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Simulation of a BNS with M = 2.8M⊙, q = 1.5 and EOS ALF2:
Gravitational wave signal and snapshots of the density (log10 ϱ)

in the case of a BNS merger followed by delayed collapse.
Snapshots are taken at an early step in the simulation,

and around the times of merger, and BH formation.
11ms after merger the remnant forms a BH,

causing the ringdown signal to dissipate.
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Abbreviations and Notation

Throughout this work, we typically use geometrized units with c = G = M⊙ = 1.

However, in some cases, c, G, M⊙ are given explicitly for better understanding. We

use Greek letters for four-dimensional indices running from 0 to 3, and Latin letters

for three-dimensional indices running from 1 to 3.

The following abbreviations are used throughout the thesis, in most cases these

abbreviations are also introduced in the text at their �rst appearance:

AH Apparent horizon

ADM Arnowitt-Deser-Misner

BAM Bi-functional Adaptive Mesh (code name)

BBH Binary black hole

BH Black hole

BHNS Black hole neutron star

BNS Binary neutron star

BSSN Baumgarte-Shapiro-Shibata-Nakamura

EFE Einstein �eld equations

EM Electromagnetic

EOS Equation of state

GHG Generalised harmonic gauge

GRHD General relativistic hydrodynamics

GR General relativity

GW Gravitational wave

HMNS Hypermassive neutron star

ID Initial data

LIGO Laser interferometer gravitational-wave observatory

MNS Massive neutron star

NR Numerical relativity

NS Neutron star

pwp Piecewise-polytropic

SGRB Short gamma-ray burst
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SMNS Supramassive neutron star

TOV Tolman-Oppenheimer-Volko�
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Abstract

Direct observations of binary neutron star mergers during the observation runs O2

(GW170817) and O3 (GW190425) of the gravitational-wave detectors Advanced LIGO

and Adavanced VIRGO raise expectations of numerous future observations with up-

graded, more sensitive instruments in O4 and in following observation runs. Future

observations of binary neutron star merger events and, in some cases, related multi-

messenger observations will provide us with new data covering a variety of source

parameters. This will further constrain models, and increase our understanding of

dense matter. In this context, general-relativistic simulations of these merger events

play a crucial role, not only in the development of gravitational-wave templates, but

also in the understanding of the merger process. Subsequently to a binary neutron

star coalescence, a black hole can form promptly after merger or with some delay.

Dynamics at merger also determine the amount of ejected material that may power

post-merger electromagnetic signals. Apart from the total mass of the binary, also the

mass ratio can have a major in�uence on these dynamics, especially in the case of ex-

treme mass ratios. Considering the existing binary neutron star merger observations,

mass ratios determined for the sources of GW170817 and GW190425 were found to

possibly deviate strongly from the equal-mass case.

In this thesis, we investigate 335 fully relativistic binary neutron star merger simu-

lations, considering 165 di�erent binary con�gurations, to determine the e�ect of mass

ratio. The studied parameter space covers three equations of state, a broad range of

seven mass ratios in the range of 1.0 ≤ q ≤ 1.75, and broad ranges of total masses

in each case. In our analysis, we are especially interested in mass-ratio e�ects on the

threshold mass to prompt collapse, which separates the cases of prompt and delayed

collapse, and in mass-ratio e�ects on properties of the remnant system. In order to

determine the threshold mass, we consider an empirical relation based on the collapse-

time, which measures the time interval between merger and collapse to a black hole.

Furthermore, we investigate properties of the remnant system, and model e�ects of

mass ratio and equation of state on tidal parameters of threshold con�gurations.
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Chapter 1

Introduction

Over the last years, breakthroughs in the research on gravity have received a notable

amount of attention - not only in the scienti�c community, but also among the public

sphere. Roughly 100 years after Albert Einstein had published his theory of general

relativity (GR) [Einstein, 1915b], which contained the famous Einstein �eld-equations

(EFE) [Einstein, 1915a], and his prediction of the existence of gravitational waves

(GW) [Einstein, 1916; Einstein, 1918], GWs were �nally detected directly in September

2015 [Abbott et al., 2016]. Only two years later, in October 2017, Rainer Weiss, Barry

C. Barish, and Kip S. Thorne were awarded the Nobel prize in physics for the direct

detection of GWs. In 2020 yet another Nobel prize was awarded in connection with a

phenomenon predicted by Einstein's theory, the existence of Black holes. In both cases,

decades of e�orts of hundreds of scientists, working in collaboration of both theory

and observation, were honoured. Also in both cases, the Nobel prizes followed shortly

after long awaited direct observations, that were preceded by indirect measurements

and observations of the studied phenomena.

We want to retrace the history of GW detection, starting with the �rst detection

of a pulsar in the year 1967 [Hewish et al., 1968]. A pulsar is the source of extremely

regular radio signals. For this discovery, and for the interpretation that pulsars have

to be rotating neutron stars (NSs) with extraordinarily strong magnetic �elds that

accelerate surrounding plasma causing the directed emission of large amounts of energy

which can be detected from Earth as radio pulses, Sir Martin Ryle and Antony Hewish

were awarded a Nobel prize in 1974. 1974 is also the year when the famous Hulse-Taylor

binary was detected [Hulse et al., 1975]. Continued observations over the following

decades [e.g. Weisberg et al., 2010] revealed a decline of the orbital period consistent

with the loss of energy due to the emission of GWs [e.g. Taylor et al., 1982; Taylor

et al., 1989]. For this indirect detection of GWs, Russel A. Hulse and Joseph H. Taylor

Jr. were awarded the Nobel prize in physics in 1993.
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One year later, in 1994, the National Science Foundation approved for the Laser

Interferometer Gravitational-Wave Observatory (LIGO) project [e.g. Abbott et al.,

2009] consisting of the two detectors in Hanford and Livingston. At this point, decades

of pioneering experimental and theoretical e�orts had already been undertaken. In the

2000s, a sequence of initial searches began with ever increasing sensitivity. The initial

LIGO interferometers did not detect GW sources. The next generation of advanced

interferometers started their �rst observations run (O1) [Abbott et al., 2019] under the

name Advanced LIGO in September 2015, making the Nobel prize winning observation

of GWs connected to a binary black hole (BBH) merger event shortly before the o�cial

start of O1 while the detectors were still in commissioning stage. With repeatedly

increased sensitivity, two more observing runs have followed since then, providing many

more observations of GWs connected to the coalescences of compact binaries: The O2

observing run (2016, Nov - 2017, Aug) [Abbott et al., 2021a; Abbott et al., 2021b] and

the O3 observing run (2019, Apr - 2020, Mar) [Abbott et al., 2021c; Poggiani, 2022].

The observing run O4 is scheduled for March 2023.

During O2, related to the GW event GW170817 [Abbott et al., 2017c], the �rst

multi-messenger observation of a binary NS (BNS) merger [Abbott et al., 2017b] took

place, con�rming BNS mergers as sources of short gamma-ray burst (SGRBs). In O3,

two more events including at least one NS have been observed: the BNS merger event

connected to GW190425 [Abbott et al., 2020a], and GWs from the coalescence of a

23M⊙ BH with a 2.6M⊙ compact object which is among the candidates for being the

lightest BH or heaviest NS discovered so far [Abbott et al., 2020b]. In this context, two

candidate events for BHNS mergers have to be mentioned: GW200105 and GW200115.

Their primaries have masses that are well above the maximum mass of a NS, while

their secondary components have masses of 1.9+0.3
−0.2M⊙ and 1.5+0.7

−0.3M⊙, respectively,

which are well within the mass range of NSs [Abbott et al., 2021d].

Finding GW signals within the detectors' noise is no trivial task. On the one hand,

large amounts of data have to be searched quickly and e�ciently. On the other hand,

signals can only be found if the search algorithms know what they are looking for.

For this purpose accurate templates for the GWs are required. In the regime of su�-

ciently far separation, the post-Newtonian (PN) expansion can be applied. To extend

the realm of validity of PN templates, e�ective-one-body approaches can be employed

[Blanchet, 2014]. Close to merger and beyond, accurate templates are generated con-

ducting GR simulations. Due to the high computational costs of GR simulations on

full 3D spatial grids, numerical relativity simulations have only become feasible during
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the last decades. In 2005 the �rst successful simulations of BBH inspirals were per-

formed with the notable feature of GW extraction [Pretorius, 2005; Campanelli et al.,

2006; Baker et al., 2006b]. To arrive at these breakthroughs, apart from computa-

tional feasibility, many more challenges had to be overcome, particularly with respect

to simulations of BBH mergers [cf. Sperhake, 2015]. Concerning the formulation of the

Einstein equations for example, the strongly hyperbolic Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formulation, and the symmetric hyperbolic generalised harmonic

gauge (GHG) replaced the previously used weakly hyperbolic Arnowitt, Deser and

Misner (ADM) formulation [Arnowitt et al., 2008; York, 1978]. The moving punc-

ture method [Campanelli et al., 2006] and improvements concerning the generation of

initial data (ID) are among the contributions to the breakthroughs related to BBH sim-

ulations [Barack et al., 2019]. Considering simulations of BNSs, the pioneering work

connected to the name Shibata [e.g. Shibata, 1999; Shibata et al., 2000b] is worth men-

tioning. Since the �rst successful fully general-relativistic simulations of equal-mass

[Shibata et al., 2000a], and unequal-mass [Shibata et al., 2003] BNS mergers, where

NSs were modelled with polytropic equations of state (EOSs), BNS simulations have

improved particularly with respect to the employed EOSs and included physics. In

recent works studying BNS mergers by means of relativistic simulations for a variety

of EOSs, special consideration was given to the question under which conditions the

merger remnant undergoes prompt collapse [e.g. Hotokezaka et al., 2011; Bauswein

et al., 2013; Köppel et al., 2019; Bauswein et al., 2021; Tootle et al., 2021; Kashyap et

al., 2021; Perego et al., 2021]. This phenomenon depends on properties of the binary,

e.g. its total mass, its mass ratio and the components' spins. As stated by Baiotti

[Baiotti et al., 2017], BNS mergers are a rich laboratory combining extreme gravity,

GWs, electromagnetic (EM) processes and complex microphysics. Since many GW

and multi-messenger observations of these events are expected to be observed in the

coming observational runs, this laboratory is bound to reveal more about the physics

of dense matter in the near future. These observations will further constrain models

of dense matter [e.g. Kashyap et al., 2021]. With respect to the analysis of future ob-

servations, a clear understanding of the merger process and the possibility of prompt

BH formation is important. Possible post-merger signals are a�ected by the amount

of ejected material, which in turn is a�ected not only by the total mass of the binary,

but also by its mass ratio.

In the following thesis, we explore a set of more than 300 general relativistic simula-

tions conducted with the BAM code to investigate mass ratio e�ects on BNS mergers.
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The structure of this thesis is as follows: In chapter 2, we discuss basic concepts of

GWs as a phenomenon of GR, their treatment in simulations and post-processing steps

employed to determine the GW strain, i.e., a method to integrate rΨ4 data twice in

time. In chapter 3, we discuss properties of NSs and equations of state (EOSs) that

are designed to model NS matter. As a tool utilized to compute static models of single

NSs, we consider the Tolman-Oppenheimer-Volko� (TOV) solution of the EFE and

discuss constraints on EOSs deduced from astrophysical observations both in the EM

and GW spectrum. Afterwards, we introduce our simulation campaign, discussing its

composition, listing properties of the considered BNS con�gurations and presenting

results of simulations presented in Ref. [Koe1]. In this context, we introduce some of

the architecture of the BAM code and discuss the employed numerical resolutions.

In chapter 4, we consider BNS mergers, discussing possible scenarios with regards

to the fate of the merger remnant. Focussing on the cases of prompt and delayed

collapse, we discuss relevant de�nitions and criteria. Two important quantities in

this context are the collapse time (tcoll) which measures the time between merger and

collapse, and the threshold mass to prompt collapse (Mthr) which separates the cases

of prompt and delayed collapse. Analysing our simulation results, we investigate the

relationship of these quantities to de�ne a threshold collapse time. This de�nition will

allow us to determine Mthr by means of a new method which we introduce in chapter

5. This method is based on a �t of collapse time data andMthr is determined by means

of interpolation. In chapter 5, we describe the �tting procedure in detail. We compare

our method to an existing method which is also based on a �t of collapse-time data.In

the context of this method, Mthr is determined by means of extrapolation following

a di�erent de�nition of the threshold mass. As we shall show, these de�nitions are

not equivalent. For further testing of our method, we compare it to the bracketing

method. We conclude this chapter with the discussion of an idea for an alternative

method.

In chapter 6, we model mass-ratio e�ects, starting with the threshold mass and

tidal polarizability parameters. We discuss and re�ne existing models. In the case

of Mthr, we also prepare �ts of combined data sets basing them on a broader set of

EOSs. After a discussion of mass-ratio e�ects on merger dynamics, we consider e�ects

on properties of the remnant system consisting of a BH and a disk.
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Chapter 2

Gravitational Waves

2.1 General Relativity

Einstein's theory of gravity uni�es space, time, mass and energy. Gravitation is de-

scribed as a geometric property of spacetime, which as a mathematical model fuses

space and time in a four-dimensional manifold. The geometric properties of a space-

time are subject to any form of contained mass or energy. Due to Einstein's famous

equation E = mc2 mass and energy can be used equivalently. When we talk about

geometric properties of spacetime, we think of curvature in terms of the metric gµν or

the related line element

ds2 = gµνdx
µdxν . (2.1)

How spacetime has to behave in the presence of mass (energy), or reversely how mat-

ter has to behave in curved spacetime, is speci�ed by a system of non-linear partial

di�erential equations, the Einstein �eld equations (EFE),

Rµν −
1

2
gµνR = 8πTµν . (2.2)

The right-hand side of Eq. (2.2) is proportional to the energy-momentum tensor Tµν ,

which describes the density and �ux of energy and momentum of the matter model.

The left-hand side of the EFE consists of the metric gµν and the metric-dependent

tensors Rµν and R. Let us quickly go through the related de�nitions without diving

too deeply into the mathematical technicalities: The Ricci tensor Rµν and the Ricci

scalar R are de�ned by

Rµν = Rλ
µλν (2.3)

R = gµνRµν , (2.4)
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i.e., they are contractions of the Riemann tensor Rρ
σµν which in turn is de�ned by

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ , (2.5)

where Γρ
µν are the Christo�el symbols (or connection coe�cients) given by

Γρ
µν =

1

2
gρλ (∂µgνλ + ∂νgλµ − ∂λgµν) . (2.6)

There is only a small number of exact solutions to the EFE known - corresponding

to very special cases characterized by high symmetry. One of these, to give an example,

is the Schwarzschild metric [Schwarzschild, 1916] which, according to Birkho�'s theo-

rem, is the unique spherically-symmetric and static vacuum solution to the EFE. The

Schwarzschild metric describes the gravitational �eld outside a spherically symmetric

and irrotational mass, e.g. a static black hole (BH). Typically, the Schwarzschild met-

ric is presented in spherical coordinates {t, r, θ, ϕ}, where the line element takes the

form

ds2 = −
(︃
1− 2GM

r

)︃
dt2 +

(︃
1− 2GM

r

)︃−1

dr2 + r2dΩ2 . (2.7)

If we went one step back to retrace a possible derivation of the Schwarzschild solution,

we may start o� with the assumption of spherical symmetry, i.e. without demanding

the metric to be static. However, it can be shown that the assumption of spherical

symmetry already implies the metric to be static, and we may write it in the form

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 , (2.8)

cf. for example Carroll, 2019. Therefore, Birkho�'s theorem also states that there are

no time-dependent solutions of this form. With the additional assumption of vacuum,

and by comparison to the weak-�eld limit, we may determine the variables α(r) and

β(r) in Eq. (2.8) such that we arrive at Eq. (2.7). Considering cosmological implica-

tions, Einstein added a parameter to his equations (2.2), to allow for static models

of the universe. Later he removed it. In present cosmological models, this so-called

cosmological constant is employed again - to model the accelerated expansion of the

universe implied by observations. If we consider Einstein's theory of gravity in the

limit of weak gravitational �elds and static spacetimes, Newtonian physics are recov-

ered. Assuming �elds to be weak, but allowing for variations in time, Einstein's theory

predicts phenomena such as gravitational lensing and gravitational waves (GW).
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2.2 Linearized Gravity

In the presence of weak gravitational �elds, spacetime is locally almost �at. There-

fore, the metric can be decomposed into the �at Minkowski metric ηµν and a small

perturbation hµν , i.e.,

gµν = ηµν + hµν , (2.9)

with |hµν | ≪ 1. Ignoring terms of higher than �rst order in hµν , we use ηµν and ηµν

to raise and lower indices, and obtain

gµν = ηµν − hµν , (2.10)

for the inverse metric and

Γρ
µν =

1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) (2.11)

for the Christo�el symbols. Since the Christo�el symbols are of �rst order, we will

ignore quadratic contributions of the Γρ
µν to the Riemann tensor Rµνρσ. To �rst order,

we obtain

Rµνρσ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) (2.12)

Rµν =
1

2

(︁
∂λ∂νh

λ
µ + ∂λ∂µh

λ
ν − ∂µ∂νh−□hνσ

)︁
(2.13)

R = ∂µ∂νh
µν −□h (2.14)

Gµν =
1

2

(︁
∂λ∂νh

λ
µ + ∂λ∂µh

λ
ν − ∂µ∂νh−□hµν − ηµν∂ρ∂λh

ρλ − ηµν□h
)︁

(2.15)

for the Riemnann tensor and for its contractions, the Ricci tensor and the Ricci scalar,

and for the Einstein tensor

Gµν = Rµν −
1

2
ηµνR , (2.16)

respectively. In Eqs. (2.13) to (2.15) h is the trace of the perturbation

h = ηµνhµν , (2.17)

and □ is the �at-space d'Alembertian □ = −∂2t + ∂2x + ∂2y + ∂2z .
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2.3 Degrees of Freedom and Gauge Transformations

Seeking to determine the degrees of freedom of the metric perturbation hµν , we consider

transformations of the form

hµν → hµν + 2∂(µξν) (2.18)

which are called gauge transformations. Eq. (2.18) shows the transformation of the

metric perturbation hµν under an in�nitesimal di�eomorphism along a small vector

�led ξµ. It can easily be shown that the Riemann tensor (2.12) is invariant with

respect to this kind of transformation, i.e., the curvature of the physical spacetime

remains unchanged. Referring the interested reader to chapter seven of Carroll, 2019,

for a thorough derivation of the transformation in Eq. (2.18), we continue investigating

the remaining degrees of freedom. Adopting the notation and following the approach

presented in Carroll, 2019, further, we decompose hµν into its 00-component, its 0i-

components, and its ij-components:

h00 = −2Φ (2.19)

h0i = ωi (2.20)

hij = 2sij − 2Ψδij , (2.21)

with

Ψ = −1

6
δijhij (2.22)

sij =
1

2

(︃
hij −

1

3
δklhklδij

)︃
. (2.23)

In Eq. (2.21), hij is written as the sum of a trace-term (Eq. (2.22)), and the symmetric

and trace-free spatial tensor sij (Eq. (2.23)), i.e., Tr(sij) = 0. The tensor sij is called

the strain. In this notation the linearized Einstein equations can be written as

∇2Ψ = 4πGT00 −
1

2
∂k∂ls

kl (2.24)(︁
δjk∇2 − ∂j∂k

)︁
ωk = −16πGT0j + 4∂0∂jΨ+ 2∂0∂ks

k
j (2.25)(︁

δij∇2 − ∂i∂j
)︁
Φ = 8πGTij +

(︁
δij∇2 − δiδj − 2δij∂

2
0

)︁
Ψ

− δij∂0∂kω
k + ∂0∂(iωj) (2.26)

+□sij − 2∂k∂(is
k

j) − δij∂k∂ls
jl
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Considering the system of equations (2.24) to (2.26), we �nd the propagating degrees of

freedom to be those of the strain tensor sij, since Ψ can be determined from T00 and sij
(cf. Eq. (2.24)), and ωi can be determined from T0j, Ψ and sij (cf. Eq. (2.25)). Taking

into account its symmetric and traceless properties, we �nd sij to have 5 independent

components. Considering that under a gauge transformation of the form given by Eq.

(2.18), the quantities (Φ, ω,Ψ, sij) transform as

Φ → Φ + ∂0ξ
0 (2.27)

ωi → ωi + ∂0ξ
i − ∂iξ

0 (2.28)

Ψ → Ψ− 1

3
∂iξ

i (2.29)

sij → sij + ∂(iξj) −
1

3
∂kξ

kδij , (2.30)

we �nd that 3 of the 5 independent components of sij are subject to gauge transforma-

tions. Therefore, we count 2 propagating degrees of freedom for the strain tensor. To

make these degrees of freedom visible in a GW solution, we are going to solve the sys-

tem of equations (2.24) to (2.26), under the conditions of the so-called transverse-trace

gauge. To that end, we demand the vector�eld χµ to satisfy the conditions

∇2ξj +
1

3
∂j∂iξ

i = −2∂is
ij ∇2ξ0 = ∂iω

i + ∂0∂iξ
i , (2.31)

rendering sij and ωi to be transverse, i.e.,

∂is
ij = 0 ∂iω

i = 0 . (2.32)

Under these conditions and the additional assumption of vacuum, i.e., Tµν = 0, the

EFE ((2.24) to (2.26)) take the form

∇2Ψ = 0 (2.33)

−∇2ωk − 4∂0∂jΨ = 0 (2.34)(︁
δij∇2 − ∂i∂j

)︁
(Φ−Ψ)− ∂0∂(iωj) + 2δij∂

2
0Ψ−□sij = 0 . (2.35)

Solving the �rst two equations under the assumption of well-behaved boundary con-

ditions, we obtain Ψ = 0 and therefore, ωj = 0, together with

(︁
δij∇2 − ∂i∂j

)︁
Φ−□sij = 0 . (2.36)
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Exploiting that sij is traceless while taking the trace of Eq. (2.36), we deduce Φ = 0

and therefore, □sij = 0, or equivalently

□hTT
µν = 0 . (2.37)

Solving this equation with the plane-wave ansatz hTT
µν = Cµν e

ikσxσ
and considering a

wave propagating in x3-direction, we eventually arrive at the famous GWs solution

hTT
µν =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ , (2.38)

where h+ and h× carry the two degrees of freedom. The notation h+ and h× is chosen

with respect to the individual e�ects that each part of the solution would have on a

ring of test masses located in the x1, x2 plane: In the case h× = 0, the ring would

be deformed periodically in direction of the x1 and x2 axes, being elongated in one

direction while being squeezed in the other. In the case h+ = 0, same behaviour would

be observed in directions diagonal to those axes.

2.4 Extracting Gravitational Waves from Simulations

For the purpose of performing general-relativistic simulations, spacetime is decom-

posed in what is called the 3+1 formalism. The key idea of this formalism is the

foliation of spacetime by a family of spacelike hypersurfaces, transforming the EFE

into a Cauchy problem, that allows for the evolution of initial data in time, cf. for

example Gourgoulhon, 2007. In this context, the concepts of lapse and shift by J.

A. Wheeler play an important role. The lapse α and the shift β are measures of the

time lapse and the shift of coordinates between spatial slices (cf. for example Fig. 2 of

Centrella et al., 2010). They represent coordinate freedoms of the metric. Due to this

freedom, di�erent slicing conditions may be applied to the lapse function, for exam-

ple for the purpose of avoiding singularities. One possible formulation of the EFE in

terms of 3+1 formalism is the one presented by Arnowitt, Deser and Misner (ADM),

Arnowitt et al., 2008, or their reformulation by York, 1978. However, as investigated

by Kidder et al., 2001, the ADM equations are a formulation of the EFE that is only

weakly hyperbolic. An improved system of equations, called the BSSNOK (or just
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BSSN) formalism, allowing long term stable evolutions was introduced by Baumgarte

et al., 1998, and Shibata et al., 1995. With respect to the simulations performed for

this thesis, we name one more evolution system: The Z4c formalism introduces con-

straint damping terms into the system of equations that cause a reduction of constraint

violations by between one and two orders of magnitude compared to simulations with

BSSN, cf. Bernuzzi et al., 2010, and Hilditch et al., 2013. These e�orts to improve the

evolution system eventually led to the �rst stable binary black hole simulations that

allowed for the extraction of convergent gravitational waveforms, cf. for example Fiske

et al., 2005, and Baker et al., 2006a.

2.4.1 Newman-Penrose scalar

The Newman-Penrose scalar, or Weyl scalar, Ψ4 is one out of �ve complex scalars,

which can be formed by contractions of the Weyl tensor (4)
Cµνρσ de�ned as

(4)
Cµνρσ = (4)

Rµνρσ −
1

2

(︁
(4)
Rµρ gνσ − (4)

Rµσ gνρ +
(4)
Rνσ gµρ − (4)

Rνρ gµσ
)︁

+
1

6
(gµρ gνσ − gµσ gνρ)

(4)
R , (2.39)

with a complex null tetrad, lµ, nµ, mµ, m̄µ. These vectors are chosen to satisfy

orthogonality and normalization conditions,

lµmµ = 0 = nµmµ , −lµnµ = 1 = mµm̄µ . (2.40)

Together the scalars, Ψ0 ... Ψ4, cover the 10 independent components of the four-

dimensional Weyl tensor, which can be expressed in terms of these scalars, cf. Newman

et al., 1962. The Newman-Penrose scalar Ψ4 is de�ned by

Ψ4 = − (4)
Cµνρσ n

µm̄νnρm̄σ , (2.41)

which is equivalent to

Ψ4 = − (4)
Rµνρσ n

µm̄νnρm̄σ . (2.42)

In a special subset of transverse frames, called quasi-Kinnersley frames, cf. Kinnersley,

1969, Ψ4 measures the outgoing gravitational radiation, cf. for example Baumgarte et
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al., 2010. In terms of the 3+1 decomposition of the EFE, Eq. (2.42) becomes

Ψ4 =
[︁
(4)
Rijkl + 2Ki[kKl]j

]︁
nim̄jnkm̄l (2.43)

− 8
[︁
Kj[k,l] + Γm

j[kKl]m

]︁
n[0m̄j]nkm̄l (2.44)

+ 4 [Rjl +KjmK
m
l +KKjl] n

[0m̄j]n[0m̄l] , (2.45)

cf. Baker et al., 2002. In the preceding equation, Kij is the extrinsic curvature tensor

Kµν = −γ ρ
µ γ

σ
ν ∇ρnσ , (2.46)

with nµ being the timelike normal vector, and γµν being the spatial metric on a 3-

dimensional hypersurface, cf. for example Baumgarte et al., 2010.

2.4.2 GW Modes

Following the approach taken in Brügmann et al., 2008, we consider spin-weighted

spherical harmonics Y s
lm, as a means to determine modes Alm of GWs by projection,

i.e., evaluation of the scalar product

Alm = ⟨Y s
lm,Ψ4⟩ =

∫︂ 2π

0

∫︂ π

0

Ψ4Y
s
lm sin θdθϕ . (2.47)

Here s = −2, since Ψ4 transforms as spin-weight −2 �eld, e.g. Maggiore, 2007. The

spin-weighted spherical harmonics Y s
lm are de�ned as

Y s
lm(ϑ, φ) = (−1)s

√︃
2l + 1

4π
dlm(−s)(ϑ) e

imφ , (2.48)

where dlm(−s) are Wigner d-functions

dlm(−s)(ϑ) =

C2∑︂
t=C1

(−1)t [(l +m)! (l −m)! (l + s)! (l − s)!]

(l +m− t)! (l − s− t)! t! (t+ s−m)!)
(2.49)

(cosϑ/2)2l+m−s−2t (sinϑ/2)2t+s−m , (2.50)

with C1 = max(0,m − s) and C2 = min(l + m, l − s). Since Ψ4 falls o� as 1/r, 1

often the product rΨ4 is considered instead of Ψ4, evaluated at high �nite radius to

1In the general case, Ψn falls o� as rn−5, cf. for example Bishop et al., 2016.
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approximate the limit of r → ∞, i.e., the case of a detector at large distance from the

source.

2.5 Integration of rΨ4 data

We calculate the gravitational wave strain h from Ψ4 data, considering only the dom-

inant 22-mode, cf. Fig. 2.2, and utilizing the method of �xed frequency integration

(FFI) from Ref. Reisswig et al., 2011. The FFI method reduces secular non-linear

drifts in h that arise due to �nite length and discrete sampling of the signal when

integrating Ψ4 twice in time, cf. Fig. 2.1. In the �rst and second panel of Fig. 2.1,

we compare the FFI method to the naive integration utilizing Simpson's rule, apply-

ing both methods to rΨ4 data of a BNS merger simulation (EOS ALF2, q = 1.25,

M = 2.8M⊙). The results obtained with Simpson's rule do not oscillate about zero.

Depending on the choice of the integration constants c1 and c2 of the �rst and second

time integration, we may �nd drifts at the early or late times, cf. panels one and two

of Fig. 2.1. Reisswig et al., 2011, integrate a Fourier-transformed signal, cutting o�

unphysical low-frequency components:

F̃ (ω) =

⎧⎨⎩−if̃(ω)/ω0 , ω ≤ ω0

−if̃(ω)/ω , ω ≤ ω0

. (2.51)

Integrating twice, we obtain

h̃(ω) =

⎧⎨⎩−Ψ̃4(ω)/ω
2
0 , ω ≤ ω0

−Ψ̃4(ω)/ω
2 , ω ≤ ω0

. (2.52)

In the third panel of Fig. 2.1, we compare the FFI method to the naive integration

without �ltering of low frequencies. In the case of un�ltered integration, we �nd drifts

at early and late times. Furthermore, the amplitude |hunfiltered22 (t)| oscillates about the
result obtained with FFI. In the case of the 22-mode, we �lter out frequencies lower

than initial orbital frequency ωorbit, i.e., ω0 = ωorbit. In the presented examples, the

GW signal is shifted with respect to the observer position rextr, i.e., we use the retarded

time

u = t− r∗ = t− rextr − 2M ln
(︂rextr
2M

− 1
)︂
, (2.53)

cf. Dietrich et al., 2017. Here, the observer is located at r5 ≈ 1034 km.
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Figure 2.1: Real part of the 22-mode of the strain amplitude h(t) calculated by means
of di�erent methods: Simpson's rule, frequency �xed integration, un�ltered integration of
Fourier transformed Ψ4 data, which stem from a BNS simulation with EOS ALF2, mass ratio
q = 1.25, and total mass M = 2.8M⊙. In the upper panel, the frequency �xed integration is
compared to the integration by Simpson's rule. Due to non-linear drift in the time-domain
integration, the signal calculated by application of Simpson's rule does not oscillate about zero
at late times. In the middle panel, a similar situation is presented: the integration constants
are chosen such that the signal is zero at late times. This procedure leads to notable drift
at early times. In the lower panel, the frequency �xed integration is compared to the naive
integration of the Fourier transform where low frequencies are not �ltered. In the case of
the un�ltered integration, the amplitude |hunfiltered22 (t)| (dotted line) exhibits oscillations and
drifts at early and late times.



