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Introduction  
Plant defense mechanisms  

 

Plants fix the solar energy that drives nearly all living processes on Earth; therefore, they are 
central players in complex food webs (Pieterse et al., 2014). However, as sessile organisms they 
cannot escape stressful conditions generated in their physical environment (abiotic stress) or due 
to their interaction with herbivorous insects and pathogenic microorganisms, such as fungi and 
bacteria (biotic stress) (Kissoudis et al., 2014). The evolutionary arms race between plants and 
their attackers has resulted in the development of a sophisticated defense system in plants that 
has the ability to recognize non-self molecules as well as signals from damaged cells, and 
subsequently activates plant immune responses against them (Hare, 2011; Howe & Jander, 2008; 
Nishad et al., 2020; Verhage et al., 2010).  

Plants confront herbivores both directly and indirectly. Direct plant defenses are mediated by 
plant physical structures that affect the herbivore’s physiology, such as mechanical protection on 
the plant surface (i.e., thorns, trichomes, waxy cuticle, cell wall) (Figure 1), or the synthesis of 
toxic chemicals (i.e. alkaloids, terpenoids, anthocyanins, phenols) and proteins that either kill or 
impede the development of herbivores (Hanley et al., 2007). Indirect plant defenses act through 
the attraction of natural enemies of the attacking herbivores (Heil, 2008). The release of volatile 
organic compounds (VOCs), consisting mainly of fatty acid derivatives, terpenoids, and aromatic 
compounds by herbivore-infested plants, can attract parasitoids and predators of the herbivores 
(Figure 2) (De Moraes et al., 1998; Dicke & Sabelis, 1988; Dicke et al., 1990; Kessler & Baldwin, 
2001). The mode of damage on the plant determines the composition of the volatile blends 
emitted (Hilker & Meiners, 2006; Mithöfer et al., 2005). Moreover, VOCs are emitted not only 
aboveground, but also belowground in the rhizosphere. Therefore, VOCs can be considered as 
info-chemicals that mediate a plethora of interactions of plants with other species both above- 
and belowground (Bezemer & van Dam, 2005; Dam et al., 2016). Indirect defenses can also be 
conferred by plant traits that accommodate natural enemies, such as domatia, or extrafloral 
nectar that provide the natural enemies of herbivores with shelter and food, respectively (Heil, 
2015; Wäckers et al., 2005). 
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Figure 1. Examples of plant physical structures and specialized plant-synthesized metabolites 

that mediate plant defenses against herbivores. (a) thorns, (b) trichomes, (c) waxy cuticle and 

cell wall, (d) the steroidal glycoalkaloid α-tomatine (tomato; Solanum lycopersicum), (e) the 

alkaloid noscapine (poppy; Papaver somniferum), (f) the cyclic hydroxamic acid 2,4-dihydroxy-7-

methoxy-1,4-benzoxazin-3-one (DIMBOA) (maize; Zea mays). Figures (a), (b) and (c) found in Link 

("Plants and Arthropods: Friends or Foes?," 2011). Figures (d), (e) and (f) adapted from Nützmann 

and Osbourn (2014). 

 

 

 

 

 

 

 

https://academic.oup.com/plcell/article/23/8/tpc.111.tt0811/6097209
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Figure 2. The emission of herbivore-induced plant volatiles (HIPVs) represents a form of indirect 

plant defense responses against insect herbivores. (a) The release of HIPVs mediates the 
attraction of the herbivore’s natural enemies (parasitoids and predators), (b) main chemical 
classes of HIPVs emitted in response to plant herbivory. Figure (a) found in Link (Pozo et al., 2020). 
Source of figure (b): (Aartsma et al., 2017). 

