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A B S T R A C T   

Laser beam butt welding of thin sheets of high-alloy steel can be really challenging due to the formation of joint 
gaps, affecting weld seam quality. Industrial approaches rely on massive clamping systems to limit joint gap 
formation. However, those systems have to be adapted for each individually component geometry, making them 
very cost-intensive and leading to a limited flexibility. In contrast, jigless welding can be a high flexible alter-
native to substitute conventionally used clamping systems. Based on the collaboration of different actuators, 
motions systems or robots, the approach allows an almost free workpiece positioning. As a result, jigless welding 
gives the possibility for influencing the formation of the joint gap by realizing an active position control. 
However, the realization of an active position control requires an early and reliable error prediction to counteract 
the formation of joint gaps during laser beam welding. This paper proposes different approaches to predict the 
formation of joint gaps and gap induced weld discontinuities in terms of lack of fusion based on optical and 
tactile sensor data. Our approach achieves 97.4 % accuracy for video-based weld discontinuity detection and a 
mean absolute error of 0.02 mm to predict the formation of joint gaps based on tactile length measurements by 
using inductive probes.   

Introduction 

Laser beam welding is the technique of choice for a wide range of 
industrial tasks. As economic efficiency, resource efficiency and sus-
tainability become more and more important, the requirements on 
reliability, reproducibility and weld seam quality are increasing. In this 
context, laser beam butt welding of thin sheets of high-alloy steel can be 
really challenging due to the formation of joint gaps, affecting process 
stability and weld seam quality (Nagel et al., 2017). By exceeding the 
maximum gap bridgeability of the laser beam, the influence of joint gaps 
can cause lack of fusion (Hsu et al., 1998). This can affect the 
mechanical-technological properties of the weld seam and the leak-
proofness, ending up in rejection (Chen et al., 2014). The formation of 
joint gaps can be attributed to two local and time-dependent interacting 
effects. The first effect is dominated by the low thermal conductivity and 

high thermal expansion of high-alloy steels (Radaj, 1988). The absorbed 
laser radiation results in an increase of temperature, causing strain due 
to the thermal expansion of steels (Seang et al., 2013). As a result of the 
temperature-induced forces, the sheets can displace, causing a joint gap 
in the center of the seam (Simon et al., 2013). This effect interacts with 
the formation of thermal induced contraction during the cooling down 
and solidification of the weld seam, which also can contribute to joint 
gap formation (Dal and Fabbro, 2016; Seang et al., 2013). To limit this 
phenomenon, it is common practice to use clamping devices. However, 
by hindering the formation of joint gaps, the internal stress increases, 
which can end up in distortion of the specimen (Schenk, 2011). 
Furthermore, it is necessary to adapt clamping systems for each 
component geometry individually, making them very cost-intensive and 
limiting flexibility. To overcome these disadvantages, jigless welding 
offers a high flexible workpiece positioning due to the collaboration of 
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different actuators, motion systems or robots. First approaches in arc 
welding demonstrate jigless and fixture-less welding by the collabora-
tion of arc welding robots and material handling robots which take the 
place of jigs and fixtures (Bejlegaard et al., 2018; Högel, 2017; Kampker 
et al., 2017). As a result, it was possible to achieve a significant increase 
in productivity while reducing the times for changeover and costs for 
design, manufacturing and installation of jigs and fixtures (Bejlegaard 
et al., 2018). However, due to the differences in process control, welding 
speed and positioning accuracy, it is not possible to transfer these ap-
proaches to laser beam welding. Moreover, existing approaches are not 
designed for an active position control of the joint gap, despite a gap 
control offers significant benefits regarding process stability, defect 
formation and the formation of internal stress and distortion. The real-
ization of an active position control requires a reliable detection of the 
joint gap during the welding process. In terms of quality assurance, it is 
also necessary to detect gap-induced weld seam defects (e.g. lack of 
fusion). In this context, the use of thermographic cameras (Nilsen, 2017; 
Srajbr et al., 2011) and inductive probes (Nagel et al., 2017; Simon et al., 
2013) has proven to be suitable. To fulfill the requirements of a real-time 
position control, a further data processing requires fast and reliable error 
detection and prediction algorithms. Deep learning approaches like 
recurrent neural networks (RNN) (Baxter, 1995) and convolutional 
neural networks (CNN) (LeCun et al., 1999) have proven their real-time 
capabilities (Shi et al., 2020; Vater et al., 2020), but have not been 
implemented for the detection and prediction of joint gaps during laser 
beam welding so far. 

Therefore, this paper presents different methods to detect and pre-
dict joint gaps and gap-induced weld seam discontinuities utilizing deep 
learning for an effective error prediction and classification. In total, 30 
welds were performed and analyzed by optical and tactile sensor 
methods. Since data acquisition is time-consuming and expensive, an 
approach for a synthetic generation of data is introduced to overcome 
the limitations due to the low number of samples. 