2.5. Integration of rΨ4 data 17

Figure 2.2: Sample of modes of the strain amplitude h(t) with l = m. Depicted are the 22,
33 and 44 modes of the GW signal belonging to a BNS merger simulation with EOS SLy,
q = 1.25 and M = 2.8M⊙. The signal is shifted in accordance with Eq. 2.53. The maximal
amplitude decreases notably in the case of modes with l > 2.
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Chapter 3

Simulation Campaign

In this thesis, we consider 335 relativistic simulations of BNSs conducted with the

BAM code [Bernuzzi et al., 2016a; Dietrich et al., 2015b; Thierfelder et al., 2011;

Brügmann et al., 2008], for a total of 165 BNS con�gurations to study the e�ect

of mass ratio on the threshold mass [cf. Chap. 5] and on properties of the remnant

system [cf. Chap. 6]. The associated initial data (ID) exclusively include binaries of

irrotational NSs. They have been constructed with the SGRID code [Tichy et al.,

2019; Dietrich et al., 2015a; Tichy, 2009b; Tichy, 2009a; Tichy, 2006]. 295 of the

considered simulations (145 BNS con�gurations) are part the simulation campaign of

Ref. [Koe1], they will accompany us through this and the following chapters. These

simulations cover a parameter space spanned by three equations of state (EOS) and

seven mass ratios. In each case de�ned by a pair of parameters (EOS, q), a suitable

range of total masses is considered. For one of these cases, namely ALF2 with q = 1.5,

we have conducted 40 additional simulations of 20 con�gurations. We analyse this

smaller set of simulations thoroughly in Chap. 4, examining the interesting regime

close to threshold. The larger set of simulations is evaluated in Sects. 5 and 6. Our

simulations were performed on HAWK at the High-Performance Computing Center

Stuttgart (HLRS) and on the ARA cluster of the University of Jena. Depending on

the numerical resolution, the BAM simulations took between one and several weeks

to complete. In the case of ID construction the usual runtime was four to �ve days.

In this chapter, we examine EOSs selected for the simulation campaign of Ref.

[Koe1], i.e., SLY, ALF2 and H4, in Sect. 3.1. For the characterization of EOSs, we

consider properties of single TOV stars (e.g. maximum mass, mass-radius relations,

or compactness) and properties of binary systems (e.g. tidal interaction). We discuss

these properties in the light of recent constraints on the unknown EOS of nuclear

matter, reviewing �ndings of studies conducted subsequently to the observations of
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GW170817 and GW190425. With regard to the con�gurations considered in the sim-

ulation campaign, a broad set of characteristic properties is provided in Sect. 3.2. In

Sect. 3.3, we discuss the process of conducting BNS-merger simulations with BAM,

taking a glance at the employed strategies and numerical methods. Illustrating the

chosen numerical setup, we take a closer look at the structure of BAM's numerical grid.

Leaving the detailed analysis of the simulation data for later chapters, we conclude

this chapter with a presentation of results in Figs. 3.5 and 3.6, and Tabs. 3.7 to 3.9.

3.1 BNSs in General-Relativistic Simulations

3.1.1 TOV Solution

The most simple general-relativistic model of a neutron star is the Tolman-Oppenheimer-

Volko� (TOV) solution. It can be derived presuming spherical symmetry (which al-

ready implies that the spacetime is static, cf. discussion in Sect. 2.1) and assuming

for the matter to behave like a perfect �uid. Here, we will focus to the main steps,

referring the interested reader to Carroll, 2019, for a detailed derivation. Inserting

the metric of a spherically symmetric spacetime, Eq. (2.8), and the energy momentum

tensor of a perfect �uid

Tµν = (ϱ+ p)UµUν + pgµν , (3.1)

with ϱ, p and Uµ being the energy density, the pressure and the four-velocity, respec-

tively, into the Einstein equations, Eq. (2.2), we obtain three independent equations.

These are related to the components Gtt, Grr and Gθθ (respectively Gϕϕ) of the Ein-

stein tensor. Employing the tt equation, the rr equations and the energy-momentum

conservation ∇µT
µν = 0, we arrive at the TOV equation, Oppenheimer et al., 1939,

dp

dr
= −(ϱ+ p) [Gm(r) + 4πGr3p]

r [r − 2Gm(r)]
, (3.2)

where m(r) is de�ned as

m(r) = 4π

∫︂ r

0

ϱ(r′)r′2dr′ . (3.3)

These equations only build a closed system in connection with an equation of state

(EOS), p = p(ϱ, T, S, ...), which relates state variables. Here, the minimal set consists

of the variables pressure and density, i.e.

p = p(ϱ) . (3.4)
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3.1.2 EOSs: Properties, Constraints, Simulations

EOSs are models which describe the state of matter under given physical conditions.

In the case of dense NS matter, it is impossible to experimentally recreate conditions

present in NSs in a laboratory on earth. Therefore, models of dense NS matter have

to be tested with respect to astrophysical observations. Observations in the electro-

magnetic spectrum, GW and multi-messenger observations1 put constraints on the

yet unknown EOS of NSs. Constraints can also be inferred from heavy-ion collision

experiments, cf. for example Danielewicz et al., 2002; Russotto et al., 2016. Models of

NS matter may be based on di�erent assumptions and theoretical approaches. To give

an example, EOSs may be build upon di�erent assumption concerning the dominant

constituents of the NS core, e.g. nucleons, hyperons, pions or kaon condensates, cf. for

example Read et al., 2009.

As indicated in the previous section, at the least pressure and density need to be

set into relation to model NS matter. Usually, thermal e�ects can be neglected as the

temperature of NSs is far below their constituent particles' Fermi energy, e.g. Read

et al., 2009. EOSs that neglect in�uences of temperature are called zero-temperature

EOSs. In BNS simulations, this description of NS matter becomes problematic after

merger when temperatures above several tens of MeV are reached, cf. for example

discussion by Köppel et al., 2019. This problem can be solved by the addition of a

thermal pressure contribution

pth = (Γth − 1) ρϵ , (3.5)

with an adiabatic constant of Γth = 1.75, cf. Shibata et al., 2005; Bauswein et al.,

2010. The quantities ϱ and ϵ are the rest-mass density and the speci�c internal energy,

respectively. A simple example of zero-temperature EOSs are polytropic models

p = Kϱγ . (3.6)

Another model is given by the TOV solution with the extreme assumption of

constant density throughout the NS. It provides an interesting relation with respect

to the maximal mass that a NS may have. Given a radius R, the mass of a spherically

1GW observations of BNSs Abbott et al., 2017c; Abbott et al., 2020a, Kilonova and GRB afterglow
measurements of GW170817, e.g. Abbott et al., 2017a; Coughlin et al., 2019; Coughlin et al., 2018, X-
ray measurements performed by the NICER [Neutron Star Interior Composition Explorer], cf. Miller
et al., 2019; Riley et al., 2019; Miller et al., 2021; Riley et al., 2021,
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symmetric object of that radius is constrained by

Mmax =
4

9G
R . (3.7)

According to Buchdahl's law, Buchdahl, 1959, any solution of the TOV equation has

to obey the inequality

Mmax <
4

9G
R . (3.8)

The maximum mass Mmax is an important characteristic of NS EOSs, which has to

be compatible with observational data, e.g. masses determined from observations of

massive radio pulsars, cf. Antoniadis et al., 2013; Arzoumanian et al., 2018; Fonseca

et al., 2021. The most massive pulsars observed have masses of about 2M⊙. According

to Abbott et al., 2018, the maximum TOV mass is constrained by Mmax > 1.97M⊙.

In Ref. [Koe1] and in this work, we employ three EOSs, i.e. SLy, ALF2, and H4 for our

simulations. Their maximum masses, 2.06M⊙, 1.99M⊙, and 2.03M⊙, respectively, are

compatible with this constraint.

Table 3.1: Sample of properties characterizing the EOSs studied in this work, ordered by
sti�ness. Columns from left to right: Mmax and Rmax are the gravitational mass and radius of
the maximum-mass TOV star. R1.4 and R1.6 are the radii of single 1.4M⊙ and 1.6M⊙ TOV
stars, respectively. Cmax = (GMmax)/(c

2Rmax) is the compactness of the maximum-mass
TOV con�guration and C∗

1.6 = (GMmax)/(c
2R1.6) an alternative formula for the compactness

as given by Bauswein et al., 2013. Λ1.4 is the tidal deformability coe�cient of a single 1.4 M⊙
star. Table taken from [Koe1].

EOS Mmax Rmax R1.6 R1.4 Cmax C∗
1.6 Λ1.4 Literature

[M⊙] [km] [km] [km]

SLy 2.06 9.91 11.46 11.37 0.307 0.268 306.7 Douchin et al., 2001
ALF2 1.99 11.30 12.38 12.41 0.260 0.237 590.6 Alford et al., 2005
H4 2.03 11.62 13.54 13.46 0.258 0.223 885.6 Lackey et al., 2006

Associated with the NS radius, di�erent stellar parameters are used to characterize

an EOS. Typically, these are the radii of TOV stars with M = 1.4M⊙ and 1.6M⊙,

i.e., R1.4 and R1.6, and the radius of the maximum mass con�guration Rmax. The

radii of TOV stars constructed with SLy, ALF2, and H4 are reported in Tab. 3.1. In

the case of 1.4M⊙ stars these are 11.46 km, 12.38 km, and 13.54 km, respectively. For

detailed information about the considered EOS models we refer to the references in

column nine of Tab. 3.1. In Ref. [Koe1], we claim that the chosen EOSs are broadly

compatible with recent maximum mass and radius constraints, referring to a sample
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of studies that were conducted subsequently to the observations of GW170817 and

GW190425, i.e., Bauswein et al., 2017; Annala et al., 2018; Most et al., 2018; Abbott

et al., 2018; Radice et al., 2019; Capano et al., 2020; Dietrich et al., 2020; Legred

et al., 2021; Miller et al., 2021; Raaijmakers et al., 2021; Huth et al., 2021. We are

going to take a closer look at some of the mass and radius constraints determined in

these studies, starting with Bauswein et al., 2017, who �nd constraints

R1.6 ≥ 10.68+0.15
−0.04 km , Rmax ≥ 9.60+0.14

−0.03 km (3.9)

based on a lower estimate of the threshold mass (Mthr, cf. Sect. 4.3.1)

Mthr ≥ 1.23Mmax , (3.10)

determined in connection with the total mass measured for GW170817, see for example

Abbott et al., 2017c, and a causal relation between Mmax and Rmax

Mmax ≤
1

2.82

c2Rmax

G
(3.11)

cf. Koranda et al., 1997; Lattimer et al., 2016. With respect to constraints on the

tidal deformability Λ̃ associated with GW170817 (at a credence level of 90%), Annala

et al., 2018, infer constraints on the radius of a 1.4M⊙ NS, i.e.,

9.9 km < R1.4 < 13.6 km . (3.12)

Similar, yet stricter constraints have been determined by Radice et al., 2019, who �nd

the 90% credible interval to be

R1.4 = 12.2+1.0
−0.8 km . (3.13)

Although they indicate additional 0.2 km of systematic uncertainty, these tighter limits

do not enclose the respective radius of H4 by a narrow margin. In defense of this

EOS, we may put forward that Radice et al., 2019, expect higher systematic errors

in association with an extension of their set of EOSs, which they consider large but

still limited. In any case, we should consider H4 an extreme case, especially if we

also consider its high tidal polarizability, that is higher than recent constraints, e.g.

Λ1.4 < 800 according to Most et al., 2018, or Annala et al., 2018 Considering the Λ1.4

values of our EOSs, we point out that a reasonably large range of tidal polarizabilities
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is considered. According to a study by Radice et al., 2018b, both H4 and SLy are

excluded EOSs with respect to constraints on the tidal parameter Λ̃ (cf. Sect. 3.1.3)

inferred from the multi-messenger observations related to GW170817. Other works

see the lower constraints on the tidal deformability of NSs at signi�cantly lower levels,

e.g. Annala et al., 2018 or Kashyap et al., 2021 with Λ1.4 > 172.

Figure 3.1: Properties of EOSs used within this thesis. Points mark components (TOV stars)
of simulated binaries with varying mass ratio. Presented are relations between a single star's
mass MA and its radius R (upper left), its compactness (upper right), the respective Love
numbers k2 (lower left) and the tidal polarizability Λ2 (lower right). Plot in the lower right
taken from [Koe1].

With respect to GW and multi-messenger observations of BNS mergers, future

BNS merger events are expected to constrain another characteristic of the NS EOS: the

threshold mass to prompt collapse. Following the coalescence of a BNS, the remnant

may immediately collapse to a BH if its total mass exceeds this threshold mass, cf. Sect.

4.3. With respect to the two existing BNS merger observations, the threshold mass

is directly constrained by the multi-messenger observations connected to GW170817,

Abbott et al., 2017b, and the highly likely observation of a prompt-collapse merger
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associated with GW190425, Abbott et al., 2020a, i.e.,

2.74+0.04
−0.01M⊙ < Mthr < 3.3+0.1

−0.1M⊙ . (3.14)

Under the assumption that the �nal remnant associated with GW170817 was a BH

[e.g. Margalit et al., 2017; Ruiz et al., 2018; Shibata et al., 2017], Rezzolla et al., 2018,

have narrowed the maximum-mass constraint to

2.01+0.04
−0.04M⊙ ≤ Mmax ≤ 2.16+0.17

−0.15M⊙ . (3.15)

Regarding the use of EOSs in simulations, i.e., for the construction of ID, or in

dynamical evolutions, EOSs are either implemented in tabulated form or as piecewise-

polytropic (pwp) �ts. In connection with simulations presented in this chapter, two

codes were employed: SGRID (ID) and BAM (dynamical evolutions). In both cases,

the treatment of EOSs is based on pwp �ts determined by Read et al., 2009. These

four-parameter �ts consist of three polytropic pieces, de�ned by three adiabatic indices

and Eq. (3.6), with the �rst dividing density as a forth parameter. Characteristic

quantities presented in Tab. 3.1 are computed based on these �ts using a workframe

created by Bernuzzi and Nagar.2 The curves in Fig. 3.1 are determined in the same

manner. Presented are the mass-radius relations, the compactness, and tidal quantities

k2 and Λ2 as functions of a single NS's mass.

3.1.3 Tidal Polarizability

The emission of GWs in the late phase of BNS inspiral is in�uenced by tidal interactions

of the involved NSs, and hence their tidal properties. A measure for a NS's response

to external quadrupolar �elds Eij is the constant Λ. Up to linear order it relates Eij to
the quadrupole moment Qij developed in response to the external �eld, i.e.,

Qij = −λEij . (3.16)

In the literature λ is sometimes referred to as the tidal Love number, sometimes this

name is reserved for the dimensionless quantity k2 which is related to λ by

k2 =
3G

2R5
λ . (3.17)

2Matlab code solving TOV equations in GR, https://bitbucket.org/bernuzzi/tov/src/

master/, based on Bernuzzi et al., 2008; Damour et al., 2009

https://bitbucket.org/bernuzzi/tov/src/master/
https://bitbucket.org/bernuzzi/tov/src/master/
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Figure 3.2: Tidal polarizability parameters Λ̃ (�rst column) and κT2 (second column) of EOSs
used within this thesis. For each EOS the tidal polarizability parameters as a functions of
M are given for a sample of seven mass-ratios, marked from dark (q = 1) to light (q = 1.75).
In the case of high mass ratios, the allowed range of M is constraint by the condition,
M1 < Mmax, where M1 is the mass of the more massive component. Points mark simulated
BNS con�gurations. κT2 (M) and Λ̃(M) are monotonously decreasing functions.

Tidal interactions in compact binaries can be treated as fundamental non-radial

l = 2 oscillations, regarding the NSs as forced, damped harmonic oscillators, cf. for

example Zhao et al., 2022; Damour et al., 2009; Bernuzzi et al., 2008; Flanagan et al.,

2008; Hinderer, 2008. Love numbers k2 of the EOSs considered in Ref. [Koe1], are

reported in the lower left panel of Fig. 3.1. From the Love numbers and the com-

pactness C = GMA/(RAc
2) of a NS, we determine the quadrupolar tidal polarizability

parameter

ΛA
2 =

2

3
kA2

(︃
c2

G

RA

MA

)︃5

=
2

3
kA2 C

−5 , (3.18)

of a NS with mass MA and radius RA, e.g. Bernuzzi, 2020; Damour et al., 2010. ΛA
2 is

a measure for the sti�ness of a NS. In Tab. 3.1, taking Λ1.4, i.e., the tidal polarizability

of a 1.4M⊙ star as a reference, EOSs are ordered descending from soft to sti� with

respect to their sti�ness. With respect to the tidal polarizability of BNSs, we consider

the quantities, κT2 and Λ̃, de�ned as

κT2 =
3

2

(︁
ΛA

2X
4
AXB + ΛB

2 X
4
BXA

)︁
(3.19)

Λ̃ =
16

13
(XA + 12XB)X

4
A ΛA

2 + (A ↔ B) (3.20)

with XA = MA/M , e.g., Bernuzzi, 2020. In Fig. 3.2, κT2 and Λ̃ are given for mass

ratios considered in this work (lines). The tidal polarizability parameters Λ̃ and κT2 of

the considered binary con�gurations (points) stretch over a broad range. They depend

primarily on the total mass of the binary, secondarily there is a systematic e�ect of
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the mass ratio. For given M , the tidal parameters increase with increasing q.3 Λ̃ and

κT2 are decreasing functions of M .

3.2 BNS Con�gurations and ID

In this section, we consider the 145 con�gurations of Ref. [Koe1]. These con�gurations

cover a parameter space spanned by three EOSs (SLy, ALF2, H4), seven mass ratios

(q ∈ {1.0, 1.125, 1.25, 1.375, 1.5, 1.625, 1.75}), and adapted ranges of total masses. In

the case of ALF2 and M = 2.8M⊙, three additional con�gurations were simulated, to

examine tcoll(q) at intermediate mass ratios, i.e., q ∈ {1.3125, 1.4375, 1.5625}. Usually
six to seven con�gurations of varying total mass are considered per case of given EOS

and mass ratio. In total these are 46, 55, and 44 con�gurations in the cases of SLy,

ALF2, and H4, respectively, cf. Tabs. 3.2 to 3.4.

The business of constructing ID containing binaries in GR is not trivial. Due to

the non-linearity of the EFE, solutions cannot simply be superposed. Consequently,

properties of the binary's components are not unambiguously de�ned. In SGRID the

single-star masses are estimated from an integral resembling the ADM mass compu-

tation, and running over only one star, cf. Tichy et al., 2019. Similarly, quantities like

linear or angular momentum need to be estimated. Preparing ID, the SGRID code

has been our weapon of choice. All of the considered con�gurations contain binaries

of irrotational NSs with an initial separation of 16M⊙ (≈ 23.6 km) on quasi-circular

orbits with residual eccentricities of the order of 10−2, cf. column �ve of Tabs. 3.7

to 3.9. Saving computational resources and due to the short inspiral, we did not apply

any additional eccentricity reduction. In the dynamical evolutions, with respect to the

EOS, the mass ratio and the total mass, the chosen initial separation does not always

lead to the same number of orbits, Norbit, up to merger. In almost all cases a minimal

number of Norbit ≳ 4 has been reached. To �nd an initial separation corresponding to

this requirement, and parameter settings for SGRID that provide quasi-circular orbits,

we have conducted a set of test simulations which are not listed in the following. Prop-

erties of the considered binaries and their individual components are given in Tabs.

3.2 to 3.4.

3Λ̃ and κT2 depend on the total mass, and on the component's individual masses Mi and tidal
polarizability coe�cients Λi

2, cf. Eqs. (3.20) and (3.19). In regions, where the compactness C and
Love numbers k2 are approximately linear in MA, cf. Fig. 3.1, this dependence can be estimated to
be roughly of the form Ztidal ≈ a · q + b/q + c, with Ztidal ∈ {Λ̃, κT2 }.
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Table 3.2: BNS con�gurations with EOS SLy. Mass ratio q and total mass M (columns two
and three) directly determine the gravitational masses, M1 and M2, of the stars (columns
four and �ve). The chirp mass M = (M1M2)

3/5/M1/5 of the binary is given in column
six. The baryonic masses, M b

1 and M b
2 (columns seven and eight), as well as the radii, R1

and R2 (columns nine and ten), of the individual stars are provided by SGRID. The stars'
compactnesses, C1 and C2 (columns eleven and twelve), are calculated as Ci = (GMi)/(c

2Ri).

The tidal polarizability quantities, Λ
(1)
2 , Λ

(2)
2 , Λ̃ and κT2 (columns thirteen to sixteen), are

calculated using formulas (3.18) to (3.20). Table taken from Ref. [Koe1].

EOS q M M1 M2 M M b
1 M b

2 R1 R2 C1 C2 Λ
(1)
2 Λ

(2)
2 Λ̃ κT2

[M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [km] [km]

SLy 1.000 2.70 1.350 1.350 1.175 1.495 1.495 11.47 11.47 0.1738 0.1738 389 389 389 36.5
SLy 1.000 2.75 1.375 1.375 1.197 1.526 1.526 11.47 11.47 0.1771 0.1771 345 345 345 32.3
SLy 1.000 2.80 1.400 1.400 1.219 1.557 1.557 11.46 11.46 0.1804 0.1804 307 307 307 28.8
SLy 1.000 2.85 1.425 1.425 1.241 1.588 1.588 11.46 11.46 0.1837 0.1837 272 272 272 25.5
SLy 1.000 2.90 1.450 1.450 1.262 1.620 1.620 11.45 11.45 0.1870 0.1870 242 242 242 22.7
SLy 1.000 3.00 1.500 1.500 1.306 1.683 1.683 11.43 11.43 0.1938 0.1938 191 191 191 17.9
SLy 1.000 3.10 1.550 1.550 1.349 1.747 1.747 11.41 11.41 0.2007 0.2007 151 151 151 14.1

SLy 1.125 2.75 1.456 1.294 1.195 1.627 1.426 11.45 11.48 0.1878 0.1665 235 511 351 32.9
SLy 1.125 2.80 1.482 1.318 1.216 1.661 1.455 11.44 11.48 0.1914 0.1696 207 455 311 29.2
SLy 1.125 2.85 1.509 1.341 1.238 1.695 1.484 11.43 11.47 0.1950 0.1726 183 405 276 25.9
SLy 1.125 2.90 1.535 1.365 1.260 1.729 1.513 11.42 11.47 0.1986 0.1757 161 363 246 23.1
SLy 1.125 3.00 1.588 1.412 1.303 1.797 1.572 11.38 11.46 0.2060 0.1819 125 290 194 18.2
SLy 1.125 3.10 1.641 1.459 1.347 1.867 1.631 11.35 11.45 0.2136 0.1882 97 233 154 14.4

SLy 1.250 2.70 1.500 1.200 1.167 1.683 1.312 11.43 11.47 0.1938 0.1545 191 813 409 38.5
SLy 1.250 2.75 1.528 1.222 1.188 1.719 1.338 11.42 11.48 0.1976 0.1573 167 727 364 34.3
SLy 1.250 2.80 1.556 1.244 1.210 1.755 1.365 11.40 11.48 0.2015 0.1601 147 651 323 30.5
SLy 1.250 2.85 1.583 1.267 1.231 1.791 1.392 11.39 11.48 0.2054 0.1630 128 583 288 27.1
SLy 1.250 2.90 1.611 1.289 1.253 1.827 1.419 11.37 11.48 0.2093 0.1659 112 523 256 24.1
SLy 1.250 3.00 1.667 1.333 1.296 1.900 1.474 11.32 11.48 0.2174 0.1716 86 422 203 19.2
SLy 1.250 3.10 1.722 1.378 1.339 1.975 1.529 11.27 11.47 0.2257 0.1774 65 341 161 15.2

SLy 1.375 2.75 1.592 1.158 1.179 1.802 1.261 11.38 11.47 0.2066 0.1491 123 999 381 36.0
SLy 1.375 2.80 1.621 1.179 1.200 1.840 1.286 11.36 11.47 0.2107 0.1518 107 901 340 32.2
SLy 1.375 2.85 1.650 1.200 1.222 1.878 1.312 11.34 11.47 0.2149 0.1545 93 813 304 28.8
SLy 1.375 2.90 1.679 1.221 1.243 1.917 1.337 11.31 11.48 0.2192 0.1572 81 731 271 25.7
SLy 1.375 3.00 1.737 1.263 1.286 1.995 1.388 11.25 11.48 0.2280 0.1625 60 594 216 20.5
SLy 1.375 3.10 1.795 1.305 1.329 2.074 1.439 11.17 11.48 0.2372 0.1680 45 484 173 16.4

SLy 1.500 2.70 1.620 1.080 1.147 1.839 1.169 11.36 11.45 0.2106 0.1393 108 1,499 452 42.9
SLy 1.500 2.75 1.650 1.100 1.168 1.878 1.192 11.34 11.45 0.2149 0.1418 93 1,349 403 38.3
SLy 1.500 2.80 1.680 1.120 1.189 1.918 1.216 11.31 11.46 0.2194 0.1444 80 1,218 361 34.3
SLy 1.500 2.85 1.710 1.140 1.211 1.958 1.240 11.28 11.46 0.2239 0.1469 69 1,101 323 30.7
SLy 1.500 2.90 1.740 1.160 1.232 1.999 1.264 11.25 11.47 0.2285 0.1494 59 993 289 27.5
SLy 1.500 3.00 1.800 1.200 1.274 2.081 1.312 11.17 11.47 0.2381 0.1545 43 813 232 22.1
SLy 1.500 3.10 1.860 1.240 1.317 2.165 1.360 11.06 11.48 0.2484 0.1596 31 666 186 17.7

SLy 1.625 2.75 1.702 1.048 1.156 1.948 1.131 11.29 11.44 0.2227 0.1353 72 1,784 429 40.9
SLy 1.625 2.80 1.733 1.067 1.177 1.990 1.153 11.26 11.45 0.2275 0.1377 61 1,601 382 36.5
SLy 1.625 2.85 1.764 1.086 1.198 2.032 1.176 11.22 11.45 0.2323 0.1400 52 1,453 343 32.8
SLy 1.625 2.90 1.795 1.105 1.219 2.074 1.198 11.17 11.46 0.2373 0.1424 44 1,321 309 29.6
SLy 1.625 3.00 1.857 1.143 1.261 2.161 1.243 11.07 11.46 0.2479 0.1472 31 1,083 249 23.8
SLy 1.625 3.10 1.919 1.181 1.303 2.249 1.289 10.92 11.47 0.2595 0.1521 22 893 201 19.3

SLy 1.750 2.70 1.750 1.000 1.143 2.013 1.075 11.24 11.42 0.2301 0.1293 56 2,311 499 47.8
SLy 1.750 2.75 1.750 1.000 1.143 2.013 1.075 11.24 11.42 0.2301 0.1293 56 2,311 455 43.6
SLy 1.750 2.80 1.782 1.018 1.164 2.056 1.096 11.19 11.43 0.2351 0.1316 48 2,150 418 40.1
SLy 1.750 2.85 1.814 1.036 1.184 2.100 1.118 11.14 11.44 0.2404 0.1339 40 1,896 367 35.2
SLy 1.750 2.90 1.845 1.055 1.205 2.144 1.139 11.09 11.44 0.2458 0.1361 34 1,720 330 31.7
SLy 1.750 3.00 1.909 1.091 1.247 2.235 1.182 10.95 11.45 0.2576 0.1407 23 1,418 267 25.7
SLy 1.750 3.10 1.973 1.127 1.288 2.327 1.225 10.75 11.46 0.2711 0.1453 15 1,173 217 20.9
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Table 3.3: Same as Tab. 3.2, but for ALF2. Table taken from Ref. [Koe1].