 

Perception of insect herbivory by plants  

 

Upon insect attack, the host plant perceives at least two types of signals: (1) physical injury or 
wounding, known as damage-associated molecular patterns (DAMPs) and (2) chemical cues 
found in herbivore oral secretions (OS) or oviposition fluids (OF), known as herbivore-associated 
molecular patterns (HAMPs) (Erb & Reymond, 2019; Felton et al., 2014; Wu & Baldwin, 2010). 
Herbivore-plant interactions are generally initiated at the plant cell membrane, where herbivore-
associated elicitors (HAEs) trigger a series of signaling cascades, which initiate induced plant 
responses (Arimura et al., 2009; Arimura et al., 2011; Maffei et al., 2007a, 2007b). As it has been 
proposed, the foremost event following insect attack is the plasma membrane potential change 
(Vm) (Bricchi et al., 2010; Zebelo & Maffei, 2012), followed by the generation of secondary 
messengers such as cytosolic calcium (Ca2+) and reactive oxygen species (ROS) (Halliwell & 
Gutteridge, 2015; Shin et al., 2005; Steffens et al., 2013) that facilitate plant defense signal 
transduction. This leads to a suit of defense-related traits, including the induction of trichomes, 
spines and secondary metabolites (i.e., alkaloids, phenolics, VOCs) that negatively affect 
herbivore fitness and mediate multi-trophic interactions (Kariyat et al., 2012; Kaur & Kariyat, 
2020; Turlings & Erb, 2018) (Figure 3). Hormonal signaling networks are major mediators 
between herbivory perception and early defense signaling, resulting in the induction of plant 
defense genes. Induced direct and indirect defenses are regulated primarily by the action of the 
phytohormones jasmonic acid (JA), ethylene (ET) and/or salicylic acid (SA) (Diezel et al., 2009; Erb 
et al., 2012). The hormone signaling hubs intersect and can interact in an antagonistic or 

https://academic.oup.com/plcell/article/32/7/tpc.120.tt0720/6115734
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synergistic manner allowing plants to fine-tune their defenses depending on the threat (Erb et 
al., 2012; Takatsuji & Jiang, 2014).  

   

                                          

 

Figure 3. Perception of insect herbivory by plants. The cascade of events taking place from the 
onset of herbivore attack until volatile emission (Dong et al., 2016). Figure based on (Maffei et 
al., 2007a). 

There is evidence that the herbivore’s feeding guild can influence the induction of specific 
phytohormonal pathways (Heidel & Baldwin, 2004). For instance, plant responses to puncture-
feeders appear to be primarily regulated by the SA pathway; those to phloem-feeders by both SA 
and JA pathways; and responses to leaf-chewing lepidopterans have been shown to be 
predominantly regulated by the JA pathway (Mithöfer et al., 2009). However, other studies point 
at a simultaneous activation of two or all of these signaling pathways by lepidopteran herbivores 
(Van Poecke & Dicke, 2004). Moreover, changes in the induction of signaling patterns (both SA 
and JA pathways) have been detected because of plants being attacked simultaneously by 
herbivores of one or more feeding guilds, or because of insect herbivore-pathogen interactions 
(Thaler et al., 2010). Therefore, despite the fact that transcriptional responses can be tailored 
depending on the plant-insect herbivore interaction (in case that plants are attacked by insects 
belonging to the same feeding guild), there can be substantial overlap of defense-related gene 
expression profiles, when plants experience simultaneous attack by herbivores belonging to 
different feeding guilds (Howe & Jander, 2008).  
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Impact of beneficial root microbes on plant defense mechanisms 

 

Apart from microbial pathogens and insect herbivores, plants also nurture a vast community of 
commensal and mutualistic microbes that provide them with essential services, such as improved 
mineral uptake, nitrogen fixation, growth promotion, and protection from pathogens 
(Lugtenberg & Kamilova, 2009; Shoresh et al., 2010). This plant microbiota is predominantly 
hosted in the rhizosphere, where up to 40% of the plant’s photosynthetically fixed carbon is 
deposited. Several genera of the rhizosphere microbiota, which are referred to as plant growth-
promoting rhizobacteria (PGPR) and fungi (PGPF), are able to enhance plant growth and improve 
plant health (Lugtenberg & Kamilova, 2009; Shoresh et al., 2010).  