Materials and methods 

As a follow-up study of (Schmidt et al., 2021), laser beam butt 
welding experiments were performed and characterized by using optical 
and tactile sensors. Afterwards, the data were processed by several deep 
learning algorithms to predict the formation of joint gaps and detect 
gap-induced weld discontinuities. This section will give a brief summary 

about the technical details as well as the evaluation methods proposed in 
this paper. 

Technical details 

Welding setup 
The experiments were carried out for high-alloy steel sheets (mate-

rial: AISI 304 / X5CrNi18-10 / 1.4301) with a thickness of 1.0 mm. The 
samples were cut to size by laser cutting with a length of 300 mm and a 
width of 50 mm. Fig. 1a depicts the experimental setup. The welding 
process was carried out in butt joint configuration. Sheet 1 was fixed in 
position by a clamping jaw with a holding force of 1.2 kN while sheet 2 
was allowed to move freely in X-Y plane. The angular distortion in Z- 
direction of sheet 2 was limited by an air gap of 0.1 mm between 
clamping jaw and specimen. Sheet 2 was initially positioned with zero- 
gap towards sheet 1 which is why the resulting joint gap could be 
determined during welding. The rolling direction of the sheets was 
oriented in welding direction. The welding process was carried out by a 
Trumpf TruDisk 5000.75 disc laser at welding speeds of 1 m/min and 5 
m/min. An overview of both considered welding parameters is given in 
Table 1. The laser beam power was determined depending the welding 
speed for achieving full penetration welds. The relative movement be-
tween laser beam and steel sheets was realized by a six-axis robot (Kuka 
KR60-HA) whereby the laser processing head was mounted to the robot. 
All welds were repeated 15 times for statistical reliability. 

Since the formation of joints gaps affects the energy absorption of the 
laser beam and the position of the specimens, optical and tactile sensors 
were integrated in the experimental setup to determine qualitative in-
formation regarding the thermal radiation field and to obtain informa-

Fig. 1. Schematic of the experimental setup, separate illustration of: a) used clamping setup, b) used setup for joint gap measurement.  

Table 1 
Welding parameters.  

Parameter parameter set 1 parameter set 2 

Welding speed 1
m

min 
5

m
min 

Resulting welding duration 20 s 4 s 
Laser beam power 400 W 1000 W 
Focal diameter 274 µm 
Wavelength 1030 µm 
Rayleigh length 2.38 mm  
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tion regarding the gap between both sheets during welding (see Fig. 1b). 
The change in Y-direction of sheet 2, moveable in X-Y plane, was 
measured by three inductive probes (Millimar P2010 M). The first one 
was positioned after 52.5 mm and with a constant distance of 97.5 mm 
between the following sensors. Changes in Y-direction provided infor-
mation regarding the appearing joint gap. In contrast, changes in X-di-
rection are of minor importance as the joint gap is decisive for the 
process termination. A measuring accuracy of 4 µm was reached within 
the measuring range of +/- 2 mm by using a measuring frequency of 
1,000 Hz. The measured value of the inductive probes corresponds to the 
combined changes in position due to the strain field and the thermal 
expansion. The resulting gap change was simplistically calculated from 
the maximum values of these position changes. The relative movement 
of the laser beam by the robot allowed the detection of changes in Y- 
direction along the entire welding duration. A long-wave infrared 
camera (LWIR, InfraTec VarioCAM HD head 800) was used to determine 
gap-induced discontinuities based on irregularities of the thermal radi-
ation field, which can be attributed to gap- and defect-induced changes 
in energy absorption and heat transfer. The spectral range of the camera 
is in the interval from 7.5 µm to 14.0 µm. The LWIR camera was 
mounted as near as possible on the processing head in trailing align-
ment, resulting in a distance between the laser beam axis and the LWIR 
camera axis of 115 mm. The measuring accuracy of the camera for 
determining absolute temperatures is +/- 1 K with a measuring range 
between 250 ∘C to 1, 700 ∘C. A resolution of 1,024 px × 768 px and a 
recording frequency of 30 Hz was used. 

Quality measure metric 
The weld starts at the beginning of the sheet and should extend the 

entire specimen length of 300 mm as defect-free seam. A premature 
termination of the process can occur due to the joint gap resulting from 
the welding process, i.e. a discontinuity may occurred when the 
maximum gap bridgeability of the laser beam process has been excee-
ded. Considering that this article focuses on the prediction of the gap, 
the weld length ratio (WLR) was introduced to describe the ratio be-
tween achieved weld seam length Lsound to the entire specimen length 
Ltotal (see Fig. 2a and Eq. (1)). 

Therefore, the WLR reaches the value 1 when the length of the sound 
weld extends over the entire specimen length or a value < 1 indicating a 
defective weld seam (see Fig. 2b). The dimensionless characteristic of 
WLR was preferable to use for machine learning. This procedure allowed 
the correlation between WLR and joint gap from the further acquired 
data in order to predict the opening of the gap. All specimens welded 
were inspected visually for discontinuities. The length of the sound weld 
seam Lsound was measured by photographs and used to calculate the WLR 
individually. 