EOS q M M1 M2 M M b
1 M b

2 R1 R2 C1 C2 Λ
(1)
2 Λ

(2)
2 Λ̃ κT2

[M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [km] [km]

ALF2 1.0000 2.80 1.400 1.400 1.219 1.549 1.549 12.39 12.39 0.1669 0.1669 589 589 589 55.3
ALF2 1.0000 2.85 1.425 1.425 1.241 1.579 1.579 12.40 12.40 0.1697 0.1697 529 529 529 49.6
ALF2 1.0000 2.90 1.450 1.450 1.262 1.610 1.610 12.41 12.41 0.1726 0.1726 475 475 475 44.5
ALF2 1.0000 2.95 1.475 1.475 1.284 1.641 1.641 12.41 12.41 0.1755 0.1755 427 427 427 40.0
ALF2 1.0000 3.00 1.500 1.500 1.306 1.672 1.672 12.42 12.42 0.1784 0.1784 381 381 381 35.8
ALF2 1.0000 3.10 1.550 1.550 1.349 1.735 1.735 12.42 12.42 0.1844 0.1844 307 307 307 28.8
ALF2 1.0000 3.20 1.600 1.600 1.393 1.798 1.798 12.41 12.41 0.1904 0.1904 246 246 246 23.1

ALF2 1.1250 2.80 1.482 1.318 1.216 1.650 1.448 12.42 12.34 0.1763 0.1577 414 843 594 55.8
ALF2 1.1250 2.85 1.509 1.341 1.238 1.683 1.477 12.42 12.36 0.1794 0.1603 367 760 532 50.0
ALF2 1.1250 2.90 1.535 1.365 1.260 1.716 1.506 12.42 12.37 0.1826 0.1629 328 687 479 45.0
ALF2 1.1250 2.95 1.562 1.388 1.281 1.750 1.534 12.42 12.38 0.1858 0.1656 292 621 430 40.3
ALF2 1.1250 3.00 1.588 1.412 1.303 1.783 1.563 12.41 12.39 0.1890 0.1682 259 560 385 36.2
ALF2 1.1250 3.10 1.641 1.459 1.347 1.851 1.621 12.39 12.41 0.1956 0.1736 204 458 310 29.1
ALF2 1.1250 3.20 1.694 1.506 1.390 1.919 1.680 12.36 12.42 0.2024 0.1791 159 372 248 23.3

ALF2 1.2500 2.80 1.556 1.244 1.210 1.742 1.361 12.42 12.28 0.1850 0.1497 300 1,155 601 56.6
ALF2 1.2500 2.85 1.583 1.267 1.231 1.777 1.387 12.41 12.30 0.1884 0.1521 265 1,054 543 51.1
ALF2 1.2500 2.90 1.611 1.289 1.253 1.812 1.414 12.41 12.32 0.1918 0.1545 234 954 487 45.9
ALF2 1.2500 2.95 1.639 1.311 1.275 1.848 1.441 12.40 12.34 0.1953 0.1570 206 868 439 41.3
ALF2 1.2500 3.00 1.667 1.333 1.296 1.884 1.468 12.38 12.35 0.1988 0.1594 181 786 394 37.1
ALF2 1.2500 3.10 1.722 1.378 1.339 1.956 1.522 12.34 12.38 0.2062 0.1644 140 650 319 30.0
ALF2 1.2500 3.20 1.778 1.422 1.383 2.028 1.576 12.28 12.40 0.2138 0.1694 106 536 257 24.2

ALF2 1.3125 2.80 1.589 1.211 1.205 1.784 1.320 12.41 12.25 0.1891 0.1460 258 1,344 609 57.4

ALF2 1.3750 2.80 1.621 1.179 1.200 1.825 1.283 12.40 12.21 0.1930 0.1426 223 1,547 615 58.0
ALF2 1.3750 2.85 1.650 1.200 1.222 1.862 1.308 12.39 12.24 0.1967 0.1448 196 1,413 555 52.5
ALF2 1.3750 2.90 1.679 1.221 1.243 1.899 1.333 12.37 12.26 0.2004 0.1471 171 1,284 499 47.2
ALF2 1.3750 2.95 1.708 1.242 1.265 1.937 1.358 12.35 12.28 0.2042 0.1494 150 1,167 449 42.5
ALF2 1.3750 3.00 1.737 1.263 1.286 1.975 1.383 12.33 12.30 0.2081 0.1517 130 1,068 406 38.4
ALF2 1.3750 3.10 1.795 1.305 1.329 2.051 1.434 12.26 12.33 0.2163 0.1563 98 889 329 31.2
ALF2 1.3750 3.20 1.853 1.347 1.372 2.128 1.485 12.16 12.36 0.2250 0.1610 72 741 267 25.3

ALF2 1.4375 2.80 1.651 1.149 1.195 1.864 1.247 12.39 12.18 0.1969 0.1393 195 1,770 622 58.9

ALF2 1.5000 2.80 1.680 1.120 1.189 1.901 1.213 12.37 12.14 0.2006 0.1362 170 2,016 630 59.7
ALF2 1.5000 2.85 1.710 1.140 1.211 1.940 1.237 12.35 12.17 0.2045 0.1384 148 1,841 568 53.9
ALF2 1.5000 2.90 1.740 1.160 1.232 1.979 1.260 12.32 12.19 0.2086 0.1405 128 1,687 514 48.8
ALF2 1.5000 2.95 1.770 1.180 1.253 2.018 1.284 12.29 12.21 0.2127 0.1427 111 1,543 465 44.1
ALF2 1.5000 3.00 1.800 1.200 1.274 2.058 1.308 12.25 12.24 0.2170 0.1448 95 1,413 420 39.9
ALF2 1.5000 3.10 1.860 1.240 1.317 2.138 1.355 12.15 12.28 0.2262 0.1492 69 1,178 342 32.5
ALF2 1.5000 3.20 1.920 1.280 1.359 2.220 1.403 11.99 12.31 0.2365 0.1536 48 993 279 26.6

ALF2 1.5625 2.80 1.707 1.093 1.183 1.936 1.181 12.35 12.11 0.2042 0.1333 150 2,279 636 60.5

ALF2 1.6250 2.70 1.671 1.029 1.135 1.890 1.107 12.38 12.02 0.1994 0.1264 177 3,073 788 74.9
ALF2 1.6250 2.75 1.702 1.048 1.156 1.930 1.129 12.36 12.05 0.2035 0.1285 154 2,815 714 67.9
ALF2 1.6250 2.80 1.733 1.067 1.177 1.970 1.151 12.33 12.07 0.2077 0.1305 133 2,551 641 61.0
ALF2 1.6250 2.85 1.764 1.086 1.198 2.011 1.173 12.30 12.10 0.2119 0.1325 114 2,355 584 55.6
ALF2 1.6250 2.90 1.795 1.105 1.219 2.052 1.195 12.26 12.12 0.2163 0.1346 97 2,160 529 50.4
ALF2 1.6250 2.95 1.826 1.124 1.240 2.093 1.218 12.21 12.15 0.2209 0.1366 83 1,979 478 45.7
ALF2 1.6250 3.00 1.857 1.143 1.261 2.134 1.240 12.15 12.17 0.2257 0.1387 70 1,818 434 41.4
ALF2 1.6250 3.10 1.919 1.181 1.303 2.219 1.285 11.99 12.22 0.2364 0.1428 48 1,537 356 34.1
ALF2 1.6250 3.20 1.981 1.219 1.345 2.305 1.330 11.61 12.26 0.2520 0.1469 27 1,295 287 27.6

ALF2 1.7500 2.70 1.718 0.982 1.122 1.950 1.053 12.34 11.95 0.2056 0.1214 143 3,845 806 76.9
ALF2 1.7500 2.75 1.750 1.000 1.143 1.992 1.074 12.31 11.98 0.2099 0.1233 122 3,529 731 69.8
ALF2 1.7500 2.80 1.782 1.018 1.164 2.034 1.095 12.27 12.00 0.2144 0.1253 104 3,237 663 63.4
ALF2 1.7500 2.85 1.814 1.036 1.184 2.076 1.116 12.23 12.03 0.2190 0.1272 89 2,964 600 57.4
ALF2 1.7500 2.90 1.845 1.055 1.205 2.119 1.137 12.18 12.06 0.2239 0.1292 75 2,716 543 52.0
ALF2 1.7500 2.95 1.877 1.073 1.226 2.162 1.158 12.11 12.08 0.2290 0.1311 63 2,509 495 47.5
ALF2 1.7500 3.00 1.909 1.091 1.247 2.205 1.179 12.03 12.11 0.2345 0.1331 51 2,294 447 42.9
ALF2 1.7500 3.10 1.973 1.127 1.288 2.294 1.222 11.70 12.15 0.2490 0.1370 30 1,947 366 35.2
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Table 3.4: Same as Tab. 3.2, but for H4. Table taken from Ref. [Koe1].

EOS q M M1 M2 M M b
1 M b

2 R1 R2 C1 C2 Λ
(1)
2 Λ

(2)
2 Λ̃ κT2

[M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [M⊙] [km] [km]

H4 1.000 2.80 1.400 1.400 1.219 1.528 1.528 13.56 13.56 0.1525 0.1525 886 886 886 83.0
H4 1.000 2.90 1.450 1.450 1.262 1.589 1.589 13.55 13.55 0.1581 0.1581 707 707 707 66.3
H4 1.000 2.95 1.475 1.475 1.284 1.619 1.619 13.54 13.54 0.1609 0.1609 634 634 634 59.4
H4 1.000 3.00 1.500 1.500 1.306 1.649 1.649 13.53 13.53 0.1638 0.1638 568 568 568 53.3
H4 1.000 3.10 1.550 1.550 1.349 1.711 1.711 13.50 13.50 0.1696 0.1696 452 452 452 42.4
H4 1.000 3.20 1.600 1.600 1.393 1.772 1.772 13.46 13.46 0.1756 0.1756 359 359 359 33.6
H4 1.000 3.30 1.650 1.650 1.436 1.835 1.835 13.40 13.40 0.1818 0.1818 283 283 283 26.6

H4 1.125 2.90 1.535 1.365 1.260 1.693 1.486 13.51 13.56 0.1679 0.1486 483 1,039 716 67.2
H4 1.125 2.95 1.562 1.388 1.281 1.725 1.514 13.49 13.56 0.1710 0.1512 428 935 641 60.1
H4 1.125 3.00 1.588 1.412 1.303 1.758 1.543 13.47 13.56 0.1742 0.1538 378 842 573 53.8
H4 1.125 3.10 1.641 1.459 1.347 1.824 1.599 13.41 13.54 0.1807 0.1591 296 686 459 43.1
H4 1.125 3.20 1.694 1.506 1.390 1.890 1.657 13.35 13.53 0.1875 0.1644 229 551 364 34.2
H4 1.125 3.30 1.747 1.553 1.433 1.958 1.714 13.26 13.50 0.1946 0.1699 176 445 288 27.1

H4 1.250 2.90 1.611 1.289 1.253 1.786 1.396 13.45 13.55 0.1770 0.1405 340 1,459 733 69.0
H4 1.250 2.95 1.639 1.311 1.275 1.821 1.423 13.42 13.56 0.1804 0.1428 299 1,320 657 61.9
H4 1.250 3.00 1.667 1.333 1.296 1.856 1.449 13.38 13.56 0.1839 0.1452 262 1,195 589 55.5
H4 1.250 3.10 1.722 1.378 1.339 1.926 1.502 13.30 13.56 0.1912 0.1501 200 980 472 44.5
H4 1.250 3.20 1.778 1.422 1.383 1.997 1.555 13.20 13.55 0.1990 0.1550 150 803 378 35.6
H4 1.250 3.30 1.833 1.467 1.426 2.069 1.609 13.06 13.54 0.2073 0.1600 111 658 301 28.4

H4 1.375 2.90 1.679 1.221 1.243 1.871 1.317 13.37 13.53 0.1855 0.1332 247 1,994 761 72.0
H4 1.375 2.95 1.708 1.242 1.265 1.908 1.341 13.32 13.54 0.1893 0.1355 214 1,818 685 64.8
H4 1.375 3.00 1.737 1.263 1.286 1.945 1.366 13.28 13.55 0.1932 0.1377 185 1,642 612 58.0
H4 1.375 3.10 1.795 1.305 1.329 2.019 1.416 13.16 13.56 0.2014 0.1422 137 1,357 494 46.8
H4 1.375 3.20 1.853 1.347 1.372 2.095 1.466 13.01 13.56 0.2104 0.1468 99 1,121 397 37.6
H4 1.375 3.30 1.911 1.389 1.415 2.171 1.516 12.81 13.56 0.2204 0.1514 69 927 318 30.2

H4 1.500 2.90 1.740 1.160 1.232 1.949 1.246 13.27 13.51 0.1937 0.1268 182 2,659 794 75.4
H4 1.500 2.95 1.770 1.180 1.253 1.987 1.269 13.21 13.52 0.1979 0.1289 156 2,411 712 67.7
H4 1.500 3.00 1.800 1.200 1.274 2.026 1.292 13.15 13.53 0.2022 0.1310 133 2,195 640 60.9
H4 1.500 3.10 1.860 1.240 1.317 2.104 1.339 12.98 13.54 0.2116 0.1353 95 1,825 519 49.4
H4 1.500 3.20 1.920 1.280 1.359 2.184 1.386 12.77 13.55 0.2221 0.1395 65 1,521 420 40.1
H4 1.500 3.30 1.980 1.320 1.402 2.265 1.433 12.43 13.56 0.2353 0.1438 40 1,269 338 32.3

H4 1.625 2.80 1.733 1.067 1.177 1.940 1.138 13.28 13.47 0.1927 0.1170 189 4,189 1,026 97.8
H4 1.625 2.85 1.764 1.086 1.198 1.980 1.160 13.22 13.48 0.1970 0.1190 161 3,775 915 87.3
H4 1.625 2.90 1.795 1.105 1.219 2.020 1.182 13.16 13.49 0.2015 0.1210 137 3,465 830 79.2
H4 1.625 2.95 1.826 1.124 1.240 2.060 1.204 13.08 13.50 0.2062 0.1230 115 3,162 748 71.5
H4 1.625 3.00 1.857 1.143 1.261 2.100 1.226 12.99 13.50 0.2111 0.1250 96 2,886 675 64.5
H4 1.625 3.10 1.919 1.181 1.303 2.183 1.270 12.77 13.52 0.2220 0.1290 65 2,398 546 52.4
H4 1.625 3.20 1.981 1.219 1.345 2.267 1.314 12.42 13.53 0.2355 0.1330 40 2,011 444 42.7

H4 1.750 2.80 1.782 1.018 1.164 2.002 1.083 13.19 13.44 0.1996 0.1119 147 5,375 1,074 102.9
H4 1.750 2.85 1.814 1.036 1.184 2.044 1.104 13.11 13.45 0.2043 0.1138 124 4,892 967 92.7
H4 1.750 2.90 1.845 1.055 1.205 2.085 1.125 13.03 13.46 0.2092 0.1157 103 4,459 872 83.7
H4 1.750 2.95 1.877 1.073 1.226 2.127 1.145 12.93 13.47 0.2145 0.1176 85 4,070 787 75.6
H4 1.750 3.00 1.909 1.091 1.247 2.169 1.166 12.81 13.48 0.2201 0.1195 70 3,701 707 68.0
H4 1.750 3.10 1.973 1.127 1.288 2.255 1.208 12.48 13.50 0.2335 0.1234 43 3,112 579 55.8
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3.3 BNS Merger Simulations and Results

In the simulation campaign of Ref. [Koe1], we focus on BNS mergers for which the

merger remnant collapses to a BH shortly after merger, to investigate the e�ect of

mass ratio on the threshold mass and properties of remnant systems. For our analysis,

we extract quantities characterizing the remnant system 5ms after BH formation, and

determine the collapse time in connection with our e�orts to locate the threshold mass

(cf. Chaps. 4 and 5 for a discussion of the method). Hence, we run our simulations

until the GW signal has propagated beyond the furthest observer position (here r10 ≈
1770 km). Due to the large number of simulations, processing the simulation output

had to be automated. For this purpose, we build and employ a workframe tailored

speci�cally for the output of this simulation campaign and the related analysis. It

processes and collects data of all simulations, preparing them for further analysis. If

required, this code automatically prepares plots of some or all processed data, allowing

for a quick investigation of new simulations.

3.3.1 Dynamical Evolutions with BAM and Clusters

Prior to performing simulations, proper parameters and initial conditions have to be

established. With respect to the speed of the computations on di�erent clusters, and

due to the hybrid structure of BAM, i.e., the combined use of MPI and OpenMP

parallelization, this especially involves determining the optimal ratio of cores hosting

MPI processes to cores sharing work in OpenMP threads. Further, an appropriate

number of nodes has to be established with respect to the workload of the simulations,

which primarily depends on the size of the numerical grid. In the example of our typical

high resolution runs (i.e. R3, cf. Sect. 3.3.2), the typical setup would be 8 nodes with

4 MPI/node and 9 OpenMP/MPI on one of ARA's partitions which has 36 cores per

node. In practice, di�erent aspects have to be taken into account to establish the

number of nodes to be employed per simulation. Especially constraints and rules with

respect to the usage of computational resources on a cluster have to be taken into

account. These constraints may include a maximum number of nodes used by a single

user per time. On another cluster one may be challenged with a limited budget of

assigned CPU-hours. In general, the computational speed of parallel algorithms does

not grow ideally (i.e., linearly) with the employed computational resources. Therefore,

increasing the number of employed CPUs in order to increase computational speed and

to reduce the total time spent on a simulation, may become an uneconomical solution.
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In the example above, no upper limit is set on the available CPU-hour budget, but the

maximum number of nodes per user and the maximum time per job are limited. If a

simulation remains un�nished, it has to be resubmitted, continuing from the last saved

checkpoint. On a practical note, choosing the number of nodes used per simulation

may also be seen as a strategic choice, since large jobs may be disfavoured in terms

of rules regulating the distribution of computational resources between users, while

jobs requiring small numbers of nodes might pass through the queue more quickly. In

a scenario of high usage rate on a cluster, users compete for the available resources.

Seeking to e�ciently acquire resources in this scenario, one may be required to adjust

strategies in order to minimize the time between the end of one job and the start of

the next job, this way minimizing idle waiting times.

As discussed in Sect. 3.2, we choose initial conditions such that the binaries would

perform a minimal number of four revolutions on quasi-circular orbits. To that end,

test runs have to be performed to �nd an adequate initial separation and adequate

settings of SGRID parameters for which the eccentricity will be su�ciently small. In

the practice of performing BNS merger simulations, an obstacle that would sometimes

emerge, is that evolutions crash in connection with numerical �uxes and high velocities

at the time of merger. Regarding the construction of numerical �uxes, BAM can locally

switch from a 5th order weighted-essentially-non-oscillatory (WENOZ) scheme, Borges

et al., 2008, to a more robust 2nd order local Lax-Friedrich method. On the one hand,

this hybrid algorithm, introduced in Ref. [Bernuzzi et al., 2016a], handles arti�cial

atmosphere. On the other hand, the 2nd order method proves to be more stable at

merger, provided that the switch (which is based on the lapse function) is properly

adjusted. Permanently switching to the low order �ux usually makes it possible to

continue crashed simulations from checkpoint. Another BAM feature that is important

performing BNS merger simulations is the apparent-horizon �nder, which we set to a

high search frequency to determine the time of BH formation with high accuracy.

3.3.2 Grid Con�gurations

The BAM code solves the EFE and the equations of general relativistic hydrodynamics

(GRHD) to evolve ID in time, employing an algorithm based on the method of lines

with an explicit Runge-Kutta scheme. BAM uses �nite di�erencing and is capable

of adaptive mesh-re�nement. Computations take place on a hierarchically structured

grid. The computational domain contains L nested re�nement levels, denominated

l = 0, ... L − 1. Each grid on a level l > 0 is completely covered by a grid on level
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l − 1, cf. Fig. 3.3. The regular Cartesian grids on each level are characterized by the

number of points n in each direction, and a constant grid spacing hl on level l which

is two times �ner than the spacing of level l − 1, i.e., the grid spacing on each level is

determined by the grid spacing h0 of the coarsest level:

hl =
h0
2l

. (3.21)

Figure 3.3: Illustration of BAM's grid structure - example one (number of �xed and moving
grid levels as used for all simulations presented in Tabs. 3.7 to 3.9 and 4.1). Depicted is the
x, y-plane of a domain which is covered by seven levels of grids, denominated l = 0 (innermost
grid), ... l = 6 (outermost grid). On level l = 6 each star is placed in each own moving box.
Moving boxes belonging to single stars on the levels l = 3, l = 4 and l = 5 would overlap
due to insu�ciently large separation of the stars. Therefore these boxes are merged to single
grids covering both stars. The grids on the levels l = 0, l = 1 and l = 2 are non-moving.
Each grid on level l > 0 is covered by a grid on level l − 1. On level six the density ρ is
included in the illustration.

There are two types of grids: moving and non-moving grids. Grids on levels l ≤ lmv

are single non-moving cubic boxes, and posses a large coordinate extent intended for

GW extraction. On levels l ≥ lmv on the other hand, more than one grid may be

placed, each covering one of the simulated compact objects. In cases where the indi-

vidual moving grids on a level would overlap, they are replaced by a single rectangular
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bounding box. This is illustrated in Figs. 3.3 and 3.4. The outlines in Fig. 3.3 show

the relative extent of grids. In all of our simulations, the same number of levels, i.e.,

L = 7, is used. On level l = 6, each of the two individual grids contain a NS. On levels

with l ∈ {3, 4, 5}, individual grids are replaced with rectangular boxes. Due to the

small initial separation of the stars, they are never split during our simulations. To

show the case of separated grids on more than one level, we present the example of a

grid with L = 11 levels in Fig. 3.4. It contains well separated grids on the levels l = 9

and l = 10, each of them centred at the respective component of the binary. Each of

the grids on level l = 10 is fully covered by grids on level l = 9.

Figure 3.4: Illustration of BAM's grid structure - example two. Innermost levels (l = 5, ...,
l = 10) of a grid with eleven levels. On levels l = 9 and l = 10 separate grids cover the
components of the binary systems. The moving grids on level l = 8 are merged, grids on
levels with l ≤ 7 are non-moving.

In our simulations, grids on four of the seven levels are moving boxes, three are

non-moving. In Ref. [Koe1], we distinguish four resolutions R1 to R4, based on the

number of grid points in each direction, cf. Tab. 3.5. Typically, simulations have been

conducted with only two of the speci�ed resolutions, i.e., R2 and R3, cf. Tabs. 3.7

to 3.9. In the case of R3, for example, non-moving boxes have 320 points in each

direction, moving boxes have 160. The grid spacing has to be chosen such that the

innermost boxes fully cover the stars which they contain. In the case of SLy and

ALF2 the grid spacing on the �nest level of a R3 grid is 185m, in the case of the H4

it is 196m. Due to this di�erence, which compensates for the larger radii of H4 stars
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(cf. Fig. 3.1), we distinguish between two otherwise equally constructed resolutions,

denominating the highest resolution R4 in the case of SLy and ALF2, and R4* in

the case of H4. The extent of the innermost grids covering the stars determines the

size of all (non-fused) grids. The overall extent of the numerical domain additionally

depends on L. Unlike the grid spacings on each level, the outer boundary position does

not depend on the number of grid points. Properties of the used numerical resolutions

are collected in Tab. 3.5.

Table 3.5: Grid con�gurations. As the number of levels is the same for all used resolutions,
the names in the �rst column primarily refer to the number of grid points. However, the
resolutions used for H4 are marked with a '*', as a di�erent grid spacing was needed to fully
cover the stars on the �nest level. The numerical domain contains L grid levels of which Lmv

are moving box levels. The number of grid points in each direction are n and nmv respectively.
The grid spacing on the �nest level (innermost boxes covering the NSs), h6, is 2

6 times �ner
than the spacing on the coarsest level, h0. The last column refers to the outer boundary
position R0. Table taken from [Koe1].

Name L Lmv n nmv EOS h6 h0 R0

[m] [km] [km]

R4 7 4 384 192 ALF2, SLy 154 9.847 3781.1
R4* 7 4 384 192 H4 163 10.437 4008.0
R3 7 4 320 160 ALF2, SLy 185 11.816 3781.1
R3* 7 4 320 160 H4 196 12.525 4008.0
R2 7 4 256 128 ALF2, SLy 231 14.770 3781.1
R2* 7 4 256 128 H4 245 15.656 4008.0
R1 7 4 192 96 ALF2, SLy 308 19.693 3781.1
R1* 7 4 192 96 H4 326 20.875 4008.0

3.3.3 Collapse Types, Properties of the Remnant System, Data

We conclude this chapter, presenting results and data of our simulation campaign that

we are going to analyse in the following chapters. We begin by considering once again

the parameter space covered by our simulations. With respect to a categorization of

the BNS mergers, Tab. 3.6 gives insight into this parameter space. Rows are de�ned

with respect to the mass ratio, each of them being subdivided with respect to the

considered EOSs. Columns refer to the binaries total masses M . Depending on q

and the EOS, di�erent ranges of M have been studied. Each entry in Tab. 3.6 stands

for one considered con�guration, which usually has been simulated using two di�erent

resolutions. The merger simulations are categorized based on a criterion related to
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the collapse time, cf. Sect. 4.6. In cases where di�erent results were obtained for

di�erent numerical resolutions, more than one type is given, marked with the respective

resolution as an index. We will motivate the employed criterion in Chap. 4, leaving

the evaluation for Chap. 5.

Table 3.6: Summary of simulations and collapse types: Columns are ordered by increasing
total mass of the binaries, rows are ordered by increasing mass ratio and subdivided by the
EOSs. The collapse types (cf. Sect. 4.6) may di�er between resolutions. In these cases, all
types are given with reference to their respective resolution. In cases where a con�guration
has only been simulated with one resolution, the respective resolution is given as an index.
Table taken from Ref. [Koe1].

q EOS
M

2.7 2.75 2.8 2.85 2.9 2.95 3.0 3.1 3.2 3.3

1.0
SLy IVR3 II IR3/IIR2 I I I I
ALF2 III IIR3/IIIR2 II II IR3,R2/IIR1 I I
H4 IIIR2∗ III IIIR3∗/IIR2∗ II I I I

1.125
SLy III IIIR3/IIR2 I I I I
ALF2 III III II II I I I
H4 III III II I I I

1.25
SLy IVR3 IIIR4,R3/IVR2 IIR4,R2/IIIR3 I I I I
ALF2 III II II II I I I
H4 III III II I I I

1.375
SLy III II I I I I
ALF2 III II II I I I I
H4 III III II I I I

1.5
SLy IVR3 IVR3/IIIR2 I I I I I
ALF2 III II I I I I I
H4 III IIR4∗/IR3∗/IIIR2∗ I I I I

1.625
SLy IIR3/IVR2 I I I I I
ALF2 IVR3 III IIR3/IIIR2 I I I I I I
H4 IVR2∗ IVR3∗/IIIR2∗ I I I I I

1.75
SLy IVR3 I I I I I I
ALF2 IV III I I I I I I
H4 IVR2∗ IIR3∗/IR2∗ I I I I

Taking a �rst look at the data, we consider Tabs. 3.7 to 3.9, which list results of

our simulations. Each simulation is identi�ed by EOS, resolution, mass ratio and total

mass. Error estimates were computed based on di�erences between results obtained

for the highest available resolutions - typically R3 and R2. Presented are residual

eccentricities, the �nal status of the simulation (i.e., whether or not a BH formed

within simulation time), the merger type, collapse time and properties of the remnant

system (i.e., BH mass, BH spin and disk mass). Our �nding for the collapse time will

be the subject of discussions in chapters 4 and 5. Data related to properties of the

remnant system are portrayed in Figs. 3.5 and 3.6, plotted against q in the case of Fig.

3.5, and plotted against M in Fig. 3.6. We will examine these results in Sect. 6.3.
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Table 3.7: Summary of results - SLy subset. Columns one to four characterize the simulations
in terms of EOS, resolution (res), mass ratio (q) and total mass (M). Residual eccentricities
are given in column �ve. Whether or not a BH formed within simulation time is answered in
column six, in accordance with the merger types reported in column seven. If the merger type
deviates between resolutions, both of the classi�cations are reported. Results for the collapse
time tcoll are given in column seven. In cases where a BH was formed its (gravitational) mass
MBH, its spin χBH, and the (baryonic) mass of the disk Mdisk, are reported in columns eight
to ten. Table adapted from Ref. [Koe1].