 

Microbe-induced systemic resistance (ISR) in plants 

 

Induced resistance (IR) is a physiological state of enhanced plant defensive capacity, which is 
triggered by biological or chemical inducers, and protects the plant tissues (that are not exposed 
to the initial attack), from a future attack by pathogens and herbivorous insects (Van Loon et al., 
1998). IR can be triggered in plants due to infection by pathogens, in response to insect herbivory, 
or upon root colonization by PGPR and PGPF. Colonization of plant roots by mutualistic microbes 
(such as PGPR and PGPF) results in a physiological state called induced systemic resistance (ISR) 
(Romera et al., 2019). The discovery of ISR occurred around 1991, when several studies reported 
that root colonization by certain non-pathogenic bacteria promoted plant health by the 
stimulation of plant defense responses [reviewed by (Pieterse et al., 2014)]. After these 
pioneering works with PGPR, ISR was further extended to PGPF, such as Trichoderma spp., 
Piriformospora indica, non-pathogenic Fusarium strains, and to Arbuscular Mycorrhiza Fungi 
(AMF) as well (Alizadeh et al., 2013; Biles & Martyn, 1989; Cordier et al., 1998; Fuchs et al., 1997; 
Khaosaad et al., 2007; Nouayti et al., 2018; Pieterse et al., 2014; Pozo et al., 2002; Segarra et al., 
2009; Zhu & Yao, 2004).  

Several microbial elicitors have been proposed to be responsible for the onset of ISR. Among 
these elicitors, microbe-associated molecular patterns (MAMPs), VOCs, and siderophores are 
found (del Carmen Orozco-Mosqueda et al., 2013; Garnica‐Vergara et al., 2016; Martínez‐Medina 
et al., 2017; Villena et al., 2018; Zamioudis et al., 2015). MAMPs, like flagellin, chitin and 
lipopolysaccharides (LPS), are conserved microbial molecules released by beneficial microbes 
(Pieterse et al., 2014; Villena et al., 2018; Zeidler et al., 2004). The VOCs derived from beneficial 
microbes are capable of triggering drastic changes in plant growth patterns, generally by altering 
hormone signaling (Garnica‐Vergara et al., 2016; Martínez‐Medina et al., 2017; Sharifi & Ryu, 
2018; Tyagi et al., 2018). Siderophores are iron (Fe) chelating agents released by bacteria to 
further acquire Fe from the medium (Aznar et al., 2014; Aznar et al., 2015; Aznar & Dellagi, 2015). 
MAMPs are perceived by pattern recognition receptors (PRRs), whereas the other elicitors might 
be perceived by other receptors, which are not known in all cases (Aznar et al., 2015; Aznar & 
Dellagi, 2015; Jankiewicz & Kołtonowicz, 2012; Sharifi & Ryu, 2018). Upon perception, the 
elicitors trigger ISR by modulating diverse plant hormones, which act as central players in the 
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plant immune signaling network, resulting in the activation of defense responses (Pieterse et al., 
2012; Pieterse et al., 2014; Sharifi & Ryu, 2018; Tyagi et al., 2018). Among the hormones involved 
in ISR, JA, SA, abscisic acid (ABA), ET, auxin and nitric oxide (NO) play a major role (Acharya et al., 
2011; Camehl et al., 2010; Garnica‐Vergara et al., 2016; Md Motaher Hossain et al., 2017; 
Knoester et al., 1999; Martínez-Medina et al., 2013; Nascimento et al., 2018; Nie et al., 2017; 
Pieterse et al., 2014; Shoresh et al., 2005; Ioannis A. Stringlis et al., 2018; Ton et al., 2001; Zhang 
et al., 2007).  