WLR =
Lsound

Ltotal
, WLR ∈ [0, 1] (1) 

The WLR distribution of welding parameter set 1 and welding 

parameter set 2 is illustrated in Fig. 3, indicating a increase in WLR for a 
rise in welding speed. 

Evaluation methods 

For the purpose of data analysis, the methods will be separated in 
two different tasks. First, methods to detect weld discontinuities and 
second, approaches to predict the joint gap formation and classify the 
weld quality. Previous attempts to detect weld discontinuities based 
data captured by a optical sensor employed Otsu threshold (Otsu, 1979), 
random forest (Breiman, 2001), multilayer perceptron (MLP) (Rumel-
hart et al., 1985) and convolutional neural network (CNN) (LeCun et al., 
1999) for data analysis and classification. Thereby, Otsu threshold and 
random forest rely on predefined features, while MLP and CNN are ap-
proaches that automatically extract features for classifying a disconti-
nuity. The subsection below briefly reviews each of these approaches. 

Weld discontinuity classification 
Otsu threshold. The Otsu threshold (Otsu, 1979) method searches 

for an optimal threshold value t* to minimize intra-class and maximize 
inter-class variance for a given classification problem, such as weld 
discontinuity classification. Based on the changes in thermal radiation 
field induced by the formation of weld discontinuities, both classes 
(sound fusion and lack of fusion) should be separable by an optimal 
threshold t*. Therefore, the Otsu threshold for two classes is calculated 
as follows: 

σ2
w(t*) = min

t ∈ [1,254]
ω0(t)σ2

0(t) + ω1(t)σ2
1(t), (2)  

where the weights ω0 and ω1 refer to the probabilities of the classes 
separated by the threshold t; and σ0 and σ1 are the variances of the two 
classes e.g. defect-free seam and weld discontinuity. The algorithm 
searches for the best possible values of t to separate the two classes. To 
estimate the optimal Otsu threshold value t*, the Python scikit-image 
processing library was used. 

Random Forest. The random forest is a fast supervised approach to 
separate linear and non-linear features into classes. The method is a 
strong learner that combines multiple weak learning rule-based decision 
trees. A decision tree contains multiple branches that use conditions to 
split the tree into edges to differentiate between defect-free seam and 
weld discontinuity. The end node of a branch is called a decision leaf 
containing information to what class the data belongs (Breiman, 2001). 
A number of 25 decision trees was found suitable and employed 
throughout this study. 

Multi-layer perceptron (MLP). A multi-layer perceptron (Rumel-
hart et al., 1985) is an artificial neural network. As the name implies, the 
MLP consists of multiple perceptrons ordered in a layer-wise manner. 
MLPs can be split up into three different types of layers. First an Input 
Layer which receives the input signal followed by n hidden and a final 
classification layer. The proposed MLP consists of three hidden layers 

Fig. 2. Introduction of weld length ratio (WLR): a) specification of geometrical quantities during joint gap formation, b) photography of top side that shows the 
influence of the joint gap of weld discontinuities and correlating WLR. 
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with 128 neurons each as depicted in Fig. 4. To prevent the model from 
over-fitting and improve the generalization, dropout layers with a 
dropout probability of 40 % and 20 % were added between the fully 
connected layers. Dropout (Srivastava et al., 2014) is a regularization 
technique that randomly sets a neurons activation to zero during 
training by a given probability. The neuron is not removed from the 
network, but disabled for the current training step. The processing 
pipeline for weld discontinuity classification based on LWIR camera 
recordings is depicted in Fig. 4. The LWIR camera recordings are crop-
ped to focus on the region of interest. The MLP classifies whether the 
seam is defect-free or a discontinuity occurred. 

Convolutional neural network (CNN). A convolutional neural 
network is a neural network architecture that efficiently learns repre-
sentations in multi-dimensional data like images utilizing weight 
sharing. The network’s fundamental operation is the convolution. By 
convolving input values, different types of features can be detected like 
edges in the early layers or more complex features in later layers. The 
proposed CNN architecture is depicted in Fig. 5 and consists of multiple 
convolutional layers followed by a batch-normalization layer. Batch- 
normalization is a common technique to reduce the networks covari-
ate shift and accelerate the models training (Ioffe and Szegedy, 2015). 
Furthermore, a residual connection is added, helping the model to 
converge faster and reduce training time (He et al., 2016). The decision, 
whether a weld discontinuity occurred or not, is made by the last 

sigmoid activated fully-connected layer. 

Prediction of gap formations and weld quality classification 
A parallel and serial regression classifier based on an encoder- 

decoder LSTM (cp. Fig. 6) and an MLP are proposed within this study 
for predicting gap formation and classifying weld quality. The prediction 
of a future joint gap formation enables the possibility for realizing an 
active position control which is able to counteract the formation of 
discontinuities. 