EOS res q M ecc BH Type tcoll MBH χBH Mdisk

[M⊙] [10
−2] [ms] [M⊙] [10−2 M⊙]

SLy R3 1.000 2.70 1.51 no IV
SLy R3, R2 1.000 2.75 1.50 yes II 2.15± 0.10 2.642± 0.010 0.708± 0.012 2.365± 0.4
SLy R3, R2 1.000 2.80 1.47 yes II/I 1.28± 1.18 2.716± 0.040 0.749± 0.063 0.159± 2.4
SLy R3, R2 1.000 2.85 1.53 yes I 0.85± 0.01 2.780± 0.010 0.768± 0.012 0.195± 0.1
SLy R3, R2 1.000 2.90 1.74 yes I 0.73± 0.02 2.831± 0.009 0.768± 0.009 0.056± 0.0
SLy R3, R2 1.000 3.00 1.95 yes I 0.63± 0.00 2.930± 0.003 0.760± 0.005 0.007± 0.0
SLy R3, R2 1.000 3.10 2.00 yes I 0.56± 0.00 3.025± 0.003 0.750± 0.004 0.004± 0.0

SLy R(4,3,2) 1.125 2.75 1.50 yes III 12.12± 4.18 2.514± 0.027 0.550± 0.018 13.200± 2.8
SLy R3, R2 1.125 2.80 1.47 yes III/II 6.26± 1.31 2.616± 0.015 0.613± 0.016 8.051± 1.1
SLy R3, R2 1.125 2.85 1.52 yes I 0.91± 0.04 2.766± 0.012 0.752± 0.014 1.370± 0.4
SLy R3, R2 1.125 2.90 1.72 yes I 0.78± 0.01 2.823± 0.007 0.758± 0.009 0.904± 0.2
SLy R3, R2 1.125 3.00 1.94 yes I 0.65± 0.00 2.928± 0.004 0.757± 0.006 0.319± 0.0
SLy R3, R2 1.125 3.10 1.98 yes I 0.57± 0.01 3.025± 0.002 0.749± 0.004 0.080± 0.0

SLy R3 1.250 2.70 1.54 no IV
SLy R(4,3,2) 1.250 2.75 1.52 yes III/(IV) 17.97± 3.87 2.450± 0.033 0.488± 0.034 20.209± 4.1
SLy R(4,3,2) 1.250 2.80 1.47 yes III/II 2.46± 12.92 2.652± 0.163 0.677± 0.171 7.799± 13.4
SLy R3, R2 1.250 2.85 1.49 yes I 1.04± 0.04 2.710± 0.009 0.693± 0.009 7.292± 0.5
SLy R3, R2 1.250 2.90 1.69 yes I 0.85± 0.03 2.784± 0.005 0.717± 0.006 5.346± 0.2
SLy R3, R2 1.250 3.00 1.94 yes I 0.66± 0.02 2.915± 0.005 0.743± 0.006 2.057± 0.3
SLy R3, R2 1.250 3.10 1.98 yes I 0.58± 0.01 3.022± 0.003 0.745± 0.004 0.936± 0.1

SLy R(4,3,2) 1.375 2.75 1.53 yes III 12.76± 2.92 2.495± 0.013 0.531± 0.014 17.122± 1.4
SLy R3, R2 1.375 2.80 1.49 yes II 2.40± 0.27 2.639± 0.003 0.653± 0.001 9.594± 0.3
SLy R3, R2 1.375 2.85 1.47 yes I 1.05± 0.05 2.691± 0.009 0.666± 0.011 10.582± 1.0
SLy R3, R2 1.375 2.90 1.66 yes I 0.85± 0.04 2.760± 0.004 0.687± 0.004 8.364± 0.3
SLy R3, R2 1.375 3.00 1.92 yes I 0.68± 0.02 2.884± 0.006 0.708± 0.008 5.997± 0.5
SLy R3, R2 1.375 3.10 2.00 yes I 0.58± 0.01 2.994± 0.005 0.715± 0.006 4.614± 0.4

SLy R3 1.500 2.70 1.54 no IV
SLy R3, R2 1.500 2.75 1.53 ? III/IV 24.05 2.442 0.474 24.423
SLy R3, R2 1.500 2.80 1.50 yes I 1.44± 0.10 2.622± 0.002 0.632± 0.004 13.055± 0.2
SLy R3, R2 1.500 2.85 1.46 yes I 0.99± 0.03 2.677± 0.008 0.640± 0.009 12.867± 0.5
SLy R3, R2 1.500 2.90 1.63 yes I 0.85± 0.03 2.741± 0.007 0.657± 0.010 11.454± 0.5
SLy R3, R2 1.500 3.00 1.96 yes I 0.67± 0.02 2.866± 0.006 0.681± 0.008 8.536± 0.4
SLy R3, R2 1.500 3.10 2.03 yes I 0.57± 0.03 2.968± 0.002 0.682± 0.004 7.969± 0.2

SLy R3, R2 1.625 2.75 1.54 ? IV/II 2.83 2.527 0.566 18.343
SLy R3, R2 1.625 2.80 1.52 yes I 1.11± 0.01 2.622± 0.010 0.618± 0.010 13.807± 0.8
SLy R3, R2 1.625 2.85 1.46 yes I 0.94± 0.02 2.670± 0.009 0.618± 0.010 14.112± 0.7
SLy R3, R2 1.625 2.90 1.59 yes I 0.81± 0.04 2.726± 0.005 0.627± 0.007 13.531± 0.2
SLy R3, R2 1.625 3.00 1.96 yes I 0.66± 0.01 2.846± 0.006 0.648± 0.007 11.012± 0.6
SLy R3, R2 1.625 3.10 2.07 yes I 0.56± 0.01 2.946± 0.007 0.648± 0.007 10.661± 0.8

SLy R3 1.750 2.70 1.54 no IV
SLy R3, R2 1.750 2.75 1.55 yes I 1.26± 0.03 2.560± 0.009 0.585± 0.011 15.589± 0.7
SLy R3, R2 1.750 2.80 1.53 yes I 1.02± 0.02 2.615± 0.008 0.591± 0.008 15.036± 0.7
SLy R3, R2 1.750 2.85 1.47 yes I 0.89± 0.01 2.660± 0.004 0.591± 0.006 15.431± 0.4
SLy R3, R2 1.750 2.90 1.52 yes I 0.80± 0.01 2.712± 0.004 0.595± 0.004 15.141± 0.4
SLy R3, R2 1.750 3.00 1.94 yes I 0.63± 0.01 2.830± 0.002 0.616± 0.003 12.992± 0.1
SLy R3, R2 1.750 3.10 2.09 yes I 0.50± 0.01 2.930± 0.007 0.618± 0.009 12.553± 1.1
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Table 3.8: Same as Tab. 3.7, but for ALF2. Table adapted from Ref. [Koe1].

EOS res q M ecc BH Type tcoll MBH χBH Mdisk

[M⊙] [10
−2] [ms] [M⊙] [10−2 M⊙]

ALF2 R(3,2,1) 1.000 2.80 1.63 yes III 7.47± 1.46 2.652± 0.034 0.642± 0.035 5.981± 3.5
ALF2 R3, R2 1.000 2.85 1.77 yes III/II 4.76± 1.29 2.730± 0.020 0.680± 0.015 3.259± 2.4
ALF2 R(3,2,1) 1.000 2.90 1.83 yes II 3.41± 0.04 2.788± 0.005 0.708± 0.003 3.189± 1.0
ALF2 R3, R2 1.000 2.95 1.85 yes II 2.25± 0.03 2.849± 0.003 0.737± 0.000 2.456± 0.6
ALF2 R(3,2,1) 1.000 3.00 1.85 yes I 1.20± 0.46 2.927± 0.019 0.776± 0.022 0.240± 1.3
ALF2 R(3,2,1) 1.000 3.10 1.83 yes I 0.84± 0.02 3.036± 0.000 0.786± 0.002 0.205± 0.0
ALF2 R3, R2 1.000 3.20 1.72 yes I 0.74± 0.01 3.134± 0.000 0.778± 0.001 0.090± 0.0

ALF2 R3, R2 1.125 2.80 1.59 yes III 10.74± 1.52 2.548± 0.023 0.558± 0.022 18.283± 2.6
ALF2 R3, R2 1.125 2.85 1.75 yes III 5.12± 1.01 2.719± 0.030 0.680± 0.030 5.212± 3.2
ALF2 R3, R2 1.125 2.90 1.82 yes II 3.76± 0.13 2.791± 0.014 0.710± 0.021 2.984± 1.2
ALF2 R3, R2 1.125 2.95 1.87 yes II 2.32± 0.02 2.852± 0.008 0.739± 0.013 2.791± 0.3
ALF2 R3, R2 1.125 3.00 1.89 yes I 1.10± 0.15 2.916± 0.010 0.765± 0.014 2.024± 0.4
ALF2 R3, R2 1.125 3.10 1.86 yes I 0.84± 0.02 3.022± 0.003 0.771± 0.004 1.834± 0.4
ALF2 R3, R2 1.125 3.20 1.73 yes I 0.72± 0.02 3.129± 0.001 0.772± 0.001 0.841± 0.1

ALF2 R(3,2,1) 1.250 2.80 1.55 yes III 9.44± 1.17 2.546± 0.002 0.555± 0.006 18.609± 0.1
ALF2 R3, R2 1.250 2.85 1.73 yes II 4.99± 0.31 2.661± 0.006 0.624± 0.005 11.760± 1.3
ALF2 R(3,2,1) 1.250 2.90 1.84 yes II 3.56± 0.14 2.745± 0.003 0.653± 0.000 7.452± 0.7
ALF2 R3, R2 1.250 2.95 1.89 yes II 2.55± 0.14 2.796± 0.001 0.671± 0.000 7.961± 0.3
ALF2 R(3,2,1) 1.250 3.00 1.91 yes I 1.02± 0.07 2.858± 0.010 0.707± 0.011 8.963± 0.8
ALF2 R3, R2 1.250 3.10 1.90 yes I 0.79± 0.04 2.983± 0.010 0.731± 0.010 6.690± 1.0
ALF2 R3, R2 1.250 3.20 1.74 yes I 0.69± 0.02 3.105± 0.008 0.748± 0.009 3.936± 0.9

ALF2 R3 1.3125 2.80 1.54 yes III 5.82 2.585 0.584 14.500

ALF2 R3, R2 1.375 2.80 1.52 yes III 5.86± 0.29 2.577± 0.000 0.573± 0.011 15.868± 0.3
ALF2 R3, R2 1.375 2.85 1.72 yes II 3.39± 1.17 2.651± 0.009 0.600± 0.009 12.879± 0.8
ALF2 R3, R2 1.375 2.90 1.83 yes II 2.53± 0.69 2.712± 0.018 0.633± 0.039 12.926± 0.3
ALF2 R3, R2 1.375 2.95 1.89 yes I 1.10± 0.08 2.761± 0.007 0.649± 0.005 14.319± 0.9
ALF2 R3, R2 1.375 3.00 1.92 yes I 0.93± 0.06 2.827± 0.005 0.668± 0.007 12.954± 0.3
ALF2 R3, R2 1.375 3.10 1.89 yes I 0.75± 0.04 2.943± 0.002 0.686± 0.004 11.342± 0.1
ALF2 R3, R2 1.375 3.20 1.74 yes I 0.64± 0.02 3.061± 0.001 0.700± 0.003 9.212± 0.2

ALF2 R3 1.4375 2.80 1.52 yes III 7.37 2.549 0.540 18.960

ALF2 R(3,2,1) 1.500 2.80 1.53 yes III 10.99± 3.69 2.554± 0.001 0.542± 0.006 19.203± 0.7
ALF2 R3, R2 1.500 2.85 1.73 yes II 4.00± 0.21 2.632± 0.012 0.589± 0.001 17.356± 1.9
ALF2 R(3,2,1) 1.500 2.90 1.84 yes I 1.23± 0.08 2.702± 0.004 0.625± 0.008 16.247± 0.4
ALF2 R3, R2 1.500 2.95 1.89 yes I 0.97± 0.04 2.758± 0.003 0.634± 0.004 15.411± 0.4
ALF2 R(3,2,1) 1.500 3.00 1.92 yes I 0.84± 0.03 2.817± 0.007 0.644± 0.008 14.731± 0.0
ALF2 R(3,2,1) 1.500 3.10 1.87 yes I 0.69± 0.02 2.924± 0.002 0.654± 0.003 13.420± 0.2
ALF2 R3, R2 1.500 3.20 1.73 yes I 0.58± 0.00 3.034± 0.001 0.665± 0.001 12.433± 0.5

ALF2 R3 1.5625 2.80 1.55 yes II 4.86 2.573 0.558 18.336

ALF2 R3 1.625 2.70 1.47 no IV
ALF2 R3, R2 1.625 2.75 1.43 yes III 19.21± 7.86 2.428± 0.027 0.452± 0.022 27.695± 2.6
ALF2 R3, R2 1.625 2.80 1.52 yes II/III 4.73± 0.93 2.570± 0.010 0.553± 0.011 19.241± 1.0
ALF2 R3, R2 1.625 2.85 1.70 yes I 1.03± 0.35 2.652± 0.011 0.582± 0.008 17.069± 0.1
ALF2 R3, R2 1.625 2.90 1.87 yes I 1.00± 0.05 2.706± 0.005 0.610± 0.006 16.133± 0.3
ALF2 R3, R2 1.625 2.95 1.92 yes I 0.86± 0.04 2.753± 0.008 0.609± 0.010 16.450± 0.9
ALF2 R3, R2 1.625 3.00 1.91 yes I 0.76± 0.01 2.807± 0.005 0.615± 0.006 15.895± 0.7
ALF2 R3, R2 1.625 3.10 1.88 yes I 0.63± 0.04 2.915± 0.007 0.626± 0.007 14.790± 0.9
ALF2 R3, R2 1.625 3.20 1.77 yes I 0.46± 0.01 3.020± 0.005 0.633± 0.004 13.747± 0.0

ALF2 R3, R2 1.750 2.70 1.48 no IV
ALF2 R3, R2 1.750 2.75 1.44 yes III 15.27± 4.42 2.441± 0.021 0.461± 0.009 27.672± 2.0
ALF2 R3, R2 1.750 2.80 1.47 yes I 1.33± 0.07 2.596± 0.005 0.571± 0.005 17.814± 0.6
ALF2 R3, R2 1.750 2.85 1.74 yes I 1.25± 0.16 2.654± 0.008 0.604± 0.029 16.516± 1.2
ALF2 R3, R2 1.750 2.90 1.86 yes I 0.88± 0.01 2.696± 0.007 0.579± 0.007 17.401± 1.0
ALF2 R3, R2 1.750 2.95 1.93 yes I 0.77± 0.04 2.747± 0.008 0.582± 0.010 17.381± 0.9
ALF2 R3, R2 1.750 3.00 1.96 yes I 0.68± 0.01 2.796± 0.003 0.583± 0.005 17.260± 0.5
ALF2 R3, R2 1.750 3.10 1.95 yes I 0.50± 0.02 2.900± 0.003 0.591± 0.004 16.533± 0.5
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Table 3.9: Same as Tab. 3.7, but for H4. Table adapted from Ref. [Koe1].

EOS res q M ecc BH Type tcoll MBH χBH Mdisk

[M⊙] [10
−2] [ms] [M⊙] [10−2 M⊙]

H4 R2* 1.000 2.80 1.76 ? III 14.15 2.586 0.567 11.745
H4 R3*, R2* 1.000 2.90 1.87 yes III 6.34± 1.34 2.758± 0.004 0.666± 0.010 4.738± 0.0
H4 R3*, R2* 1.000 2.95 1.90 yes III/II 5.29± 0.32 2.805± 0.000 0.674± 0.010 5.493± 1.2
H4 R3*, R2* 1.000 3.00 1.88 yes II 3.70± 0.02 2.888± 0.016 0.727± 0.017 3.023± 1.2
H4 R3*, R2* 1.000 3.10 1.81 yes I 1.36± 0.07 3.024± 0.004 0.784± 0.006 0.190± 0.1
H4 R3*, R2* 1.000 3.20 1.62 yes I 0.91± 0.01 3.130± 0.004 0.788± 0.007 0.157± 0.0
H4 R3*, R2* 1.000 3.30 1.40 yes I 0.77± 0.00 3.229± 0.005 0.780± 0.006 0.079± 0.0

H4 R3*, R2* 1.125 2.90 1.87 yes III 7.83± 2.48 2.730± 0.057 0.637± 0.048 7.867± 6.2
H4 R3*, R2* 1.125 2.95 1.88 yes III 5.17± 0.04 2.796± 0.003 0.676± 0.015 7.197± 0.8
H4 R3*, R2* 1.125 3.00 1.88 yes II 4.09± 0.16 2.866± 0.022 0.706± 0.028 5.353± 1.5
H4 R3*, R2* 1.125 3.10 1.80 yes I 1.17± 0.05 2.992± 0.006 0.756± 0.008 4.177± 0.0
H4 R3*, R2* 1.125 3.20 1.59 yes I 0.89± 0.01 3.112± 0.006 0.771± 0.007 2.187± 0.2
H4 R3*, R2* 1.125 3.30 1.39 yes I 0.76± 0.02 3.218± 0.004 0.771± 0.005 1.244± 0.1

H4 R3*, R2* 1.250 2.90 1.89 yes III 6.28± 1.36 2.693± 0.031 0.612± 0.036 12.869± 2.8
H4 R3*, R2* 1.250 2.95 1.90 yes III 5.14± 0.04 2.737± 0.012 0.615± 0.010 13.836± 1.2
H4 R3*, R2* 1.250 3.00 1.87 yes II 4.17± 0.30 2.804± 0.002 0.647± 0.006 12.518± 0.4
H4 R3*, R2* 1.250 3.10 1.78 yes I 1.10± 0.06 2.917± 0.005 0.685± 0.007 12.975± 0.0
H4 R3*, R2* 1.250 3.20 1.55 yes I 0.86± 0.02 3.052± 0.005 0.715± 0.005 8.974± 0.2
H4 R3*, R2* 1.250 3.30 1.36 yes I 0.74± 0.02 3.172± 0.002 0.730± 0.002 7.043± 0.3

H4 R3*, R2* 1.375 2.90 1.90 yes III 8.96± 2.84 2.654± 0.032 0.567± 0.022 17.884± 3.1
H4 R3*, R2* 1.375 2.95 1.90 yes III 6.93± 1.47 2.718± 0.006 0.595± 0.009 17.093± 0.1
H4 R3*, R2* 1.375 3.00 1.88 yes II 3.04± 0.04 2.785± 0.005 0.628± 0.008 16.103± 0.1
H4 R3*, R2* 1.375 3.10 1.76 yes I 1.02± 0.02 2.913± 0.007 0.671± 0.010 14.414± 0.3
H4 R3*, R2* 1.375 3.20 1.50 yes I 0.82± 0.01 3.029± 0.007 0.687± 0.009 12.339± 0.5
H4 R3*, R2* 1.375 3.30 1.30 yes I 0.67± 0.01 3.146± 0.005 0.700± 0.006 10.345± 0.5

H4 R3*, R2* 1.500 2.90 1.90 yes III 10.97± 2.70 2.611± 0.032 0.529± 0.025 23.979± 3.4
H4 R(4,3,2)* 1.500 2.95 1.90 yes I/II 2.10± 0.20 2.725± 0.002 0.612± 0.002 19.098± 0.3
H4 R3*, R2* 1.500 3.00 1.88 yes I 1.26± 0.06 2.794± 0.009 0.633± 0.010 16.900± 0.8
H4 R3*, R2* 1.500 3.10 1.75 yes I 0.91± 0.02 2.903± 0.006 0.647± 0.008 15.627± 0.4
H4 R3*, R2* 1.500 3.20 1.42 yes I 0.73± 0.02 3.012± 0.006 0.655± 0.007 14.699± 0.5
H4 R3*, R2* 1.500 3.30 1.45 yes I 0.57± 0.01 3.116± 0.000 0.660± 0.002 14.033± 0.0

H4 R2* 1.625 2.80 1.82 ? IV
H4 R3*, R2* 1.625 2.85 1.87 ? III/IV 51.79 2.492 0.446 29.693
H4 R3*, R2* 1.625 2.90 1.90 yes I 1.81± 0.11 2.666± 0.008 0.580± 0.008 20.552± 0.5
H4 R3*, R2* 1.625 2.95 1.90 yes I 1.31± 0.03 2.730± 0.009 0.598± 0.009 18.850± 0.3
H4 R3*, R2* 1.625 3.00 1.87 yes I 1.10± 0.02 2.785± 0.003 0.605± 0.004 18.304± 0.1
H4 R3*, R2* 1.625 3.10 1.71 yes I 0.79± 0.03 2.888± 0.008 0.613± 0.008 17.771± 0.7
H4 R3*, R2* 1.625 3.20 1.35 yes I 0.57± 0.05 2.991± 0.005 0.617± 0.004 17.290± 0.3

H4 R2* 1.750 2.80 1.84 ? IV
H4 R3*, R2* 1.750 2.85 1.89 yes II/I 2.03± 0.07 2.608± 0.006 0.548± 0.006 21.656± 0.4
H4 R3*, R2* 1.750 2.90 1.91 yes I 1.38± 0.05 2.673± 0.003 0.566± 0.003 19.938± 0.1
H4 R3*, R2* 1.750 2.95 1.91 yes I 1.20± 0.02 2.724± 0.003 0.570± 0.004 19.712± 0.1
H4 R3*, R2* 1.750 3.00 1.87 yes I 0.94± 0.02 2.777± 0.007 0.576± 0.007 19.309± 0.6
H4 R3*, R2* 1.750 3.10 1.66 yes I 0.65± 0.05 2.877± 0.003 0.580± 0.003 19.156± 0.2



40 Chapter 3. Simulation Campaign

Figure 3.5: Properties of the remnant system. Displayed are the following quantities (rows):
disk mass Mdisk, the mass ratio Qdisk = Mdisk/M

b, the BH mass MBH, the mass ratio
QBH = MBH/M , and the BH spin χBH. Data are presented separately for di�erent EOSs
(columns). In each panel data for �x values of M are plotted against q. Second, third and
�fth row taken from [Koe1].
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Figure 3.6: Properties of the remnant system. Columns and rows are organized as in Fig. 3.5.
In each panel, data for �x values of q are plotted against M .
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Chapter 4

Threshold to Prompt Collapse

4.1 BNS Mergers

Compact objects orbiting each other in a binary system, e.g. binary black holes (BBH),

black hole-neutron star (BHNS) or BNS, slowly loose angular momentum due to the

emission of gravitational waves, causing their orbital separation and their orbital pe-

riods to shrink over the course of millions of years. Towards the end of the inspiral

phase, the process speeds up as frequency and amplitude of the emitted GWs increase,

until the binary's components merge and the so-called chirp of the GW signal is fol-

lowed by the ringdown. In the case of BNSs, the merger is usually accompanied by

the release of NS matter which, in parts, is accumulated in a disk around the remnant

or ejected from the system. Considering the remnant itself, we sketch three possible

scenarios:

1. prompt collapse: The remnant collapses immediately after merger forming a BH.

2. delayed collapse: The di�erentially rotating NS remnant temporarily withstands

its own gravitational pull before it eventually collapses.

3. long-lived/stable remnant: If the BNS's components are of su�ciently small

mass, the di�erentially rotating remnant may transition to a uniformly rotating

stable NS.

In this work, the �rst and second scenario will be of particular interest to us, i.e. we

focus on scenarios in which the remnant collapses to a BH. In this context, we will

consider a quantity studied with increasing interest and by means of numerous NR

simulations (e.g. Hotokezaka et al., 2011; Bauswein et al., 2013; Köppel et al., 2019):

the threshold mass to prompt collapse. The third scenario is not a subject of this work.

For more detailed discussions of the third scenario, we refer the interested reader to

Shibata et al., 2019 and Baiotti et al., 2017.
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The dynamics of BNS mergers, the fate and properties of the merger remnant

depend on a variety of factors. Primarily they are a�ected by the total mass of the

prior binary, which is de�ned as the sum of the gravitational masses of the individual

components

M =M1 +M2 , (4.1)

and properties of dense matter. Other factors are the individual components' spins

and their mass ratio

q =
M1

M2

≥ 1 . (4.2)

While we exclusively consider non-spinning stars, i.e., leaving aside spin e�ects, the

core topic of this work is the e�ect of mass ratio on BNS mergers. In this chapter

we review relevant de�nitions and literature, criteria developed to distinguish between

prompt and delayed collapse, and methods to determine the threshold mass to prompt

collapse.

4.2 Collapse Time

Throughout this thesis, we usually examine BNS con�gurations which lead to BH

formation within a few tens of milliseconds after merger. In the case of collapsing

merger remnants, the remnant's lifetime is enclosed by two events: the onset of merger

and the formation of a BH. We refer to the corresponding time interval, i.e., the time

interval between the time of merger tmrg, and the time of BH formation tBH, as the

collapse time tcoll,

tcoll = tBH − tmrg . (4.3)

While this de�nition is straightforward, it is less trivial to measure the collapse time.

As discussed by Köppel et al., 2019, within numerical simulations, there is more than

one way to determine either one the two times, tBH and tmrg. To give a rough idea

of the possibilities: the di�erent approaches may be based on GW data, i.e., the GW

strain amplitude h (or the Weyl scalar Ψ4), proper separation, the lapse α, or the �rst

appearance of an apparent horizon, cf. Köppel et al., 2019. In this section, we discuss

di�erent possible approaches with respect to their automated and reliable applicability

to a set of BNS simulations characterized by a broad range of mass ratios and total

masses, in order to select a method for our analysis.
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(a) Prompt-collapse merger
(SLY, q = 1.125, M = 2.9M⊙)

(b) Delayed-collapse merger
(H4, q = 1.375, M = 2.95M⊙)

(c) Stable remnant
(SLY, q = 1.0, M = 2.7M⊙)

Figure 4.1: Sub�gures (a)-(c): Examples for the cases of prompt and delayed collapse, and
a stable remnant, respectively. In each of the sub�gures (a)-(c), the top panel shows the 22-
mode of the GW strain amplitude h (shifted according to an observer distance of 1477 km).
Marked by black dotted lines are the time of �rst maximum tmax, and the apparent horizon
time tAH. The middle panel shows the minimum-lapse function αmin(t). Red dotted lines
mark the times where αmin(t) has fallen to 90% and 10% of the maximum value α̂min. Given
in the bottom panel is the maximum-density function ϱmax(t). Plots in sub�gures (a) and
(b) taken, (c) adapted from [Koe1].
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To illustrate their perspective on this topic, we point out that Köppel et al., 2019,

focussed on equal-mass binaries with masses close to the threshold mass. Since we

study a parameter space covering broader ranges of q and M (cf. Chap. 3), we some-

times consider methods suggested in Köppel et al., 2019 from a di�erent perspective.

Measuring the time of merger based on proper distance: As suggested by Köppel et

al., 2019, the time of merger could be measured as the time when the stars' separation

falls below a fraction of the initial diameter, or generalized to the case of unequal mass

binaries: below a fraction of the sum of the components' radii. However, Köppel et

al. point out, that this method would be very sensitive to properties of the EOS. As

we consider unequal mass binaries, we are also confronted with tidal e�ects, i.e., tidal

elongation or tidal disruption of the less massive component (cf. Sect. 6.3). These

e�ects may a�ect this method strongly, as they can cause the localization of the stars'

centres to decrease in reliability.

Estimating the time of collapse as the time when the ring-down signal starts: As

pointed out by Köppel et al., the beginning of the ring-down is somewhat arbitrary

and may be modi�ed by infalling matter. This approach does not provide a reliable

measure for the time of collapse. Measuring the time of merger on the other hand, a

clear criterion for the onset of merger can be formulated based on the GW strain h,

cf. Köppel et al., 2019. In this approach, which for example has also been taken by

Agathos et al., 2020, the time of merger is identi�ed with the time of �rst maximum

of h or ψ4.

In this thesis, as in [Koe1], we choose the same path to determine the time of

merger, identifying it with the time of �rst maximum of the dominant 22-mode of the

GW strain. When it comes to the time of BH formation, we place our trust in BAM's

apparent horizon �nder, setting the search-frequency to a reasonably high rate. In

summary, we calculate the collapse time (cf. Eq. 4.3) as the time interval between the

time of �rst maximum tmax of h22, and the time tAH when an apparent horizon is found

for the �rst time, i.e.,

tcoll = tAH − tmax . (4.4)

This method is illustrated in the upper panels of sub�gures 4.1a and 4.1b, which

show the 22-mode of h. In each of the �gures, both the time of the GW strain's �rst

maximum tmax and the apparent horizon time tAH are marked. To make a comparison

of these times possible, the GW signal has been shifted according to the observer's

distance rextr from the source, cf. Eq. (2.53).
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Figure 4.2: 22-mode of the gravitational wave strain, h22(t), minimum-lapse function αmin(t)
and maximum-density function ϱmax(t) for a sample of total masses M in the example case
of ALF2 and a mass ratio of q = 1.5. Data of the complete set of simulations resolving the
vicinity of the threshold mass, are given in Tab. 4.1. h22(t), αmin(t) and ϱmax(t) are presented
for a time interval covering about 10ms before and after the onset of merger. Dotted vertical
lines mark the time of merger tmrg and the �rst time tAH an apparent horizon was found.
In the case of delayed-collapse mergers, minimum-lapse and maximum-density function show
oscillations between tmrg and tAH. With increasing total mass, the number of oscillations
decreases. Prompt collapse mergers are characterized by the absence of oscillations in these
quantities.
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For completeness, we discuss one more method to determine tcoll. The method used

by Köppel et al., 2019, is based on the lapse. For irrotational equal-mass binaries, and

in the context of 1+log slicing, they de�ne two constant values, αmin = αmerg = 0.35,

and αmin = αBH = 0.2, corresponding to the times of merger and BH formation,

respectively. Considering the examples given in the second column of Fig. 4.2, a naked-

eye inspection reveals that, the lapse-method by Köppel et al. would systematically

produce smaller collapse times compared to the collapse times given in the �rst column

of Fig. 4.2, although we have used the same slicing conditions in our simulations. Since

one may point out that data presented in Fig. 4.2 were not obtained for equal-mass

binaries, we also refer to data of equal-mass binaries given in the �rst columns of Figs.

A.2, A.5 and A.8, to support this argument.

The lack of applicability of the lapse-method to our data may be due to other

di�erences in the NR codes used. Avoiding further speculation, we instead discuss an

updated, more general, version of the lapse-method, which has been presented in a

follow-up study by Tootle et al., 2021. Instead of absolute values for αmin, they consider

the minimum-lapse function normalized to its maximum α̂min, relating the time of

merger and BH formation to αmin/α̂min = 0.9 and αmin/α̂min = 0.1, respectively. In

the middle panels of sub�gures 4.1a and 4.1b, this method is illustrated in comparison

to the method used in [Koe1]. The comparison shows negligible di�erences of about

0.1ms in the presented examples. Considering the set of simulations presented in

[Koe1], we �nd the two methods to be consistent within this margin of error.

To conclude the discussion of lapse-based methods, we consider the two exemplary

sets of data presented in Fig. 4.3. These data sets show the maximum of the minimum-

lapse function and its value at t = tmax in simulations of a given EOS (H4) and

resolution (R3*, cf. Tab. 3.5). Over a broad range of total masses and mass ratios,

the minimum-lapse function varies notably. Therefore, constant values of αmin cannot

be used to determine the time of merger consistently over broad intervals of q and

M . As Tootle et al., 2021, also considered unequal-mass binaries, they had to re�ne

the method. Fig. 4.3 illustrates that the minimum-lapse function behaves similarly

with respect to its maximum and to its value at t = tmrg, making a �x value of

the fraction αmin/α̂min better suited to relate tmrg to the minimum-lapse function.

For the time of BH formation on the other hand, a connection to a �xed value of

αmin is less problematic. tBH would be insensitive to small changes of αBH , since

the minimum-lapse function decreases steeply when the remnant collapses, cf. middle

panels of sub�gures 4.1a and 4.1b.
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Figure 4.3: Contours of the minimum-lapse function α in the (M, q)-plane for two exemplary
cases. Presented are data for the case of H4 with resolution R3*. The �rst column shows
the maximum value α̂min of αmin(t), the second column shows the value αmrg at the time of
merger (given by t = tmax).

4.3 Threshold Mass, Prompt and Delayed Collapse

4.3.1 Threshold Mass to Prompt Collapse

As de�ned by Bauswein et al., 2013, the threshold massMthr separates the two scenar-

ios of prompt and delayed collapse, i.e., Mthr is the smallest total mass for which the

remnant of a BNS merger collapses promptly after the onset of merger. Total masses

M < Mthr either lead to delayed-collapse scenarios, in which an unstable NS remnant

collapses to a BH after angular momentum losses and cooling (e.g. Hotokezaka et al.,

2011), or they lead to the formation of a stable MNS in case of su�ciently small M .

Mthr depends both on properties of dense matter, i.e., on the EOS, and on properties

of the binary system like the mass ratio q (e.g. Bauswein et al., 2021), NS spins χi

(e.g. Tootle et al., 2021), and possibly also spin orientation or eccentricity, i.e.