 

Priming of microbe-induced plant defenses 

 

In most cases, ISR is associated with a potentiated defensive capacity, which is termed “defense 
priming” (Nie et al., 2017). Defense priming enables plant cells to respond to very low levels of a 
stimulus in a more rapid and robust manner compared to non-primed cells (Conrath, 2009; 
Conrath et al., 2006; Conrath et al., 2002). Priming can be elicited by pathogens, herbivores, 
beneficial microbes, and selected synthetic compounds (i.e., benzothiadiazole [BTH] and β-
aminobutyric acid [BABA]) (Conrath et al., 2006; Frost et al., 2008; Heil & Silva Bueno, 2007). 
Plants that are primed for enhanced defense do not express defenses in the absence of an 
attacker but show a faster and stronger activation of cellular defense responses upon attack 
compared to non-primed control plants (Conrath et al., 2006; Conrath et al., 2002; Frost et al., 
2008). Prior activation of defenses is not a prerequisite for the primed state, which makes priming 
a cost-effective form of induced immunity. Another benefit of priming is that it provides plant 
resistance against a broad spectrum of attackers. 

Several mechanisms underlying priming have been reported (Vos et al., 2013). Inactive cellular 
proteins that play a role in cellular signal amplification have been shown to accumulate in primed 
plants, where they remain dormant until activation by stressors, resulting in an accelerated 
response. For instance, such dormant signal transducers involved in priming are transcription 
factors (TFs) and mitogen-activated protein kinases [MAPKs; (Beckers et al., 2009; Pozo et al., 
2008; Van der Ent et al., 2009)]. In addition, chromatin modifications at the promoters of priming-
associated genes have also been shown to be involved in the regulation of the primed state 
(Jaskiewicz et al., 2011; Luna et al., 2012; Rasmann et al., 2012). In several cases, priming has 
been demonstrated to be transferred to the plant’s offspring, which is in some cases linked to 
epigenetic changes, allowing plants to retain memory of a threatening situation into one or more 
successive plant generations (Luna et al., 2012; Pieterse et al., 2012; Rasmann et al., 2012; 
Slaughter et al., 2012).  

 

Regulation of microbe-mediated ISR  

 

Several studies using Arabidopsis mutants impaired in JA or ET signaling have demonstrated that 
JA and ET are central players in the regulation of rhizobacteria-mediated ISR (Pieterse et al., 
1998). For instance, the JA signaling mutants jar1, jin1, coi1, and diverse ET signaling mutants, 
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including etr1, ein2, ein3, and eir1 were shown to be defective in Pseudomonas fluorescenes 
WCS417r-ISR (Knoester et al., 1999; Pieterse et al., 1998; Pozo et al., 2008). Furthermore, for 
many other PGPR, such as Serratia marcescens 90-166, P. protegens CHA0, P. fluorescens Q2-87; 
and PGPF such as Penicillium sp. GP16-2, Trichoderma harzianum T39, and Piriformspora indica, 
genetic evidence in Arabidopsis pointed to a role for JA and/or ET in the regulation of ISR (Ahn et 
al., 2007; Hossain et al., 2008; Iavicoli et al., 2003; Korolev et al., 2008; Ryu et al., 2004; Stein et 
al., 2008; Weller et al., 2012). However, in some particular cases, it has been reported that ISR 
requires SA accumulation (Alizadeh et al., 2013; Contreras-Cornejo et al., 2011; Martínez-Medina 
et al., 2013; Mathys et al., 2012; Ryu et al., 2003) as well. For instance, the non-expressor of 
pathogenesis-related gene 1 (NPR1) protein has also been shown as a key regulator for JA-/ET-
regulated ISR triggered by P. fluorescens WCS417r (Pieterse et al., 1998), and many other PGPR 
and PGPF as well (Nie et al., 2017; Pieterse et al., 2014).  