Recurrent neural networks (Baxter, 1995) like long short term 
memory (LSTM) (Hochreiter and Schmidhuber, 1997) are the prominent 
neural networks for sequence forecasting. LSTMs are capable of 
memorizing previous values in their history that is used when predicting 
future values. To do so, LSTMs take a sequence of length n as input to 
forecast the future course of the sequence. A specialized architectural 
pattern for time series forecasting consisting of two networks is called 
encoder-decoder architecture (Cho et al., 2014). The encoder-decoder 
setup consists of two independent LSTMs as depicted in Fig. 6, where 
a first LSTM encodes the input sequence and a second LSTM decodes and 
predicts future values of the sequence. This structure allows to process 
input sequences of any length and predict sequences of any other length. 

Previous welding quality classification approaches were based solely 
on the measured gap at time step tcurrent while the gap formation between 
tcurrent until the end of the weld tend was unknown. 

Fig. 3. WLR distribution of welding parameter set 1 and welding parameter set 2.  

Fig. 4. Processing pipeline for weld discontinuity classification based on LWIR camera recordings with the proposed MLP architecture.  
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This approach, where the classification is performed solely on the 
measured gap, will be referred to as parallel regression classifier (PRC). 
PRC consists of an encoder-decoder LSTM that predicts the joint gap 
formation and an MLP to classify the welding quality as depicted in 
Fig. 7. Here, the measured gap formation X is used as input for the 
encoder-decoder and the MLP. The result is a predicted gap formation 
Yreg and a classification Yclass whereby both modules work in parallel. 

However, since the encoder-decoder model can predict the further 
gap formation at time step tcurrent, it is possible to incorporate the pre-
diction Yreg into the classification. Therefore, a sequential regression 
classifier (SRC) as illustrated in Fig. 8 is proposed. The SRC combines an 
encoder-decoder LSTM and an MLP. However, in this solution both the 
predicted gap formation Yreg and the input X are input to the classifi-
cation MLP sequentially. Since the predicted joint gap formation Yreg is 
also used for classification, the classification performance should be 
improved because the MLP yields not only the momentary but also the 
future joint gap formation. The classification is therefore not only more 
accurate but also earlier. 

Datasets 

LWIR camera data 

We extracted images from the LWIR camera recordings of each 
welding process resulting in 3,800 images showing sound fusion and 
lack of fusion. Each image was cropped to focus on the weld, removing 
unimportant segments of the images. Image segments that do not show a 
weld seam or the interaction zone of the laser and the sheets are not 
suitable for real-time analysis and removed from each image. Since the 
radiation field is recorded as a gray-scale image sequence, the pre-
processed frame shape results in 59 px \times 9 px (height, width) with 
550 frames showing lack of fusion and 3,250 frames showing sound 
fusion. 

Since the thermal radiation field is affected by the energy absorption 
of the laser beam and heat transfer to surrounding material, the pixel 
values of each frame should change notably in the zone of lack of fusion. 
Therefore, different pixel features like mean, standard deviation, 
maximum, and minimum were extracted from each frame to receive a 
sequence of each feature over time. Each feature represents the visible 
changes regarding radiation field during the weld (Schmidt et al., 2021). 

Inductive probe data 

The inductive probes measure the formation of joint gaps for each 
weld at three positions (see Fig. 10) of the metal sheets. The recordings’ 
number of data points varies depending on the welding speed of each 
parameter set, resulting in recordings with 20,000 data points for the 
first set and 4,000 data points for the second one. To adjust the different 
lengths of each welding parameter set, all samples after a weld discon-
tinuity occurred were removed from each recording since these parts are 
unnecessary for an effective prediction of the joint gap. Furthermore, 
each shortened recording is down-sampled to a length of 650 data 
points. 

Evaluation setup for error detection and prediction 

Weld discontinuity detection based on LWIR camera recodings 

Otsu threshold and the random forest approach are used with 

Fig. 5. Architecture of the proposed convolutional neural network for weld discontinuity detection.  

Fig. 6. Example of an encoder-decoder LSTM for sequence forecasting with x and y as measured and predicted joint gap formation, respectively.  

Fig. 7. Parallel setup for error prediction. Regression and classification module 
are disconnected from each other. The classification is based solely on recor-
ded data. 
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predefined features as baseline-classifiers to detect gap inducted weld 
discontinuities. Additionally, a multilayer perceptron representing a 
baseline for neural networks, and a convolutional network are trained to 
compare methods dependent on predefined feature extraction with 
techniques that incorporate feature extraction and classification. Leave- 
one-out cross-validation is used with 10 different sets to evaluate each of 
the introduced methods. The leave-on-out cross-validation uses 9 of the 
sets as training data and the remaining one as validation set. The method 
is repeated until each of the sets was used once during validation. Each 
cross-validation set contains frames from different video recordings to 
avoid similar files and ensure that each set differs. Since the number of 
frames showing defect-free seam is notably higher than frames showing 
weld discontinuities, only 550 defect-free frames are used to keep bal-
ance between the classes, resulting in a total of 55 frames for each class 
and cross-validation set. Each of the introduced methods in Section 
(Materials and Methods) is evaluated using the describe leave-one-out 
cross-validation technique. Based on the extracted LWIR camera fea-
tures described in Section (Datasets), the changes of the thermal radia-
tion field are received over time. To predict the formation of joint gaps, 
an encoder-decoder LSTM is trained to determine the relation between 
the radiation field and the joint gap formation. 