Mthr =Mthr(EOS, q, χi, ...) . (4.5)

The e�ect of mass ratio (e.g. Ref. [Koe1], Bauswein et al., 2021; Perego et al., 2021)

and the e�ect of spin (Tootle et al., 2021) have been found a minor factor compared

to the EOS-dependence of Mthr, which has �rst been studied in the case of equal mass

binaries (e.g. Hotokezaka et al., 2011; Bauswein et al., 2013; Köppel et al., 2019).

Throughout this thesis, we focus on the e�ects of the mass ratio, i.e., typically the

following dependencies are implied, i.e.,Mthr =Mthr(EOS, q).
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The EOS dependence of the threshold mass makes BNS mergers a unique lab for

the study of dense matter. How future GW detections of BNS mergers will further

constrain the EOS of NSs based on the distinction between prompt and delayed col-

lapse, has recently been investigated thoroughly in a study by Kashyap et al., 2021.

Their study is based on simulations of irrotational equal-mass binaries and data from

millions of piecewise polytropic EOSs.

4.3.2 Prompt and Delayed Collapse in NR Simulations

In the context of NR simulations, the scenarios of prompt and delayed collapse are

distinguished based on the behaviour of the density (e.g. Hotokezaka et al., 2011;

Bernuzzi, 2020), or the lapse, Bauswein et al., 2021. The case of prompt collapse is

characterized by the absence of oscillations in the maximum-density function ϱmax(t),

i.e., the monotonous increase of the central density, in the time interval between merger

and collapse to a BH (cf. Fig. 4.1a, bottom panel). This is equivalent to de�ning

prompt-collapse mergers as those in which the collision of the NSs' cores has no bounce,

cf. discussion in Bernuzzi, 2020 or Radice et al., 2018a. In the case of delayed-collapse

mergers on the other hand, the cores' bounce is followed by oscillations of the remnant

visible in the maximum-density function (cf. Fig. 4.1b, bottom panel). A criterion

similar to the one for the maximum-density can be formulated for the minimum-lapse

function, e.g. Bauswein et al., 2021. Considering the minimum-lapse function αmin(t)

instead of the central density, we �nd αmin to decrease monotonously in the time

interval between merger and BH formation, showing the same number of oscillations

that are found in the maximum-density function (cf. Figs. 4.1b and 4.1a, bottom and

middle panel). In summary, we refer to a collapse as prompt if, on a dynamical time

scale, there are no oscillations of ϱmax(t) or αmin(t) in the time interval between tmrg

and tBH, and delayed in the complementary case.

A distinction between prompt and delayed collapse may also be based on the col-

lapse time (cf. for example Agathos et al., 2020 or Ref. [Koe1]), i.e., BNS mergers

are considered prompt if the collapse time is smaller than a threshold value. If the

collapse time is larger than the threshold value, it is considered a delayed collapse. We

motivate this approach in Sect. 4.4.1. In this context, we need to mention Bauswein

et al., 2013, who relate prompt (delayed) collapse to a dynamical (secular) time scale,

respectively. Considering also NS remnants which do not collapse promptly, di�erent

cases can be distinguished. Radice et al., 2018c, categorize remnant NSs with respect
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to the maximum baryonic mass of a rigidly rotating NS Mb,rot
max , and the maximum

baryonic mass of a non-rotating NS Mb
max:

HMNS: Mb > Mb,rot
max

SMNS: Mb,rot
max > Mb > Mb

max

MNS: Mb
max > Mb

The BNSs which we consider in this work have gravitational masses with M > M rot
max.

So their remnants are likely to collapse within simulation time. In a minority of cases,

we encounter long-lived remnants like the one portrayed in Fig. 4.1c. In these cases, we

�nd oscillations of the remnant to wear o�, and ϱmax(t) and αmin(t) to stabilize. The

initial levels of ϱmax(t) and αmin(t) are related to the mass of the primary component,

the respective stable levels after merger are connected to the mass of the coalesced

NS. Therefore, the maximum-density function stabilizes at a notably higher value, the

minimum-lapse function on a notably smaller value, as compared to the respective

initial values. In accordance with this stabilization, we �nd the amplitude of h22 to

subside over a course of tens of milliseconds.

4.3.3 Bracketing Method

The threshold-mass de�nition by Bauswein et al., 2013, cf. Sect. 4.3.1, provides a nat-

ural means to localize Mthr: The bracketing method is the approach which is typically

used to determine the threshold mass to prompt collapse, e.g. Hotokezaka et al., 2011;

Bauswein et al., 2013; Bauswein et al., 2021; Kashyap et al., 2021; Perego et al., 2021.

Leaving other parameters constant, the total mass is varied to narrow down the inter-

val between the smallest total mass inducing prompt collapseMprompt
min , and the highest

total mass leading to delayed collapse Mdelayed
max , i.e.,

Mdelayed
max ≤Mthr < Mprompt

min . (4.6)

In the context of the bracketing method, the threshold mass M [ ]
thr is de�ned as the

mean value

M
[ ]
thr = 0.5(Mdelayed

max +Mprompt
min ) , (4.7)

cf. for example Bauswein et al., 2013. As in Eq. (4.5), the quantities in inequality (4.6)

and equation (4.7) may depend on the EOS and properties of the binary.
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4.4 Methods Based on Collapse-Time Fits

Apart from the bracketing method, we will review two more approaches to determine

Mthr. Concluding this section, we will �rst review the method by Köppel et al., 2019,

which has also been used by Tootle et al., 2021. In Sect. 4.4.1, we will compare this

method to the one introduced in Ref. [Koe1]. However, since both of these methods

are based on �ts of collapse-time data, we should �rst consider Fig. 4.4a, which shows

the collapse-time as a function of the total mass for the case of ALF2 with q = 1.5.

Overall we �nd tcoll to decrease for increasing M , with a change of slope between

roughly M = 2.8M⊙ and M = 2.95M⊙. For now, we limit our focus to this range.

At roughly M ≈ 2.88M⊙ the collapse time decreases steeply over a narrow interval

in M . This sensitivity of tcoll(M) to small changes of M has also been described by

Bauswein et al., 2013. Köppel et al., 2019, use data points from this regime of steep

changes of tcoll to �t M/MTOV as a function of tcoll/τTOV, where for a given EOS the

constantsMTOV and τTOV are the mass and the free-fall time of a maximum-mass TOV

con�guration, cf. Fig. 2 of Köppel et al., 2019. This �t is then used to extrapolate to

tcoll/τTOV = 1, which is why Tootle et al., 2021, call this method the free-fall method.

Köppel et al. motivate this procedure by stating that for BNSs with M = Mthr the

merger remnant would collapse over the shortest possible time scale, given by the free-

fall time, i.e., tcoll(M =Mthr) = τTOV. In this context, they de�ne the threshold mass

by the condition

M →Mthr for tcoll → τTOV . (4.8)

As pointed out in Ref. [Koe1], typical free-fall times of maximum-mass TOV stars

(about 0.1ms) are noticeably smaller than the smallest collapse times found in simula-

tions, even in the case of binaries with M ≫Mthr. Nethertheless, this method locates

Mthr at masses slightly larger than the highest mass of the steep regime considered

for the �t. As we discuss in Sect. 5.3, the threshold mass Mff
thr as determined by the

free-fall method, is systematically placed at masses higher than the threshold mass

M
[ ]
thr, determined by application of the bracketing method to the same set of data, i.e.,

Mff
thr > M

[ ]
thr . (4.9)

However, considering threshold masses determined for EOSs used in either work, a

direct comparison of results by Köppel et al., 2019 to results by Bauswein et al., 2021

shows only small di�erences, cf. discussion in [Koe1].
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(a) tcoll(M) (b) Threshold collapse-time

Figure 4.4: Sub�gure (A): Collapse time against total mass for the case of ALF2 with q =
1.5. For increasing M , tcoll decreases, levelling o� for high total masses. Between roughly
M = 2.8M⊙ and M = 2.95M⊙ the collapse time changes its slope, decreasing steeply at
M ∼ 2.88M⊙. Sub�gure (B): Close-up to a subset of more than 260 BNS simulations from
[Koe1] in which a BH formed within simulation time. Depicted is the collapse-time interval
2ms ± 2ms. Data are distinguished with respect to resolution (cf. Tab. 3.5, i.e., R2/R2*
(crosses) and R3/R3* (points), and whether the collapse was prompt (black) or delayed
(gray) according to the lapse and density criteria. Independent of resolution and EOS (not
highlighted: SLy, ALF2, H4), the cases of prompt collapse and delayed collapse are separated
by the dashed line at tcoll = 2ms. Plot in sub�gure (A) adapted from [Koe1].

4.4.1 Threshold Collapse Time

We are going to consider once more the �nely resolved collapse-time curve tcoll(M)

shown in Fig. 4.4a, focussing our attention on the steeply decreasing regime at M ≈
2.88M⊙. As implied in the previous section, this is where the threshold mass is

localized by application of the bracketing method to the portrayed set of data. In fact

this steep decent marks the transition from delayed to prompt collapse. We are going

to show this, giving a thorough analysis of the related data and re�ning the respective

discussion of Ref. [Koe1].

We begin by categorizing the related BNS mergers in terms of prompt and delayed

collapse, applying the criteria from Sect. 4.3.2 to the minimum-lapse and maximum-

density curves. A sample of these curves is presented in Fig. 4.2 next to the related h22
data. Data of the full set of simulations conducted for the case of ALF2 with q = 1.5

are given in Tab. 4.1, where the number of maxima Nmax between merger and collapse,

and the consequential categorization of the BNS mergers are reported in columns nine

and ten, respectively.
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In this Tab. 4.1, the transition from delayed-collapse to prompt-collapse mergers

is marked by dashed lines enclosing an interval of inconclusive cases which lead to

prompt collapse simulated with R3 resolution and to delayed collapse simulated with

R2 resolution. Attempting to honour results of both resolutions, we localize Mthr be-

tweenMdelayed
max = 2.8775M⊙ andMprompt

min = 2.885M⊙ based on the bracketing method,

cf. dotted lines in Tab. 4.1.

We point out that, within the presented set of simulations, the case of prompt col-

lapse is always related to a collapse time smaller than 2ms, while in the case of delayed

collapse, the collapse time is always higher than 2ms. The same observation is true for

the data set presented in Ref. [Koe1]. To highlight this relation, we show collapse-time

data of R3 and R2 simulations in Fig. 4.4b, distinguishing between prompt-collapse

and delayed-collapse mergers based on the lapse/density criteria. Irrespective of the

mass ratio, the resolution, or the EOS, we �nd collapse-times smaller than 2ms related

to prompt-collapse simulations, while collapse-times larger than 2ms are connected to

delayed-collapse data.

Further, we note that in the vicinity of the threshold mass, the collapse-time curve

changes its slope noticeably. Reversely to the steep decrease of tcoll at M ≈ Mthr, M

is insensitive to change of tcoll. Therefore, within a certain tolerance, it is possible to

de�ne a threshold collapse-time τthr characterized by

tcoll (Mthr) = τthr , (4.10)

which separates the cases of prompt and delayed collapse based on tcoll. In Ref. [Koe1],

we de�ned this threshold collapse-time to be 2ms, i.e.,

τthr = 2ms , (4.11)

which is a choice, that has also been made by Agathos et al., 2020. Concluding from

Fig. 4.4b, we may as well draw this line at a collapse time slightly larger than 2ms.

However, due to the insensitivity of Mthr to small changes of this value, we do not

attempt to determine τthr more precisely, nor do we imply that there is an exact value

of τthr universal for all EOSs.
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Table 4.1: Series of simulations resolving the vicinity of the threshold to prompt collapse
in the case of q = 1.5 with EOS ALF2. Additional to the simulations conducted for the
simulation campaign presented in chapter 3, 20 con�gurations have been simulated with
two resolutions (R3 and R2). Adding con�gurations, new total masses were chosen based
on previous simulations seeking to narrow down the interval between prompt-collapse and
delayed-collapse cases. Columns one to four characterize the simulations in terms of EOS,
resolution (res), mass ratio (q) and total mass (M). Residual eccentricities are given in
column �ve. Column six: Formation of a BH within simulation time. The categorization of
the merger types in column eight is based on the collapse times given in column seven, cf.
Sect. 4.6. Column ten: Categorization of mergers as prompt or delayed based on Nmax, the
number of minima of the minimum-lapse/ maxima of the maximum-density function within
the time interval between tmrg and tAH, given in column nine.

EOS res q M ecc BH tR3
coll tR2

coll Type Nmax Collapse
[M⊙] [10−2] [ms] [ms]

ALF2 R3, R2 1.5 2.80000 1.53 yes 10.99 7.29 III 8/5 delayed
ALF2 R3, R2 1.5 2.82500 1.63 yes 4.79 6.07 II/III 3/4 delayed
ALF2 R3, R2 1.5 2.85000 1.73 yes 4.00 3.79 II 2 delayed
ALF2 R3, R2 1.5 2.86000 1.76 yes 3.85 4.31 II 2 delayed
ALF2 R3, R2 1.5 2.87000 1.78 yes 2.88 2.71 II 1 delayed
ALF2 R3, R2 1.5 2.87500 1.78 yes 3.05 3.02 II 1 delayed
ALF2 R3, R2 1.5 2.87750 1.79 yes 2.98 2.82 II 1 delayed
ALF2 R3, R2 1.5 2.87760 1.79 yes 1.90 2.63 I/II 0/1 ?
ALF2 R3, R2 1.5 2.87770 1.79 yes 1.75 2.84 I/II 0/1 ?
ALF2 R3, R2 1.5 2.87780 1.79 yes 1.90 2.65 I/II 0/1 ?
ALF2 R3, R2 1.5 2.87790 1.79 yes 1.73 3.24 I/II 0/1 ?
ALF2 R3, R2 1.5 2.87800 1.79 yes 1.74 2.86 I/II 0/1 ?
ALF2 R3, R2 1.5 2.87850 1.79 yes 1.66 2.67 I/II 0/1 ?
ALF2 R3, R2 1.5 2.87900 1.79 yes 1.69 2.78 I/II 0/1 ?
ALF2 R3, R2 1.5 2.88000 1.80 yes 1.84 2.61 I/II 0/1 ?
ALF2 R3, R2 1.5 2.88250 1.81 yes 1.56 2.59 I/II 0/1 ?
ALF2 R3, R2 1.5 2.88500 1.82 yes 1.41 1.85 I 0 prompt
ALF2 R3, R2 1.5 2.88750 1.82 yes 1.38 1.77 I 0 prompt
ALF2 R3, R2 1.5 2.89000 1.83 yes 1.33 1.45 I 0 prompt
ALF2 R3, R2 1.5 2.89500 1.84 yes 1.30 1.39 I 0 prompt
ALF2 R3, R2 1.5 2.90000 1.84 yes 1.23 1.31 I 0 prompt
ALF2 R3, R2 1.5 2.91000 1.86 yes 1.14 1.23 I 0 prompt
ALF2 R3, R2 1.5 2.92500 1.87 yes 1.04 1.11 I 0 prompt
ALF2 R3, R2 1.5 2.95000 1.89 yes 0.97 1.00 I 0 prompt
ALF2 R3, R2 1.5 3.00000 1.92 yes 0.84 0.87 I 0 prompt
ALF2 R3, R2 1.5 3.10000 1.87 yes 0.69 0.71 I 0 prompt
ALF2 R3, R2 1.5 3.20000 1.73 yes 0.58 0.58 I 0 prompt
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4.4.2 Collapse-Time Fits

The de�nition of a threshold collapse-time is an important part of the threshold-mass

method introduced in Ref. [Koe1]. This method has similar, yet di�erent, building

blocks compared to the method by Köppel et al., 2019: While Köppel et al. relateMthr

to the free-fall time by means of extrapolation based on data points with M ≈ Mthr,

we use a �t of collapse-time data related to a broad range of total masses to �nd

Mthr by means of interpolation, cf. Fig. 4.5a. While we �t tcoll as a function of M ,

Köppel et al., 2019, consider dimensionless quantities, �tting M/MTOV as a function

of tcoll/τTOV, as illustrated in Fig. 4.5b. Their method is based on data points with

M ≈Mthr and a Gaussian �t function of the form

M/Mmax = ã exp
[︂
−b̃ (tcoll/τTOV)

2
]︂
, (4.12)

where τTOV is the EOS-dependent free-fall time of a maximum mass con�guration. In

the given example, we apply the free-fall method to a subset of our (ALF2, q = 1.5)

data, employing R3 data of prompt-collapse and delayed-collapse mergers with small

di�erences in M . As highlighted in Fig. 4.5b, we base our method on data with a

typical separation of ∆M = 0.1M⊙ and a minimal separation of ∆M = 0.05M⊙, cf.

Sect. 5.2.1. Both of the compared methods ignore parts of the collapse-time curve.

A detailed discussion of our �tting procedure is given in Sect. 5.2.3. We may take

a moment to re�ect upon the two methods which are portrayed in Fig. 4.5. At �rst

glance one may conclude that the method depicted on the right is computationally

cheaper as the �t is based on only four data points. In practice one probably has to

conduct more than a handful of simulations to obtain points to the left of the second

dotted line to �nd suitable data, as we will discuss in Sect. 5.3. We point out, that the

free-fall method is especially sensitive to data of the prompt-collapse regime. Provided

that data su�ciently close to the threshold have been found, i.e. prompt-collapse and

delayed-collapse data with little di�erence in M , we expect the free-fall method and

the bracketing method to be more robust compared to the method introduced in Ref.

[Koe1]. We point out that provided with this kind of data, the same �t may be used to

determineMthr by interpolation instead of extrapolation. In Fig. 4.5b, this alternative

approach based on the threshold collapse-time (Eq. 4.11) is indicated by the second

dotted line. In Sect. 5.3, we discuss whether this change of procedure can provide

results for Mthr that satisfy Eq. 4.6. Furthermore, we discuss an alternative idea for a

�t of data with M ≈Mthr. A discussion of our own method is given in Sect. 5.2.4.
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(a) Method of Ref. [Koe1] (b) Free-fall method

Figure 4.5: Comparison of methods based on the example data set from Tab. 4.1.
Panel (A): Method introduced in Ref. [Koe1]; tcoll as a function of M . The �t is based
on data for a broad range of total masses with a minimal separation of ∆M = 0.05M⊙.
The threshold mass is determined by interpolation, intersecting the �t curve with the dotted
(tcoll = τthr)-line. Panel (B): Free-fall method by Köppel et al., 2019; M/MTOV as a function
of tcoll/τTOV. The threshold mass Mff

thr is determined by extrapolation to tcoll/τTOV (left
dotted line) based on an exponential �t of data with M ≈ Mthr. Using the same �t, the
threshold mass M inter

thr may be determined by interpolation at tcoll/τTOV = τthr/τTOV (second
dotted line). In both panels points not used for the �t are marked with gray color. Plot in
sub�gure (A) adapted from [Koe1].

4.5 Threshold Mass Coe�cient kthr

The threshold mass coe�cient kthr is de�ned as the fraction

kthr =
Mthr

Mmax

, (4.13)

where Mmax = Mmax(EOS) is the maximum mass of an isolated non-rotating NS.

Various studies relate Mthr to Mmax in this way, for example Hotokezaka et al., 2011;

Bauswein et al., 2013; Köppel et al., 2019; Kashyap et al., 2021. The coe�cient kthr
has been found to be limited to the interval

1.3 ≲ kthr(q = 1) ≲ 1.7 , (4.14)

e.g., Hotokezaka et al., 2011; Bauswein et al., 2013; Radice et al., 2018c; Agathos

et al., 2020. Including unequal mass binaries, Eq. 4.13 becomes

Mthr(EOS, q) = kthr(EOS, q) ·Mmax . (4.15)
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Investigating the e�ect of mass ratio on the threshold mass, neither Perego et al., 2021,

nor Ref. [Koe1] �nd Eq. (4.14) to be violated, although broad mass ratio interval were

considered. The large set of EOSs studied by Bauswein et al., 2021 on the other hand

contains threshold mass coe�cients in the range 1.258 ≤ kthr ≤ 1.580.

4.6 Collapse Types

We categorize BNS mergers based on the lifetime of the remnant, distinguishing be-

tween four merger types: prompt-collapse mergers (type I), delayed-collapse mergers

(type II, III), and long-lived remnants which did not collapse within simulation time

(type IV).

� Type I: prompt collapse (tcoll < τthr)

� Type II: short-lived HMNS (τthr < tcoll < 5ms)

� Type III: long-lived remnants (tcoll > 5ms)

� Type IV: long-lived remnants (no collapse within simulation time)

This classi�cation is an extension of a classi�cation originally used by Hotokezaka et

al., 2011. In Ref. [Koe1] we speci�ed the distinction between type I and type II in

relation to the threshold collapse time, and added type IV for convenience.
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Chapter 5

Collapse Time Fits and Threshold

Mass

In this chapter, after a discussion of mass-ratio e�ects on the collapse time (Sect. 5.1),

we take up the discussion on methods to determine Mthr based on collapse time data,

which we started in Sect. 4.4.2. With respect to the method introduced in Ref. [Koe1],

we take a closer look at the building blocks of the threshold mass that remain to be

discussed (Sect. 5.2). Once more, we make use of the example data-set (ALF2, q = 1.5)

as a test bed, taking the respective value ofMthr obtained by bracketing as a reference

(Sect. 5.2.4). Furthermore, we use this set of data to examine the free-fall method by

Köppel et al., 2019. As mentioned in Sect. 4.4.2 and demonstrated in Fig. 4.5, the

same �t function and data may be used to determine Mthr by means of interpolation

instead of extrapolation. We are going to explore this idea. Finally, we investigate

ideas for alternative �ts of data close to threshold (Sect. 5.3).

5.1 Collapse Time - The E�ect of Mass Ratio

In Sect. 4.4, based on an example case with given EOS and mass ratio, we have

discussed the relation between the collapse time tcoll and the total mass M focussing

on the behaviour of tcoll in the vicinity of Mthr. However, resolving the sensitive

dependence of the collapse time on small changes of total masses close to the threshold

mass is a costly endeavour which we did not undertake in the simulation campaign of

Ref. [Koe1], cf. Chap. 3. Instead we settled for a structured parameter-grid spanned by

sets of mass ratios and total masses, which allowed us to explore properties of merger

remnants over a broader range of total masses compared to the small window provided

by data with M ≈Mthr.
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Fig. 5.1 shows the dependence of tcoll on both q and M . The �gure is split in

two rows to properly present both small (lower row) and high collapse times (upper

row). Over the full range of considered mass ratios, we rediscover the qualitative

relation between tcoll and M which we encountered in the example case of the ALF2

with q = 1.5: For a given mass ratio, the collapse time decreases with increasing total

mass. For a given total mass on the other hand, the picture is more diverse. In the case

of the highest simulated total masses, the e�ect of q is relatively small, a�ecting tcoll
to decrease for high q (ALF2, H4) or to develop a maximum at an intermediate mass

ratio (SLy). In the case of the smallest simulated total masses on the other hand,

the collapse-time curve has at least one maximum and does not appear to follow a

systematic rule. The existence of a maximum at intermediate mass ratios may be the

result of competing e�ects. Considering the edges of the studied mass-ratio interval, we

�nd high mass ratios to reduce tcoll, while close to q = 1, tcoll increases with increasing

asymmetry. As we are going to discuss in Sect. 6.3, increasing q leads to increasing

deformations of the secondary component, cf. Fig. 6.7. This probably decreases the

strength of the star cores' impact, causing the merger remnant's lifetime to increase.

At high mass ratios on the other hand, another e�ect dominates: Almost all of the

simulated total masses induced collapse within 2ms in case of highly asymmetric

binaries1, causing tcoll(q) to decrease with increasing q. Considering the binary's more

massive component (M1) in the case of high q, this comes with little surprise as the

primary star is already highly compact (with M1 reaching values close to Mmax).

In summary these two e�ects cause tcoll(q) to fall o� towards the endpoints of the

investigated mass-ratio interval, providing for at least one maximum at intermediate

mass ratios. At high M , we �nd the second e�ect to dominate.

The depicted error bars are determined as the di�erence between results of the

respective highest and second highest simulated resolution. Typically these are R3(*)

and R2(*). These di�erences appear to be larger for smaller M . Alternatively stated,

higher collapse times are less certainly determined compared to small ones. This is

due to the more complicated dynamics in connection with HMNS remnants. One

extreme case in this context is the SLy con�guration with M = 2.8M⊙ and q = 1.25.

The collapse times are 15ms (R3) and 2.3ms (R2). Seeking to determine this data

point more precisely, we conducted an R4 simulation for this con�guration, obtaining

a collapse time of 2.5ms and an error bar of almost the same size.

1Performing additional simulations of low-mass con�gurations exclusively in the case of q ∈
{1.625, 1.75}, it was possible to add a small number of data points with tcoll > 2ms in the regime of
high mass ratios, e.g. in the case of ALF2 and M = 2.75.
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Figure 5.1: tcoll as a function of q for di�erent total masses M . Columns: Data subsets
de�ned by the EOS. The curves either decrease for increasing M or show a maximum for
q > 1. For �xed mass ratio, tcoll decreases when we increase the total mass M . First row:
Full range of tcoll. Second row: Small collapse times. Plots adapted from Ref. [Koe1].

5.2 Mthr by Means of Interpolation of tcoll Data

Based on the steep behaviour of the collapse-time curve at threshold (cf. Fig. 4.4a),

and on the analysis of more than 300 simulations (cf. Fig. 4.4b), we have de�ned a

threshold collapse-time τthr, related to the threshold mass by condition (4.10). Based

on this condition, di�erent methods can be developed to determine Mthr by means of

interpolation. One possibility is the method introduced in Ref. [Koe1]. As discussed

in Sect. 4.4.2, there are three essential di�erences to the method by Köppel et al.,

2019: The �rst di�erence concerns the time scales related to Mthr, i.e., τthr and τTOV,

respectively. Secondly, Köppel et al., 2019, determine the threshold mass by means of

extrapolation as opposed to interpolation in the case of the method of Ref. [Koe1]. A

third di�erence is highlighted in Fig. 4.5. It concerns the considered mass intervals.

We point out that a method build upon the concept of determining Mthr by means of

interpolation (related to τthr), may be completed with di�erent kinds of �ts of collapse

time data. In any case, a method to determine Mthr based on the collapse time curve

always comes as a package containing a �t function/ �tting procedure, a time scale

(e.g. τthr or τff), and a selection of data (e.g. data with M ≈Mthr).
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5.2.1 Mass Interval

Compared to approaches usually taken in the literature, the method introduced in

Ref. [Koe1] includes an unusual selection of data points. Typically, methods to de-

termine Mthr involve a search for a set of BNS con�gurations which includes both

prompt-collapse and delayed-collapse mergers with M ≈ Mthr. While we adopt the

goal to include both prompt-collapse and delayed-collapse mergers, we do not seek to

narrow down the interval containing Mthr. In the case of the bracketing method for

example new con�gurations are chosen based on previous results, and the search is

continued until the desired accuracy is reached, i.e., once the interval containing Mthr

has su�ciently been reduced in size. By means of bisection the interval may be cut in

half with each additional simulation.

For our method, a broader interval of total masses is considered. As discussed

in chapter 3, the investigated parameter space includes data points with a typical

separation of ∆M = 0.1M⊙, where additional data may be placed at half-steps with

∆M = 0.05M⊙.2 Tab. 3.6 provides an overview of the studied parameter space. The

investigated mass intervals have a typical width of 0.4M⊙. They are intended to

include both prompt-collapse and delayed-collapse mergers over the whole spectrum

of mass ratios. Since the EOS strongly a�ects the outcome of the merger, we consider

di�erent intervals of total masses for each EOS. In some cases the investigated mass

interval does not contain type II or type III mergers. Furthermore, we point out that

by setting the minimal mass step to 0.05M⊙, the behaviour of the collapse-time curve

close to threshold remains unresolved within our data set, cf. Figs. 4.5a and 5.2.

5.2.2 Fit Function

To determine Mthr by means of interpolation, we introduced an empirically motivated

three-parameter �t formula in Ref. [Koe1]:

tcoll(M) = (τthr − c) · exp
[︃
−a M − b

M −Ms

]︃
+ c , (5.1)

which is constructed such that tcoll(M = b) = τthr, i.e.,

b =Mthr . (5.2)

2In the study including the largest number of EOSs up to now, Bauswein et al., 2021, Mthr is
determined using the bracketing method with a minimal accuracy of ±0.025M⊙. This accuracy
corresponds to an interval

(︁
Mdelayed

upper ,Mprompt
lower

)︁
of length 0.05M⊙.
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Eq. (5.2) may seem insigni�cant at a �rst glance, however, this relation implies two

advantages compared to more generic �t formulae:

1. We do not need to invert Eq. (5.1) to determine Mthr and its error. In fact, we

identify ∆Mthr with the error estimate for the parameter b, i.e., ∆Mthr = ∆b.

2. As the threshold mass is de facto a parameter of Eq. (5.1), bounds can easily be

applied to Mthr, i.e., we may limit b to meet the bracketing condition (4.6).

To apply bounds on b in terms of the bracketing method, a distinction between

prompt and delayed collapse may simply be based on tcoll, i.e., bmin = M tcoll<τthr
upper

and bmax = M tcoll>τthr
lower . However, taking uncertainties into account, as determined by

simulations with di�erent numerical resolutions, we will not implement the suggested

bounds strictly. In its asymptotic behaviour, function (5.1) is consistent with the

following assumptions and observations about the collapse time curve:

1. The collapse time increases strongly as the total mass of a BNS approaches

the maximum mass of rigid rotation M rot
max.

3 We assume this mass to mark the

threshold to stable remnant NS con�gurations, i.e., tcoll → ∞, for M →M rot
max.

2. The collapse time decreases monotonously for increasing M .

3. Concerning the selection of data underlying the �ts shown in Fig. 5.2, we assume

the second derivative of tcoll(M) not to change its sign, ignoring the unresolved

change of slope in vicinity of Mthr.

4. The collapse time does not become arbitrarily small. Beyond the allowed range

of total masses4, we expect tcoll(M) to asymptotically approach a minimal value.