Besides plant hormones, an array of transcription factors (TFs) is also involved in ISR by beneficial 
microbes. Experiments using Arabidopsis thaliana plants revealed that the induction of systemic 
resistance was associated with enhanced transcription levels of a set of transcription factor 
genes, among which the APETALA2/ ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family was 
significantly overrepresented (Van der Ent et al., 2009). Analysis of the promoter sequences of 
all the JA-responsive Arabidopsis genes, showing an induced expression pattern in ISR-expressing 
plants, revealed that the promoters of the ISR-enhanced genes were significantly enriched for a 
cis-acting G-box-like motif (Pozo et al., 2008). Notably, this motif is the binding site for the TF 
MYC2 that acts as a key transcriptional regulator of JA-dependent defenses (Memelink, 2009). 
Studies employing MYC2-impaired Arabidopsis jin1 mutants highlighted the importance of this 
TF in regulating priming during ISR (Pozo et al., 2008; Stein et al., 2008). WRKY transcription 
factors are also involved in the regulation of plant-beneficial microbe interactions. For instance, 
WRKY11 and WRKY70 were shown to be involved in the regulation of Bacillus cereus strain 
AR156-triggered ISR in Arabidopsis, through the JA and SA signaling pathways, respectively (Jiang 
et al., 2016). The R2R3-type MYB transcription factor gene, MYB72, was identified as one of the 
most significantly induced genes in Arabidopsis roots in response to P. fluorescens WCS417r-
triggered ISR (Verhagen et al., 2004). In particular, MYB72 was expressed at low levels in the root 
vascular bundle of non-induced plants. However, it was highly expressed in the root epidermis 
and cortical cells upon colonization by the ISR-inducing PGPR. Experiments using Arabidopsis 

myb72 knockout mutants showed that these plants were unable to express ISR against foliar 
pathogens after treatment with P. fluorescens WCS417r or P. putida WCS358r, thus indicating 
that this root-specific TF is necessary for the onset of ISR. Furthermore, MYB72 was also shown 
induced in the roots of Arabidopsis colonized by Trichoderma spp., and it was thus considered as 
a crucial component of Trichoderma spp.-triggered ISR (Alizadeh et al., 2013; Brotman et al., 
2013; Segarra et al., 2009). These two findings indicate that MYB72 is a node of convergence in 
the ISR signaling pathway triggered by different beneficial microbes (Pieterse et al., 2014).  

Apart from its key role in the onset of ISR, the root-specific TF MYB72 is also essential for plant 
growth under Fe deficiency conditions (Segarra et al., 2009; Ioannis A Stringlis et al., 2018; Van 
der Ent et al., 2008; Verbon et al., 2017). The study of Zamioudis et al. (2015) showed that two 
Fe deficiency marker genes were co-regulated with MYB72 in Arabidopsis roots colonized by 
Pseudomonas ISR-inducing strains, but not in the roots of plants colonized by a non-ISR-inducing 
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strain. This finding indicates that MYB72 is probably a link between rhizobacteria-mediated ISR 
and Fe deficiency responses (Pieterse et al., 2014; Verbon et al., 2017; Zamioudis et al., 2014). 
The signaling molecule NO is a highly reactive free radical implicated in plant responses to several 
biotic and abiotic stresses, including adaptation to low Fe availability (Chen et al., 2010; García et 
al., 2010; Graziano & Lamattina, 2007; Meiser et al., 2011), and defense responses against 
pathogen attack (Martínez-Medina et al., 2019; Molina‐Moya et al., 2019). In addition, NO has 
been shown to accumulate in the roots of Arabidopsis and tomato plants inoculated with 
Trichoderma fungi, thus indicating that NO might hold an important role in the establishment of 
the plant-Trichoderma symbiosis (Gupta et al., 2014; Martínez-Medina et al., 2019). The study of 
Zamioudis et al. (2015) reported that NO signaling was involved in the initiation of MYB72-
dependent Fe deficiency response, which was triggered by Pseudomonas spp., as part of the 
onset of rhizobacteria-mediated ISR. In regard to Trichoderma spp., Martínez‐Medina et al. 
(2017) showed that perception of Trichoderma-produced VOCs enhanced the expression levels 
of MYB72 in Arabidopsis and tomato plants, and enhanced the accumulation of NO in Arabidopsis 
roots. Interestingly, later, it was shown that the regulation of MYB72 expression by Trichoderma-
produced VOCs was dependent on the levels of NO in the roots of Arabidopsis (Pescador et al., 
2022). Therefore, it was concluded that NO signaling in the roots is essential for the onset of ISR 
triggered by Trichoderma-emitted VOCs in Arabidopsis (Pescador et al., 2022). 

