantum fluctuations is sufficient to move the system to one of the two new local
minimums. Thus, we now have a new stable ground state, in which physical quantities like
the curvature mass are evaluated,

M2(φ0) = −2α > 0. (4.7)

This means that quantum fluctuations of our field φ are now also considered from the per-
spective of the ground state,

φ = φ0 + ϕ. (4.8)

Here, ϕ is the new quantum field that we consider and the effective potential expressed in
terms of it reads

U(φ) = U(φ0 + ϕ) = α

2 (φ0 + ϕ)2 + λ

4!(φ0 + ϕ)4 =: Uφ0(ϕ). (4.9)

As we can see, our new effective potential Uφ0(ϕ) is not symmetric with respect to the ground
state anymore

Uφ0(−ϕ) 6= Uφ0(ϕ). (4.10)

Thus, the previous Z2 symmetry was spontaneously broken when the change in the shape of
the potential forced our system to abandon the now unstable state at the origin and instead
move to one of the two new stable ground states. We can interpret the ground state of our
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potential as an order parameter for the phase with the corresponding symmetry it exhibits,

φ0

 = 0 if the symmetry is intact,

6= 0 if the symmetry is broken .
(4.11)

With the spontaneous breaking of the symmetry (in this case, the Z2 symmetry), a phase
transition occurs and changes the macroscopic properties of the system (like the mass of the
field). If the change in the parameters (like the temperature T or the curvature κ) causes the
coupling α to suddenly change from a positive to a negative value without smoothly crossing
the value αcrit = 0, the order parameter φ0 also exhibits a jump to a finite value. This
type of a transition is labeled a 1st order or discontinuous phase transition and occurs for
potentials with a higher leading power than φ4 such that we have several competing minima.
If though the change of the parameters causes the coupling α to smoothly transition to a
negative value while crossing αcrit = 0, the order parameter φ0 also smoothly changes from
a non-finite to a finite value. This type of a transition is coined a 2nd order or continuous
phase transition. It is responsible for the emergence of critical phenomena which is why it
is also referred to as a critical phase transition. At a critical phase transition, the passing
of the value αcrit = 0 causes certain susceptibilities χi of a system to diverge and interesting
observations can be made. For instance, the correlation length ξ diverges at a critical phase
transition, rendering interactions on all length scales relevant [25, 53].

4.2. O(N) Scalar Model
In this section, we study the spontaneous symmetry breaking of a scalar field theory with
O(N) symmetry as a case study for a specific phase transition [1, 25]. Not only is this a very
good toy model from a pedagogical point of view, but it is also a useful one to describe the
symmetry breaking of a mixed theory of bosons and fermions and a subsequent dynamical
fermion mass generation.
Suppose, we have the following scalar field theory,

L = (∂µ~φ)(∂µ~φ)− U(ρ), (4.12)

with N scalar fields that are collected in the label

~φ = (φ1, . . . , φN)T . (4.13)

Here, U(ρ) represents the effective potential of our theory and

ρ = 1
2
~φT · ~φ = 1

2
(
φ2

1 + . . . φ2
N

)
. (4.14)
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The quantity ρ and the kinetic term of our Lagrangian are invariant under a transformation
of the O(N) symmetry group.
The curvature in this theory is spanned by a matrix that depends on the second derivatives

of the potential,

Kab(φ) = ∂2U(ρ)
∂φa∂φb

= ∂

∂φa
(φb U ′(ρ))

= δab U
′(ρ) + φaφb U

′′(ρ). (4.15)

Introducing projection operators for the longitudinal and transversal modes,

PL
ab = φaφb

2ρ , P T
ab = δab − PL

ab, (4.16)

with the appropriate properties of projectors,

(P T/L)2 = P T/L, P T/L · PL/T = 0, P T + PL = 1, (4.17)

we can rewrite the curvature matrix and obtain

Kab(ρ) = [U ′(ρ) + 2ρU ′′(ρ)]PL
ab + [U ′(ρ)]P T

ab. (4.18)

Now we assume that the potential is bounded from below and that a stable global minimum
~φ0 exists that is to be understood as the ground state of our system. Physical quantities
therefore have to be evaluated in this given ground state. The curvature mass can be deduced
from the curvature matrix K [1] and evaluated in the ground state yields

Mab(ρ0) = Kab(ρ)|ρ=ρ0

= [U ′(ρ0) + 2ρ0U
′′(ρ0)]PL

ab + [U ′(ρ0)]P T
ab

= m2
L(ρ0)PL

ab +m2
T (ρ0)P T

ab. (4.19)

Here, m2
L(ρ0) and m2

T (ρ0) are the masses of the longitudinal and transversal modes in the
ground state, with ρ0 = 1

2
~φ2

0.
Taking the trace of those operators,

Tr(PL) = δabPL
ab = 1, (4.20)

Tr(P T ) = δabP T
ab = N − 1, (4.21)

we observe that the longitudinal mode has 1 degree of freedom, while the transversal mode
has N − 1 ones. Since these projectors form a complete basis, we can split our field into
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those two components,

~φ = ~φL + ~φT , (4.22)

with each component being extracted with the help of the projection operators introduced
above,

~φL/T = PL/T ~φ. (4.23)

If we denote the operators without indices they are to be understood as matrices. These pro-
jected fields represent the eigenstates of the curvature mass operator M̂ that was introduced
above in Eq. (4.19) ,

M̂(ρ0)~φL/T = m2
L/T (ρ0) ~φL/T , (4.24)

with the eigenvalues m2
L/T (ρ0). For a better understanding of the dynamics, we introduce

the fields σ and ~π, that can be understood as the fields of physical particles, and associate
them with the longitudinal and transversal modes,

~φ =
(
~π

σ

)
, ~φL =

(
0
σ

)
, ~φT =

(
~π

0

)
. (4.25)

The first entry of the vector in field space introduced above is to be understood as containing
N − 1 entries as it represents the N − 1 degrees of freedom of the transversal mode. The
masses of those fields are given accordingly,

m2
σ(ρ0) = m2

L(ρ0) = U ′(ρ0) + 2ρ U ′′(ρ0) (4.26)

m2
π(ρ0) = m2

T (ρ0) = U ′(ρ0). (4.27)

For a better understanding of how the symmetry emerges in the masses of those particles,
we take a look at a very specific effective potential as an example given by

U(ρ) = m2
0ρ+ λ

2ρ
2, m0, λ > 0, (4.28)

that contains the O(N) symmetry. We take the derivative of said potential to compute the
ground state,

∂U(ρ)
∂φa

∣∣∣∣
~φ=~φ0

!= 0 ⇒ ~φ0 U
′(ρ0) != 0, (4.29)
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and find out that the only real solution lies at the origin,

~φ0 = 0 ⇒ ρ0 = 0. (4.30)

The masses of those particles in the ground state read

m2
σ(ρ0) = m2

0, (4.31)

m2
π(ρ0) = m2

0. (4.32)

As we can see, the O(N) symmetry of our action is manifest in the masses of our model.
Therefore, the system does not distinguish between longitudinal and transversal modes in
this symmetric phase where the ground state of our effective potential lies at the origin.
Now we want to discuss the symmetry broken phase. Suppose a potential of the form

U(ρ) = −µ2ρ+ λ

2ρ
2, µ, λ > 0. (4.33)

Again, we compute its ground state,

∂U(ρ)
∂φa

∣∣∣∣
~φ=~φ0

!= 0 ⇒ ~φ0 U
′(ρ0) != 0, (4.34)

and find the only stable state to be,

ρ0 = µ2

λ
⇒ φ0 =

√
2µ2

λ
6= 0. (4.35)

The ground state φ0 is now located at a finite value of the field. The potential of Sec. 4.1
that contained a Z2 symmetry offered two new stable minima after spontaneous symmetry
breaking. In the case of the a potential with an O(N) symmetry, the infinitely many possi-
bilities for the new ground state form a subgroup, namely O(N − 1). This is observable if
we take a look at the curvature masses in this new ground state,

m2
σ(ρ0) = 0 (4.36)

m2
π(ρ0) = 2µ2. (4.37)

We observe, that the breaking of the O(N) symmetry manifests itself in the masses of the
particles. The ~π fields, which represent the transversal modes, are now massless, while the σ
field, which represents the longitudinal mode, remains massive but changes its value. Since,
there are N − 1 transversal modes and they all share the same value for their masses, they
form a subgroup with the new symmetry group, the above mentioned O(N − 1). Therefore,
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this particular phase transition changes the underlying symmetry group of our system,

O(N) → O(N − 1). (4.38)

We define the direction of the σ field to be the one, in which the spontaneous symmetry
breaking occurs, e.g.

~φ0 =
(

0
φ0

)
=:
(

0
σ0

)
. (4.39)

The new ground state of the potential is now located at φ0 in the longitudinal direction.
The number of generators of the symmetry group [1] is given by

g [O(N)] = N(N − 1)
2 . (4.40)

This means that the number of generators that are broken during this phase transition is
given by

g [O(N)]− g [O(N − 1)] = N − 1. (4.41)

According to the Goldstone theorem, each broken generator of a continuous symmetry in-
duces a massless bosonic mode [54, 55]. We associate these Goldstone modes with the ~π
fields.
In nature, we can use a particular case of this model, namely the O(4) symmetry to study

mesonic particles. The 4 fields described in this case are the three pions, π0, π+, π−, and the
σ particle which represents the order parameter of a chiral phase transition and therefore
characterizes fermionic mass generation (see Sec. 4.3). Though the pions have a small mass in
nature, they emerge as massless Goldstone bosons in this model. The reason for this is that
the O(4) symmetry is just an approximate symmetry in the mesonic sector and in reality,
that symmetry is slightly broken. This can be modeled by adding a small perturbation δU
to the effective potential,

U → U + δU, δU = −c · σ, (4.42)

which is characterized by a small parameter c. This perturbation causes the pions to receive
a small mass after spontaneous symmetry breaking making them so-called pseudo-Goldstone
bosons [56].
An interesting feature of this model is that if the coupling of the linear operator in the

potential ( m2
0 in the symmetric phase and −µ2 in the symmetry broken phase ) continuously

transitions from a positive to a negative value, a critical phase transition is occurring. This
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is encoded in the chiral susceptibility,

χσ = 1
m2
σ

, (4.43)

which diverges at the critical phase transition [57], as the mass of the longitudinal mode
vanishes for µ = 0.

4.3. Chiral Symmetry and Fermion Mass Generation
Dirac fermions contain a part with left-handed chirality and one with right-handed chirality
[1]. We can define operators to project onto spinors that are right-handed and left-handed,
respectively,

PR = 1
2 (1+ γ5) , PL = 1

2 (1− γ5) . (4.44)

These operators obey the properties of projection operators,

P 2
R/L = PR/L, PR/L · PL/R = 0, PR + PL = 14×4. (4.45)

Here, γ5 is an additional gamma matrix with the properties

{γ5, γµ} = 0, γ†5 = γ5, γ2
5 = 1. (4.46)

Especially in D = 4 spacetime dimensions and in the chiral basis, it reads

γ5 =
(
12×2 0

0 −12×2,

)
(4.47)

with 12×2 being the 2×2 unit matrix. With these definitions, we can project a spinor ψ and
its adjoint ψ̄ onto their respective chiral parts,

ψR/L = PR/Lψ, ψ̄R/L = ψ̄PL/R. (4.48)

The Dirac Lagrangian can now also be split into its chiral components,

LD = ψ̄(iγµ∂µ −mψ)ψ

= ψ̄R(iγµ∂µ)ψR + ψ̄L(iγµ∂µ)ψL −mψ(ψ̄RψL + ψ̄LψR)

= LD,L + LD,R −mψ(ψ̄RψL + ψ̄LψR). (4.49)

53



4. Symmetries and Phase Transitions

We observe that the kinetic part of the Dirac Lagrangian can be split into a purely right-
handed and a purely left-handed part. An interaction between left-handed and right-handed
fermions is only possible through their mass mψ. Therefore, for vanishing masses mψ = 0,
the Dirac Lagrangian exhibits chiral symmetry [1], which is represented by the symmetry
group

U(1)R ⊗ U(1)L. (4.50)

In return this means, that if the above introduced chiral symmetry were to be broken by the
mechanism of spontaneous symmetry breaking, fermions would acquire a mass.
We now extend our analysis of chiral symmetry to a system with Nf fermions and N = N2

f

bosons [58],

L = Ψ̄(iγµ∂µ)Ψ− yΨ̄ (σ1Nf×Nf + iγ5~τ~π) Ψ− U(ρ). (4.51)

Here, Ψ and its adjoint Ψ̄ collect all Nf fermions into a tuple,

Ψ =


ψ1
...
ψNf

 , Ψ̄ = (Ψ̄1, . . . , Ψ̄Nf ). (4.52)

U(ρ) is the effective potential of our model and is expressed through the density ρ,

~φ =
(
~π

σ

)
, ρ = 1

2
~φ · ~φ = 1

2(σ2 + ~π2). (4.53)

The field σ is a scalar-isoscalar and the N − 1 number of ~π are a pseudoscalar-isovector.
The first part of the naming refers to the behavior under a Lorentz transformation (scalar
for the σ field and pseudoscalar field for the ~π) and the second part to the behaviour under
a transformation in the internal flavor space (isoscalar for the σ field and isovector for the ~π
field). The σ field enters the interaction with the fermions in the Lagrangian in Eq. (4.51)
with a unit matrix, while each of the the ~π fields are contracted with the N2

f −1 generators ~τ
of the SU(Nf) symmetry group. The interaction type is a Yukawa interaction with y being
the Yukawa coupling.
Chiral symmetry in this theory is expressed through the symmetry group [1]