The asymptotic behaviour at high M is assured by the primary building block the

of �t function, which is an exponential function with negative exponent. Therefore,

function (5.1) provides a lower bound c > 0:

tcoll(M) → c, M → ∞ . (5.3)

The EOS-dependent asymptotic behaviour for M → M rot
max is implemented in the

exponent's denominator which has a pole at M =Ms:

tcoll(M) → ∞, M →Ms =M rot
max(EOS) . (5.4)

3The maximum masses M rot
max of rigid rotation of SLY, ALF2 and H4 are 2.507342 M⊙,

2.510254 M⊙, and 2.476984 M⊙, respectively; cf. Dietrich et al., 2018.
4The allowed range of M depends on q and the EOS. It is limited by the condition M1 < Mmax,

i.e., the primary component cannot exceed the maximum mass of an irrotational NS of given EOS.
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Figure 5.2: Collapse time tcoll as a function of the total mass M for given mass-ratios. For
each EOS, the data are �tted based on Eq. (5.1). SLy, ALF2, and H4 are presented in blue,
orange, and green respectively. The collapse time increases strongly for decreasing M and
levels o� for increasing M . The horizontal line at tcoll = τthr = 2 ms marks the threshold
to prompt collapse. The total mass corresponding to this intersection, Mthr, increases with
higher tidal deformability. Plots adapted from Ref. [Koe1].

5.2.3 Fitting Procedure and Results

For each EOS and each mass ratio, we determine Mthr by means of a least-squares

approach, applying the �t formula (5.1) discussed in Sect. 5.2.2, while considering

all simulations for which the remnant collapsed to a BH within simulation time. In

unclear cases where a collapse took place for one numerical resolution, while this was

not the case for the second resolution, we trust the result obtained for the higher

resolution. In practice, applying the �t to the data presents a few obstacles that need

to be overcome. In cases where no delayed-collapse data (tcoll > τthr) is available, the
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parameters a and b would become weakly determined if no measures are taken, cf. for

example SLy with q = 1.5 or q = 1.75, or H4 with q = 1.625. The same problem occurs

due to large error bars in delayed-collapse cases, cf. for example SLy with q = 1.125 or

q = 1.25. In comparison to the precisely determined prompt-collapse data, these data

points become virtually invisible to the least-squares algorithm. To solve this problem,

we include a penalty term into the �tting procedure, demanding the �t function to

reach a minimum value at low masses. In case of large error bars, this minimum value

is identi�ed with the lower end of the of the leftmost error bar. In case of absent

delayed-collapse data, we rely on type-IV data, demanding the �t function to reach

a minimum value (equal to the highest collapse-time found over all simulations) at

the respective total mass related to type-IV data. In cases where neither delayed-

collapse data nor type-IV data are available, we assume the type-IV regime to be valid

over all mass ratios, inferring its location from adjacent data of the same EOS, e.g.

M = 2.7M⊙ in the case of SLY and ALF2, or M = 2.8M⊙ in the case of H4, cf.

Tab. 3.6. In the described problematic cases, this procedure balances the overweight

of type-I data. In cases where delayed-collapse data are present, this procedure has

no noticeable e�ect.

As mentioned in connection with Eq. (5.2), bounds may be set on the parameter

b to limit the allowed Mthr-range according to condition (4.6). In doing so, we assure

our threshold-mass results to have a maximum error of ∆Mthr = 0.05M⊙ or 0.1M⊙,

depending on the respective local resolutions of the total-mass interval. In cases,

characterized by |tcoll − τthr| < ϵ, where the merger type is either I or II depending on

the resolution (Tab. 3.6), these bounds are weakened, cf. for example H4 with q = 1.5

(Fig. 5.2). All 21 �ts performed on the data set of Ref. [Koe1] are presented in Fig.

5.2. The τthr = 2ms-line in each panel marks the threshold to prompt collapse. Mthr

is located at the intersections between the �ts and the 2ms-line.

Results obtained for the threshold mass are given in Tab. 5.1. Besides Mthr, three

related quantities are shown: The threshold mass coe�cient kthr, and two quantities

characterising the tidal deformability of the BNS: κT2 and Λ̃, cf. Sect. 3.1.3. The

indicated accuracies of kthr, κT2 and Λ̃ are calculated based on the uncertainty ∆Mthr

determined for the parameter b. While it is consequent to use the error ∆b as an

estimate of Mthr, discussing our method with respect to our �ne-resolved example

data set (ALF2, q = 1/5), we may come to the conclusion that this error estimate is

too optimistic, cf. Sect. 5.2.4. In chapter 6 we compare our data to results of other

studies. Furthermore, we will discuss and re�ne models for threshold quantities.
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Table 5.1: Quantities at the threshold to prompt collapse for all 21 cases (EOS, q). Presented
in columns 3-10 are the threshold mass Mthr, the threshold mass coe�cient kthr, the tidal
polarizability parameter κT2 and the tidal polarizability coe�cient Λ̃ at threshold, and their
respective errors. Table taken from Ref. [Koe1].

EOS q Mthr ∆Mthr kthr ∆kthr κT2 ∆κT2 Λ̃ ∆Λ̃
[M⊙] [M⊙]

SLy 1.000 2.756 0.003 1.338 0.001 31.9 0.9 341 18
SLy 1.125 2.802 0.006 1.360 0.003 29.1 1.9 310 36
SLy 1.250 2.813 0.011 1.365 0.005 29.6 3.4 314 64
SLy 1.375 2.808 0.003 1.363 0.002 31.6 1.2 334 23
SLy 1.500 2.793 0.003 1.356 0.002 34.9 1.3 367 25
SLy 1.625 2.763 0.017 1.341 0.008 39.8 7.8 416 145
SLy 1.750 2.743 0.001 1.332 0.001 44.2 0.6 461 11
ALF2 1.000 2.963 0.002 1.489 0.001 38.9 0.6 415 11
ALF2 1.125 2.969 0.001 1.492 0.001 38.7 0.4 412 8
ALF2 1.250 2.950 0.004 1.482 0.002 41.3 1.6 439 31
ALF2 1.375 2.900 0.008 1.457 0.004 47.2 3.7 499 72
ALF2 1.500 2.881 0.002 1.448 0.001 50.3 1.2 530 22
ALF2 1.625 2.845 0.006 1.430 0.003 56.1 3.6 589 67
ALF2 1.750 2.799 0.002 1.407 0.001 63.5 1.0 664 20
H4 1.000 3.057 0.001 1.507 0.000 46.6 0.4 498 8
H4 1.125 3.037 0.003 1.497 0.001 49.6 1.4 528 26
H4 1.250 3.034 0.004 1.496 0.002 51.5 1.9 546 37
H4 1.375 3.029 0.001 1.494 0.001 54.3 0.6 574 11
H4 1.500 2.976 0.003 1.467 0.001 64.0 2.0 673 35
H4 1.625 2.911 0.002 1.435 0.001 77.4 1.7 810 32
H4 1.750 2.858 0.002 1.409 0.001 91.4 1.8 954 34

5.2.4 Proof of Principle and Conclusion

Investigating to what extent the threshold mass determined by our method is consis-

tent with results obtained by application of the bracketing method, we once more make

use of our �nely resolved example of ALF2 with q = 1.5. Considering the data set of

Ref. [Koe1] from the viewpoint of the bracketing method, in most cases we locateMthr

within intervals of length 0.05M⊙. In the extended data set of the (ALF2, q = 1.5)

example case on the other hand, we narrow down the interval containing Mthr much

further, cf. Tab. 4.1). This comparison of methods is presented in Fig. 5.3. The �rst

panel shows the application of our method to seven data points. As discussed before,

the �t does not model the change of slope at M ≈ Mthr that is underresolved in the

data set depicted in the �rst panel.
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Figure 5.3: Collapse time in the case of ALF2 with q = 1.5. Upper left: Fit of seven data
points as presented in Fig. 5.2. The orange vertical dotted line marks the threshold mass as
determined by interpolation. The gray vertical dotted lines in the second and third panel
mark threshold masses determined by application of the bracketing method for resolutions R3
and R2. Upper right: displayed are the same data and �t as in the �rst panel together with
results of additional R3 simulations of total masses close to the threshold mass (black crosses).
Lower left: Close-up of the second panel; additionally R2 data (gray crosses) are presented
together with the respective threshold mass determined by application of the bracketing
method. Figure adapted from Ref. [Koe1].

In the second and third panel of Fig. 5.3 the additional data (crosses) and their

evaluation with respect to the bracketing method (gray vertical lines) are included

in comparison to the curve �tted to the seven data points of the �rst panel. In the

lower left panel, data of resolutions R3 and R2 are distinguished being coloured black

and gray, respectively. A comparison of data of these two resolutions shows that

the transition from delayed to prompt collapse is shifted to higher M going from

R3 to R2. Furthermore, the R3 data appear to be more systematic. Applying the

bracketing method to data of either resolution, we obtain two threshold-mass values:

MR3
thr = 2.8776± 0.0001 and MR2

thr = 2.8838± 0.0012, cf. Fig. 5.3. Assuming the value

determined by the bracketing method applied to the R3 data to be the correct value

of Mthr, we �nd the di�erence to the value found by means of the depicted �t to be
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smaller than 0.005M⊙. This is a small deviation. Yet, it is higher than the error

indicated in Tab. 5.1. While the threshold mass determined by interpolation is not

contained within the uncertainty interval of the threshold mass obtained by bracketing

for the R3 resolution, MR3
thr, it lies well within the interval spanned by the threshold

masses of di�erent resolutions, cf. lower left panel of Fig. 5.3. Bearing in mind that

uncertainty estimates used within the �tting procedure take both of these resolutions

into account, this appears to be a valid result. Although the investigation of one case

does not constitute a proof, it is at least a proof of principle.

We come to the conclusion that in this case the threshold mass determined by

means of interpolation is, to some degree, consistent with the bracketing method. Yet,

we can not exclude inconsistencies in other cases. In practice, we have to assume the

bracketing method to be the more stable and reliable method. Applying the bracketing

method, the interval containingMthr can in theory be narrowed down until the desired

accuracy is reached. However, this statement has to be taken with a pinch of salt. In

practice, increasing the accuracy means to conduct more simulations while choosing the

next con�guration's total masses based on the preceding simulations. Computationally

and in terms of time, this can become a costly endeavour. Furthermore, going to high

accuracy, deviations between resolutions become notable. This raises the question

of how to deal with results of di�erent numerical resolutions in the context of the

bracketing method. These two points motivate the search for methods that determine

Mthr based on interpolation and a �nite number of simulations. Our method is not

the perfect solution to this problem, but it seems to be a reasonable compromise to

achieve two goals based on the same set of data: determining a value of Mthr, and

studying properties of BNS mergers over a comparatively large interval, cf. Chap. 6.

5.3 Discussion of Collapse-Time Methods

After the discussion of our method to determineMthr based on interpolation of collapse-

time data, we conclude this chapter by discussing the method by Köppel et al., 2019

(free-fall method), and two di�erent attempts to determine Mthr by means of inter-

polation. On the one hand, we will use the same �t that Köppel et al., 2019, use

to extrapolate onto the free-fall time τTOV. On the other hand, we will consider an

alternative �t to data tcoll(M) with M ≈Mthr. Again, we will make use of the (ALF2,

q = 1.5) data set as a test bed.
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5.3.1 Method by Köppel et al.

In Sect. 4.4.2, in comparison to our method, we have introduced the free-fall method

by Köppel et al., 2019, which has also been applied in a follow-up study by Tootle

et al., 2021. Using the usual data set as a test bed, i.e., ALF2 with q = 1.5, we try

to reproduce the free-fall method. Guided by the respective �gures in their works

that illustrate their method, we plot M/Mmax against tcoll/τTOV, and use Eq. (4.12) to

�t di�erent sets of four data points in each panel of Fig. 5.4. Each selection of data

points contains two delayed-collapse mergers and two prompt-collapse mergers with

M ≈ Mthr.5 Considering the shape of M/Mmax as a function of tcoll/τTOV, it seems

plausible that this is what Köppel et al., 2019, and Tootle et al., 2021, have done. 6

Going from 5.4a to 5.4d, we use di�erent subsets of the example data set with

increasing the mass step ∆M from panel to panel. The step sizes are ∆M = 0.0025

in (A), ∆M = 0.005 in (B), ∆M = 0.01 in (C) and ∆M = 0.025 in (D). While

panels (A) through (C) show cases with data related to the steep regime of tcoll(M).

panel 5.4d obviously shows an example of inadequate data. Considering the �rst three

panels, we �nd that in each case the threshold mass determined by extrapolation to

tcoll/τTOV = 1 has a value higher than the highest total mass Mdata
max contained in the

respective data set, i.e.,

Mff
thr > Mdata

max , (5.5)

cf. data presented in the upper right of each panel. We have already advertised a

similar relation in Eq. (4.9), stating that the results by Köppel et al., 2019, show

only small di�erences from results by Bauswein et al., 2021. Considering that we

interpreted Mdata
max to be related to a delayed-collapse merger, Eq. (5.5) implies that

the threshold mass, Mff
thr, determined by the free-fall method is not consistent with

the threshold-mass de�nition by Bauswein et al., 2013, if we look at inequality (4.6).

5As indicated by Fig. 2 of the respective reference, Köppel et al., 2019, sometimes used less than 4
data points. Furthermore, it is not clearly stated by Köppel et al., 2019, how the data for their �ts are
selected. Here we rely on Fig. 4 of Tootle et al., 2021, which shows three examples of minimum-lapse
data. Interpreting these curves with respect to the criteria discussed in Sect. 4.3.2, we �nd at least
two prompt-collapse mergers and one delayed-collapse merger in each of the three panels.

6There is one characteristic which we cannot reproduce: The data portrayed in the works by
Köppel et al., 2019, and Tootle et al., 2021, exclusively contain collapse times with tcoll ≲ 12τTOV

(≲ 6τTOV in the case of Köppel et al., 2019). This range is notably di�erent from the tcoll/τTOV-range
of our data, cf. Fig. 5.4. We will shortly analyse this issue, arguing that the axis scale in Fig. 5.4 is not
an error. Considering Tab. 1 of Köppel et al., 2019, we �nd that the free-fall times of the applied EOSs
are smaller than 100µs. With this estimate, a normalised collapse time tcoll/τTOV ≤ 10 corresponds
to a collapse time tcoll ≤ 1ms. This estimate stands in con�ict with the threshold collapse-time (4.11)
and the data depicted in panels 1-3 of Fig. 4 of Tootle et al., 2021. In the following analysis, we will
ignore this issue as it does not seem to be of consequence to the qualitative discussion of this method.
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Even though the error is small in each of the cases (A)-(C), we have to point

out that data which can be adequately used for the the free-fall method, i.e., data

with M ≈ Mthr, can alternatively be used to determine Mthr applying the bracketing

method, obtaining a threshold mass with small uncertainty which is consistent with

de�nition (4.6).

(a) M ∈ {2.8750, 2.8775, 2.8800, 2.8825} (b) M ∈ {2.8700, 2.8750, 2.8800, 2.8850}

(c) M ∈ {2.8600, 2.8700, 2.8800, 2.8900} (d) M ∈ {2.8500, 2.8750, 2.9000, 2.9250}

Figure 5.4: Examination of the free-fall method. For each plot, a di�erent subset (orange)
of the example data-set (Tab. 4.1) has been used for the �t (Eq. (4.12)). Points that are not
considered for the �t are marked with gray color. In each case, four data points are used: two
prompt-collapse and two delayed-collapse mergers. Crosses mark where the threshold mass is
localized by means of extrapolation (Mff

thr, free-fall method, tcoll/τTOV = 1), or interpolation
(M inter

thr , tcoll = τthr). The extrapolation results are compared to the highest total mass Mdata
max

considered for the �t. The interpolation results are compared to the bracketing masses
Mdelayed

max and Mprompt
min .

5.3.2 Modi�cation of Köppel's Method

Having discovered that the free-fall method produces results that are inconsistent

with the employed data, we will try to use the same �t to determine a threshold mass
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M inter
thr consistent with inequality (4.6) by means of interpolation. This attempt is also

demonstrated in Fig. 5.4. In the lower right of each panel we compare M inter
thr to the

bracketing masses Mdelayed
max and Mprompt

min . However, in none of the presented cases, we

�nd M inter
thr to be contained in the bracketing interval

[︁
Mdelayed

max ,Mprompt
min

]︁
. We explain

this with the way the graph of the �t function is curved compared to the local curvature

indicated by the data points. While the collapse-time curve has an in�ection point

localized at τthr or close by, the graph of the �t function (4.12) does not.

5.3.3 Alternative Fitting Procedure

We conclude our discussion of collapse time �ts designed to determine Mthr with

thoughts about alternative �tting methods. As pointed out earlier, the bracketing

method is a computationally expensive method when it comes to achieving low un-

certainties. Furthermore, it does not provide a straightforward way to account for

di�erences in results of di�erent resolutions. These points aside, it is the natural way

to determine Mthr and probably the most reliable one. However, it appears to be

desirable to �nd an economic compromise, i.e., a method which allows to abort the

process of conducting simulations and choosing new parameters earlier while determin-

ing Mthr with high accuracy. The �tting procedure of Köppel et al., 2019, appeared

to be promising in that regard. However, we have discussed reservations about this

method and it modi�cation in Sects. 5.3.1 and 5.3.2. To formulate a goal, we are

looking for a �t to collapse-time data that respects the local shape of tcoll(M) in the

vicinity of the threshold to prompt collapse that is based on a small number of data

points which include both prompt-collapse and delayed-collapse mergers. The method

would be required to take into account data of di�erent numerical resolutions and

determine Mthr with higher accuracy compared to the bracketing method applied to

the same set of data. While we cannot present a �t function that achieves all of these

goals, we are going to at least consider an attempt that illustrates what we are looking

for. The function

tcoll(M) = −A · tanh [a (M − b)] + τthr (5.6)

A =

⎧⎨⎩c , M < b

d , M > b
,

steeply decreases at M ≈ b and cuts the tcoll = τthr line at M = b. It is constructed

similarly to Eq. (5.1), allowing us to put constraints on the parameter b in accordance
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with the condition in Eq. (4.6). We test this �t function, employing sets of four data

points with varying bracketing interval, cf. Fig. 5.5. As indicated in each panel, the

accuracy of these �ts does not surpass the one of the bracketing method applied to

the respective data sets, i.e., the uncertainty interval is larger than the limits enforced

on the parameter b. While this disquali�es the presented attempt, it does not exclude

the possibility that a more clever ansatz proves to be an e�ective tool in determining

Mthr with high accuracy in a computationally less expensive way compared to the

bracketing method.

(a) M ∈ {2.85, 2.8775, 2.88, 2.9} (b) M ∈ {2.86, 2.875, 2.88, 2.9}

(c) M ∈ {2.85, 2.86, 2.8825, 2.95}) (d) M ∈ {2.825, 2.85, 2.8875, 2.9})

Figure 5.5: Examination of an alternative �t of collapse-time data with |M − Mthr| < 0.1
For each plot, a di�erent subset (orange) of the example data-set (Tab. 4.1) has been used
for the �t (Eq. (5.6)). Points that are not considered for the �t are marked with gray color.
In each case, the sample contains prompt-collapse and delayed-collapse mergers. The data
and sample size are varied. Crosses mark where the threshold mass is localized by means
of interpolation (M inter

thr , tcoll = τthr). The error, identi�ed with the error estimate of the
employed least-squares routine for the parameter b, is compared to the error of bracketing
method in the respective case.
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Chapter 6

Modelling Properties of Threshold

Con�gurations

In this chapter, we will investigate the e�ect of mass ratio on the threshold to prompt

collapse taking into account recent studies on Mthr. We will consider the threshold

mass and threshold values of the tidal parameters (κT2 )thr and Λ̃thr, discussing existing

models and developing new models that in particular take into account the e�ect of

mass ratio on quantities at threshold. As we review �ndings of the simulation campaign

of Ref. [Koe1], we will, in places, enrich the discussion with additional material. We

will compare these �ndings to available data and �ts of other studies. Furthermore, we

will present �ts of combined data sets that base models on a larger number of EOSs.

Distinguishing the cases of prompt and delayed collapse, we will discuss the e�ect

of mass ratio on merger dynamics, and how these in�uence properties of the remnant

systems. The quantities considered in this context are the disk mass, and the remnant

BH's mass and spin. In the case of BH mass and disk mass we will approximate lower

and upper limits for the case of prompt collapse, respectively.

6.1 Threshold Mass - The E�ect of Mass Ratio

While early studies of the threshold mass to prompt collapse focussed on equal-mass

binaries of irrotational stars, asymmetric binaries have gained more attention in recent

studies. In a small but growing number of systematic studies, factors aside from the

EOS are considered, i.e., the e�ect of mass ratio and, in one case, the e�ect of spin.



74 Chapter 6. Modelling Properties of Threshold Con�gurations

6.1.1 Recent Studies

To give a short overview over these studies, we list a selection of recent studies with

minimal summaries, indicating their individual foci by reporting important models

introduced or developed in these works.

� Bauswein et al., 2021, consider 40 EOS and three mass ratios, q̃ ∈ {1.0, 0.85, 0.7}.
With respect to the number of investigated EOSs it is the largest study so far.

In their work, Bauswein et al. consider �t formulae of the type

Mthr = α (1− q̃)n + γ (6.1)

�nding n = 3 to be a good compromise with respect to all of their data. In this

context they distinguish between di�erent samples of EOSs, including hadronic

EOSs, hybrid models and excluded EOSs. Developing their model further, they

suggest �t formulae with two stellar parameters (X, Y ) of the type

Mthr(q̃, X, Y ) = c1X + c2 Y + c3 + c4 δq̃
3X + c5 δq̃

3 Y , (6.2)

with δq̃ = 1− q̃ and q̃ = 1/q ≤ 1. For di�erent pairs of parameters (X, Y ), i.e.,

X =Mmax and Y ∈ {R1.6, Rmax,Λ1.4,Λthr}, Bauswein et al. present �ts based on

di�erent samples of EOSs.

� The work by Tootle et al., 2021, addresses both the e�ect of mass ratio and the

e�ect of spin χ. They consider three EOS. The investigated mass-ratio interval

reaches up to the extreme case of q̃ = 0.5. It contains four mass ratios in total,

i.e., q̃ ∈ {1.0, 0.9, 0.7, 0.5}. Tootle et al. follow the ansatz

Mthr(EOS, q̃, χ) = κ(EOS) f(q̃, χ) , (6.3)

assuming the e�ect of mass ratio and spin to be independent of the EOS. The

ansatz for f(q̃, χ) is a second order polynomial of type

f(q̃, χ) = a1 + a2 (1− q̃) + a3 χ+ a4 (1− q̃)χ+ a5 (1− q̃)2 + a6 χ
2 , (6.4)

where a1 is set to 1 and additional assumptions are made for a6, leaving four

coe�cients to be determined based on simulation data.
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� Perego et al., 2021, explored a parameter space spanned by six EOSs and six

mass ratios, q̃ ∈ {1.0, 0.85, 0.75, 0.7, 0.65, 0.6}, suggesting piecewise linear �ts to
model the fraction

f(q̃) =
Mthr(q̃)

Mthr(q̃ = 1)
= α(q̃)q̃ + β(q̃) =

⎧⎨⎩αlq̃ +βl , q̃ < q̂

αhq̃ +βh , q̃ < q̂
, (6.5)

where q̂ is assumed to be 0.725, and the incompressibility Kmax is used as an

EOS-dependent parameter.

� The simulation campaign presented in Ref. [Koe1] and in this thesis covers three

EOSs and seven mass ratios, q ∈ {1.0, 1.125, 1.25, 1.375, 1.5, 1.625, 1.75}. To

model the e�ect of mass ratio over a broader mass-ratio interval than the one

considered by Bauswein et al., 2021, we extended the �t function of Bauswein et

al., adding two linear terms to their �t formula:

Mthr(q,X, Y ) = c1X + c2 Y + c3+ c4 δq̃ X + c5 δq̃ Y + c6 δq̃
3X + c7 δq̃

3 Y . (6.6)

While the original �t function has its maximum or minimum at q̃ = 1, the extra

terms in the extended version allow for extrema at q > 1 (i.e., q̃ < 1).

Reviewing Ref. [Koe1], we will discuss the mass-ratio dependence of Mthr in this sec-

tion, comparing our �ndings to results of those studies, which cover a larger fraction

of the EOS parameter space. We will examine and develop �ts modelling the mass

ratio and EOS dependence of Mthr.

6.1.2 E�ect of Mass Ratio and Fits

To examine the e�ect of mass ratio onMthr, we compare two of the models mentioned at

the beginning of this section, i.e. Eq. (6.2) and Eq. (6.6). Fig. 6.1 shows the application

of the two �t formulae to our data: In the �rst column, Eq. (6.2) (Bauswein et al.,

2021) is applied, in the second column it is the extended version, Eq. (6.6) ([Koe1]). In

both of these cases, we follow Bauswein et al., 2021 in the choice of stellar-parameter

pairs, i.e., X = Mmax and Y ∈ {R1.6, Rmax,Λ1.4}. The coe�cients and measures of

con�dence of the �ts depicted in the �rst column of Fig. 6.1 are given in Tab. 6.3

(sample K). The respective quantities of the �ts depicted in the second column are

given in columns 2-4 of Tab. 6.1.
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Figure 6.1: Data points: threshold mass Mthr, as determined here and in Ref. [Koe1], plotted
as a function of the mass ratio q. At the upper end of the mass ratio interval, Mthr decreases
for increasing q. In the case of SLy, the data clearly exhibit a maximum at q ≈ 1.375.
First column: Dashed/dotted lines: Fits to the data points, for di�erent stellar parameters,
as given in the legend, based on the �t formula proposed by Bauswein et al., 2021 (reproduced
in Eq. (6.2)). The respective coe�cients are given in Tab. 6.3.
Second column: Dashed/dotted lines: Fits to the data points depending on pairs of stellar
parameters as given in the legend, based on Eq. (6.6) with coe�cients given in Tab. 6.1.
Figure adapted from Ref. [Koe1].

The �ve-coe�cients �t by Bauswein et al. distinguishes two cases: monotonously

decreasing and monotonously increasingMthr(q). In most cases, Bauswein et al., 2021,

�nd Mthr(q) to decrease with increasing q > 1. In the case of soft EOSs they observe

only a weak mass-ratio e�ect and sometimes increasing Mthr(q). Considering our

softest EOS (SLy), our data appears to stand in contrast to this categorization, since

our SLy data decreases for high q. However, Bauswein et al., 2021, considered a smaller

range of mass ratios, i.e., q < 1/0.7 ≈ 1.4. For high mass ratios (q ≳ 1.4) we always

�nd Mthr(q) to be a decreasing function in q. This observation is backed up by results

of Perego et al., 2021, for six more EOSs. In the broader picture, the cases of EOSs

for which Bauswein et al., 2021, �nd Mthr(q) to increase (for small to medium mass

ratios) may, in general, be cases for which Mthr(q) has a maximum at intermediate

values of q. The seven-coe�cients �t (Eq. (6.6)) provides for the possibility of such a

maximum at q > 1. However, as we will see in Sect. 6.1.3, due to the small number of

studied EOS, the �ts given in Tab. 6.1 are of limited predictive power regarding the

threshold-mass curve of other EOSs. Therefore, we will discuss the extension of these

�ts to combined data sets in Sect. 6.1.4.

A feature which we do not model, is the small dip of Mthr(q) at small mass-ratios

that we �nd in the case of H4, cf. Fig. 6.1. This is also depicted in Fig. 4 of Bauswein

et al., 2021, for the example of DD2F.
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Table 6.1: Coe�cients c1 to c7 �tting Mthr data (21 data points as reported in Tab. 5.1)
for three pairs of stellar parameters (X,Y ) by means of a least-squares approach. In column
four, the threshold mass of the q = 1 case is used as a parameter. The following measures of
variation are given: the maximal absolute residual (max.), the mean absolute residual (av.),
and the coe�cient of determination, (R2). Table adapted from Ref. [Koe1].

Mthr(q,X, Y ) = c1 X + c2 Y + c3 + c4 δq̃ X + c5 δq̃ Y + c6 δq̃
3 X + c7 δq̃

3 Y , δq̃ = 1− q̃

(X,Y ) (Mmax, R1.6) (Mmax, Rmax) (Mmax,Λ1.4) (Mmax,Mthr(q = 1))

c1 −0.645± 0.02 0.831± 0.021 −0.48± 0.019 (5.724± 2.156) · 10−2

c2 0.127± 0.001 0.19± 0.001 (4.425± 0.039) · 10−4 0.998± 0.008
c3 2.658± 0.038 −0.837± 0.045 3.641± 0.038 −0.11± 0.043
c4 0.388± 0.057 0.789± 0.062 0.105± 0.013 1.042± 0.09
c5 (−4.994± 0.881) · 10−2 −0.131± 0.011 (−9.525± 3.231) · 10−5 −0.663± 0.06
c6 3.241± 0.287 1.333± 0.304 −0.334± 0.062 3.05± 0.441
c7 −0.734± 0.045 −0.477± 0.054 (−3.116± 0.169) · 10−3 −2.978± 0.298

max. 0.0377 0.0329 0.0374 0.0342
av. 0.0107 0.00821 0.0123 0.00813
R2 0.979 0.986 0.972 0.986

6.1.3 Comparison of Results and Fits

In this section, we compare data from four di�erent studies, i.e., Bauswein et al., 2021;

Kashyap et al., 2021; Perego et al., 2021, and [Koe1]. Apart from the work by Kashyap

et al., 2021, who investigated Mthr for a sample of 23 EOSs in the case of equal-mass

binaries, these works have been introduced in Sect. 6.1. Out of convenience, we use

the following designations: In the case of the large sample of EOSs of Bauswein et al.,

2021, we adopt their denominations, i.e., 'b' (hadronic EOSs), 'e' (excluded hadronic

EOSs), 'h' (hybrid EOSs). Sometimes we simply refer to their data as the sample 'B'.

Further, we label the data of Kashyap et al., 2021, with 'Ka', the data of Perego et al.,

2021, with 'P', and data from Ref. [Koe1], with 'K'.