Among the diverse rhizosphere microbial population, particular attention has been paid to 
several beneficial fungi due to their potential to enhance plant development and growth and 
protect plants against abiotic and biotic stresses. Over the last decades, a plethora of PGPF has 
been studied, including those belonging to the genera Alternaria, Aspergillus, Chaetonium, 
Fusarium, Penicillium, Phoma, Serendipita and Trichoderma (Md. Motaher Hossain et al., 2017; 
Hyde et al., 2019). Similarly, a large number of studies has investigated how plants benefit from 
their association with AMF in regard to development, nutrition, and stress alleviation [reviewed 
by (Diagne et al., 2020; Thirkell et al., 2017)]. Among beneficial fungi in the rhizosphere, the AMF 
and the PGPF Trichoderma strains hold a major role within the beneficial root symbionts studied 
and will be described in detail in the following sections of this study.  

 

Arbuscular mycorrhizal fungi  

 

Arbuscular mycorrhizal fungi (AMF) are soil microorganisms that form a symbiotic relationship 
with 80-90% of vascular plant species, and 90% of agricultural plants (Smith & Read, 2008) making 
mycorrhizal symbiosis the most widely spread beneficial interaction between plants and 
microorganisms (Parniske, 2008). AMF belong to the sub-kingdom of Mucoromyceta and the 
phylum Glomeromycota (Tedersoo et al., 2018). They are obligate biotrophs that rely on carbon 
substrates provided by their host to survive (Johns, 2014; Sally E Smith & F Andrew Smith, 2011). 
Indeed, plants transfer nearly 4-20% of the photosynthetically fixed carbon to the fungal partner 
(Jung et al., 2012) in the form of sugars (Bago et al., 2000) and lipids (Keymer & Gutjahr, 2018). 
In return, the fungi improve the supply of water and nutrients, such as phosphate and nitrogen, 
toward the host plant through extra- and intra-radical hyphae, arbuscules and the root apoplast 
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interface (Parniske, 2008). Several scientific papers have reported that plants inoculated with 
AMF exhibit more efficient water uptake and translocation of macro- and micronutrients to the 
shoot compared to non-mycorrhizal plants (Gamalero et al., 2004; Ortas et al., 2011; Rouphael 
et al., 2015; Smith & Read, 2008; Thirkell et al., 2017; Zhu et al., 2016). A plethora of studies has 
also investigated the effectiveness of AMF under abiotic stress conditions, such as drought (Asrar 
et al., 2012; Baum et al., 2015; Jayne & Quigley, 2014; Wu et al., 2013), salinity (Garg & Chandel, 
2011; Latef & Chaoxing, 2011; Porcel et al., 2012), heavy metal soil contamination (de Andrade 
& da Silveira, 2008; Lee & George, 2005), and adverse pH conditions (Cardarelli et al., 2010; 
Rouphael et al., 2010). Besides the effect of AMF on plant nutrition and abiotic stress tolerance, 
a growing body of literature is showing the impact of AM symbiosis on plant immunity (Maffei et 
al., 2014; Nair et al., 2015; Ren et al., 2015; Shrivastava et al., 2015; Song et al., 2015). 