U(Nf)R ⊗ U(Nf)L, (4.54)

which induces an O(N) symmetry in the scalar sector. This Lagrangian is an extension of
the effective potential of a scalar field theory with O(N) symmetry discussed in Sec. 4.2,
to a mixed systems consisting of bosons and chiral fermions. We know from the previous
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section how the spontaneous breaking of the O(N) affects the bosonic sector. Now we want
to study how it affects the chirality of the fermions in this mixed system.
We assume a potential that is in the phase of broken O(N) symmetry in accordance to

the second part of Sec. 4.2,

U(ρ) = −µ2ρ+ λ

2ρ
2, µ, λ > 0. (4.55)

The ground state of the potential in this broken phase can be computed and its absolute
value reads,

∂U(ρ)
∂φa

∣∣∣∣
~φ=~φ0

!= 0 ⇒ φ0 =
√

2ρ0 =
√

2µ2

λ
. (4.56)

Since it is a finite value, the ground state shifts from the origin along the direction of the σ
field,

~φ0 =
(

0
σ0

)
. (4.57)

This non-zero value of the ground state can be interpreted as a condensate, that indicates
that bosonic bound states are formed out of the fermions. It is referred to as a chiral
condensate as it indicates chiral symmetry breaking. To better see, how chiral symmetry is
broken, we now consider the fluctuations ξ around this ground state as a degree of freedom
instead of the σ field itself,

σ = σ0 + ξ. (4.58)

For the interaction with the fermions, this yields

yΨ̄σΨ = yΨ̄σ0Ψ + yΨ̄ξΨ, (4.59)

and the fermions now have acquired a mass,

mΨ = yσ0. (4.60)

To better understand, how chiral symmetry is broken through the dynamical generation of
a fermion mass, we first have to decompose the symmetry group of chiral symmetry into its
subgroups [1],

U(Nf)R ⊗ U(Nf)L ' SU(Nf)V ⊗ SU(Nf)A ⊗ U(1)V ⊗ U(1)A. (4.61)

Here SU(Nf)V and SU(Nf)A represent the vector and axial vector symmetries of the system.
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Under a vector transformation [1], the spinor Ψ and its adjoint Ψ̄ transform as

Ψ −→ (1 + i~θV~τ)Ψ, (4.62)

Ψ̄ −→ Ψ̄(1− i~θV~τ), (4.63)

where ~θV is the parameter for the vector transformation. The fermionic mass term transforms
as

mΨΨ̄Ψ −→ mΨΨ̄Ψ, (4.64)

and is therefore invariant under a vector transformation. Under an axial vector transforma-
tion [1], the spinor Ψ and its adjoint Ψ̄ transform as

Ψ −→ (1 + iγ5~θA~τ)Ψ, (4.65)

Ψ̄ −→ Ψ̄(1 + iγ5~θA~τ), (4.66)

where ~θA is the parameter for the axial vector transformation. The fermionic mass term
transforms as

mΨΨ̄Ψ −→ mΨΨ̄Ψ− 2imΨγ5Ψ̄~θA~τΨ, (4.67)

and is therefore not invariant under an axial vector transformation. This means that the
spontaneous breaking of the O(N) symmetry in the bosonic sector breaks the SU(Nf)A

symmetry in the fermionic sector and therefore also breaks chiral symmetry.
We demonstrated in this section, how the spontaneous symmetry breaking of an O(N)

symmetric scalar field theory interacting with chiral fermions also spontaneously breaks chiral
symmetry and dynamically induces a fermionic mass. This procedure is not only restricted to
a scalar field theory with an O(N) symmetry, but generalizes to arbitrary systems of mixed
bosons and fermions interacting with each other [50]. As long as the fermionic field interacts
with the bosonic one in a Yukawa-type interaction and the breaking of the symmetry in the
bosonic sector causes a condensate to appear – the ground state of this potential in the new
phase – a fermionic mass will be generated.
In Chapter 5, we will use a similar mixed system consisting of fermions and bosons that

interact with each other through a Yukawa interaction, and compute the effects of thermal
fluctuations, characterized by the temperature T , quantum fluctuations, characterized by
the RG scale k, and gravity, characterized by the curvature of hyperbolically curved space
κ. The potential will have a polynomial shape like it did in this chapter,

U(φ) = α2

2 φ
2 + α4

4! φ
4, (4.68)
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with the couplings now depending on these explicit parameter,

αi −→ αi,k(T, κ). (4.69)

The interplay between these parameters will determine how chiral symmetry behaves in the
presence of thermal fluctuations and a gravitational background field and even if a critical
phase transition might occur.
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5. Gravitational Catalysis in Thermal
Backgrounds

Chiral symmetry breaking and fermion mass generation is a central feature of interacting
fermions relevant for both the Higgs sector of the standard model as well as QCD shaping
many properties of matter in the universe. Whereas the long-range limit of gravity in the
form of Einstein’s general relativity is too weakly interacting to affect the status of chiral
symmetry, gravity is expected to become more strongly interacting at or above the Planck
scale. Whether or not gravity or its quantized form may exert a strong influence on the
chiral features of fermions deserves to be studied. In fact, such an influence may even be
used as an observational probe for scenarios of quantum gravity: as suggested in [59], viable
scenarios of quantum gravity need to be compatible with the existence of light fermion as
observed in Nature – a requirement that has the potential to impose constraints or even rule
out certain scenarios of quantum gravity.
It is reassuring to see that quantum fluctuations of the metric do not support the same kind

of chiral-symmetry breaking mechanism as is triggered by spin-one gauge fields or Yukawa
interactions with scalars [59–67]. For both latter cases, the gauge or Yukawa couplings
simply have to increase beyond a certain threshold which renders chiral-symmetry breaking
in these scenarios a rather universal strong-coupling feature. This is not so in metric quantum
gravity.
By contrast, gravity offers further mechanisms to trigger fermion mass generation which

are generic to gravity in the sense that they proceed via the structure of spacetime itself.
The most widely studied mechanism occurs on negatively curved spacetimes and can be
summarized by gravitational catalysis [17]. It appears in a large variety of fermionic models
[68–84], as it derives from a mechanism of dimensional reduction of the spectrum of the Dirac
operator on hyperbolic spacetimes [85]; (on positively curved spacetimes, curvature effects
can still exert an influence on the fermion mass formation in combination with magnetic
catalysis [86, 87]). Another mechanism has recently been suggested and worked out in [88]:
in quantum gravity scenarios allowing for topology fluctuations, gravitational instantons can
contribute to anomalous chiral symmetry breaking and thereby generate fermion masses
potentially in conflict with observation. In combination with abelian gauge interactions,
gravity can trigger also conventional symmetry breaking mechanisms, as demonstrated in
[89].
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In this thesis, we further explore pure gravitational catalysis specifically by including the
effects of finite temperature. Following an earlier zero-temperature analysis [18, 38], we
study the phenomenon using a renormalization-group (RG) inspired scale-dependent ap-
proach. The advantage is that we can monitor the RG relevance of chiral interactions in this
way. In fact, gravitational catalysis can be connected with four-fermion operators becoming
RG relevant driving the symmetry-breaking interactions to criticality [90]. This makes the
analysis of gravitational catalysis in the context of quantum gravity scenarios more subtle:
It is not sufficient to check, whether the long-range curvature of spacetime is compatible
with the existence of light fermions (which obviously is the case). Moreover, the influence
of spacetime curvature on the symmetry-breaking operators has to be checked during the
whole course of the RG flow, specifically in the Planckian regime and beyond. Provided a
notion of curvature exists in that regime, gravitational catalysis could be active and drive
the symmetry-breaking operators beyond criticality. This would result in correspondingly
heavy fermions removing light fermions from the observable long-range spectrum. The pre-
cise connection between the curvature and the induced value of the fermion mass depends
on the details of the induced fermion-self interactions, see, e.g., Ref. [90] for an explicit
analysis. However, the scale for the induced masses is essentially set by the scale at which
the symmetry-breaking operators become critical which in a quantum gravitational context
would be clearly linked to the Planck scale.
This mechanism has been explored in [18] which lead to the notion of curvature bounds:

in order to guarantee that a given quantum gravity scenario is not affected by the problem
of gravitational catalysis, the averaged curvature of a local patch of spacetime should not
exceed a certain bound. So far, these bounds have been derived for Riemannian hyperbolic
spacetimes such as HD in general spacetime dimensions D, cf. [18].
In this thesis, we generalize the analysis to R⊗HD−1 or S1⊗HD−1. The purpose is two-fold:

first, this provides further information about the concrete dependence of the mechanism on
the details of the averaged spacetime structure.
Second, this allows to monitor the influence of finite temperature on the mechanism.

The latter is particularly relevant for studying the influence of gravitational catalysis in the
course of the cosmological evolution. Indeed, our results provide evidence for a compar-
atively strong dependence of gravitational catalysis on the details of the background. At
the same time, finite-temperature effects can significantly relax the curvature bounds – in
line with the expectation that thermal fluctuations drive the system towards the disordered
symmetric phase.
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5.1. Chiral Channel and Effective Potential
In an RG picture, catalysis of chiral symmetry is triggered by four-fermion operators be-
coming RG relevant [90]. Considering Nf fermion flavors, we study the RG behavior of
four-fermion operators with maximal chiral U(Nf)R × U(Nf)L symmetry as an example.
Operators with a lower degree of symmetry can be studied analogously. We focus on the

so-called (V ) + (A) channel,

Sint ∼
∫
x

[(
ψ̄aγµψ

a
)2 +

(
ψ̄aγµiγ5ψ

a
)2
]
, (5.1)

which is one out of the two Fierz-independent local interaction terms of maximal symmetry
[91]. It is Fierz equivalent to the scalar-pseudoscalar channel of the Nambu–Jona-Lasinio
(NJL) model which, using the projectors

PL = 1− γ5

2 , PR = 1+ γ5

2 , 1 = PL + PR (5.2)

onto left and right chiral components, can be re-arranged as

Sint[ψ̄, ψ] = −2
∫
x

λ̄(ψ̄aPRψ
b)(ψ̄bPLψ

a). (5.3)

Here, we have introduced a (dimensionful) coupling constant λ̄ parameterizing the strength
of the chiral interaction. In the NJL model, this coupling is tuned beyond a critical value
λ̄ > λ̄cr triggering chiral symmetry breaking in terms of initial conditions. Incidentally, a
thermal environment – breaking spacetime symmetries explicitly – allows for further sets
of Fierz inequivalent interactions where spatial and temporal components of vector type
channels are treated independently [92–94]. In the following, we ignore this potential splitting
and concentrate on the NJL channel. Here, we always assume the initial condition to be
subcritical such that this operator does not generate fermion masses on its own.
Introducing a non-dynamical Hubbard-Stratonovich field φ, the chiral channel can be

rewritten in terms of a local Yukawa interaction,

Lint[φ, ψ̄, ψ] = ψ̄a
[
PL(φ†)ab + PRφab

]
ψb + 1

2λ̄
tr(φ†φ). (5.4)

The equivalence between Eq. (5.3) and Eq. (5.4) becomes obvious with the aid of the equation
of motion for the chiral matrix field,

φab = −2λ̄ψ̄bPLψ
a,

(φ†)ab = −2λ̄ψ̄bPRψ
a. (5.5)

This scalar field, in fact, serves as an order parameter for the status of chiral symmetry. E.g.,
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assuming a diagonalizable expectation value in flavor space, φab = φ0δab with φ0 > 0 being
homogeneous in spacetime, the chiral group breaks to a residual vector symmetry similar to
QCD-like theories, and all fermions acquire masses of order φ0. Including a fermion kinetic
term, the action reads

S[φ0, ψ̄, ψ] =

∫
x

{
ψ̄
(
/∇+ φ0

)
ψ + 1

2λ̄Nf(φ0)2
}
. (5.6)

Our focus on a homogeneous condensate field φ0 may preclude a study of inhomogeneous
condensates for which examples are known that yield a deeper global minimum of the ef-
fective potential (or free energy). If such a case occurred for gravitational catalysis, the
bounds derived below would even be strengthened. Furthermore, we confine ourselves to
integrating out the fermion degrees of freedom and neglect order parameter fluctuations in
the following. In this way, we obtain a mean-field expression for the effective potential of
the order parameter

Ũ(φ0) = Nf

2λ̄
(φ0)2 −Nf logDetx( /∇+ φ0)

= Nf

2λ̄
(φ0)2 − Nf

2 Trx log(− /∇2 + φ2
0), (5.7)

where we have used the γ5-hermiticity of the covariant Dirac operator in the last step. This
mean-field approximation becomes exact in the limit of large fermion flavors Nf →∞. With
an emphasis on the standard model and its extensions in the following, for which Nf ≥ 22.5;
we expect the mean-field level to be sufficiently accurate for our purposes. It is convenient
to introduce the Fock-Schwinger propertime representation,

Ũ(φ0) = Nf

2λ̄
(φ0)2 + Nf

2

∫ ∞

0

ds

s
e−φ2

0sTrx e /∇
2
s, (5.8)

in order to arrive at the heat-kernel trace for the present differential operator of interest:

Trx e /∇
2
s = Trx K(x, x′; s) =: KD(s). (5.9)

The heat kernelK(x, x′; s) satisfies a modified heat flow equation with the following boundary
conditions

∂

∂s
K = /∇2

K, lim
s→0+

K(x, x′; s) = δ(x− x′)
√
g

. (5.10)

The propertime representation is not only useful to evaluate the functional trace of the
heat kernel on curved spacetimes, but also allows to regularize this fermionic fluctuation
contribution in a scale-dependent and spin-base-invariant [42] fashion: contributions from
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the infrared (IR) modes of the fermionic spectrum contribute predominantly to the large-s
part of the propertime integral. Hence, these modes can be IR regularized by insertion of a
regulator function fk,

fk = e−(k2s)p , (5.11)

into the propertime integral [95, 96]. The parameter p > 0 specifies the renormalization
scheme and k corresponds to an IR regularization scale for the eigenvalues of the squared
Dirac operator. For p → ∞, all long range contributions are sharply cut off at the scale
s > 1/k2. The scale

√
s is a measure for the spatiotemporal range of the fluctuating modes.