Prediction of Gap formations based on inductive probe data 

The prediction of joint gap formations is split into classification and 
regression tasks. The regression predicts geometrical changes of the 
flexible metal sheet, and the classification indicates whether the weld is 
sound or defective. Therefore, a total of 30 recordings with 15 re-
cordings for each welding parameter set have been performed. Since the 
number of samples is not sufficient to train the regression module, 
additional synthetic samples that match the joint gap trends were 
generated by a non-linear least squares method. The non-linear least 
square method (Dennis and Welsch, 1978) is used to approximate 
different gap formations with a simple quadratic regression function as 
follows: 

x(t) = c2⋅t2 + c1⋅t + c0 (3)  

with c2, c1, and c0 as regression coefficients and x as function value at 
time step t. An example of a synthetic and a recorded welding process is 
illustrated in Fig. 9. 

In total, 10 different cross-validation sets were created by randomly 
picking 5 recordings from each welding parameter set for validation and 
the remaining files for training, leading to 20 training and 10 validation 
samples for each of the cross-validation sets. For the synthetic sample 
generation, each of the training recordings was used to determine the 
best fitting coefficients c2, c1, and c0 for inductive probe 1, 2, and 3, 
respectively. The mean and the standard deviation are calculated to 
receive a minimum and maximum range for each coefficient and lastly, a 
value based on the range of the coefficient is randomly picked. The 
resulting set of coefficients c2, c1, and c0 is substituted into the regression 
function (cp. Eq. (3)) and one synthetic sample can be generated. The set 
of coefficients is picked 5000 times for each welding parameter set to 
generated a total of 10000 synthetic samples. This process is repeated for 
each cross-validation set to receive an equal number of training files for 
each set. An example of a synthetic sample and a recorded formation of 
the joint gap are illustrated in Fig. 9. The data from both settings 
described in Table 1 is used to train a regressor and a classifier to predict 
the formation of the joint gap and classify the welding quality. Since 
both welding parameter sets WLRs are notably different (cp. Fig. 3), this 
approach should be able to classify the weld quality if the WLR differs by 
a certain amount. The regression and classification module will be 
evaluated at different stages of the welding process ranging from 97 % to 
37 % before the weld discontinuity occurs in order to analyze when a 
reliable prediction can be made. 

Results and discussion 

Characterization of joint gap formation 

In order to demonstrate the effect of joint gaps on weld seam for-
mation and correlating sensor data, Fig. 10 shows exemplary the for-
mation of the weld seam by a photograph of the specimen top side in 
comparison to sensor data determined by LWIR camera and inductive 
probes for laser beam butt welding of 1 mm thick X5CrNi18-10 at a 

Fig. 8. Example of the serial setup for error prediction. Regression and classification module are connected with each other. The error prediction is based on recorded 
and predicted values from the regression module. 

Fig. 9. Example of a synthetic and recorded formation of joint gaps for each inductive probe.  
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welding speed of 1 m/min. 
The photograph of the specimen top side is characterized by two 

different zones of seam fusion. In this way, one zone of the seam shows a 
sound fusion, which extends from the process start to more than half of 
the total seam length. This is followed by the discontinuation of the weld 
seam, resulting in the formation of lack of fusion. By building the ratio 
between the weld seam length of sound fusion to the entire specimen 
length, the relating weld length ratio (WLR, see Section (Quality Mea-
sure Metric)) amounted to WLR = 0.68. In correlation to the LWIR re-
cordings, this characteristic could be also found by analyzing the 
summation image of the thermal radiation field (technical details 
regarding the construction of the summation image can be found in 
Schmidt et al., 2021). In the zone of sound fusion, the seam can be 
identified by an area of increased thermal radiation. After the weld seam 
discontinued, the radiation signal drops significantly, representing the 
zone of lack of fusion. By analyzing the sensor data of the inductive 
probes, it is further possible to characterize the gap formation as func-
tion of time and local position. Immediately after exceeding the process 
begin, the signals of all three probes started to rise for a short time of 
about 0.7 s, which can be attributed to the initial piercing process of the 
keyhole. Subsequently, the signals fell back to zero line, before the 
relevant gap formation is initiated (starting time of gap formation). 
Depending on the local position of the probes, the course of the joint gap 
measured differs. While probe 1 is placed at the start of the weld seam 
and corresponding to a flat course of curve, the course of probe 3 is 
characterized by a much steeper rise in signal due to the positioning at 
the weld seam end. After reaching the joint gap maximum of about 0.59 
mm, the signal of probe 3 also indicates the change in fusion by a signal 
drop, which can be attributed to a change in energy absorption by 
exceeding the maximum gap bridgeability of the laser beam. Following 
the signal drop, all three probe signals gradually decrease. This behavior 
continues after the laser beam is switched off and during cooling. 