The data sets B, Ka and K all include the EOSs SLy, ALF2 and H4. This allows

for a direct comparison of results, which is shown in the right column of Fig. 6.2.

In the equal-mass case, we �nd threshold masses from 'B', to have systematically

higher values than those from 'K' and 'Ka', while a similar systematic is not apparent

between the data sets 'K' and 'Ka'. The largest di�erence are ∆Mthr ≈ 0.07 between

'B' and 'K', and ∆Mthr ≈ 0.03 between 'Ka' and 'K'. Comparing their data to those

of 'B', Kashyap et al., 2021, �nd systematic deviations. However, considering mass

ratios q > 1, we do not �nd this observation to hold. The sets 'K' and 'B' appear to

be compatible at q̃ = 0.85 compared to adjacent data, while threshold masses from

'B' at q̃ = 0.7 tend to have lower values compared to adjacent data from 'K'.
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Figure 6.2: Comparison of data and �ts. First column: Comparison to �ts by Bauswein
et al., 2021. Dashed/dotted lines: Fits as found by Bauswein et al. (cmp. Eq. (10), Fig. 5
and TABLE. VI of Bauswein et al., 2021) plotted for the stellar parameters of SLy, ALF2
and H4. The �ts are based on di�erent subsets (b, b+e) of data for q̃ = 1/q ∈ [0.7, 1.0] given
in Bauswein et al., 2021. The transition to extrapolation beyond q = 1/0.7 is marked by a
change to gray color.
Second column: Direct comparison of data. Data points: As in Fig. 6.1. Crosses: Data by
Bauswein et al., 2021. Stars: Data by Kashyap et al., 2021.
Figure adapted from Ref. [Koe1].

The data sets 'B', 'Ka', 'K' are based on di�erent numerical codes, and treatments

of Einstein's equations and physics relevant after merger (e.g., neutrino treatment):

Bauswein et al., 2021 use a conformally �at approximation for the strong regime,

Kashyap et al., 2021 applied the WhiskyTHC code (e.g., Radice et al., 2018a), and

simulations of Ref. [Koe1] were conducted with BAM. Simulations of the sets 'Ka'

and 'K' have been conducted with comparable numerical resolution. While Bauswein

et al., 2021, and Kashyap et al., 2021, used the bracketing method, we have used a

new approach. The discussed deviations may be related to both the applied codes and

threshold-mass methods.

In the left column of Fig. 6.2, we compare data from 'K' to �ts from Bauswein

et al., 2021, Eq. (6.2). Depicted is a sample of �ts to di�erent data subsets and pairs

of stellar parameters as given in the legend. Coe�cients depend on the subsets of

data from 'B', cf. Bauswein et al., 2021, stellar parameters of our EOSs are given in

Tab. 3.1. Extrapolations beyond the mass-ratio interval investigated by Bauswein et

al. are marked with gray color. It is no surprise to �nd that for many of the �ts given

in Bauswein et al., 2021 deviations from our data are the highest for high mass ratios.

However, in the case of 'b+e' sample with Y = Λ1.4 the �t is accurate at high mass

ratios. At mass ratios q < 1/0.7 we observe unsystematic deviations between our data

and the depicted �ts to data from 'B'. The highest di�erences are smaller than 0.2M⊙

at high q, in the case q ≤ 1.375 they smaller than 0.08M⊙.
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Figure 6.3: Data points: Data of Perego et al., 2021 ('P'). Dashed lines: Fits (Tab. 6.1) using
Eq. (6.6) based on data of Ref. [Koe1] ('K'). In each panel a di�erent pair of parameters
is used, i.e., X = Mmax and Y ∈ {R1.6,Λ1.4, Rmax, M̂ thr (q = 1)}. Fits based on the stellar
parameters R1.6, Λ1.4 and Rmax show large deviations from data of 'P'.

We �nd considerably higher deviations between data and �ts, when we use the

�ts from Tab. 6.1 to predict data from Perego et al., 2021, cf. Fig. 6.3. In each

panel of Fig. 6.3, we show �ts to Eq. (6.6) based on the same 21 data points (Tab.

5.1), using a di�erent pair of parameters X and Y in each case. Fits based on the

stellar parameters R1.6, Λ1.4 and Rmax, which are extractable from GW signals, show

large deviations compared to the respective 'P' data. In the fourth panel we use the

threshold mass of the equal-mass case as a parameter, i.e. Y = M̂ thr (q = 1). Here we

use the respective q = 1 data points for this purpose, which explains the comparably

good agreement between �ts (based on 'K') and data (based on 'P'). If no simulation

data for the q = 1 case is available, it is also possible to compute Mthr(q = 1) using

relations between Mthr and stellar parameters, cf. for example Kashyap et al., 2021.

In summary, we do not �nd our �ts to predict threshold masses of di�erent EOSs

properly. This can be explained with the small sample of EOSs used for our �ts.

Therefore, we will combine our data with available data, like those of Perego et al.,

2021, to construct more promising models in the next section.
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6.1.4 Fits to Combined Sets of Data

To improve the Mthr(q) model, which employs the �t function in Eq. (6.6), we will

increase the number of considered EOSs by including data from Perego et al., 2021. In

Ref. [Koe1], we have also considered �ts based on the combined data set 'B' +'K' and

Eq. 6.2, cf. 'K+b+e+h' sample in Tab. 6.3. While in the case of 'K' and 'P', similar

mass-ratio intervals are covered, this is not the case for 'B' and 'K'. In the 'K+b+e+h'

case, the large uncertainties of the �ts' coe�cients, cf. Tab. 6.3, may be a result of the

mass-ratio interval's dissimilarity. Individual �ts of 'B' (cf. Bauswein et al., 2021) and

'K' (cf. Tab. 6.3) data based on Eq. (6.2) lead to much smaller uncertainties of the

coe�cients.

Combining the data sets 'K' and 'P', we �t 21 + 36 data points of 3 + 6 EOSs

by means of a least-squares approach. We ignore error estimates of the individual

methods used to determine Mthr and use the same four pairs of parameters as in Sect.

6.1.3. The �ts are presented in Fig. 6.4 im comparison to the employed data. The �ts'

coe�cients are reported in Tab. 6.2.

Figure 6.4: Fit of the data set K+P, which includes data by Perego et al., 2021. The �t is
based on Eq. (6.6) and the parameter pair (X,Y ) = (Mmax,Mthr(q = 1)). Coe�cients are
given in Tab. 6.2. Plot in the lower right taken from Ref. [Koe1].
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With respect to R2, �ts based on parameters Y ∈ {R1.6,Λ1.4, Rmax} are in good

agreement with the data. However, comparing data and �ts in the �rst column of

Fig. 6.4, we take notice of the case of BHB and H4. While all data related to H4

have higher values of Mthr, we �nd the opposite relation for the respective �t curves.

An explanation for this may be found in the similarity of the respective radii, i.e.,

(R1.6, Rmax) = (13.2 km, 11.59 km) in the case of BHB compared to (R1.6, Rmax) =

(13.5 km, 11.62 km) in the case of H4. Considering the upper right panel of Fig. 6.4

(Y = Λ1.4), we �nd sets of two to three �t curves to be packed together tightly, i.e.,

(BHB, DD2qG, H4), (ALF2, BLh, LS220) and (SFHo, SLy). The groups of EOSs with

closely packed �t curves are characterized by maximum masses and tidal parameters

of similar magnitude, cf. Tab. B.1 (appendix) for the complete set of parameters.

For the fourth panel of Fig. 6.4, we again employ Mmax together with M̂ thr (q = 1)

as parameters, using the respective q = 1 data point for M̂ thr (q = 1). Predictably, we

obtain �ts that are in good agreement with the data low mass ratios. Considering R2,

the �t is notably improved compared with the ones employing the stellar parameters

R1.6, Λ1.4 and Rmax, cf. Tab. 6.2. Employing only the sample 'K', cf. Tab. 6.1,

�ts with parameters R1.6, Λ1.4 and Rmax are of comparable quality to the one with

Y = M̂ thr (q = 1). In either case, the coe�cient c1 becomes neglectable and c2 takes

on values close to 1.0 when M̂ thr (q = 1) is employed. This indicates that a di�erent

strategy may be preferable for �ts with M̂ thr (q = 1) as a parameter. In this context,

it is worth mentioning that in the case of q = 1, the �t formula (6.6) takes the form

Mthr(1, X, Y ) = c1X + c2 Y + c3 , (6.7)

i.e., the �rst three coe�cients model the threshold mass of equal-mass binaries. How-

ever, applying a least-squares method to Eq. (6.6), also data of mass ratios greater

than one are taken into consideration to determine these coe�cients. On the path to

Eq. (6.2), Bauswein et al., 2021, also consider �ts of the form

Mthr(q) = −∆Mthr

0.33
δq̃3 +Mthr(q = 1) , (6.8)

with ∆Mthr = M q̃=1
thr − M q̃=0.7

thr , and 0.3 being the width of the mass-ratio interval

considered in their work. Considering that �ts in Fig. 6.4 tend to be o� at either

end of the considered mass-ratio interval, we conclude that an analogous term, i.e.,

∆M1.75
thr = M q=1

thr −M q=1.75
thr , might be used in a more clever ansatz where a stronger

emphasis is put on the endpoints of the interval.
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Table 6.2: Same as Tab. 6.1, but for the combined set (K+P) of 57 threshold mass data points;
(K, 21 data points) together with data from Ref. Perego et al., 2021 (P, 36 data points). The
best �t is achieved for the parameter pair (X,Y ) = (Mmax, M̂ thr (q = 1)). Table taken from
Ref. [Koe1].

Mthr(q,X, Y ) = c1 X + c2 Y + c3 + c4 δq̃ X + c5 δq̃ Y + c6 δq̃
3 X + c7 δq̃

3 Y , δq̃ = 1− q̃

(X,Y ) (Mmax, R1.6) (Mmax, Rmax) (Mmax,Λ1.4) (Mmax, M̂ thr (q = 1))

c1 0.462± 0.094 0.428± 0.094 0.686± 0.049 (−3.627± 8.917) · 10−2

c2 0.14± 0.016 0.134± 0.017 (5.049± 0.655) · 10−4 0.93± 0.064
c3 0.251± 0.107 0.602± 0.104 1.249± 0.093 0.285± 0.067
c4 0.76± 0.638 0.886± 0.62 0.162± 0.136 1.149± 0.626
c5 −0.12± 0.106 −0.16± 0.117 (−3.921± 4.616) · 10−4 −0.78± 0.44
c6 0.00817± 3 −0.539± 3.396 −0.808± 0.735 0.932± 3.353
c7 −0.188± 0.573 −0.112± 0.638 (−1.406± 2.471) · 10−3 −1.447± 2.353

max. 0.0843 0.0848 0.0800 0.0704
av. 0.0287 0.0341 0.0303 0.0182
R2 0.938 0.926 0.934 0.974

Table 6.3: Results for coe�cients c1 to c5: �tting threshold mass data (sample K: 21 data
points as reported in Tab. 5.1) for three pairs of stellar parameters (X,Y ) to Mthr(q,X, Y ) =
c1X + c2 Y + c3 + c4 δq̃

3X + c5 δq̃
3 Y , δq̃ = 1 − q̃ by means of a least squares approach.

Combined �ts are given for Y ∈ {R1.6,Λ1.4} based on the sample 'K' and the data of Bauswein
et al. presented in Tab. IX of Bauswein et al., 2021. In columns seven to nine we present the
following measures of variation: the maximal absolute residual (max.), the mean absolute
residual (av.), and the coe�cient of determination (R2). Table taken from Ref. [Koe1].

Mthr(q,Mmax, R1.6) = c1 Mmax + c2 R1.6 + c3 + c4 δq̃
3 Mmax + c5 δq̃

3 R1.6

K −0.374± 0.047 0.104± 0.002 2.413± 0.086 3.087± 0.176 −0.655± 0.027 0.072 0.0109 0.9632 21

K+b+e+h 0.675± 0.559 0.15± 0.106 −0.315± 1.191 5.313± 25.98 −1.031± 4.371 0.148 0.0365 0.9602 141

Mthr(q,Mmax, Rmax) = c1 Mmax + c2 Rmax + c3 + c4 δq̃
3 Mmax + c5 δq̃

3 Rmax

K 0.871± 0.039 0.164± 0.003 −0.612± 0.069 3.969± 0.383 −0.903± 0.075 0.048 0.0106 0.9762 21

Mthr(q,Mmax,Λ1.4) = c1 Mmax + c2 Λ1.4 + c3 + c4 δq̃
3 Mmax + c5 δq̃

3 Λ1.4

sample c1 c2/10−4 c3 c4 c5/10−4 max. av. R2 N

K −0.371± 0.044 3.71± 0.05 3.481± 0.087 −0.177± 0.037 −2.47± 0.093 0.075 0.0126 0.9568 21

K+b+e+h 0.67± 0.495 5.338± 4.097 1.271± 0.986 −0.042± 5.759 −3.347± 19.33 0.131 0.0456 0.9512 141
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6.2 Tidal Polarizability

For a given mass ratio, the tidal polarizability parameters κT2 and Λ̃ are decreasing

functions in M , cf. Fig. 3.2. Therefore, it is possible to uniquely relate the threshold

mass to a q-dependent threshold value of the tidal polarizability parameters, i.e., con-

�gurations with a given mass ratio and κT2 < (κT2 )thr(q), or respectively Λ̃ < Λ̃thr(q),

will undergo prompt collapse. For our highest-resolution data, this relation is visual-

ized in the �rst row of Fig. 6.5, where prompt collapse (coloured points) and delayed

collapse (gray points) are distinguished based on the collapse-time criterion applied to

R3-data, i.e., all data with t(R3)
coll > τthr are marked as delayed-collapse mergers.1 Tidal

parameters of threshold con�gurations (M =Mthr) are marked with crosses.

Figure 6.5: Upper row: Tidal polarizability parameters κT2 (�rst column) and Λ̃ (second
column) plotted against the total mass M. Included are all collapse scenarios. Prompt-collapse
scenarios (coloured) are distinguished from delayed-collapse scenarios (gray). Crosses mark
quantities at the threshold to prompt collapse as determined for M = Mthr. Lower row:
Tidal parameters at the threshold to prompt collapse as a function of the mass ratio q. Solid
lines are �ts over all data using Eq. (6.11). Plots taken from Ref. [Koe1].

1This is not necessarily equivalent to M > Mthr, cf. discussion in Sect. 5.2.3.
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Analysing merger simulations from the CoRe collaboration of binaries with com-

parable mass, Bernuzzi, 2020, found (q-independent) relations describing the tidal

parameters of prompt collapse mergers. In Ref. [Koe1], we examined these relations.

Bernuzzi, 2020, state that the tidal polarizability parameters Λ̃ and κT2 of prompt-

collapse mergers are characterized by the inequalities

κT2 < (κT2 )thr ∼ 80± 40 , (6.9)

Λ̃ < Λ̃thr ∼ 362± 24 , (6.10)

where (κT2 )thr and Λ̃thr mark the upper limit in the prompt-collapse case. Comparing

these �ndings to our data, cf. �rst row of Fig. 6.5, we made two observations with

regards to our data:

� Relation (6.9) is met by all data points presented in Fig. 6.5 (cmp. panel on the

upper left).

� Relation (6.10) captures only a small number of our threshold data points (cmp.

panel on the upper right of Fig. 6.5 ).

Table 6.4: Fits describing the EOS dependence of the tidal polarizability parameter κT2 and
the tidal polarizability coe�cient Λ̃ of BNS con�gurations at the threshold to prompt collapse
as a function of the mass ratio q. We also present the following measures of variation: the
maximal relative residual (max.), the mean absolute residual (av.), and the coe�cient of
determination (R2). Table adapted from Ref. [Koe1].

Zthr
tidal = c1 + c2 Λ̃1.4 + c3 Λ̃1.4 q + c4 Λ̃1.4 q

2

Zthr
tidal c1 c2 c3 c4 max. av. R2

(κT
2 )thr 20.221± 1.363 0.124± 0.019 −0.184± 0.029 0.090± 0.011 7.75% 1.18 0.991

Λ̃thr 226.867± 21.162 1.359± 0.310 −1.997± 0.484 0.947± 0.183 6.71% 14.6 0.986

Seeking to improve and to generalize these inequalities with respect to mass-ratio

e�ects, in Ref. [Koe1], we developed empirically motivated �ts of the form

Zthr
tidal = c1 + c2 Λ1.4 + c3 Λ1.4 q + c4 Λ1.4 q

2, (6.11)

where Ztidal may stand for either of the tidal parameters κT2 and Λ̃. The �t function is

designed to model the value of the tidal deformability parameters Zthr
tidal at threshold to

prompt collapse. Fits are performed by application of a least-squares method to all 21

data points. The �t curves are portrayed in the second row of Fig. 6.5. The respective



6.2. Tidal Polarizability 85

coe�cient c1 to c4 are given in Tab. 6.4. The �t formula applied to Ztidal ∈ {κT2 , Λ̃}
is a polynomial of second order in q. Properties of di�erent EOSs are factored in via

a linear dependence on the stellar parameter Λ1.4. Based on this model for threshold

values Zthr
tidal(q), prompt-collapse and delayed-collapse scenarios can be distinguished

for di�erent mass ratios and EOSs, i.e.,

Zdelayed
tidal > Zthr

tidal(q) > Zprompt
tidal . (6.12)

In the case of our small sample of EOSs, and for each mass ratio, we �nd the Zthr
tidal

to be linearly related to Λ1.4. The equal-mass case is illustrated in the �rst panel of

Fig. 6.6, where Λ̃thr data are plotted against Λ1.4. Our data are marked with their

usual colours, and the purple line is the �t function of Eq. (6.11) with coe�cients of

Tab. 6.4, interpreted as a function of Λ1.4 in the case of q = 1. We compare this �t to

threshold tidal parameters determined by Kashyap et al., 2021 (black data points), for

23 EOSs. Our �t lies within the error bars of more than half of these data points. In

some cases there are, however, large deviations which suggest a more complex picture.

Equipped with a data set containing a larger set of EOSs, this shortcoming may be

corrected by including dependencies on a second stellar parameter. In Sect. 6.1.4, we

discussed combined �ts of our Mthr data and data by Perego et al., 2021 to generate

more general models. It would be interesting to compare results over a broader range

of mass ratios. However, due to lack of data regarding the tidal parameters of the

EOSs studied by Perego et al., 2021, we cannot take the same approach here.

The second panel of Fig. 6.6 shows threshold values of the tidal polarizability

coe�cients as determined in Ref. [Koe1] (cf. Tab. 5.1) as a function of the threshold

mass. For each EOS and at high mass ratios (lighter coloring), Λ̃thr(Mthr) increases

linearly for decreasing Mthr. At low mass ratios (darker colouring), the Λ̃thr-line may

curve within the (Λ̃thr,Mthr)-plane; this is especially noticeable in the case of SLy.

Bauswein et al., 2021, and Kashyap et al., 2021, consider critical lines of the form

Mthr = aMmax + b Λ̃thr + c , (6.13)

that divide the (Mthr, Λ̃thr)-plane into allowed and excluded regimes. The dashed lines

in the second panel of Fig. 6.6 are based on the large set of EOSs studied by Bauswein

et al., 2021.2 In accordance with the mass-ratio sample studied by Bauswein et al.,

2The critical lines given in Fig. 6.6 are based on the sample b+h+e. Coe�cients are taken from
lines 49-51 of Tab. II of Bauswein et al., 2021.
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Figure 6.6: First column: Equal-mass case: Tidal polarizability coe�cient Λ̃ at threshold as
a function of the stellar parameter Λ1.4. Black data points: data from Kashyap et al., 2021,
('Ka'). Coloured data points: q = 1 data from Ref. [Koe1], ('K'). Purple line: Fit function
(6.11), with coe�cients of Tab. 6.4, for �x mass ratio q = 1 interpreted as a function of Λ1.4.
Second column: Tidal polarizability coe�cient Λ̃thr as a function of Mthr; data of di�erent
mass ratios are distinguished by colour shades (darkest at q = 1). Dashed lines: Critical
lines as determined by Bauswein et al., 2021, for q ∈ {1.0, 0.85, 0.7} and a maximum mass of
Mmax = 1.97M⊙. Threshold values above the critical lines (Mmax < Mobs

max) are excluded.

2021, three critical lines are included, i.e., q ∈ {1.0, 0.85, 0.7}. For the maximum-mass
parameter, we use the constraint found by Abbott et al., 2018, i.e., Mmax = 1.97M⊙,

which is the minimal value ofMmax considered by Bauswein et al., 2021, in this context,

cf. for example Fig. 8 of their work. With respect to the gray lines, two of our q = 1 data

points appear to be in the excluded regime above the q = 1 line, which is characterized

by maximum masses smaller than Mmax = 1.97M⊙, cf. discussions in Bauswein et

al., 2021 and Kashyap et al., 2021. However, all three of the considered EOSs are

compatible with the employed maximum-mass parameter, cf. Tab. 3.1. Therefore, we

do not consider this a problematic issue. In the case of unequal-mass binaries, our

data are without exception compatible with the respective critical lines.

Kashyap et al., 2021, consider universal, i.e., EOS independent, relations between

stellar properties to calibrate a set of two million phenomenological EOSs obtaining

constraints on NS properties. Particularly, compactness and tidal polarizability are

related to Mmax to determine upper and lower limits. Furthermore, Kashyap et al.,

2021, include the threshold mass in their considerations. The identi�cation of future

BNS-merger observations as prompt or delayed will put upper and lower limits to the

allowed regions in the (Mthr,Mmax) plane. With increasing number of BNS observa-

tions, tight constraint on the NS EOS are expected.
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6.3 Properties of Remnant Systems

Properties of the remnant system strongly depend on dynamics at merger, which in

turn are e�ected by multiple factors. Considering simulations of BNS mergers which

lead to the formation of a BH within simulation time, we will focus our attention on the

remnant BH's mass and the disk mass. We will discuss the qualitative e�ects of M , q

and the EOS on the remnant system. In this context, we will often distinguish between

the cases of prompt-collapse and delayed-collapse mergers. Following the approach of

Ref. [Koe1], we will review a sample of studies on ejection mechanisms with regard to

the e�ect of mass ratio. Subsequently, we compare data of our simulation campaign

to these �ndings. In closing, we approximate properties of remnant systems with

M ≈Mthr.

6.3.1 Ejection Mechanisms and Mass-Ratio E�ects

The multi-messenger observation of GW170817, AT2017gfo, and GRB170817A, cf.

Abbott et al., 2017c; Abbott et al., 2017a, proves that the GW signal of a BNS merger

may be followed by counterparts in the electromagnetic (EM) spectrum. These EM

signals are connected to the amount of matter ejected from the system, or accumulated

in a disk surrounding the merger remnant, in consequence of the neutron stars' coales-

cence, cf. for example Shibata et al., 2006; Metzger et al., 2012; Piran et al., 2013. In

the case of GW190425 on the other hand, no EM signature has been observed, cf. for

example Coughlin et al., 2020; Dudi et al., 2021. While the non-detection may have

other causes, cf. discussion by Coughlin et al., 2020, the likely explanation in this case

can be found in the binary's high total mass which has most likely caused a prompt

collapse, Abbott et al., 2020a. The spectrum and the origin of EM emissions, e.g.

optical and infrared emissions due to rapid neutron capture or radio emissions due to

the interaction of merger ejecta with the ambient medium, cf. Abbott et al., 2017b,

are a major topic, which we will forgo in our discussion. Instead, we will leave it at

the simple relation that more ejected material entails stronger EM signals. Focussing

our attention on mechanisms causing the ejection of matter3, we will approach this

topic from the viewpoint of simulation campaigns treating BNS mergers of asymmetric

binaries.
3We do not limit the use of the term ejection of matter to the case where matter becomes unbound,

rather any process which causes matter to become disconnected from the original stars or the merger
remnant may be implied. This especially includes the case of matter accumulated in a disk around
the remnant.
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An early study identifying di�erent ejection mechanisms is the one by Hotokezaka

et al., 2013, who investigated the mass ejection from BNS mergers for small mass

ratios, 1 ≤ q ≤ 1/0.8, and 4 di�erent EOSs. The BNS con�gurations considered

in their study either lead to the formation of HMNS or BH remnants. Comparing

these two cases, they �nd larger amounts of ejected material in the case of HMNS

remnants. With respect to the mass ratio, they �nd unequal-mass binaries to eject

larger amounts of matter. Analysing snapshots of the density and the speci�c internal

energy, they identify two ejection mechanisms: Shock heating (heated-up material is

pushed outwards, see also Bauswein et al., 2010) and angular momentum transport

(e.g. torque exerted by the HMNS to the surrounding material). They �nd the �rst

mechanism to be e�cient to eject matter from HMNSs in the phase after merger,

particularly in the case of binaries with q ≈ 1. Naturally, it plays no important role in

the case of BH remnants, i.e., in the case of prompt collapse, cf. Fig. 4.1. Considering

the second mechanism in case of a HMNS remnant at the time after merger, Hotokezaka

et al., 2013, �nd the rapidly rotating HMNS an e�cient torque supplier which increases

the angular momentum of surrounding material. Eventually velocities exceed the

escape velocity and matter becomes unbound. In the early phase of merger, and in

case of unequal-mass binaries, the less massive component gets tidally elongated due

to torque exerted by the primary component. This e�ect is especially important in

the case of prompt BH formation. In any case, tidal tails formed due to the tidal

elongation in the case of asymmetric binaries will not completely be ejected from the

remnant system. Parts of the tidal tails will remain in a rotationally supported disk,

cf. Radice et al., 2018a.

Considering BNS con�gurations over a broader mass-ratio range (up to q = 2.06),

Dietrich et al., 2017, make out two e�ects causing mass ejection in their simulations.

There is ejection of matter due to shocks following the collision of the NS cores. And

there are centrifugal e�ects causing the matter to be expelled from the tidal tail of the

secondary component, or in more asymmetric cases, ejection due to the partial tidal

disruption of the secondary component. The production of large amounts of ejected

material, due to tidal disruption, has also been observed by Bernuzzi et al., 2020. To

mention another interesting �nding connected to high mass ratios: Bernuzzi et al.,

2020, argue that there are di�erent mechanisms de�ning the dynamics of prompt col-

lapse in the case of high q compared to the equal-mass case. In the case of highly

asymmetric binaries, prompt collapse is induced by accretion onto the primary com-

ponent.
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(a) q = 1

(b) q = 1.125

(c) q = 1.25

(d) q = 1.375

(e) q = 1.5

(f) q = 1.625

(g) q = 1.75

Figure 6.7: Snapshots of log10 ϱ within the orbital plane close to the time of merger for
varying mass ratio, a �x total mass, M = 2.8M⊙, and the EOS SLy. For each mass ratio,
two times are shown: The onset of merger t1 ≈ tmax, and a time t2 shortly after tAH when
the major part of NS matter has been swallowed by the remnant BH. For increasing q, the
tidal deformation of the binary's less massive component increases. In the case of high mass
ratios, this results in the formation of a tidal tail and a more massive disk. (Due to rescaling,
colour maps are not comparable.)
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Distinguishing between prompt-collapse and delayed-collapse scenarios, Dietrich

et al., 2017, �nd no massive disks in the case of prompt BH formation. This coincides

with conclusions of Bernuzzi et al., 2020, and Radice et al., 2018a, who argue that

the bulk of dynamical ejecta is connected to the bounce of NS cores. Considering this

e�ect while bearing in mind that the absence of a core-bounce, i.e., monotonically

decreasing maximum-density, is a criterion for prompt collapse, we conclude that only

small amounts of ejected material are to be expected in any prompt-collapse scenario.

The discussed tidal e�ects at merger are visualized in Fig. 6.7, which shows an

example case of given total mass and EOS. The depicted series of snapshots of the

density shows the increasing tidal e�ects at merger due increasing asymmetry. For

each mass ratio, two times are shown: The onset of merger t1 ≈ tmax, and a time t2
shortly after BH formation, i.e. t ≈ tAH.4 Going from q = 1 to q = 1.75, we observe

the increasing tidal elongation of the binary's less massive component at the time of

merger. At high mass ratios (right side of Fig. 6.7), the secondary component has been

tidally disrupted leaving behind a tidal tail winding round the freshly formed BH in a

long spiral. In the case of intermediate mass ratios, we �nd the tidal tails wound up

at a tighter distance.

6.3.2 Remnant Properties - Qualitative E�ects

Total mass, mass ratio and EOS a�ect the properties of the remnant system, cf. Figs.

3.5 and 3.6. Furthermore, there are notable di�erences between the cases of prompt-

collapse and delayed-collapse mergers, cf. Fig. 6.8. Following our approach in Ref.

[Koe1], and to aid our discussion, we de�ne the mass ratios Qdisk and QBH,

Qdisk :=
Mdisk

Mb
, (6.14)

QBH :=
MBH

M
, (6.15)

where we relate the disk mass to the total baryonic mass and the remnant BH's

gravitational mass to the total mass. Considering the third and fourth row of Fig.

3.6, where MBH and QBH are plotted against M , we �nd the ratio QBH to be a helpful

quantity to investigate the e�ect of M on the remnant BH's mass. Distinguishing

between prompt and delayed collapse, cf. second column of Fig. 6.8, we �nd that in

4The time interval t2 − t1 does not have a constant length throughout the series. In fact,
the series contains prompt-collapse cases (q = 1.0, 1.5, 1.625, 1.75) and delayed-collapse cases (q =
1.125, 1.25, 1.375).
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the case of prompt collapse, the remnant BH's mass varies only by a few percent with

respect to the initial total mass of the binary, while its ratio of M is notably smaller

in the case of delayed-collapse mergers. Considering the quantities Mdisk and Qdisk

on the other hand, we �nd no striking di�erences between the curves Mdisk(M) and

Qdisk(M). However, it seems convenient to present the disk mass as a percentage of

the initial baryonic mass.