For finite values of p, the regularization scale is smeared out. In the limit k → 0, the RG
insertion factor becomes the identity, and the regularization is thus removed. Starting at an
ultraviolet (UV) scale k = Λ with the bare potential ŨΛ , the potential in the IR at kIR can
be computed by

ŨkIR = ŨΛ −

∫ Λ

kIR

dk ∂kŨk, ŨΛ = Nf

2λ̄Λ
φ2

0, λ̄Λ := λ̄. (5.12)

At intermediate scales k, the scale-dependent effective potential Ũk satisfies the flow equation

∂kŨk = Nf

2

∫ ∞

0

ds

s
e−φ2

0s(∂kfk)KD(s). (5.13)

The advantage of performing the integral over the Schwinger propertime s first is that the
cutoff Λ controls the UV divergences and thus assists to identify and fix counter terms for
the corresponding relevant and marginal operators.

5.2. Heat Kernels at Finite Temperature
Aiming at an analysis of the scale-dependent effective potential of Eq. (5.13), the information
about the spacetime structure enters via the heat-kernel trace KD(s). As we are interested
in the mechanism of gravitational catalysis and the influence of finite temperature, we focus
on spacetimes that feature a sufficient amount of negative curvature and allow for a simple
use of thermal field theory in imaginary-time formalism. Therefore, a natural choice is
S1 ⊗ Hd with a compactified (Euclidean) time and the spatial part corresponding to a
maximally symmetric hyperboloid with negative spatial curvature. The decompactified limit
then corresponds to the zero-temperature case R⊗Hd with a flat time direction.
It is important to emphasize that we do not at all consider these spacetimes as physical

descriptions of the large-scale structure of the universe. By means of our scale-dependent
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analysis, we focus on effective properties of quantum spacetime, say, in the trans-Planckian
regime. Here, nothing specific is known about the microscopic spacetime structure. Hence,
our choice of spacetime can be considered as a proxy for a possible structure of local patches
of spacetime in that short-distance regime of quantum gravity. For the product manifolds
considered here, the square of the Dirac operator can be decomposed as

/∇2
D = (∂0)2 + /∇2

d, D = d+ 1. (5.14)

Correspondingly, the heat-kernel trace factorizes,

KD(s) = Trt e(∂0)2s · Trx e /∇
2
ds = Kt(s) ·Kd(s), (5.15)

Let us first discuss the spatial part Kd(s) for which an analytical result exists and has been
worked out for general dimensions d [44]. Focusing in this work on d = 3-dimensional space,
the result is particularly simple:

Kd=3(s) = 1
(2
√
πs)3

(
1 + 1

2κ
2s

)
, (5.16)

which holds for an arbitrary curvature parameter

κ2 = − R

d(d− 1) = −R6 > 0. (5.17)

The temporal part depends on the circumference β = 1
T
of the Euclidean time S1. Using anti-

periodic boundary conditions for the fermionic fields, the trace if performed in momentum
space runs over Matsubara frequencies ωn = 2πT (n+ 1/2), yielding

Kt(s) = T
∞∑

n=−∞

e−ω2
ns = Tϑ2

(
0, e−(2πT )2s

)
. (5.18)

Here we encounter the Jacobi theta function ϑ2(z, q). For our purposes, a Poisson resumma-
tion connecting ϑ2 to ϑ3 is useful for later numerical evaluation. It also gives direct access
to analyic studies of the low temperature-limit implying the decompactification S1 → R of
the Euclidean time direction,

Kt(s) = Tϑ2

(
0, e−(2πT )2s

)
=

√
π√

(2π)2s
ϑ3

(
π

2 , e
− π2

(2πT )2s

)
= 1√

4πs

[
1− 2 e−

1
4T2s +O

((
e−(4T 2s)−1

)2
)]

.

Here, we obtain the standard zero-temperature results Kt(s) = 1/
√

4πs for a fully decom-
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pactified temporal direction.

5.3. Curvature Bounds
We are now in a position to derive bounds on the curvature parameter that characterize the
parameter space free of gravitational catalysis. For this, we follow the reasoning of [18] and
monitor the possible occurrence of nontrivial minima of the effective potential for the chiral
order parameter φ0. In addition to the divergencies associated with matter operators to be
renormalized, see next subsection, the effective potential Ũ(φ0) displayed, e.g., in Eq. (5.8),
also contains a divergent zero-point energy, which we subtract by defining

U(φ0) = Ũ(φ0)− Ũ(0), (5.19)

such that U(0) = 0 is fixed at the origin in field space [43]. A possible mixing of the
subtraction terms with the cosmological-constant term is not considered in this work; we
assume the – possibly scale-dependent – behavior of the cosmological constant to be provided
by a given quantum gravity scenario (including matter backreactions).
To be more precise, our considerations can make direct contact with quantum gravity

scenarios, provided that such a scenario allows for an effective description of spacetime in
terms of (pseudo-)Riemannian manifolds with a potentially scale-dependent notion of effec-
tive curvature arising by suitably averaging over local patches of spacetime. In the course
of the following considerations, we assume all gravity-related parameters to be provided by
some quantum gravity scenario; in addition to an effective curvature, this includes poten-
tial further gravity-matter couplings, as well as the corresponding scale-dependence of these
quantities. In our approach, we will ignore a possible direct contribution of gravity fluctua-
tions to the matter couplings, e.g., to λ̄; however, such contributions have been found to be
less relevant for the status of chiral symmetry of the matter sector [59, 61].

5.3.1. Curvature Bounds at Zero Temperature
Let us first work out the renormalization of the effective potential, identifying all free param-
eters by accordingly fixing the required renormalization counter terms. Using the preceding
results for the heat-kernel traces, the zero-temperature effective potential of Eq. (5.8) upon
IR regularization (5.11) and zero-point subtraction (5.19) reads

Uk =Nf

2λ̄
φ2

0

+ Nf

2(4π)2

∫ ∞

0

ds

s3 fk

(
e−φ2

0s − 1
) (

1 + 1
2κ

2s

)
. (5.20)
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A power-counting analysis reveals the occurrence of a quadratic divergence for the φ2
0 oper-

ator and two logarithmic divergences for the φ4
0 and φ2

0R operators, respectively.
As a sufficient criterion for the occurrence of chiral symmetry breaking, we specifically

monitor the sign of the φ2
0 term in the Taylor expansion of the effective potential. If this sign

turns negative, the φ4
0 operator cannot inhibit chiral symmetry breaking. For the curvature

bound derived below, the φ4
0 operator is thus not relevant; from here on, we assume it to be

properly renormalized such that the coupling has some finite value at the scale k at which
we consider the theory. We add that the sign criterion of the φ2

0 is not a necessary criterion
for chiral symmetry breaking, as first-order-type transitions to a broken phase could go
along with a positive φ2

0 term. We ignore this option in the following; if it was realized our
curvature bound would even get stronger.
The remaining divergences can conveniently be identified by using the flow equation (5.13),

inserting the regulator (5.11) and expanding in φ0. To leading order, we obtain

∂kUk = kNfφ
2
0

2(4π)2

[
2 Γ

(
1− 1

p

)
+ κ2

k2

]
+O(φ4

0). (5.21)

Here, we observe a divergence for the case of a regularization parameter p = 1.
This is expected, as this value would correspond to a mass-type Callan-Symanzik regular-

ization scheme which is known to be insufficient for an adequate suppression of UV modes
in 4 dimensions. In order not to be affected by this artificial divergence from the regulator,
we suggest to use schemes with p ≥ 2.
Next, we integrate the flow from an IR scale kIR to a UV scale Λ, using for the UV

boundary condition not only the flat space expression as in Eq. (5.12), but also including a
possible scalar-curvature counter term,

UΛ(φ0) = Nf

2λ̄Λ
φ2

0 +NfξΛφ
2
0R, (5.22)

with a UV coupling ξΛ. The resulting effective potential at k = kIR then reads up to order
φ2

0 and ignoring terms of order O(1/Λ):

UkIR =− Nfφ
2
0

2

(
1
λ̄cr
− 1
λ̄Λ
− k2

IR
16π2 Γ

(
1− 1

p

))
− 6NfξkIRφ

2
0κ

2 +O(φ4
0). (5.23)

Here, we have introduced the (scheme-dependent) critical coupling of the chiral channel

λ̄cr = 16π2

Λ2Γ
(

1− 1
p

) , (5.24)
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and defined the finite scalar-curvature coupling at the scale kIR as

ξkIR = ξΛ + 1
12(4π)2 log

(
Λ
kIR

)
. (5.25)

In this work, we consider ξkIR to be a free parameter to be determined by the underlying
quantum gravity theory. Equation (5.23) can be interpreted as follows: the first line contains
the information about the symmetry status in flat spacetime. In a subcritical regime, e.g.
λ̄Λ < λ̄cr, the mass-like term remains positive for zero curvature, indicating that the origin,
φ0 = 0, is a local minimum of the potential (in fact, it is also a global one); hence the system
is in the disordered phase and the fermion mass remains zero. In the supercritical regime
however, e.g. λ̄Λ > λ̄cr, the mass-like term in the first line can become negative for decreasing
kIR resulting in a nontrivial minimum φ2

0 > 0 in the long-range limit. This implies chiral
symmetry breaking and fermion mass generation in flat spacetime. Now, the second line
of Eq. (5.23) contains the curvature contributions resulting from the hyperbolically curved
space. Assuming ξkIR to be positive, the prefactor of this second term is negative and can
therefore cause chiral symmetry breaking depending on the magnitude of the terms in the
first line. Of course, we assume the fermionic self-interactions to be subcritical, otherwise
the system would be in an NJL-like phase which does not conform with the low-mass scale
of the standard-model fermions. While finite values of λ̄Λ are expected to be generated by
gauge and Yukawa interactions, we use the following simple estimate for the first line of
Eq. (5.23):

−φ
2
0

2

(
1
λ̄cr
− 1
λ̄Λ
− k2

IR
16π2 Γ

(
1− 1

p

))
≥ φ2

0
k2

IR
32π2 Γ

(
1− 1

p

)
. (5.26)

Comparing this to the curvature-dependent contribution ∼ ξkIR , we conclude that gravita-
tional catalysis does not occur, if the ratio of the curvature of local patches of spacetime to
the energy scale satisfies

κ2

k2
IR
≤

Γ
(

1− 1
p

)
192π2ξkIR

. (5.27)

Any finite value of the fermionic self-interaction λ̄Λ at the high scale would even strengthen
the bound. We observe an apparent explicit scheme dependence of our bound through the
regularization parameter p. For the region 2 ≤ p <∞, this dependence is rather mild, since
1 < Γ(1 − 1

p
) ≤
√
π. However, it should be noted that also the left-hand side carries an

implicit scheme dependence, since the dimensionless ratio of curvature – which we consider
as an effective curvature of spacetime patches – and the IR scale kIR depends on the details
of the spacetime averaging procedure. As the latter, if done explicitly, would go hand in
hand with the average over the fermionic fluctuations on various length scales, we expect the
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existence of such a bound as in Eq. (5.27) to have a universal meaning. We take the residual
p dependence of (5.27) as a measure for our ignorance of the details of the averaging process.
It is instructive to compare this result for the R ⊗ H3 background with the corresponding
bound for the maximally symmetric case H4. Here, the heat-kernel trace is a nonpolynomial
function of the curvature leading to an integral representation of the curvature bound [18].
For the purpose of the present discussion, we use the simple analytic approximation also
given in [18]:

H4 : κ3

k3
IR

+ 4
3

π
5
2

Γ
(

1 + 1
2p

)ξkIR

κ2

k2
IR
≤
√
π

2
Γ
(

1− 1
p

)
Γ
(

1 + 1
2p

) . (5.28)