It can be stated that the LWIR camera recordings and inductive probe 
measurements can indicate the formation of weld discontinuities. Since 
the formation of the gap is decisive for weld discontinuities, the data of 
the inductive probes is used in the following to describe the underlying 
effects. Fig. 11 shows a combined view of all welds performed for the 
study to illustrate the relation between weld length ratio and maximum 
joint gap measured of each individual weld. It can be seen that the po-
sition of the probe had a significant effect on the maximum joint gap 
determined as discussed for the example given in Fig. 11. The compar-
ison between parameter set 1 and parameter set 2 showed that a higher 
welding speed resulted in smaller maximum gap dimensions, especially 
salient for probe 3 positioned close to the end of the sheet. The increased 

welding speed led to a reduction of laser beam power deposited in the 
material resulting in a narrower temperature field, a decreased weld 
seam width and thus reduced strain explaining the effect on gap width. 
This behavior was accompanied by larger ratios of WLR, i.e. the length 
of the sound weld was increased for a reduced maximum gap width 
measured. The overlapping in the data between probe 1 and 2 for both 
parameter sets in the range of WLR 0.7–0.8 support the presence of a 
possible relationship. However, the data points scatter around any 
comparison line which is why it is uncertain whether the maximum gap 
can actually provide a reliable and generally valid statement regarding 
the occurrence of gap-induced weld seam discontinuities. Further con-
siderations of different welds and varying WLR followed for this reason. 

Fig. 12 shows the time-dependent joint gap at probe positions 1–3 for 
three values of WLR: 0.51, 0.69 and 1.0. The welds for a WLR of 0.51 and 
0.69 were obtained at a welding speed of 1 m/min (parameter set 1) and 
for WLR of 1.0 at 5 m/min (parameter set 2). It was confirmed by the 
temporal progress of the joint gap that smaller WLRs were accompanied 
by larger gap dimensions and that the gap increased in all cases from 
position of probe 1 to probe 3 and is decreasing after a certain time due 
to the complex thermo-mechanical system based on the interactions 
between material, thermal expansion and contraction of the weld. It is 
noticeable in the top view of the specimens that the edges of the sheet 

Fig. 10. Exemplary illustration of sensor data determined by LWIR camera and inductive probes in correlation to upper weld seam formation using 1 mm thick 
samples of X5CrNi18-10 at a welding speed of 1 m/min. 

Fig. 11. Relation between measured maximum joint gap and weld length ratio. 
The image shows both welding conditions, i.e. parameter set 1 (represented by: 
□) with a welding speed of 1 m/min and parameter set 2 (depicted by: ▵) with 
a welding speed of 5 m/min, and the different positions of probe 1 (red), 2 
(green), and 3 (black). 
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may be heated and partially melted even after the weld discontinuity 
occurred with both sheets separated by a gap (see detailed image at 
WLR = 0.51). The ongoing heat input resulted in an increased joint gap 
after the weld was discontinued which can be seen clearly for probe 3 
where the maximum gap value was reached after approx. 14 s while the 
weld was interrupted after approx. 9 s. In contrast, an interruption of the 
weld occurred for a WLR of 0.69 after approx. 13 s at the corresponding 
maximum gap of probe 3. Comparing the curves of WLR 0.51 and 0.69 
with WLR 1.0, it can be seen that the initial keyhole penetration is hardly 
detectable and the gap size increases significantly faster. At the same 
time, a complete weld over 300 mm is achieved. The gap reached its 
maximum after approx. 2 s, i.e. after a slightly longer time than it took to 
weld half the sheet length. It can be seen that the gap started to decrease 
afterwards which is noticeable throughout the gap values in probe 1–3. 
The main reason for this behavior can be seen as growing influence of 
constriction with increasing weld length. This illustrated that the pro-
cess parameters affected the resulting gap significantly. However, a 
significant difference in the gap formation can be observed even under 
comparable experimental conditions as seen for WLR 0.51 and 0.69. 
This is due to the change in specific power deposition, for example when 
less volume is melted, the emerging weld seam geometry and the 
contraction during solidification and cooling in addition to the thermal- 
mechanical history of the sheet. It should be noted that the friction 
conditions between sheet and clamping jaw 2 (see Fig. 1 in Section 
(Welding Setup)) may affect the gap formation as well, e.g. if a bending 
occurs and may hinders the movement of sheet 2. The measurement of 
each individual joint gap over time ensured to cover its interaction with 
the resulting seam length correctly. 