Naturally, we �nd the disk mass and the BH mass to behave in a complementary

way. Fig. 6.8 shows, that the same is true for Mdisk and χBH: The more material

is accumulated in the disk, the less material spins up the remnant BH. With this

statement, we do not intent to imply that only an insigni�cant part of the ejected

material becomes unbound. At lower mass ratios, this would probably even be a false

statement, cf. for example q = 1.125 with EOS SLy or ALF2 in Fig. 6.8: In the case

of delayed collapse mergers, there is a steep drop in QBH, which is not accompanied

by a proportionate increase of the disk mass. Concluding from the discussion in Sect.

6.3.1, we can expect the amount of ejected material to grow with the survival time

of the HMNS remnant. While we limit our discussion to properties of the remnant

system, it may be interesting to study the e�ect of mass ratio on the distribution of

ejecta onto the categories of bound and unbound matter, i.e., determining the ratio of

ejecta becoming unbound to those accumulated in the disk around the remnant BH.

Comparing Mdisk and QBH we suspect an increasing dominance of bound material for

increasing asymmetry of BNSs. In the case of highly symmetric binaries and long-lived

HMNS remnants unbound material may be predominant.

Considering the disk mass over the investigated mass ratio range, we �nd Mdisk to

be orders of magnitude smaller in the case of small mass ratios compared to the case

of intermediate and high mass ratios. This is especially true in the case of prompt

collapse, where Mdisk often is negligible, cf. panels one and two in the �rst column of

Fig. 6.8. Going from small to high mass ratios, the disk mass grows non-linearly with

q. However, in the case of lowest investigated total masses, we �nd that the maximum

ofMdisk(q) can be located at intermediate mass ratios, cf. the case of SLy and ALF2 in

�rst row of Fig. 3.5. This change of behaviour at lowM resembles the behaviour of the

collapse that we have discussed in Sect. 5.1. We note that with increasing survival time

of the HMNS remnant, the continuous ejection of matter due to shock heating and

angular momentum transport starts to dominate, compared to tidal e�ects at the time

of merger, and even compared to tidal disruptions in the case of highly asymmetric

binaries.
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Figure 6.8: Mdisk, QBH, and χBH at t = tAH+5ms plotted againstM for varying q. Connected
data points belong to the same EOS. Delayed-collapse mergers are marked in gray. For given
EOS and q, the disk mass is smaller in the case of prompt collapse compared to the case of
delayed collapse, while QBH and χBH are larger in the case of prompt collapse. A subset of
plots of the �rst and second column are taken from Ref. [Koe1].
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Regarding the impact of the EOS, we �nd the qualitative ordering of properties

of the remnant system in accordance with the sti�ness of the investigated EOSs. For

given q and M , the disk mass is always the smallest in the case of our softest EOS,

SLy. The largest disk masses are always related to our sti�est EOS, H4, cf. Fig.

6.8. This is in accordance with �ndings by previous studies. In the case of highly

asymmetric binaries, Bernuzzi et al., 2020, �nd the largest tails to be produced by

the softest EOSs. Hotokezaka et al., 2013, found stronger shocks in the case of soft

EOSs. Unsurprisingly, we �nd the opposite ordering compared to the case of the disk

mass for QBH and χBH. Considering small mass ratios, there is a notable exception

to this rule, as QBH(M) and χBH(M) appear to decline at large M . Considering the

BH spin, we note that for all of our simulations χBH is smaller than 0.8. As discussed

by Bernuzzi et al., 2020, this may be an upper limit to the BH spin, see also Dietrich

et al., 2017; Bernuzzi et al., 2016b; Bernuzzi et al., 2014.

6.3.3 Approximating Remnant Properties at Threshold

Concluding this chapter, we consider approximate models of remnant properties at

threshold. Due to the structure of our parameter space, cf. Sect. 3.2 and discussion

in Sect. 5.2.1, the vicinity of the threshold to prompt collapse remains underresolved

within our set of data. Seeking to estimate masses of the disk and the remnant BH

of BNS con�gurations with M ≈ Mthr, we have to manage with the available data.

Considering the often steep transition from the prompt-collapse to the delayed-collapse

regime, cf. Fig. 6.8 and discussion in Sect. 6.3.2, we are going to employ data of the

prompt-collapse regime to estimate quantities at threshold. Thereby we will introduce

small systematic errors (of a few percent). Motivated by the discussion in Sect. 6.3.2,

we presume the following inequalities

Zdelayed
disk ≥ Zthr

disk ≥ Zprompt
disk , (6.16)

Zdelayed
BH ≤ Zthr

BH ≤ Zprompt
BH , (6.17)

to hold for the quantities considered in connection with the disk and the BH mass,

i.e., Zdisk ∈ {Mdisk, Qdisk} and ZBH ∈ {MBH, QBH}. In each case given by mass ratio

and EOS, we �nd a lower estimate of the disk mass at threshold, Zthr
disk, employing

the maximal disk-mass value of the prompt-collapse regime. In the case of the BH

mass, we �nd an upper estimate of Zthr
BH employing the minimal value found within

the prompt-collapse regime. We use these lower and upper estimates to approximate



94 Chapter 6. Modelling Properties of Threshold Con�gurations

Mdisk and MBH at threshold. Alternatively, we could try to interpolate. However,

this approach would rely on less certain data as the physical and numerical situation

are more complicated in the case of delayed-collapse mergers. The longer the HMNS

remnant withstands collapse, the more shocks have to be simulated, and the more

matter is ejected. To support this argument with an example, we point to the SLy

con�guration with q = 1.25 and M = 2.8M⊙. Simulated with resolution R4 and

R2, the merger of this binary produced a remnant HMNS which collapsed after about

2.5ms. In the case of resolution R3 on the other hand, the remnant survived for

more than 15ms, accumulating about 2.7 times the amount of matter in the disk.

Uncertainties are notably smaller in the case of prompt-collapse mergers. Furthermore,

this approach would fail in a few cases due to the lack of delayed-collapse data.

Figure 6.9: First column: Fits of the disk-mass estimates, Mdisk, and mass ratio Qdisk, close
to threshold. The �t formula given in Eq. (6.18) depends on the pair of stellar parameters:
(X,Y ) = (Mmax,Λ1.4). Data points: maximum value of Mdisk (upper panel) and Qdisk (lower
panel) for given EOS and mass ratio for the case of prompt collapse.
Second column: Fits of the BH-mass estimates,MBH, and mass ratio, QBH, close to threshold.
The �t formulae given in Eqs. (6.19) and (6.20) depend on a pair of stellar parameters:
(X,Y ) = (Mmax,Λ1.4). Data points: minimum values of MBH (upper panel) and QBH (lower
panel) for given EOS and mass ratio for the case of prompt collapse. Plots taken from Ref.
[Koe1].
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Employing empirically motivated �t functions introduced in Ref. [Koe1], we model

the relation between the mass ratio and the estimated quantities at threshold.

Zthr
disk = A · {1.0 + tanh [Mmax (c3 + c4 q)] + c5Mmax} , (6.18)

M thr
BH = A · {2.5− c3 tanh [Mmax (c4 + c5 q)]− c6 Λ1.4} , (6.19)

Qthr
BH = A · {1.0 + c3 tanh [Mmax (c4 + c5 q)]− c6 Λ1.4} , (6.20)

A = (c1Mmax + c2 Λ1.4) .

The respective �ts are presented in Fig. 6.9, and coe�cients are reported in Tabs. 6.5

and 6.6. These �ts provide approximate lower and upper limits of Mdisk and MBH in

the case of prompt collapse, i.e.,

Zdelayed
disk ≳ Zthr

disk(q) ≳ Zprompt
disk , (6.21)

Zdelayed
BH ≲ Zthr

BH(q) ≲ Zprompt
BH . (6.22)

Regarding the impact of the studied EOSs on the disk mass, we �nd the same ordering

at threshold that we saw in the general case presented in Fig. 6.8, i.e., the smallest

upper limit toMdisk in the prompt-collapse case is connected to the softest EOS (SLy),

the highest limit to the sti�est EOS (H4). In the case of QBH, we �nd corresponding

inverse relation. However, considering the BH mass itself, we �nd the same ordering

as for the disk mass, i.e., smallest lower limit to MBH is related to the the softest EOS

(SLy), the highest lower limit to MBH is related to the the sti�est EOS (H4). This

is in no way a contradiction. Considering our results for Mthr, cf. for example Fig.

6.1, we �nd the e�ect of the EOS on the absolute value of the threshold mass to be

stronger than the one on the ratio QBH.

Picking up the discussion of ejection mechanisms, we interpret the data presented

in the �rst column of Fig. 6.9. In the case of prompt collapse ejection mechanisms

except for tidal e�ects at the onset of merger are suppressed. Therefore, column one

of Fig. 6.9 displays once more, how the tidal e�ects are a�ected by the mass ratio.

The upper limit toMdisk in the prompt-collapse case strongly increases at intermediate

mass ratios before the incline becomes weaker at high mass ratios.
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Table 6.5: Fits describing the estimates for the behaviour of the disk mass close to the
threshold to prompt collapse. For each EOS and mass ratio, the disk mass at threshold is
approximated by the maximal disk mass value for the case of prompt-collapse mergers. The
�t formula given below depends on a pair of stellar parameters: (X,Y ) = (Mmax,Λ1.4). We
present the following measures of variation: the maximal relative residual (max.), the mean
absolute residual (av.), and the coe�cient of determination (R2). Table adapted from Ref.
[Koe1].

Zthr
disk = A · {1 + tanh [Mmax (q c3 + c4)] + c5Mmax}

Zthr
disk c1 c2/10

−5 c3 c4 c5 max. av. R2

M thr
disk 0.034± 0.005 5.968± 1.141 2.064± 0.43 −0.439± 0.146 −0.151± 0.09 0.0264 0.0078 0.978

Qthr
disk 0.012± 0.002 1.749± 0.391 1.782± 0.406 −0.389± 0.149 −0.179± 0.101 0.0078 0.0025 0.978

Table 6.6: Fits describing the estimates for the behaviour of the remnant BH mass close to
the threshold to prompt collapse. For each EOS and mass ratio, the BH mass at threshold is
approximated by the minimal BH-mass value for the case of prompt-collapse mergers. The
�t formula given below depends on a pair of stellar parameters: (X,Y ) = (Mmax,Λ1.4). We
present the following measures of variation: the maximal relative residual (max.), the mean
absolute residual (av.), and the coe�cient of determination (R2). Table adapted from Ref.
[Koe1].

Fit formula given in

⎧⎨⎩Eq. (6.19), ZBH = MBH

Eq. (6.20), ZBH = QBH

Zthr
BH c1 c2/10−4 c3 c4 c5 c6/10−4 max. av. R2

Mthr
BH 0.406± 0.278 8.322± 3.493 0.5± 2.207 0.474± 0.428 0.453± 1.043 10.58± 8.41 0.0696 0.0247 0.948

Qthr
BH 0.432± 0.003 6.292± 0.309 0.022± 0.003 −0.491± 0.189 2.188± 0.569 3.786± 0.119 0.0076 0.0026 0.965
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Chapter 7

Conclusion

Summary

In this thesis, we investigated the e�ect of mass ratio on BNS mergers, paying special

attention to the threshold to prompt collapse, properties of the remnant system, and

the collapse time. In connection with the development of a method to determine the

threshold mass to prompt collapse by means of interpolation instead of bracketing, we

have thoroughly discussed related de�nitions and methods.

These investigations are based on a large set of simulations. Employing the BAM

code, we performed 335 fully relativistic simulations, considering 165 con�gurations of

non-rotating BNSs of varying M , q and EOS. The studied parameter space is spanned

by seven mass ratios in the range of q = 1.0 to q = 1.75. Seeking to include both

prompt-collapse and delayed-collapse mergers in each of the 21 cases de�ned by pairs

of an EOS and a mass ratio, we considered customized ranges of total masses for each

of the 3 employed EOSs. This simulation campaign consists of two subsets: A main set

of 295 simulations exploring mass-ratio e�ects, and a subset of 40 simulations further

resolving a single case in the close vicinity of the threshold to prompt collapse which

revealed a steep behaviour of the collapse-time curve close to threshold. The analysis

of this large number of simulations required automated processing of the simulation

output. For this purpose, we developed a workframe tailored speci�cally for the task

of processing data and results of this simulation campaign.

A BNS merger remnant that cannot be stabilized against its own gravitational

pull will collapse to a BH. In the case of a binary with comparable properties (mass

ratio, spin, ...), but lower total mass, this fate may be delayed due to its thermal

pressure and rapid di�erential rotation. Considering BNS merger simulations, the

cases of prompt and delayed collapse are distinguished based on criteria that take

into account the number of minima (maxima) of the minimum-lapse function (the
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maximum-density function). The application of these criteria to a set of simulations

allows us to con�ne the threshold mass Mthr by application of the bracketing method.

We have motivated and developed an alternative method based on a �t of collapse-

time data. Seeking to establish a quantitative criterion which does not involve the

counting of minima/maxima, we have evaluated all of our simulations based on the

lapse/density criterion, �nding that the collapse time provides suitable qualities. These

qualities allow us to de�ne a threshold collapse time that is uniquely related to thresh-

old mass in the sense that collapse times smaller than τthr imply prompt collapse, and

delayed collapse in the complementary case. In this context, the steep behaviour of

the collapse-time curve close to threshold implies an insensitive dependence ofMthr on

the precise de�nition of τthr. Employing an empirically motivated �t of collapse time

data, we localised the threshold mass by means of interpolation. Deviating from the

path taken in other approaches, we did not seek to decrease the interval con�ningMthr

by each additional simulation. Instead, we considered a broad range of total masses.

Using the example case of the smaller subset of simulations as a test bed, we gave a

critical look at our method, comparing it to the bracketing method and the so called

free-fall method by Köppel et al., 2019. Advantages of our method are the use of more

than one numerical resolution for error estimates and the broader investigated mass

interval. Methods that are based on data close to threshold on the other hand have

the advantage of being more reliable.

Analysing our threshold-mass data, we found the dependence of Mthr on the mass-

ratio to be non-monotonous with a maximum at intermediate q. At high q, the thresh-

old mass tends to decrease. This �nding stands in contrast to a model by Bauswein

et al., 2021, which is based on a smaller interval of mass ratios and distinguishes be-

tween the cases of monotonously increasing or decreasing Mthr. To allow for maxima

in this model, we have added two terms to the �t function by Bauswein et al., 2021.

Employing this extended model, we �t our data and combined data sets, using data

by Bauswein et al., 2021, and Perego et al., 2021. In doing so, we compensated for the

small number of EOSs considered in our study.

Based on ourMthr data, we determined tidal properties of threshold con�gurations.

Modelling the e�ect of mass ratio on tidal polarizabilities of threshold con�gurations,

we have improved an existing model found by Bernuzzi, 2020, which gives constant

upper limits to tidal parameters of prompt-collapse mergers. In our model these

constant upper limits are replaced with �ts that depend on the mass ratio and the

EOS. In the case of our small set of EOSs, we have found the dependence of tidal
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parameters at threshold to be properly described by polynomials quadratic in q, with

a linear dependence on Λ1.4. Comparing our �nding to results by Kashyap et al., 2021,

who considered a broader set of 21 EOSs in the case of q = 1, we found this linear

dependence of our model on a single stellar parameter to match some, but not all of

their data. This indicates a dependence on more than one stellar parameter which

cannot be inferred from our data.

Properties of the remnant system depend on dynamics at merger, especially in the

case of prompt-collapse mergers. In the case of HMNSs, the �nal BH + disk system

is also a�ected by the post-merger evolution. Mass-ratio e�ects at merger arise in the

context of tidal distortions or even the tidal disruption of the lower-mass companion.

Over the range of studied mass ratios, we have found increasing tidal e�ects on the

secondary component. Considering the case of prompt-collapse mergers, we have also

found the amount of matter accumulated in a disk around the remnant BH to increase

with q. As no further matter is ejected once a BH is formed, disk mass and tidal e�ects

have to be directly related in the case of prompt collapse. In the case of HMNSs, i.e.,

in the case of smaller total masses and increasing collapse times, other mechanisms

continuously cause the ejection of matter until the NS remnant collapses to a BH. As

it is to be expected, we have found the opposite relations regarding mass and spin

of the remnant BH. Similarly to the case of tidal properties, we modelled threshold

quantities of disk mass and BH mass, approximated by data from the prompt-collapse

regime.

Future Prospects

Di�erent approaches may be taken to extend or improve the investigations conducted

in this thesis.

� Considering our investigation of methods to determine Mthr based on collapse-

time �ts, we propose to make further e�orts to �nd a �t of data with M ≈Mthr

that allows determine Mthr with high precision, taking into account di�erent nu-

merical resolutions, while being economic with respect to the number of required

data points and computational resources.

� Regarding the de�nition of a threshold collapse time in the context of methods

to determine Mthr by means of interpolation, the validity of τthr with respect to

a larger sample of EOSs should be tested.
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� In favour of a broad range of investigated mass ratios, we have investigated only

three EOSs. In future investigations, computational resources may be applied to

extension the parameter space with respect to the number of considered EOSs. A

higher number of EOSs would especially be interesting in the case of our models

of tidal parameters at threshold.

� In the present work, we considered exclusively irrotational stars. As shown by

the work of Tootle et al., 2021, NS spin a�ects merger dynamics and therefore

the threshold mass to prompt collapse. Similarly we expect e�ects on properties

of remnant system.

� Di�erent microphysical aspects have been ignored in the simulations conducted

for this work as their implementations in the BAM code is still pending, e.g.

magnetic �elds and neutrino transport.

With respect to the large number of GW events expected to be observed in connection

with BNS mergers, general relativistic simulations will play a crucial role in the e�ort

to determine the NS EOS. Multi-messenger observations of these events will allow to

further constraint the threshold mass to prompt collapse. The classi�cation of these

observations in terms of prompt and delayed collapse will pro�t from an understanding

of mass-ratio e�ects on Mthr and on the amount of ejected material that can power

postmerger signals.
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Appendix A

Waveforms, Minimum-Lapse,

Maximum-Density

In this appendix, we present waveforms, minimum-lapse functions and maximum-

density functions of a subset of our simulations conducted with resolution R3. For

each EOS, plots are ordered with respect to mass ratio (columns) and total mass

(rows), the time axis is shifted with respect to the time of merger. In each �gure the

presented time interval is the same over all columns. In each panel showing data of

a BNS merger whose remnant collapsed to a BH within simulation time, the times

of merger and BH formation are marked, and the collapse time is given. In a small

number of cases characterized by large collapse times, the time of BH formation is not

within the presented interval. Based on the number of minima in the minimum-lapse

function or the number of maxima in the maximum-density function, BNS mergers

can be categorized in terms of prompt and delayed collapse, cf. Sect. 4.3.2.
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Appendix B

Stellar Parameters

For �ts of combined data sets, we have used data of Perego et al., 2021. These �ts

depend on stellar parameters, which we list in Tab. B.1 for EOSs employed by Perego

et al., 2021 and in Ref. [Koe1], respectively.

Table B.1: Columns two to four: Stellar parameters Mmax, R1.6, Rmax and λ1.4 of EOSs
used in the studies, Perego et al., 2021, (P), and [Koe1], (K). Column �ve: Threshold masses
of equal-mass binaries, M̂ thr (q = 1), as determined by simulations in the respective works
indicated in the last column.

EOS Mmax R1.6 Rmax λ1.4 M̂ thr (q = 1) Ref.

H4 2.03 13.46 11.62 886 3.057 K
DD2 2.42 13.27 11.90 769 3.274 P
BHB 2.10 13.21 11.59 754 3.024 P

DD2qG 2.15 13.29 12.53 690 3.152 P
ALF2 1.99 12.41 11.30 591 2.963 K
LS220 2.04 12.50 10.65 547 2.956 P
BLh 2.10 12.24 10.50 430 2.924 P
SFHo 2.05 11.77 10.32 333 2.824 P
SLy 2.06 11.37 9.91 307 2.756 K
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Additional Material

Talks

� DPG-Frühjahrstagung SMuK 2021: Prompt Collapse in Binary Neutron Star
Mergers: The E�ect of the Mass Ratio

� DFG-RTG2522 Monitoring Workshop Jena-Leipzig 2021: Prompt Collapse in
Binary Neutron Star Mergers: The E�ect of the Mass Ratio

Conferences and Workshops

� 12.02.2018-16.02.2018 Parallele Programmierung mit MPI und OpenMP, HLRS,
Dresden

� 19.02.2018-19.02.2018 Computational Fluid Dynamics, HLRS, Siegen

� 19.03.2018-23.03.2018 DPG-Frühjahrstagung 2018, Würzburg

� 27.09.2021-29.09.2021 DFG-RTG2522 Monitoring Workshop Jena-Leipzig

� 30.08.2021-03.09.2021 DPG-Frühjahrstagung SMuK 2021 (online)
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Zusammenfassung

Da beschleunigte Massen gemäÿ allgemeiner Relativitätstheorie Energie in Form von

Gravitationswellen abstrahlen, verringert sich der Abstand massereicher Objekte in

Binärsystemen bis diese schlieÿlich kollidieren und verschmelzen. Dieser Verschmel-

zungsprozess wird, neben weiteren Faktoren, primär durch die Gesamtmasse des Dop-

pelsterns und seine Masseverteilung bestimmt. Besteht ein solches Doppelsternsystem

aus zwei Neutronensternen, also aus den dichtesten uns bekannten Objekten im Uni-

versum, so wird der Verschmelzungsprozess, anders als bei binären schwarzen Löchern,

zudem von den Eigenschaften hochdichter Materie beein�usst. Da Neutronensterne

hinsichtlich ihrer Stabilität eine maximale Masse besitzen, stellt sich die Frage, ob

auch das Produkt einer solchen Verschmelzung wieder ein Neutronenstern ist, ob die-

ser stabil ist, beziehungsweise wie viel Zeit zwischen Verschmelzung und dem Kollaps

zu einem schwarzen Loch vergeht (Kollapszeit). In diesem Zusammenhang ist die

sogenannte threshold mass to prompt collapse Mthr, also die Grenzmasse für welche

alle massereicheren Verschmelzungsprodukte zweier Neutronensterne direkt zu einem

schwarzen Loch kollabieren, eine charakteristische Gröÿe.

Die vorgelegte Dissertationsarbeit beschäftigt sich mit dem Ein�uss des Masse-

verhältnisses q der Komponenten eines Doppelsternsystems von Neutronensternen auf

diese Grenzmasse, auf die Kollapszeit und auf Eigenschaften des entstehenden Systems,

welches aus einem rotierenden schwarzen Loch und einer Aggregationsscheibe besteht.

Die dargelegten Untersuchungen beruhen auf 335 allgemeinrelativistischen Simulatio-

nen von 165 Doppelsternkon�gurationen bestehend aus nichtrotierenden Einzelsternen

unterschiedlicher Masseverhältnisse und Gesamtmassen. Für die dynamische Simula-

tionen wurde dabei der BAM-Code verwendet, für die Konstruktion der Anfangsdaten

wurde der SGRID-Code verwendet. Es wurden drei unterschiedliche Zustandsglei-

chungen für die Modellierung dichter Materie verwendet und sieben Masseverhältnisse

von q = 1.0 bis q = 1.75 untersucht. Der durch Zustandsgleichungen und Massever-

hältnisse aufgespannte Parameterraum umfasst daher 21 Fälle, in denen jeweils fünf

bis sieben Gesamtmassen aus angepassten Masseintervallen untersucht worden sind �
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jeweils mit dem Ziel, dass sowohl Kon�gurationen enthalten sind, welche zu unver-

züglichem Kollaps führen, als auch solche für die der Kollaps verzögert eintritt. Diese

Untersuchung umfasst 295 dieser Simulationen, wobei für Fehlerabschätzungen typi-

scherweise wenigstens zwei numerische Au�ösungen je Kon�guration simuliert worden

sind. Mittels der übrigen 40 Simulationen wurde einer der durch Zustandsgleichung

und Masseverhältnis beschriebenen Fälle näher untersucht, um den steilen Abfall der

Kollapszeitkurve im Bereich der Grenzmasse aufzulösen. Dabei ergab sich aus der

groÿen Anzahl der Simulationen die Notwendigkeit der automatisierten Aufbereitung

der Simulationsdaten, für welche ein passendes Workframe entwickelt worden ist.

Eine stichhaltige Analyse der Daten verlangt Klarheit hinsichtlich der verwendeten

De�nitionen, Kriterien und Methoden. Daher ist der Auswertung der Daten eine de-

taillierte Diskussion der wichtigsten Gröÿen und Eigenschaften hinsichtlich zugehöriger

De�nitionen und Methoden für ihre Bestimmung im Kontext numerischer Simulatio-

nen, vorangestellt. Unverzüglicher und verzögerter Kollaps lassen sich beispielswei-

se mit Blick auf die Minimalwerte des Lapse beziehungsweise die Maximalwerte der

Dichte auseinanderhalten. In beiden Fällen bezieht sich das Kriterium auf die Exis-

tenz von Extrempunkten im Zeitintervall zwischen dem Beginn der Verschmelzung

und dem Kollaps zum schwarzen Loch. Alternativ lässt sich die Unterscheidung al-

lein unter Betrachtung der Kollapszeit im Vergleich zu einem Grenzwert vornehmen.

Ein entsprechendes Verfahren und ein Wert für diesen Grenzwert wurden in dieser

Arbeit auf Grundlage der bestehenden Kriterien, der groÿen Zahl an Simulationen

und der gewonnenen Erkenntnisse über den Verlauf der Kollapszeitkurve motiviert.

Weiterhin wurde eine empirisch motivierte Fitfunktion entwickelt, um die Grenzmasse

zu unverzüglichem Kollaps mittels Interpolation zu bestimmen. Unter Verwendung

des detailliert untersuchten Falles wurde diese Methode im Vergleich zur sogenannten

Freifallmethode von Köppel et al., 2019, und im Vergleich zur Methode der Intervall-

schachtelung diskutiert. Ein Vorteil der hier genannten Methode ist die Betrachtung

eines vergleichsweise breiten Gesamtmasseintervalls. Methoden, die auf Datenpunkten

dicht an der Grenzmasse beruhen, zeichnen sich hingegen durch gröÿere Verlässlichkeit

aus.

Die Analyse der Grenzmasseresultate hinsichtlich ihrer Abhängigkeit vom Masse-

verhältnis zeigte, dass Mthr sich nicht monoton mit q ändert. In allen untersuchten

Fällen nahm die Grenzmasse im Bereich hoher Masseverhältnisse ab, bei intermedi-

ären Werten von q erreichtMthr(q) ein Maximum. Diese Entdeckung steht im Kontrast

zu Modellen von Bauswein et al., 2021, welche auf Untersuchungen eines schmaleren
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Intervalls von Masseverhältnissen beruht. Unter Hinzufügen linearer Terme wurde das

Modell von Bauswein et al., 2021, angepasst und sowohl auf Daten, die dieser Arbeit

zugrunde liegen, angewendet, als auch auf kombinierte Datensätze unter Verwendung

von Resultaten von Bauswein et al., 2021, und Perego et al., 2021. Auf diese Weise

wurde eine gröÿere Anzahl an Zustandsgleichungen berücksichtigt. Weiterhin wur-

den auf Grundlage der Grenzmasseresultate Gezeiteneigenschaften von Grenzkon�gu-

rationen bestimmt. Durch die Modellierung ihrer Abhängigkeit vom Masseverhältnis

konnte ein Modell von Bernuzzi, 2020, verbessert werden, welches sich durch konstante

Obergrenzen für Gezeitenparameter auszeichnet.

Die Eigenschaften des aus dem Verschmelzungsprozess hervorgehenden Systems

aus Aggregationsscheibe und rotierendem schwarzen Loch hängen stark von den dy-

namischen Prozessen während des Aufeinandertre�ens der Neutronensterne ab. Dies

gilt insbesondere in Fällen, in denen das Verschmelzungsprodukt unverzüglich zu ei-

nem schwarzen Loch kollabiert. Im Fall asymmetrischer Masseverteilungen spielen

Gezeitenkräfte eine entscheidende Rolle, welche umso gröÿer ausfallen, je gröÿer das

Masseverhältnis ist. Dies umfasst starke Verformungen der weniger massereichen Kom-

ponente des Doppelsterns bis hin zum Zerreiÿen der sekundären Komponente im Fall

extremer Masseverteilungen. Entsprechend sind für hohes q massereichere Aggrega-

tionsscheiben zu erwarten. Dies deckt sich mit den Simulationsresultaten, welche für

den Fall unverzüglichen Kollapses gewonnen worden sind. Kollabiert das Verschmel-

zungsprodukt mit Verzögerung, so sind über die Zeitspanne bis zum Kollaps weitere

Prozesse am Werk, die zum Auswurf von Materie und damit zur Anreicherung von

Materie in der Aggregationsscheibe führen. Masse und Rotation des entstehenden

schwarzen Loches verhalten sich dazu hinsichtlich des Ein�usses des Masseverhältnis-

ses, erwartungsgemäÿ, entgegengesetzt. E�ekte des Masseverhältnisses auf die Masse

der entstehenden Aggregationsscheibe, die Masse des schwarzen Loches und seiner

Rotation wurden in Form von Ober- beziehungsweise Untergrenzen abgeschätzt und

modelliert.
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Codes Employed or Adapted for this

Work

� BAM [Bernuzzi et al., 2016a; Dietrich et al., 2015b; Thierfelder et al., 2011;

Brügmann et al., 2008]

� SGRID [Tichy et al., 2019; Dietrich et al., 2015a; Tichy, 2009b; Tichy, 2009a;

Tichy, 2006]

� Matlab script by Sebastiano Bernuzzi and Alessandro Nagar to solve TOV equa-

tions in GR [Bernuzzi et al., 2008; Damour et al., 2009], https://bitbucket.

org/bernuzzi/tov/src/master/

� Python script by Tim Dietrich to post-process BAM's rΨ4-output (unpublished)

� Python script by Wolfgang Tichy to compute the eccentricity of a BNS, https:

//www.physics.fau.edu/~wolf/Research/EccRed/index.html

https://bitbucket.org/bernuzzi/tov/src/master/
https://bitbucket.org/bernuzzi/tov/src/master/
https://www.physics.fau.edu/~wolf/Research/EccRed/index.html
https://www.physics.fau.edu/~wolf/Research/EccRed/index.html
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