Apart from numerical factors, the main difference arises from the first term ∼ κ3 in the H4

case which is present independently of the marginal scalar-curvature coupling ∼ ξ. Though
the curvature bound itself does depend on the precise value of ξkIR also in H4, there is a
meaningful bound for any value of, say, ξkIR ∼ O(1) with ξkIR = 0 being a legitimate choice.
This is not the case for our present result (5.27) for the bound which depends strongly on
ξkIR , yielding no meaningful result for ξkIR = 0. The reason for this strong dependence lies in
the fact that the heat-kernel trace on H3 has the particularly simple polynomial form given
in Eq. (5.16), the contribution of which to the effective potential can be fully absorbed in
the renormalization of the marginal scalar-curvature coupling ξ.
We draw the following conclusions from this observation: first, this strong qualitative

and quantitative difference between the curvature bounds of two example spacetimes with
negative curvature demonstrates that the details of the average spacetime structure in the
(trans-)Planckian regime of quantum gravity can take a strong influence on the presence or
absence of gravitational catalysis. If a bound derived for one case is satisfied it may still be
violated in another case. Since we have little access to general knowledge about the average
spacetime structure in this short-distance regime where spacetime itself is expected to be
strongly fluctuating, the exclusion of gravitational catalysis in order to reach compatibility
with the existence of light fermions can thus be decisive criterion for the viability of a
quantum gravity scenario.
Second, in addition to information about the averaged spacetime structure of local space-

time patches, a quantum gravity (plus matter) scenario has to provide also a prediction of
the scalar curvature coupling ξ in order to test for gravitational catalysis. Since the scalar
field in the present analysis arises from fermion interactions which may arise predominantly
from classically scale-invariant gauge interactions, the use of a conformally coupled scalar
field is a reasonable first guess.
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5.3.2. Curvature Bounds at Finite Temperature
As in the zero-temperature case, we now derive curvature bounds from the effective potential
for the chiral order parameter. For this, we write the regularized effective potential as

UT
k = Uk + ∆TUk, (5.29)

where Uk denotes the zero-temperature part, cf. Eq. (5.20), and ∆TUk is the thermal cor-
rection satisfying ∆T=0Uk = 0. Based on the heat-kernel traces, this thermal part can be
written as

∆TUk = Nf

2(4π)2

∫ ∞

0

ds

s3 fk

(
e−φ2

0s − 1
) (

1 + 1
2κ

2s

)
×
[
ϑ3

(
π

2 , e
− π2

(2πT )2s

)
− 1
]
. (5.30)

Since the presence of finite temperature does not modify the UV behavior of the theory,
this expression is already finite. No further counterterms are required, and we consider
all physical parameters to be fixed by the T = 0 renormalization conditions. After the
substitution s̃ = k2

IRs, the thermal correction to the effective potential up to quadratic order
in φ0 reads

∆TUk = Nf

32π2

[
Ap(ζ) · k2

IR + Cp(ζ) · κ2]φ2
0, ζ = T

kIR
, (5.31)

with the temperature-dependent coefficients functions

Ap(ζ) = −1
2

∫ ∞

0

ds̃

s̃2 e
−s̃p
[
ϑ3

(π
2 , e

− 1
4ζ2s̃

)
− 1
]
, (5.32)

Cp(ζ) = −1
4

∫ ∞

0

ds̃

s̃
e−s̃p

[
ϑ3

(π
2 , e

− 1
4ζ2s̃

)
− 1
]

(5.33)

that depend on the regularization scheme parameter p and the rescaled temperature ζ =
T/kIR. Both functions vanish in the zero-temperature limit, Ap, Cp|ζ→0 = 0 for any legitimate
scheme parameter p. The quadratic part of the effective potential at finite temperature can
be expressed through these coefficients functions

UT
kIR

= −Nfφ
2
0

2

[
1
λ̄cr
− 1
λ̄Λ
− k2

IR
16π2

(
Γ
(

1− 1
p

)
+ Ap(ζ)

)]
−Nfκ

2
(

6ξkIR −
1

32π2C
p(ζ)

)
φ2

0 +O(φ4
0), (5.34)
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leading to the temperature-dependent curvature bound

κ2

k2
IR
≤ Bp(ζ) :=

Γ
(

1− 1
p

)
+ Ap(ζ)

192π2ξkIR − Cp(ζ) . (5.35)

This bound represents a central result of our work. The integrals for the coefficients Ap(ζ)
and Cp(ζ) can be evaluated numerically for arbitrary p rather straightforwardly. For analytic
estimates, we expand the thermal part of the heat kernel, excluding the zero temperature
contribution, in a Taylor expansion for the second argument of the Jacobi theta function[

ϑ3

(
π

2 , e
− π2

(2πT )2s

)
− 1
]

= 2
∞∑
n=1

(−1)n e−
n2

4ζ2s̃ . (5.36)

We observe that the contributions decrease exponentially for each additional order sug-
gesting that expansions truncated at a certain order N can still represent a quantitatively
accurate approximation up to a certain temperature. Expanding the thermal coefficients
from Eq. (5.32) accordingly, we can express the result to all orders in the expansion by the
two functions ap(z) and cp(z), respectively,

Ap(ζ) = −
∞∑
n=1

(−1)n
∫ ∞

0

ds̃

s̃2 e
−s̃pe−

n2
4ζ2s̃

=:
∞∑
n=1

(−1)n ap(ζ/n), (5.37)

Cp(ζ) = −1
2

∞∑
n=1

(−1)n
∫ ∞

0

ds̃

s̃
e−s̃pe−

n2
4ζ2s̃

=:
∞∑
n=1

(−1)n cp(ζ/n). (5.38)

These functions can be computed analytically for the scheme parameters p = 1 and p =∞
and yield

ap=1(z) = −8zK1

(
1
z

)
, (5.39)

ap=∞(z) = −8z2e−
1

4z2 , (5.40)

cp=1(z) = −2K0

(
1
z

)
, (5.41)

cp=∞(z) = Ei
(
− 1

4z2

)
, (5.42)

with Kn(z) being the modified Bessel functions of the second kind, and Ei(z) the exponential
integral. Whereas the choice p = 1, corresponding to the Callan-Symanzik regulator, is
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Fig. 5.1.: Numerical result for the curvature bound Bp(ζ) of Eq. (5.35) as a function of the rescaled
temperature ζ = T/kIR for regularization-scheme parameters p = 2 and p = ∞, respec-
tively. The comparatively mild scheme dependence at zero temperature even weakens for
increasing temperature.

insufficient for regularizing the quantum fluctuations as discussed above, there is no problem
using it for the thermal part. While setting p = 2 for the quantum and p = 1 for the thermal
fluctuations does not correspond to a fully consistent regularization scheme, the comparison
between p = ∞ and the “p = 1, 2” scheme can can be used for analytical estimates of the
scheme dependence. A full numerical comparison between the extreme choices p = 2 and
p = ∞ is shown in Fig. 5.1. Here, the bound Bp(ζ) of Eq. (5.35) is shown as a function
of rescaled temperature for the two schemes. While there is a quantitative difference for
low temperatures which reflects the scheme dependences found in Eq. (5.27) for T = 0, this
difference significantly weakens for increasing temperature. This enhances the predictivity
of our quantitative estimates for the finite-temperature case. A fully analytical estimate
is obtained by truncating the series in Eqs. (5.37) and (5.38) at a finite order in N using,
say, the p → ∞ scheme. In Fig. 5.2, we compare increasing orders for N = 1, 3, 5 with the
corresponding full numerical result. We observe that already low-order estimates reflect the
full behavior qualitatively rather well. For increasing order, also the quantitative precision
increases. For instance, for N = 15 no difference between the analytical estimate and the
numerical result would be visible in Fig. 5.2 in the shown regime of rescaled temperatures
as large as ζ = 100. The large-ζ behavior of the bound fits well to quadratic increase. A
numerical fit yields Bp(ζ) ' 0.02ζ2 for the leading high-temperature behavior. This matches
also with the qualitative behavior of the large-temperature expansion of the heat-kernel. For
the application of our curvature bound to a quantum gravity scenario below, we simply use
the analytical estimate Bp→∞(ζ) for N = 15, as it is sufficiently accurate for all values of
rescaled temperature ζ of interest.
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Fig. 5.2.: Numerical result for the curvature bound Bp→∞(ζ) of Eq. (5.35) as a function of the
rescaled temperature ζ = T/kIR in comparison with the analytical estimates of Eqs. (5.37)
(5.38) for increasing truncations N . Even for large values of ζ, the analytical estimates
approach the full result rather rapidly. For large temperatures, the curvature bound
increases ∼ ζ2.

5.4. Asymptotically Safe Gravity: from Curvature Bound
to Matter Bound

The preceding results can be applied to generic quantum gravity scenarios as soon as they
feature an effective metric based description below a certain high-energy scale. For this, we
assume that such a scenario provides information about the effective spacetime structure
at short-distance scales, e.g., in the form of a possibly scale-dependent effective metric,
〈gµν〉k. In addition, we assume that the quantum gravity scenario also accommodates a
model of the cosmological evolution going along with a scale-dependent evolution of the
temperature. In fact, the asymptotic-safety scenario for quantum gravity [6, 8, 97, 98] has
witnessed rapid progress over the past two decades, as, e.g., reviewed in [13, 47, 99–106], and
is thus able to provide us with required estimates also including matter degrees of freedom
[63, 67, 89, 107–116]. The scenario therefore serves as an example in the following. Let us
briefly summarize the corresponding line of argument developed in [18], generalizing it to the
presence of finite temperature during a cosmological evolution. For simplicity, we work in
the so-called Einstein-Hilbert truncation, assuming that higher-order curvature operators –
though relevant for a more accurate picture of the UV behavior[9, 108, 117–128] – do not take
a strong influence on the RG trajectory at the effective scales considered here. Incidentally,
this approximation could straightforwardly be improved, e.g., by considering trajectories as
in [129]. The effective scale-dependent metric obeys the quantum equation of motion which
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– on the Einstein-Hilbert level – corresponds to Einstein’s equations,

Rµν(〈g〉k)−
1
2R(〈g〉k)〈gµν〉k + Λ̄k〈gµν〉k = 0 (5.43)

Within the asymptotic-safety scenario, the dimensionless version of the scale-dependent cos-
mological parameter Λ̄k is governed by the Reuter fixed point, i.e., a non-Gaußian UV fixed
point λ∗, in the trans-Planckian region of the RG flow. Even though typical RG trajectories
appear to spiral around the fixed point towards the UV, i.e., quantitatively relevant values
potentially oscillate about λ∗ during the course of the RG evolution, we use this fixed-point
value as an estimate for the effective curvature of local spacetime patches averaged over a
length scale ∼ 1/kIR. Since the background S1⊗H3 chosen for our finite temperature analy-
sis is not a solution to the Einstein equation (5.43), i.e. it is not of Friedman-Lemaître-type,
we cannot unambiguously link our background-curvature parameter κ to the fixed-point
value λ∗ of the asymptotic-safety scenario. In the following, we use the trace of the Einstein
equation, which yields in the fixed point regime:

R

k2
IR

= 4λ∗. (5.44)

Alternatively, we could use solely the spatial components of the Einstein equation for which
H3 is a solution; in this case, a factor of 6 would replace the factor of 4 on the right-hand
side of Eq. (5.44), mildly modifying our quantitative results below. In the following, we use
the trace prescription leading to Eq. (5.44), as it implements isotropy on the level of the
equation of motion. By means of this relation, the asymptotic-safety scenario relates the
curvature of local spacetime patches in the trans-Planckian regime to the fixed-point value
of the cosmological parameter. In those regimes where the latter is positive our curvature
bounds are irrelevant, as they are automatically fulfilled. Hence, we concentrate on the case
where λ∗ < 0, for which we obtain an estimate for our curvature parameter:

κ2

k2 = 2|λ∗|
3 > 0, for λ∗ < 0. (5.45)