In terms of realizing a real-time capable position control which is 
able to counteract the formation of weld discontinuities (e.g. by 
clamping devices with actuators for controlling the gap based on me-
chanical forces), the formation of joint gaps and gap induced weld dis-
continuities must be predicted. Since the joint gap formation reflects the 
relevant events during welding and includes the effect of relevant 
influencing parameters in a time-dependent manner, it can be utilized 
for prediction. Due to the fact that the maximum joint gap is not a 
meaningful criterion for the weld discontinuity and since the sensor 
signals change significantly after initiation of a weld defect, the use of 

conventional data processing is not effective. Therefore, the following 
sections investigate different approaches for sensor data processing to 
realize an early and reliable detection of weld discontinuities and pre-
diction of joint gap formations. 

Weld discontinuity detection based on LWIR camera recodings 

Four approaches were introduced to detect gap induced weld dis-
continuities based on LWIR camera recordings. Threshold detection and 
the random forest classifier scored the worst across all approaches. As 
shown in Fig. 13, both methods are capable of high accuracy values but 
also performed notably worse for some cross-validation sets. The worse 
performance mainly occurs when a set of features differs between 
training and validation data. With an average accuracy of 79.6 %, the 
threshold detection performed worse than the random forest classifier 
with an average accuracy of 81.6 %. Compared to traditional methods, 
both neural networks show an improved performance. The convolu-
tional neural network performed best across all implemented methods 
and detected most frames correctly across all cross-validation sets. The 
CNN achieves an average accuracy of 97.4 % and performs slightly 
better than the MLP with detection accuracy of 96.2 %. All of the 
investigated methods are capable to detect weld discontinuities based on 
LWIR camera recordings. However, the results indicate that methods 
which rely on predefined features could miss weld discontinuities when 
the feature set does not contain sufficient information to differentiate 
between sound and lack of fusion. Furthermore the recorded changes of 
the thermal radiation field over time were used to predict the further 
formation of joint gaps with an encoder-decoder LSTM model. However, 
the model is not able to predict the formation of joint gaps based on the 
radiation fields changes. This indicates that a direct relation between 
joint gap and the thermal radiation field cannot be derived by the model. 

Prediction of gap formations based on inductive probe data 

The encoder-decoder LSTM is able to predict the formation of joint 
gaps based on the inductive probes’ recordings. The mean absolute error 
(MAE) between the recorded and predicted joint gap formation is 
depicted in Fig. 14. Since probe 3 measures a much steeper signal rise 

Fig. 12. Time-dependent joint gap at probe positions 1–3 for three different weld length ratios and images of each respective weld seam.  
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than probe 1 and 2 (cp. Fig. 10), it is expected that the MAE is higher 
compared to the other probes. Especially in early stages of the weld, the 
average MAE and standard deviation are notably higher compared to 
later stages, when more information about the gap formation is 
measured. The MAE between measured and predicted joint gap 
constantly decreases and the model’s prediction becomes more precise. 

The same trend can be seen, when comparing the classification ca-
pabilities of the PRC and SRC. As shown in Fig. 15, both approaches 
perform similar in early stages of the welding progress with a high 
standard deviation across the different cross-validation sets. At around 
73 % before the weld discontinuity occurs, an increasing accuracy for 
the SRC, achieving better results than the PRC can be observed. In 
addition, a permanently decreasing standard deviation for the SRC is 
showing, which is not the case for the PRC. The regression module does 

not only help to classify the weld quality earlier, but also improves the 
classification accuracy of the MLP. 

An example of a predicted joint gap formation is depicted in Fig. 16. 
In this case, 2.2 s of joint gap formation are measured by the inductive 
probes and about 9 s are predicted by the encoder-decoder LSTM. The 
predicted joint gap exactly matches the measured gap in the beginning, 
but deviates increasingly as the prediction progresses (cp. Fig. 16 third 
probe). 

Since the regression module is able to predict the joint gap formation 
precisely, this approach can be suitable to enable an active position 
control to counteract the gap formation. Therefore, the regression 
module enables the possibility to counteract the gap formation not solely 
based on the current gap formation, but can be improved since the 
further gap formation is also known. 

Fig. 13. Accuracy achieved by the presented approaches for weld discontinuity detection based on LWIR camera recordings. Shown is the median value (orange) 
with upper and lower quantile for the 10-fold cross validation. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 14. Mean absolute error of the regression module at different welding stages for each inductive probe.  

Fig. 15. Comparison of parallel (orange) and serial (blue) approach for weld quality classification at different welding stages. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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To investigate the importance of each probe for the classification 
module, different sensor combinations were used to classify the weld 
quality. As illustrated in Fig. 17, probe 1 contains the least information 
about the weld quality. Probes placed at the middle and the end of the 
sheet give the best indication about the quality. The performance of the 
classification module further improves when more than one probe is 
applied and a combination of probe 2 and 3 performed best. Comparing 
a combination of probe 1/2 and probe 1/3, the classification perfor-
mance is better when the joint gap prediction of probe 2 is included. 
Therefore, it can be argued that probe 2 has the most impact on the weld 
classification and the models performance improves, when probe 2 is 
applied. 