Mycorrhizal fungi are able to enhance plant defense against a broad range of pathogens and 
pests, a phenomenon known as mycorrhizal-induced resistance [MIR; (Pozo & Azcón-Aguilar, 
2007; Pozo et al., 2013; Rivero et al., 2021)]. In the frame of mycorrhizal-induced resistance, the 
fungi modulate plant defense signaling pathways, by generally upregulating the JA pathway, 
while suppressing the SA pathway in addition to interacting with various other plant hormones 
(Bucher et al., 2014; Cameron et al., 2013; Jung et al., 2012). In this way, mycorrhizal-induced 
resistance stimulates the plant immune system to a primed state that leads to a more efficient 
activation of defense responses upon exposure to biotic stress (Martinez-Medina et al., 2016; 
Mauch-Mani et al., 2017). In the absence of biotic stress, mycorrhizal plants exhibit slightly 
activated defenses, thus allowing plants to redirect resources to other biological functions (Jung 
et al., 2012; Pozo & Azcón-Aguilar, 2007). In the presence of biotic stress, mycorrhizal plants can 
trigger faster and stronger defenses both below- and aboveground (Rivero et al., 2021; Verhage 
et al., 2009). As it has been shown, mycorrhizal plants exhibit better survival rate, enhanced 
growth, and increased resistance against plant pathogens via competition for nutrients, space 
and photosynthates, rhizosphere alteration, and induction of host-plant defense (Dowarah et al., 
2021). Several scientific papers have reported enhanced defense responses of mycorrhizal plants 
against a broad range of aboveground pathogens, including bacteria (Fiorilli et al., 2018; Malik et 
al., 2016; Tiénébo et al., 2019), fungi (Campo et al., 2020; Castellanos-Morales et al., 2011; 
Marquez et al., 2018; Nair et al., 2015; Sanmartín, Pastor, et al., 2020; Sanmartín, Sánchez-Bel, 
et al., 2020), and viruses (Maffei et al., 2014; Thiem et al., 2014).  

AM fungi can also influence the quality and quantity of the resources available to herbivorous 
insects (Locke & Crawford, 2022). In this frame, AMF may increase herbivore performance by 
increasing the amount or quality of the host plant material available to them (Gange et al., 2005; 
Goverde et al., 2000; Hoffmann et al., 2009; Real-Santillán et al., 2019; Vannette & Hunter, 2013). 
Indeed, plants growing with AM fungi can be even 30% larger than plants without AMF 
(Gworgwor & Weber, 2003), and the AM-mediated increased quantity of resources can result in 
increased herbivore performance. In contrast, AMF can decrease herbivore performance by 
increasing the ability of their host plants to produce nutritionally expensive chemical defenses 
(Gange & West, 1994; Rivero et al., 2021; Song et al., 2013; Vannette & Hunter, 2013). For 
example, mycorrhiza are able to increase constitutive defenses against herbivores (Bennett et 
al., 2009; Formenti & Rasmann, 2019; Wang et al., 2015). In general, it has been proposed that 
the effects of mycorrhizal colonization under ecological settings are based on the feeding 
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behavior and the degree of specialization of the herbivorous insect (Gehring & Bennett, 2009; 
Koricheva et al., 2009). Thus, it has been proposed that mycorrhizal fungi generally have a 
negative effect on generalist leaf chewers and neutral or positive effect on specialist leaf chewers 
and phloem feeders (Pineda et al., 2013).   

 

Trichoderma spp.  