A crucial observation within the asymptotic-safety scenario is that the fixed-point properties
depend on the matter content [107, 109, 130], i.e., on the nature of the fluctuating quantum
degrees of freedom coupling to gravity. In the present setting, the dependence of λ∗ on this
matter content comes in through two parameter combinations:

dg = NS − 4NV + 2Nf , dλ = NS + 2NV − 4Nf , (5.46)

where NS counts the number of scalar degrees of freedom, NV denotes vector degrees of
freedom, and Nf is the flavor number as before. (Here, we quote results for the so-called
type IIa regulator [101] which accounts for the appropriate endomorphisms of the Laplacians
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for particles with spin [109]). The precise dependence of λ∗ on these matter parameters
is not yet fully determined. Current results show some dependence on the details of the
non-perturbative approximation, see e.g. [61, 101, 109, 131]. A quantitative comparison
concerning gravitational catalysis in the zero-temperature limit can be found in [18]. Roughly
speaking, λ∗ in simple approximations is proportional to dλ, such that a dominant number of
fermion flavors Nf moves the system towards the region where gravitational catalysis could
become relevant. For the following quantitative discussion, we use the fixed-point results
of [131] and their dependence on dg and dλ as an example. We focus on the regularization
scheme p→∞, and – unless stated otherwise – assume the scalar-curvature coupling at its
conformally coupled point ξkIR = 1/6 which is known to be a fixed-point of the universal
part of the perturbative RG [116, 132–134]; the dependence of our quantitative results on
ξkIR is also studied below. In order to complete the concrete scenario of our investigation,
we need to connect the scale kIR at which we consider the system with a value (or range
of values) for the temperature T . In a specific cosmological model, the temperature would
be connected with a relevant cosmological scale, say, a time parameter or an expansion
scale. Within asymptotically-safe cosmologies, such scales are assumed to be linked to some
suitable power of k by RG-improvement arguments [135–143]. In fact, several scale-setting
procedures have been discussed in the literature [136, 143–145]. For the present study, we
therefore use the rescaled temperature ζ = T/kIR as a parameter, the value (or range of
relevant values) will be fixed by a specific choice of the cosmological model. Simple RG-
improvement arguments suggest to consider ζ ∼ O(1). Since or zero-temperature bound on
R⊗H3 is quantitatively stronger than the corresponding one on H4 for ξkIR = 0 as used in
[18], we expect a correspondingly larger extent of the regime where gravitational catalysis
could be active. Given our result that the curvature bound (5.35) weakens for increasing
temperature, the region which is not affected by gravitational catalysis should increase with
ζ. In fact, this is visible in Fig. 5.3: here the orange region in the upper part of the plot
indicates the region where λ∗ is positive in the asymptotic-safety scenario, hence this region
is not affected by gravitational catalysis.
At finite rescaled temperature ζ = T/kIR, the solid lines separate the regions in this space

of asymptotically safe theories with matter which are free of gravitational catalysis (regions
above/left of lines) from those where our curvature bound is violated and gravitational
catalysis could trigger fermion mass generation (darker shaded regions below/right of lines).
In fact, the curvature bound for ζ = 0 is rather close to the R > 0 curve with only a
slim unaffected region extending along the negative dg axis (hardly visible on the scale of
this Fig. 5.3). This agrees with the comparatively strong curvature bound on R ⊗ H3 for
ξkIR = 1/6 and should be taken as an indication that gravitational catalysis might be more
relevant than previously anticipated for the H4 background. In other words, the details of
the spacetime structure of local spacetime patches do matter beyond the simple statement of
positive or negative average curvature and thus need to be addressed by the quantum-gravity
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Fig. 5.3.: Space of asymptotically-safe quantum gravity theories with matter parametrized by dg
and dλ according to Eq. (5.46). The orange area corresponds to regions with positive
curvature. Each of the four solid lines distinguish regions free from gravitational catalysis
(region above/left of each line) from regions that violate our curvature bound and could
feature chiral symmetry breaking through gravitational catalysis (darker shaded region
below/right of each line) – for the rescaled temperatures ζ = 0 (barely visible in the upper
left sector), 5, 10, and 20. The red dot marks the Standard Model (SM) matter content
with the red line indicating the Standard Model with additional fermionic generations.

scenario under scrutiny.
For increasing rescaled temperature ζ the region satisfying the curvature bound increases;

for ζ > O(10), the boundary line approaches a vertical line that ultimately matches with a
region where the computation of [131] does no longer find a viable UV fixed point.
It is interesting to observe that the standard model (SM) matter content with three gen-

erations and thus NS = 4, NV = 12 and Nf = 45/2 (excluding right-handed neutrino
components) (red dot in Fig. 5.3) lies in the region violating the bound for small ζ but
satisfying the bound for ζ > 8.3 for the current assumptions. This illustrates directly that a
given quantum gravity scenario does not automatically allow for an arbitrary matter content.
Depending on the details of the local spacetime curvature, gravitational catalysis could be
relevant and needs to be carefully scrutinized in this regime.
At the same time, our current study also reveals, how gravitational catalysis endangering

the existence of light fermions could be tamed in the course of the cosmological evolution:
even a critical spacetime curvature violating the zero-temperature bound may not give rise
to gravitational catalysis and fermion mass generation provided the temperature remains
sufficiently high compared to the averaging scale kIR. From an RG perspective, this can be
understood in terms of the thermal masses of the fermions, which effectively suppress the
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fermionic fluctuations. This inhibits the symmetry breaking channels to become RG relevant
as predicted by zero-temperature catalysis. A similar mechanism has been investigated in
scenarios of Higgs inflation in order not to be affected by further minima in the Higgs
potential [146].
This argument can also be inverted: in order to evading gravitational catalysis for a given

matter content in asymptotically safe gravity, the cosmological evolution in the early universe
has to go along with a sufficiently high (rescaled) temperature. In this way, gravitational
catalysis can put bounds on the cosmological model.
As we parametrize such models using the rescaled temperature, a given value of ζ –

which should be understood as a lowest value in a given model in the early universe – can
accommodate a certain matter content. In order to illustrate this dependence, we concentrate
on standard-model-like theories possibly with extra generations of fermions. In Fig. 5.3, these
theories move along the red line towards the region increasingly endangered by gravitational
catalysis with the cases of additional complete generations (“+1G”, “+2G”) marked by red
dots.
By virtue of the fixed-point structure, an arbitrarily large number of fermions is not

supported. This is visible in Fig. 5.4, where the allowed number of femions Nf compatible
with our bound is plotted as a function of ζ. The observed threshold set by the standard-
model fermion content is marked by a horizontal dashed line; it is surpassed for ζ > 8.3. Even
at asymptotic temperatures, a maximum fermion number of Nfmax = 35.5 is approached.
In this figure, we also illustrate the scheme dependence of our finite temperature results by
showing the extremal parameter choices p→∞ and the mixed approximate scheme p = 1, 2.
On the scale of this figure, hardly any variation is recognizable, which illustrates that the
scheme-dependencies are under control here.
By contrast, there is a stronger dependence on the scalar-curvature coupling ξkIR . Nev-

ertheless, while the zero-temperature bound is inversely proportional to and thus rather
strongly varying with ξkIR , the finite-temperature results are somewhat less sensitive. This
is visible in Fig. 5.5, where the number of fermions Nf that can be accommodated is shown
for ξkIR = 0.05 and ξkIR = 1. Both curves eventually surpass the standard-model threshold,
however for different values of the rescaled temperature.
In summary, the asymptotic-safety scenario for quantum gravity together with standard-

model matter content can evade the curvature bound imposed by gravitational catalysis
provided the temperature is sufficiently high in the course of the cosmological evolution. By
contrast, theories with a more dominant fermionic matter content either require much higher
temperatures to comply with the bounds or fail to support a UV-completing fixed point.
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Fig. 5.4.: Number of fermion species for a standard-model-like particle content (NS = 4, NV = 12)
compatible with the curvature bound from gravitational catalysis as a function of the
rescaled temperature ζ for different regularization schemes p and the scalar-curvature
coupling ξkIR = 1/6. The solid black line represents the upper bound Nf, Max = 35.5
which is approached in the limit ζ → ∞; the dashed line marks the number of fermions
in the standard model Nf, SM = 22.5.

Fig. 5.5.: Number of fermion species for a standard-model-like particle content (NS = 4, NV = 12)
compatible with the curvature bound from gravitational catalysis as a function of the
rescaled temperature ζ for different scalar-curvature coupling parameters ξkIR using the
regularization scheme p =∞. The horizontal lines are as in Fig. 5.4.
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6. Asymptotically Safe Hilbert-Palatini
Gravity

For the approach to quantizing gravity both the degrees of freedom to be quantized as well
as the correct quantization method are a matter of intense debate. A priori different choices
could lead to different potentially consistent theories of quantum gravity ultimately requiring
experimental data to single out the theory realized in nature.
It is well known that – already on the classical level – very different choices for the degrees

of freedom can lead to the same classical equation of motion, namely Einstein’s equation
[147–150]. This includes of course the maybe simplest choice being the metric, but also the
vierbein, possibly in combinations with various forms of connections. Of course, classical
equivalence does not entail quantum equivalence, therefore different choices might rather be
expected to lead to different quantum theories.
In turn, different choices of degrees of freedom or even the quantization procedure could

finally describe the same quantum theory if they lead to the same universality class as for
instance identified by a renormalization group analysis. In discrete approaches this can be
indicated by the presence of a second order phase transition or even quantified in terms of
critical exponents of a corresponding quantum critical point; in the context of gravity, cf.
[151–154].
Research in recent years has accumulated evidence that such a quantum critical point

exists for gravity when using the metric as the fundamental degree of freedom together with
a (standard) quantization procedure that is able to capture non-perturbative information.
The latter is necessary, since the quantum critical point corresponds to a fixed point of the
renormalization group at a finite coupling, realizing Weinberg’s asymptotic safety scenario for
Einstein gravity [6, 97]. This Reuter fixed point has been discovered by applying functional
renormalization group (RG) methods to gravity [8], and confirmed in many refined studies,
see [13, 46, 102, 103, 105, 106] for recent reviews.
Functional RG methods and a classification of universality classes [155] are not limited

to the metric as the quantum degree of freedom. In fact, pioneering studies have been
performed for Einstein-Cartan theory with the Hilbert-Palatini action being generalized to
the Holst action [156–158] or constrained to self-dual connections [159], or for “tetrad only”
formulations [160]. All these works find indications for the existence of UV fixed points
supporting asymptotic safety of such quantum gravity theories, with the fixed points likely
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representing universality classes different from that of quantum Einstein gravity. In fact
rather complex phase diagrams are partly found being paralleled by the complexity of the
computations involving such a large number of gauge degrees of freedom. On the other hand,
it is interesting to observe that also reduced versions such as unimodular gravity [114, 161–
164] or conformally reduced gravity [165–168] exhibit UV complete renormalization group
trajectories (see however [169] for a critical view on conformally reduced gravity.)
A major motivation to study formulations of gravity based on the metric and the con-

nection is the greater similarity to gauge theories of particle physics. In addition to this
structural resemblance, also a larger technical toolkit developed for gauge theories may be-
come available for concrete calculations; specifically lattice formulations for gravity become
accessible [170, 171].
In this thesis, we suggest to reduce the amount of complexity introduced by the large

number of gauge degrees of freedom of a metric-affine formulation by an on-shell reduction
scheme: at a given expansion order, we only quantize those degrees of freedom which remain
after using the equations of motion of the preceeding order. For instance at lowest order in
the curvature (Einstein-Hilbert level), different choices of degrees of freedom boil down to
the Einstein equation for the metric; hence the on-shell reduction suggests to quantize only
the metric at this level. At higher order in the curvature, connection degrees of freedom
typically develop their independent dynamics. In the present work, we will focus on the
second-order curvature level where a co-vector field remains as an independent degree of
freedom in the connection after on-shell reduction. The corresponding additional action to
be quantized is of Maxwell type.
In the asymptotic safety scenario, this on-shell reduction scheme helps to monitor the

quantitative modifications of the RG flow and of the universality class associated with RG
fixed points in a controlled and systematic way. We observe a UV-attractive fixed point of
Reuter type with more stabilized critical exponents at a smaller value of the Newton coupling
G.

6.1. Classical Hilbert-Palatini Gravity
In the Einstein formulation of gravity, the connection is linked to the metric in the form of
the Levi-Civita connection. By contrast, the Hilbert-Palatini formulation of gravity treats
the metric and the connection as independent degrees of freedom. Therefore, the connection
can a priori carry additional degrees of freedom that may or may not be fully linked to the
metric via the equations of motion. In the following, we start with a general connection and
study the on-shell constraints at increasing orders of curvature.

80



6.1. Classical Hilbert-Palatini Gravity

6.1.1. General Connection on Smooth Manifolds
Suppose we have a vector field V on a smooth manifold with metric g and connection Γ̃.
The covariant derivative ∇̃ of this vector field reads

∇̃µV
α = ∂µV

α + Γ̃αµνV ν . (6.1)

In the most general case, the connection Γ̃ can be decomposed into the expressions for the
Levi-Civita connection Γ (Christoffel symbols), contorsion K and displacement L (though
the latter does not have a collectively agreed upon name [19],

Γ̃αµν = Γαµν +Kα
µν + Lαµν . (6.2)

The Levi-Civita connection is constructed from the metric, Γ = Γ[g] and can be used to
define the standard covariant derivative ∇ of Einstein gravity

∇µV
α = ∂µV

α + ΓαµνV ν . (6.3)

The Levi-Civita part of the connection Γ accounts for curvature through the Riemann tensor
defined below. The contorsion tensor K is related to Cartan torsion T which corresponds to
the anti-symmetric part of the connection with respect to the lower indices,

Tαµν := Γ̃αµν − Γ̃ανµ = Kα
µν −Kνµ. (6.4)

The displacement tensor L induces non-metricity Q which is symmetric in the last two
indices,

Qµαβ := −∇̃µgαβ = Lµαβ + Lµβα (6.5)

One can also reverse these terms to express the contorsion K and displacement L in terms
of torsion T and non-metricity Q, respectively,

Kαβγ = 1
2 (Tαβγ + Tβαγ − Tαγβ) (6.6)

Lαβγ = 1
2 (Qαβγ +Qγβα −Qβαγ) . (6.7)

For more information on the linear relation between contorsion K and torsion T , and
analogously on the displacement L and the non-metricity Q, see Refs. [19, 172, 173].
The general connection (6.2) can be used to define a generalized Riemann tensor analo-

gously to the pure metric formulation,

[
∇̃µ, ∇̃ν

]
Vσ = R̃ρ

σµνVρ, (6.8)
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taking the familiar form

R̃ρ
σµν = ∂µΓ̃ρνσ − ∂νΓ̃ρµσ + Γ̃ρµλΓ̃λνσ − Γ̃ρνλΓ̃λµσ. (6.9)

In contrast to the standard case, where the Riemann tensor is composed out of the metric, we
can view R̃ as dependent on the metric, the contorsion and the displacement, R̃ = R̃[g,K, L].
Since the general connection Γ̃ is not symmetric in the lower two indices anymore, the
generalized Riemann tensor R̃···· is not anti-symmetric in the first two indices, as will be
important below.
Analogously, we can construct a generalized Ricci tensor by contracting the first and the

third index

R̃σν = R̃ρ
σµν g

µ
ρ , (6.10)

which - contrary to Einstein gravity - is not purely symmetric anymore. Contracting this
tensor further leads to a generalized Ricci scalar,

R̃ = R̃σνg
σν . (6.11)

As in Einstein gravity, we can use these generalized curvature forms to construct curvature
invariants and formulate an action S governing the dynamics of a theory, with the metric, the
contorsion/torsion and the displacement/non-metricity as fundamental degrees of freedom,
S = S[g,K, L]. In a quantized version, all these degrees of freedom have to be integrated
out, requiring appropriate gauge fixing also for the connection degrees of freedom, cf. for
instance [156].