Transferability and application scenarios for laser beam welding 

A novel methodological approach for describing and predicting the 
joint gap induced weld discontinuity was presented and successfully 
demonstrated its capabilities based on deep learning for different sensor 
signals and welding parameters. The weld discontinuity is based on the 
time-dependent formation of the joint gap that depends on a complex 
thermo-mechanical system affected by materials, joint configuration, 
process parameters and the clamping situation. The efforts regarding the 
transferability and applicability will be discussed based on three ex-
amples in the following.  

• Example I – change of material: A change of the material would 
affect, among others, the thermal conductivity, the melting interval 
and the thermal expansion coefficient would change the temperature 
distribution, the weld seam geometry and the resulting stresses. 

However, since the physical relationships of joint gap formation are 
comparable, the developed methodology can be applied.  

• Example II – changes in process parameters: A change in process 
parameters, e.g. focal diameter, laser wavelength or welding speed, 
would affect the resulting temperature distribution due to temporal 
and spatial energy input. Gap formation would be affected due to the 
interaction with the chosen material. As discussed for changes of the 
material, however, the relationships leading to gap formation would 
still remain valid, i.e. the applicability of the methodology developed 
is given. Hereby, the fundamental flexibility of the method has been 
shown by using two welding speeds based on parameter set 1 and 
parameter set 2 during the study presented in the paper. However, 
since the recorded gap formation would be notably different when 
the process parameters change during the weld, the deep learning 
models have to be retrained to learn the new gap formation behavior. 
It therefore can be assumed that the changes, which affect the gap 
formation over time, can still be handled by the deep learning model.  

• Example III – change of joint configuration: A change of the joint 
configuration or joining geometry can have different effects. If the 
transfer is considered from a butt joint to a lap joint for comparable 
sheet thicknesses, the joining gap results primarily in the z-direction 
instead of in the x- or y-direction. The progress of the sheet 
displacement over time (Danielewski and Skrzypczyk, 2020) leading 
to the joint gap seems to be comparable to the butt joint, i.e. the 
methodical approach can be assumed to be applicable. The detection 
of false friends affected by the gap (Heller et al., 2015; Mrna and 
Hornik, 2016) could thus be addressed, for example. In case of 
transferring the method, for example, to very thick sheets with 
distinct distortion in different spatial directions, the presented pro-
cedure will reach its limits, since the gaps will form significantly 

Fig. 16. Example of a predicted gap formation compared to measured joint gap for each inductive probe.  

Fig. 17. Influence of different sensor combinations for weld quality classification.  
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different and additional factors could influence the weld 
discontinuity. 

We demonstrated that the approach can be transferred to other 
scenarios for laser beam welding, by retraining on scenario specific data. 
Therefore, new datasets must be generated by recording additional 
welds. It is also conceivable to utilize the prediction of the joint gap for 
controlling welding processes, where the manipulation is not performed 
via the laser beam process, e.g. by adjusting the beam power, but via 
clamping devices equipped with actuators. Future work will address this 
group of issues in particular. 

Conclusion and future work 

This investigation focused on the detection and prediction of joint 
gap induced weld seam discontinuities for welding thin sheets of high- 
alloy steel in butt joint configuration. By optical and tactile measure-
ments, it was shown, that the formation of joint gaps increased with a 
rise in welding time. After reaching the joint gap maximum, the for-
mation of lack of fusion was observed, which can be attributed to a 
change in energy absorption by exceeding the maximum gap bridge-
ability of the laser beam. The change in weld seam fusion was reflected 
in a signal drop of both sensor systems, appearing only after defect 
initiation. Since the realization of a real-time capable position control 
requires an early and reliable detection and prediction of the joint gap 
and gap induced weld seam discontinuities, different methods for a 
processing of optical and tactile sensor data were developed and eval-
uated. In total, four different methods for processing thermal images 
recorded by LWIR camera were tested, exposing benefits in performance 
of deep learning methods with automatic feature extraction compared to 
traditional methods. Relating to this, the proposed CNN achieved 97.4 % 
accuracy on average for the 10-fold leave-one-out cross-validation to 
detect gap induced weld discontinuities. Furthermore, parallel and se-
rial regression classifier to predict the formation of joint gaps and clas-
sify the welding process based on tactile sensor data of inductive probes 
were introduced and compared. Despite that it was possible to distin-
guish the welding process regarding the weld quality by using both 
methods, the serial regression classifier performed more precisely and 
could detect the phase of defect formation at earlier stages. The possi-
bility of the precise gap and defect prediction will enable the future 
development of suitable countermeasures to control the gap formation 
by an active position control with the aim of eliminating weld 
discontinuities. 
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