6.1.2. Einstein-Hilbert-Palatini Action
Let us focus on a Palatini formulation of gravity starting with the lowest nontrivial order in
the curvature. This corresponds to the Einstein-Hilbert action (also referred to as Einstein-
Hilbert-Palatini action in order to emphasize the dependence on the general connection),

S[g, Γ̃] =
∫
d4x
√
g

1
16πG

(
Λ− 2R̃

)
. (6.12)

Classically, the corresponding fields (the metric g and the connection Γ̃) are constrained by
their equations of motions, namely

δS

δgµν

!= 0 ⇒ 1
2(R̃µν − R̃νµ)− 1

2R̃gµν = 0, (6.13)
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which is a partial differential equation for the metric, and additionally in the Palatini for-
mulation,

δS

δΓ̃λµν
!= 0 ⇒ ∇̃λgµν − T σνλgσµ −

1
3T

σ
σλgµν −

1
3T

σ
σνgµλ = 0. (6.14)

This new equation can be interpreted as an equation of motion for the contorsion K and
displacement L. As the derivative terms turn out to be total derivatives, Eq. (6.14) is a
purely algebraic equation for K and L and can be directly solved to find an expression for
the general connection Γ̃. For this, we define the left-hand side of Eq. (6.14) as a tensor
in which the covariant derivative is written in terms of a partial derivative and the general
connection [22],

Ξλµν := ∂λgµν − Γ̃σλµgσν − Γ̃σνλgµσ −
1
3T

σ
σλgµν −

1
3T

σ
σνgνλ = 0. (6.15)

This tensor Ξ and its permutations are constrained by Eq. (6.14),

Ξλµν = 0, Ξµνλ = 0, Ξνλµ = 0. (6.16)

We add the last two permutations of Ξ and subtract the first one to directly solve the
resulting equation for the general connection Γ̃,

Ξνλµ + Ξµνλ − Ξλµν = 0 ⇒ Γ̃λµν = Γλµν −
1
3T

σ
σµδ

λ
ν . (6.17)

The trace of the torsion tensor can be fully expressed in terms of a co-vector [174, 175],

Tαµα = −3Aµ, (6.18)

leading to the final solution for the general connection,

Γ̃αµν = Γαµν + Aµδ
α
ν , (6.19)

with the above introduced general co-vector field A as the independent degree of freedom
from the Levi-Cevita connection Γ [20]. For the discussion of a relation to the affine Weyl
connection, see [176, 177].
The generalized curvature tensors in the Palatini formulation can now be expressed in

terms of curvature quantities familiar from ordinary Einstein gravity which derive from the
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Levi-Cevita connection and additional terms that depend on the new vector field A,

R̃ρσµν = Rρσµν + gρσFµν (6.20)

R̃σν = Rσν + Fσν (6.21)

R̃ = R, (6.22)

with the tensor F acquiring the form of a Maxwellian field strength,

Fµν = ∂µAν − ∂νAµ. (6.23)

In Eq. (6.22) we observe that the generalized Ricci scalar reduces to the standard Ricci scalar
on shell. Therefore, the classical action (6.12) is on-shell equivalent to the Einstein-Hilbert
action of classical GR, see [20, 21, 178] for recent detailed discussions. Since each component
Aµ ∈ R, the Einstein-Hilbert-Palatini action has an R4 gauge invariance.
Interestingly, the A field appears in the form of a Maxwell-type field strength tensor F as

the anti-symmetric part of the generalized Ricci tensor. At higher orders in the curvature,
we can thus expect that more general gravity theories of higher order in the curvature will
exhibit Maxwellian gauge invariance. This implies that the R4 invariance for this part of the
general connection reduces to a U(1) invariance at higher orders.
Let us therefore consider terms to second order in the curvature. More specifically, we

concentrate on terms that can be constructed from a Ricci-like tensor. Since the generalized
Riemann tensor R̃···· is not anti-symmetric in the first two indices, we can construct a second
Ricci-like tensor of rank two L̃ by instead contracting the second and the fourth index

L̃σν = gρµR̃σρνµ = Rσν − Fσν . (6.24)

The tensors L̃ and R̃ obviously coincide in the limit A→ 0, reducing to the ordinary Ricci
tensor R. In the general case, we can use both curvature tensors for the construction of
invariants, yielding

R̃σνR̃
σν = L̃σνL̃

σν = RσνR
σν + FσνF

σν , (6.25)

R̃σνL̃
σν = RσνR

σν − FσνF σν . (6.26)

We observe that only two combinations are independent. A general contribution to the
action can thus be spanned by the linear combination of the two independent invariants. On
shell, we have the equivalence for general couplings σ1, σ2:

σ1R̃µνR̃
µν + σ2R̃µνL̃

µν

= σRRµνR
µν + σFFµνF

µν . (6.27)
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The corresponding couplings in front of the standard Ricci-squared and Maxwell terms satisfy

σR = σ1 + σ2 (6.28)

σF = σ1 − σ2. (6.29)

Equation (6.27) illustrates that a second order curvature theory built from the generalized
Ricci-like tensors is on-shell equivalent to a second-order metric theory plus an abelian gauge
field. Of course, a further independent second-order invariant can be formed by suitably
squaring the generalized Riemann tensor. As is obvious from Eq. (6.20), this boils down to
a square of the Riemann tensor and a Maxwell term as well,

R̃αβµνR̃αβµν =
(
Rαβµν + gαβF µν

)
(Rαβµν + gαβFµν)

= RαβµνRαβµν + 4F µνFµν . (6.30)

In the following, we ignore such terms to quadratic order in the Riemann tensor for sim-
plicity.

6.1.3. Geodesic Trajectory in Hilbert-Palatini Gravity
If we insert our solution for the most general connection for the Einstein-Hilbert-Palatini ac-
tion of Eq. (6.19) into the modified Einstein field equations of this formalism from Eq. (6.13),
we obtain the ordinary Einstein field equations derived from the Einstein-Hilbert action of
Sec. 3.4. Therefore, the field equations of the Hilbert-Palatini formulation do not vary from
those of ordinary Einstein gravity on the level of the Einstein-Hilbert truncation.
To observe deviations of Hilbert-Palatini gravity from Einstein gravity, we consider the

geodesic equation in this formalism,

uµ∇̃µu
α = 0 ⇒ duα

dτ
+ Γαµνuµuν = −Aµuµuα, (6.31)

with the vector field

uα = dxα(τ)
dτ . (6.32)

As we can see, Eq. (6.31) contains additional terms on its right-hand side compared to the
ordinary geodesic equation that originates from the general connection Γ̃ instead of the Levi-
Cevita connection Γ. Nonetheless, the geodesic trajectory that one obtains as a solution to
this equation is the same as in ordinary Einstein gravity [22]. To illustrate this, we define
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the quantity

G(τ) =
∫ τ

0
dτ ′Aµ

dxµ(τ ′)
dτ ′ , (6.33)

and introduce a new parameter,

λ =
∫ τ

0
dτ ′e−G(τ ′), (6.34)

which acts as a modified eigentime. We now express our geodesic trajectories in terms of
this new parameter,

xµ(τ) → xµ(λ), (6.35)

and define the velocity along this new parameterization of the trajectory accordingly,

vµ := dxµ(λ)
dλ . (6.36)

Now, we express all terms appearing in the geodesic equation in Hilbert-Palatini gravity in
terms of this new parameter λ, starting with the velocity,

uµ = dxµ(τ)
dτ

= dλ
dτ

dxµ(τ)
dλ

= e−G vµ. (6.37)

As we can see, the velocity uµ(τ) can be interpreted as a rescaled velocity vµ(λ) with the
scaling prefactor e−G. The derivative of the velocity uµ reads

duµ
dτ = d

dτ
(
e−G vµ

)
= −G′(τ) e−G vµ + e−G dvµ

dτ . (6.38)

Expressing the derivative of the scaling prefactor,

G′(τ) = Aν u
ν

= Aν e−Gvν , (6.39)
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and the derivative of the velocity vµ in terms of the new parameter λ,

dvµ
dτ = dλ

dτ
dvµ
dλ

= e−G dvµ
dλ , (6.40)

we obtain our final result for the derivative of uµ expressed in terms of λ,

duµ
dτ = −G′(τ) e−G vµ + e−G dvµ

dτ
= −Aν e−2G vνvµ + e−2G dvµ

dλ

= e−2G
(
−Aν vνvµ + dvµ

dλ

)
. (6.41)

The first part of Eq-(6.41) precisely cancels the right-hand side of Eq. (6.31) and the scaling
prefactor becomes a global prefactor of the equation that can be omitted. This leads to the
final result of the geodesic equation of Hilbert-Palatini gravity expressed in therms of the
parameter λ,

dvα

dλ
+ Γαµνvµvν = 0. (6.42)

As we can see, this matches the geodesic equation in ordinary Einstein gravity. This means
that the geodesic trajectory one can measure in nature for Hilbert-Palatini gravity does not
differ from the one in ordinary Einstein gravity. The velocity along the curve however is
changed by the scaling prefactor e−G. This means that the time it takes for a test particle to
move from point A to point B along a geodesic trajectory differs in Hilbert-Palatini gravity
from Einstein gravity and that difference is determined by the structure of the additional
contribution to the connection Aµ.

6.2. Quantum Hilbert-Palatini Gravity
The preceding observations on the classical level suggest to study the quantized version of
Hilbert-Palatini gravity in the on-shell reduction scheme: we use the degrees of freedom of the
on-shell form found for the general connection to first order in the curvature, i.e., Eq. (6.19),
to quantize the theory to second order in the curvature. In practice, this corresponds to
extending results for quantum Einstein gravity to this order by including a Maxwell-type
gauge field.
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6.2.1. Renormalization Flow of Hilbert-Palatini Gravity
We now investigate the renormalization flow of the gravitational effective action Γk[g, Γ̃] in
the theory space spanned by the Hilbert-Palatini action including the terms to quadratic
order in Ricci-like curvature tensors as discussed above,

Γgr,k[g, Γ̃] =
∫
d4x
√
g 1

16πḠk

[
Λ̄k − 2R̃ + σ̄1

kR̃
µνR̃µν

+σ̄2
kL̃

µνR̃µν

]
. (6.43)

Here, k denotes a renormalization scale at which the theory is considered, and all coupling
constants are considered to be k dependent. Now, instead of considering all degrees of
freedom of the general connection Γ̃, we perform the on-shell reduction of Eq. (6.19) which
allows us to understand the action as a functional of the metric and the abelian gauge field,

Γgr,k[g, A] =
∫
d4x
√
g 1

16πḠk

[
Λ̄k − 2R + σ̄Rk R

µνRµν

+σ̄Fk F µνFµν
]
. (6.44)

We are interested in the scale dependence of the running Newton coupling Ḡk, the cosmolog-
ical parameter Λ̄k, the higher curvature coupling σ̄Rk , and the wave function renormaliztion
ZA
k of the abelian field strength defined by

ZA
k = σ̄Fk

4πḠk

. (6.45)

For a treatment of the gauge degrees of freedom, we use the background field formalism and
perform a linear split of the metric g and the gauge field A into fluctuations around their
respective background fields which are denoted by a bar

gµν = ḡµν + κ̄hµν , (6.46)

Aµ = Āµ + aµ, (6.47)

with the abbreviation

κ̄2 = 32πḠ. (6.48)

The rescaling of the metric fluctuation h by the quantity κ̄ ensures a standard canonical
mass dimension of the field. For the Faddeev-Popov quantization, we include gauge-fixing
terms

Γgf,k = 1
2

∫
d4x
√
ḡ

(
1
αgr
FµFµ + 1

αA
GG
)

(6.49)
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with gauge parameters αgr and αA. As gauge-fixing conditions for the metric sector F and
the abelian gauge sector G, we use

Fµ =
√

2κ̄
(
ḡµκ∇̄λ − 1 + β

4 ḡκλ∇̄µ

)
hκλ (6.50)

G =
√
ZA
k

(
∇̄µa

µ
)
, (6.51)

where β denotes another gauge parameter of the metric sector. Also including the corre-
sponding ghost terms Γgh,k for both sectors, the total effective (average) action reads

Γk[Φ̄,Φ] = Γgr,k + Γgf,k + Γgh,k. (6.52)

Here, Φ̄ and Φ denote collective field variables, representing the background and fluctuations
fields, respectively,

(Φ) =
(
h, a, c̄, c, b̄, b

)
(6.53)(

Φ̄
)

=
(
ḡ, Ā

)
(6.54)

with c̄ and c being the (anti-)ghost fields for the gravitational sector and b̄ and b being the
(anti-)ghost fields for the abelian gauge sector.
We quantize the system, using the Wetterich equation [7, 33, 179, 180],

∂tΓk[Φ̄,Φ] = 1
2STr

[(
Γ(2)
k [Φ̄,Φ] +Rk

)−1
∂tRk

]
, (6.55)

to compute the renormalization flows of the renormalized, dimensionless couplings denoted
without a bar

Gk = k2Ḡk, Λk = 1
k2 Λ̄k, σRk = k2σ̄Rk , (6.56)

For simplicity, we focus on the Landau gauge, choosing

αA → 0, (6.57)

αgr → 0, (6.58)

β = 0, (6.59)

see [49, 181–183] for studies of gauge or parametrization dependencies in the metric context.
For the computation of the traces and the identification of the corresponding operators on
both sides, we use a spherical background ḡ, and a covariantly constant background field
Ā. For the details of the regularization around the scale k controlled by the regulator
Rk in Eq. (6.55), we choose a Type I regularization scheme, following the computation of
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[9]. Computations that include further invariants and higher order curvature terms are, in
principle, possible, e.g., along the lines of [9–11, 117, 120, 123, 128, 184–186]
Using the flows for the dimensionless, renormalized couplings, the wave function renor-

malization ZA
k occurs only through the corresponding anomalous dimension

ηA = −k∂kZ
A
k

ZA
k

, (6.60)

which is determined by an algebraic equation. The flows of the couplings as driven by the
metric fluctuations has been computed in [9]. These are amended by contributions from
the abelian vector field which we evaluate analogously to [15], but to second order in the
curvature. The anomalous dimension of the abelian gauge field subject to metric fluctuations
has been computed in [114]; see the Appendix.
We collect all running couplings into ~u which is a vector in the truncated theory space

~uk =

Gk

Λk

σk

 , (6.61)

allowing for a compact notation for the flow equations

~β (~u) =

βGβΛ

βσ

 =

k∂kGk

k∂kΛk

k∂kσk

 . (6.62)

The explicit flows are summarized in the Appendix. We are specifically interested in fixed
points ~u? of the RG flow which satisfy

~β (~u?)
!= 0. (6.63)

In order to characterize the fixed points, we linearize the flow equations around the fixed point
and determine the critical exponents related to the eigenvalues of the Jacobian (stability
matrix) of the expansion,

{θ1, θ2, θ3} = −eig
(
~∇~u ⊗ ~β

)∣∣∣
~u=~u?

. (6.64)

Positive critical exponents characterize RG relevant directions which are attracted by the
fixed point towards the UV. These directions determine the long-range properties of the
theory towards the IR and correspond to physical parameters.
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Palatini gravity (this work) Metric gravity [9]
G? 1.132 1.467
Λ? 0.214 0.171
σ? 0.326 0.339
θ1,2 2.057 ± 3.195 ·i 1.627 ± 2.570 ·i
θ3 12.780 21.232
ηA,∗ −0.0924 –

Tab. 6.1.: Fixed-point solutions and critical exponents in second order truncation for Hilbert-
Palatini gravity (this work) and metric gravity for the present truncation [9].

6.2.2. Results
The fixed point equations (6.63) turn out to be rational equations in the couplings, see the
Appendix, and can be solved analytically. In addition to the Gaußian fixed point, we find five
non-Gaussian fixed points. Discarding those with a negative Newton coupling for physical
reasons, those with Λ∗ > 1

2 which is beyond a singularity in the graviton propagator, and
those with very large values for G∗ which we consider as artifacts of the approximations
involved, we end up with one viable fixed point the quantitative results of which are listed
in Tab. 6.1.
For comparison, we also list the results for the Reuter fixed point in pure metric gravity

obtained in the analogous approximation as obtained in [9]. In general, we observe that
the results are rather similar to one another which we interpret as evidence that a direct
analogue of the Reuter fixed point in metric gravity also exists in on-shell reduced Hilbert-
Palatini gravity with additional dynamical degrees of freedom in the general connection. For
comparison, we plot the fixed point positions projected onto the G,Λ plane in Fig. 6.1. The
fixed point labeled as “EH” marks the Reuter fixed point in metric gravity in the lowest-
order Einstein-Hilbert truncation. Upon inclusion of terms quadratic in the Ricci tensor,
this fixed point moves a bit to larger values of the coupling parameters (labeled by “Ric2” in
the figure and listed in the second column of Tab. 6.1). The position of the corresponding
fixed point in Hilbert-Palatini found in this work is labeled by “HP” in Fig. 6.1.
Inspecting the results of Tab. 6.1 more closely, we observe that specifically the fixed-point

value of the Newton coupling is somewhat smaller. This can serve as an indication that a
quantum gravity theory with independent connection variables may more easily be compat-
ible with weak-gravity bounds [62, 89, 113, 116, 187–193] which arise from the demand for
gravity-matter systems to be compatible with particle-physics observations.
While the leading critical exponents become somewhat larger in Hilbert-Palatini gravity,

the most decisive change occurs for the third critical exponent θ3 which becomes much
smaller by almost a factor of 2. The story of this critical exponent is somewhat involved:
already in the first analysis of the asymptotic safety scenario at the quadratic curvature order
[117], this exponents was found to be rather large which seemed to contradict the expected
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Fig. 6.1.: Fixed-point positions projected onto the G,Λ plane. The orange circle and red diamond
represent metric gravity in the Einstein-Hilbert truncation (EH) and its extension to
quadratic order in the Ricci tensor (Ric2) [9], while the blue square represents Hilbert-
Palatini gravity (HP) to the second order in the Ricci- tensor found in this work using
on-shell reduction.

hierarchy of decreasing critical exponents for higher order operators. In fact, subsequent
higher-order truncations revealed that this large value θ & 20 is a truncation artifact [108,
119, 194], stabilizing at O(1) if computed at higher order. In the light of these findings, we
interpret the reduction of θ3 by a factor of 2 as a hint that Hilbert-Palatini gravity may not
be so severely affected by the truncation artifact.
It is interesting to observe that the anomalous dimension of the U(1) vector field at the

fixed point ηA,∗ is negative. This is in agreement with studies of the influence of gravitational
fluctuations on (non-)abelian gauge fields, where (depending on the matter sector) ηA,∗ < 0
can go along with either (i) an asymptotically free gauge sector even for abelian gauge
theories or (ii) an asymptotically safe gauge sector with a higher degree of predictivity [16,
195, 196]. Both scenarios indicate that the fluctuations of the additional degrees of freedom
in the connection do not induce new UV problems such as Landau pole singularities despite
their similarity to abelian gauge theories in the on-shell reduction scheme.
For the physical validity of the fixed point, a crucial question is as to whether an RG

trajectory exists that connects the high-energy fixed-point regime with the regime of classical
gravity where the dimensionful renormlized Newton coupling and cosmological constant are
indeed constant over a wide range of scales (higher order curvature couplings are not tightly
constraint by observations). For this, an RG trajectory must exist that emanates from
the UV fixed point and passes by sufficiently near the Gaussian fixed point for G and Λ
such that they satisfy canonical scaling. The fact that such trajectories exist is illustrated
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Fig. 6.2.: Flow diagram in the theory space spanned by the couplings Λ and G with the third
coupling set to its UV fixed-point value σ?. The red dot represents the non-Gaussian UV
fixed-point and the blue dot the Gaussian IR fixed-point. The arrows flow towards the
IR.

by the stream plot in the G,Λ plane (evaluated at σ = σ∗) in Fig. 6.2 where the arrows
indicate the RG flow towards the IR. We conclude that our findings support the existence of
a UV-complete RG trajectory in quantum Hilbert-Palatini gravity that features a long-range
regime where classical GR holds as an effective low-energy theory.
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The results of the first part of this thesis generalize the concept of curvature bounds from
gravitational catalysis [18] to finite temperatures as well as to the case of a spatially curved
space. In addition to the role played by the thermal effects, we observe that the details of
the averaged curvature of local patches of spacetime matters significantly: First, gravita-
tional catalysis is more strongly triggered for the spacetime R⊗H3 than for the maximally
symmetric case H4. Second, also the dependence on the scalar-curvature coupling ∼ ξφ2R

is much more prominent for the former case than for the latter. Both observations have
a strong influence on the curvature bound that indicates how the details of the curvature
background matter for the phenomenon of gravitational catalysis.
It is important to emphasize that the curvature bound derived in this thesis is an estimate

for the extent of the region that is not affected by gravitational catalysis according to our
assumptions. If a system (e.g., subject to a specific quantum gravity scenario) violates the
curvature bound, this does not necessarily imply that fermion mass generation kicks in as a
manifestation of gravitational catalysis. Further dynamical mechanisms could still avoid the
occurrence of gravitational catalysis. For instance, fluctuations of the scalar order parameter
tend to weaken the symmetry-breaking channel. On the other hand, a finite initial fermionic
self-interaction could enhance the tendency towards fermionic gap formation. Also, the
curvature bound does not account for the possibility of further local minima which could
become the global one at a first-order transition; our method is only sensitive to second-order
transitions. Of course, first-order transitions could straightforwardly be detected by a global
study of the effective potential. If they occur, they would strengthen our bounds.
As a first example, we have applied the curvature bound to the asymptotic-safety scenario

for quantum gravity. A rather robust prediction of this scenario that relies on the existence
of an interacting UV-fixed point is that the cosmological constant can have a negative sign in
the short-distance regime (with a dynamical transition to positive values for the long-range
physics) depending on the matter content. In particular, a dominance of fermionic matter
degrees of freedom pushes the fixed point of the cosmological term to negative values. RG-
improvement arguments then suggest that the properties of the quantum spacetime in the
short-distance regime can effectively be described by a scale-dependent version of Einstein’s
equations (or higher-derivative versions thereof). For our purposes this suggests that local
patches of spacetime appear as effectively negatively curved. If so, this effective negative
curvature also enhances the symmetry-breaking channels of fermionic fluctuations by (the
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scale-dependent version of) gravitational catalysis. If symmetry breaking was triggered in
the high-energy regime of gravity, fermions would acquire a mass proportional to the scale
of symmetry breaking. Gravitational catalysis would therefore inhibit the existence of light
fermions in Nature.
This line of argument thus connects the observational fact of light fermions with proper-

ties of quantum spacetime in the high-energy regime. By extending the RG-improvement
argument to a cosmological setting, our reasoning connects the curvature bound of gravi-
tational catalysis to a combination of matter degrees of freedom such as the fermion flavor
number together with the thermal evolution of the universe, parameterized in this work by
the rescaled temperature ζ.
Whereas our results for the general curvature bound have a clear quantitative mean-

ing within the given assumptions, the application to the asymptotic safety scenario should
be considered as more qualitative because of the approximations involved and the genuine
qualitative nature of RG improvement. Therefore, we interpret these results as an indication
that the asymptotic-safety scenario for quantum gravity can indeed be compatible with the
existence of light fermions; there is definitely room for evading the bounds imposed by grav-
itational catalysis for particle models with a matter content similar to that of the standard
model. While our line of argument based on gravitational catalysis can put an upper bound
on the number of fermionic degrees of freedom, it is interesting to see that a combination of
gravity and abelian gauge interactions of fermions can also produce a lower bound [89].
We believe that it will be highly worthwhile to check for the role of gravity, specifically

gravitational catalysis, and the consistency with light fermions in other scenarios of quantum
gravity as well. While our bounds can be applied in other settings, the inclusion of matter
degrees of freedom is a common effort in many research directions of quantum gravity [65,
197–201].
In the second part of this thesis, we have analyzed the renormalization flow of Hilbert-
Palatini gravity using the functional renormalization group. Our study provides evidence
for the existence of a non-Gaussian UV fixed point similar to the Reuter-fixed point of metric
gravity. This result is based on an analysis of an expansion of the action in terms of curvature
invariants including squares of generalized Ricci-like tensors and uses an on-shell reduction
scheme that allows to gradually include the additional degrees of freedom introduced by a
general connection in comparison to a pure metric formulation.
The discovered fixed point supports the existence of UV-complete RG trajectories in

Hilbert-Palatini gravity within an asymptotic safety scenario. Quantitatively, the fixed point
occurs at coupling values similar to those of metric gravity. A similar comment applies to the
critical exponents – although we even find indications for a larger degree of stability under
the increase of the expansion order. Importantly, there exist RG trajectories emanating from
this fixed point which can be connected to a low-energy regime with the long-range limit
corresponding to Einstein’s classical GR.
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Within our on-shell reduction scheme, the additional degrees of freedom in the general
connection reduce to a vector field that is related to the trace of the Cartan torsion. In
our present truncation, the vector field features a local U(1) invariance and thus contributes
similarly to an abelian gauge field. This observation holds true for any truncation built from
local curvature invariants of the generalized Riemann tensor.
To higher-orders in the on-shell reduction scheme and the curvature expansion, we expect

that further additional degrees of freedom acquire their own dynamics and start to contribute
to the flow. At the present order, they drop out, because their equation of motion is algebraic
and their action corresponds to that of simple quadratic mass terms. Therefore, we expect
that their dynamics at higher orders corresponds to that of massive modes. This does not
only suggest that they decouple towards the IR, but are also likely to contribute to the
UV only at the prize of corresponding mass suppression factors. This observation justifies
to consider the on-shell reduction scheme as a quantitatively controlled expansion scheme,
provided the underlying curvature expansion scheme has satisfactory convergence properties
for observables.
While the differences to metric gravity as found in this work are comparatively small, the

question remains as to whether the additional connection degrees of freedom exert a stronger
influence on other sectors. In particular, since the additional field after on-shell reduction is
a vector field resembling an abelian gauge field, a possible impact on the matter sector in the
fixed-point regime or beyond is conceivable. Towards low-energies, this degree of freedom
has been discussed as a candidate for dark matter (dark photon) [202]. A particularly
relevant question for the high-energy regime where gravity is non-perturbative refers to
possible consequences of this degree of freedom for the realization of symmetries such as
chiral symmetry of fermionic matter particles [18, 23, 59, 61, 63, 64]. The latter is closely
related to the existence of light fermions in nature which are an observational fact that needs
to be supported also by the quantum gravitational sector.
Finally, we believe that our on-shell reduction scheme can also be useful in further formu-

lations of quantum gravity with different and/or additional degrees of freedom. An example
would be given by “tetrad-only” formulations [160] or generalizations of Hilbert-Palatini
gravity using the spin-base invariant formalism [42]. In the latter case, it has been shown
that on-shell reduction of a generalized spin connection would entail two vector fields [203],
presumably with analogous consequences for the construction of an asymptotic safety sce-
nario as found in the present work.
Beyond quantum gravity, on-shell reduction is a rather obvious scheme in functional RG

approaches to supersymmetric theories [204]. In this case, on-shell reduction eliminates the
auxiliary field(s) that are introduced for a superfield formulation in superspace. While the
functional RG can be employed both in the on-shell as well as the off-shell case, the off-shell
formulation is advantageous for the description of phase transitions in connection with order
parameters related to the off-shell sector [205–208]. As a word of caution, it may therefore
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be advisable not to use the on-shell reduction scheme for systems in which the off-shell sector
is relevant for critical phenomena.
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Appendix A.

Flow Equations for Hilbert-Palatini
Gravity

The anomalous dimension for an abelian gauge field ηA has been computed in Appendix D
of Ref. [114] and expressed in our notation reads

ηA = −G(10− 40Λ + 7σ)
18π(1− 2Λ + σ)2 . (A.1)

The flow equations for the three remaining couplings Λ, G and σ have been computed
along the lines of [9]. The right-hand side of the Wetterich equation – labeled as I in [9]
– is extended by the contributions from the abelian gauge field to quadratic order in the
curvature according to [46]. The final results for the flow equations are

βΛ = −AΛ

BΛ
, βG = AG

BG

, βσ = 2Aσ
Bσ

, (A.2)

with

AΛ = −432π2G2(−2Λ + σ + 1)2 · A(2)
Λ

−67184640π4Λ(4Λ + 6σ − 3)3(−2Λ + σ + 1)5

+G4 · A(4)
Λ + 31104π3G(−2Λ + σ + 1)2 · A(1)

Λ + 3πG3 · A(3)
Λ (A.3)
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A
(1)
Λ = −27Λ

(
16200σ6 + 90996σ5 − 92998σ4 − 145681σ3

+120465σ2 − 8599σ − 5701
)

+622080Λ7 + 128Λ6(9000σ − 15743)− 32Λ5 (71460σ2 + 48998σ − 87891
)

+18Λ2 (79200σ5 − 188908σ4 − 502556σ3 + 553149σ2 − 80446σ − 25643
)

+12Λ3 (101880σ4 + 825560σ3 − 1166136σ2 + 173151σ + 96557
)

−8Λ4 (483840σ3 − 1212552σ2 + 53236σ + 279421
)

+7290
(
2σ2 + σ − 1

)2 (20σ2 + σ − 4
)

(A.4)

A
(2)
Λ = 5633536Λ6 + 64Λ5(463464σ − 478897)

+32Λ4 (865786σ2 − 3584586σ + 1918663
)

+27Λ
(
79720σ5 + 712632σ4 − 2374666σ3

−1147514σ2 + 1342848σ − 200281
)

+36Λ2 (160900σ4 + 1825044σ3 + 1414833σ2 − 3232750σ + 848251
)

−243
(
41500σ5 − 43496σ4 + 14055σ3 − 31589σ2 + 5968σ + 1608

)
−12Λ3 (2566696σ3 + 5505748σ2 − 13621200σ + 5113385

)
(A.5)

A
(3)
Λ = −54Λ

(
242816σ6 − 43621136σ5 − 105741110σ4

−33856598σ3 + 65125975σ2 − 58567640σ + 19071545
)

−81
(
3694416σ6 + 14436454σ5 + 16191029σ4 − 889985σ3

−4324109σ2 + 5270879σ − 1603988
)

+36Λ2 (3194560σ5 − 152974904σ4 − 131239628σ3 + 194163574σ2

−197711957σ + 83407825)

106823680Λ7 + 512Λ6(387008σ − 938935)

−64Λ5 (661408σ2 + 23286680σ − 1885541
)

−24Λ3 (12370624σ4 − 146478720σ3 + 172896708σ2

−225254630σ + 165900405)

+16Λ4 (24289856σ3 + 27106560σ2 + 18900738σ + 133505315
)

(A.6)

II



A
(4)
Λ = 67230720Λ5 + 128Λ4(578163σ − 1781875)

−16Λ3 (2661552σ2 + 8298109σ − 18340280
)

+27
(
1232336σ5 + 5064046σ4 + 5332307σ3

+620285σ2 − 500522σ − 193960
)

−18Λ
(
15761360σ4 + 36304598σ3 + 6154946σ2 − 3194187σ − 2801570

)
+12Λ2 (44960536σ3 + 7553626σ2 + 425125σ − 14839910

)
(A.7)

BΛ = 216π2(−2Λ + σ + 1)2 ·
[
155520π2 (8Λ2 + 8Λσ − 10Λ− 6σ2 − 3σ + 3

)3

+G2 ·B(2)
Λ + 144πG ·B(1)

Λ

]
(A.8)

B
(1)
Λ = 101248Λ5 + 64Λ4(4693σ − 7716) + 8Λ3 (27216σ2 − 180968σ + 119287)

+27 (3012σ5 + 9284σ4 + 11483σ3 − 26775σ2 + 15752σ − 2887)

−18Λ (14444σ4 + 17728σ3 − 99747σ2 + 94133σ − 23561)

+12Λ2 (12640σ3 − 106428σ2 + 201663σ − 75629) (A.9)

B
(2)
Λ = 334208Λ4 + 32Λ3(8839σ − 14089) + 48Λ2 (487σ2 + 49392σ − 11720)

−27 (51700σ4 + 197344σ3 + 129897σ2 − 108638σ + 13984)

+18Λ (230868σ3 + 155580σ2 − 325499σ + 57664) (A.10)

AG = 2G(4Λ + 6σ − 3)3
[
−3 · A(1)

G · A
(2)
G +G2 · A(3)

G · A
(4)
G

]
(A.11)

A
(1)
G = 30πG(4Λ + 6σ − 3)2 (−6Λ(5σ + 3) + 9σ2 + 44σ + 25

)
−54πG

(
4Λ(4σ − 3) + 72σ2 − 46σ + 9

)
(−2Λ + σ + 1)2

+243πG(4Λ + 6σ − 3)2(−2Λ + σ + 1)2

−432π2(4Λ + 6σ − 3)2(−2Λ + σ + 1)2

G2(4Λ + 6σ − 3)2(40Λ− 7σ − 10) (A.12)

III
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A
(2)
G = −6G

(
496Λ2 + 24Λ(22σ − 31)− 9

(
276σ2 + 44σ − 31

))
(−2Λ + σ + 1)3

+5G(4Λ + 6σ − 3)3 (116Λ2 − 4Λ(19σ + 129) + 24σ2 + 118σ + 469
)

+1080π(−4Λ− 6σ + 3)3(−2Λ + σ + 1)3 (A.13)

A
(3)
G = 24(4Λ + 15σ − 3)(−2Λ + σ + 1)2 + 5(4Λ + 6σ − 3)2(20Λ− 7σ − 22) (A.14)

A
(4)
G = 54π

(
16Λ2(62σ + 29) + 24Λ

(
4σ2 + 86σ − 29

)
+9
(
−1192σ3 + 788σ2 − 234σ + 29

))
(−2Λ + σ + 1)3

+90π(−4Λ− 6σ + 3)3 (4Λ2(29σ − 1)− 2Λ
(
43σ2 + 351σ + 178

)
+44σ3 + 117σ2 + 822σ + 499

)
−G(−4Λ− 6σ + 3)3(−40Λ + 7σ + 10)(−2Λ + σ + 1)

+7038π(−4Λ− 6σ + 3)3(−2Λ + σ + 1)3 (A.15)

BG = 9π(−4Λ− 6σ + 3)5(−2Λ + σ + 1)2 [−155520π2 (8Λ2 + 8Λσ

−10Λ− 6σ2 − 3σ + 3
)3 +G2 ·B(2)

G + 144πG ·B(1)
G

]
(A.16)

B
(1)
G = 101248Λ5 + 64Λ4(4693σ − 7716) + 8Λ3 (27216σ2 − 180968σ + 119287

)
+27

(
3012σ5 + 9284σ4 + 11483σ3 − 26775σ2 + 15752σ − 2887

)
−18Λ

(
14444σ4 + 17728σ3 − 99747σ2 + 94133σ − 23561

)
+12Λ2 (12640σ3 − 106428σ2 + 201663σ − 75629

)
(A.17)

B
(2)
G = −334208Λ4 − 32Λ3(8839σ − 14089)− 48Λ2 (487σ2 + 49392σ − 11720

)
+27

(
51700σ4 + 197344σ3 + 129897σ2 − 108638σ + 13984

)
−18Λ

(
230868σ3 + 155580σ2 − 325499σ + 57664

)
(A.18)

Aσ = −1399680π3σ(−2Λ + σ + 1)5(4Λ + 6σ − 3)3 + 9πG2(−2Λ + σ + 1)2 · A(2)
σ

−648π2G(−2Λ + σ + 1)2 · A(1)
σ +G3 · A(3)

σ (A.19)

IV



A(1)
σ = −27

(
16200σ7 + 32644σ6 − 41054σ5 − 133133σ4

+105227σ3 + 29329σ2 − 41471σ + 8812
)

+18Λ
(
79200σ6 − 182460σ5 − 431284σ4 + 633841σ3

+11688σ2 − 255583σ + 74494
)

+12Λ2 (101880σ5 + 826616σ4 − 1214152σ3

+27963σ2 + 743483σ − 278368
)

−8Λ3 (483840σ4 − 1152328σ3 − 432924σ2 + 1510489σ − 629598
)

512Λ6(1215σ − 1564) + 128Λ5 (9000σ2 − 37931σ + 23614
)

−32Λ4 (71460σ3 + 126606σ2 − 340887σ + 156880
)

(A.20)

A(2)
σ = 27

(
79720σ6 + 174652σ5 − 1081722σ4 + 689497σ3

+249706σ2 − 327888σ + 72432
)

+18Λ
(
321800σ5 + 1596732σ4 − 2697526σ3

+781767σ2 + 915448σ − 386209
)

−24Λ2 (1283348σ4 + 242426σ3 + 987572σ2 − 319735σ − 233846
)

128Λ5(44012σ + 27247) + 128Λ4 (231732σ2 + 1394σ − 75545
)

+8Λ3 (3463144σ3 − 3908896σ2 − 2731276σ + 691313
)

(A.21)

A(3)
σ = 27

(
30352σ7 + 131896σ6 + 424260σ5 + 105248σ4 − 509251σ3

+49896σ2 + 147724σ − 42080
)

−18Λ
(
399320σ6 + 1353488σ5 + 1610334σ4 − 4440304σ3

+753902σ2 + 1625577σ − 561570
)

+24Λ2 (773164σ5 + 1232404σ4 − 6465153σ3

+3676846σ2 + 2410429σ − 1353600
)

−8Λ3 (3036232σ4 − 10230572σ3 + 19821964σ2 + 2913489σ − 6181090
)

−5120Λ6(1304σ + 189)− 128Λ5 (96752σ2 − 253283σ − 94070
)

+64Λ4 (41338σ3 + 1428338σ2 − 555863σ − 578655
)

(A.22)

V



Appendix A. Flow Equations for Hilbert-Palatini Gravity

Bσ = 9π(−2Λ + σ + 1)2
[
155520π2 (8Λ2 + 8Λσ − 10Λ− 6σ2 − 3σ + 3

)3

+G2 ·B(2)
σ + 144πG ·B(1)

σ

]
(A.23)

B(1)
σ = 101248Λ5 + 64Λ4(4693σ − 7716) + 8Λ3 (27216σ2 − 180968σ + 119287

)
+27

(
3012σ5 + 9284σ4 + 11483σ3 − 26775σ2 + 15752σ − 2887

)
−18Λ

(
14444σ4 + 17728σ3 − 99747σ2 + 94133σ − 23561

)
+12Λ2 (12640σ3 − 106428σ2 + 201663σ − 75629

)
(A.24)

B(2)
σ = 334208Λ4 + 32Λ3(8839σ − 14089) + 48Λ2 (487σ2 + 49392σ − 11720

)
−27

(
51700σ4 + 197344σ3 + 129897σ2 − 108638σ + 13984

)
+18Λ

(
230868σ3 + 155580σ2 − 325499σ + 57664

)
(A.25)
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