Trichoderma (teleomorph Hypocrea) is a genus of filamentous ascomycete that are among the 
most frequently isolated soil microorganisms (Druzhinina et al., 2011; Etschmann et al., 2015; 
Harman et al., 2004; Morán-Diez et al., 2015). The success of Trichoderma strains in the 
rhizosphere is due to their high reproductive capacity, ability to survive under unfavorable 
conditions, efficiency in the utilization of nutrients, capacity to modify the rhizosphere and 
compete with plant pathogenic fungi (Benítez et al., 2004; Harman, 2006). Trichoderma fungal 
strains are also able to colonize plant roots as avirulent symbionts (Harman et al., 2004). As it has 
been observed, plant-derived sucrose is an important source provided to the fungi by the host 
plant. In exchange, the fungi offer the plant a plethora of benefits. Among them are the promoted 
nutrient solubilization and absorption, improved yield, and increased tolerance to abiotic 
stresses. An array of scientific evidence has indicated that application of Trichoderma spp. in the 
rhizosphere improves plant morphology (H. Contreras-Cornejo et al., 2015; Contreras-Cornejo et 
al., 2009; Halifu et al., 2019; Yedidia et al., 2001) and physiology (Doni et al., 2014; Mishra & 
Salokhe, 2011; Shukla et al., 2012). Furthermore, roots of Trichoderma-colonized plants have 
exhibited a higher ability to explore soils and improve nutrient uptake (Altomare et al., 1999; 
Colla et al., 2015; Harman et al., 2004; Li et al., 2015). Plenty of studies have investigated the 
positive effect of Trichoderma strains on increasing the yield of several crops (El-Katatny & Idres, 
2014; Haque et al., 2012; Idowu et al., 2016; Mahmood & Kataoka, 2018; Naznin et al., 2015). 
Moreover, Trichoderma strains have also exhibited the ability to alleviate the effects of abiotic 
stresses, such as salinity (Brotman et al., 2013; Contreras-Cornejo et al., 2014; Hashem et al., 
2014; Mastouri et al., 2010, 2012; Qi & Zhao, 2013; Rawat et al., 2012; Zhang et al., 2016), 
drought (Contreras-Cornejo et al., 2009; H. A. Contreras-Cornejo et al., 2015; Shukla et al., 2012), 
heavy metal soil contamination (Rawat & Tewari, 2011), and adverse temperature (Ghorbanpour 
et al., 2018; Montero-Barrientos et al., 2010). Apart from the positive effects of Trichoderma 
strains on plant growth, nutrient uptake and abiotic stress alleviation, a plethora of studies has 
investigated the impact of Trichoderma spp. on plant immunity, mainly against pathogenic 
microbes (Alizadeh et al., 2013; Contreras-Cornejo et al., 2011; Djonovic et al., 2007; Gupta et al., 
2014; Harman et al., 2004; Segarra et al., 2007). 

Trichoderma strains have been broadly used to suppress plant diseases and the growth of 
pathogens in contact with plant tissues, or in terms of pathogen antagonism in the soil 
environment under both greenhouse and field conditions (Harman et al., 2004). Trichoderma 

spp. are known to raise resistance against pathogens by the induction of ISR in the plant (Segarra 
et al., 2009; Shoresh et al., 2005; Tucci et al., 2011). Nevertheless, the nature of Trichoderma 

spp.-induced ISR remains under discussion (Agostini et al., 2019). Several studies have indicated 
that some Trichoderma strains are able to elicit ISR in a JA- and ET-dependent manner in the 
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leaves of dicot plants (Contreras-Cornejo et al., 2011; Hermosa et al., 2012; Salas-Marina et al., 
2011); whereas others have concluded that Trichoderma strains might trigger plant responses in 
a SA-dependent manner, mainly because of the upregulation of pathogenesis-related (PR) 
proteins (PR1, PR2 and PR5) (Hermosa et al., 2012; Mathys et al., 2012). Therefore, the 
Trichoderma-mediated induction of the JA, ET, or SA pathways within a single plant seems to 
indicate a rather intricate mechanism for resistance activation (Agostini et al., 2019).  

Trichoderma fungi can also mediate plant-herbivore interactions through the activation of 
systemic plant defenses and the attraction of natural enemies of the herbivores (Poveda, 2021). 
Studies have shown that Trichoderma strains are capable of mounting plant resistance against 
arthropods belonging to the orders of Thysanoptera, Hemiptera and Heteroptera, by activating 
direct and indirect plant defense responses (Alınç et al., 2021; Battaglia et al., 2013; Coppola et 
al., 2017; Coppola, Cascone, et al., 2019; Coppola, Diretto, et al., 2019; Muvea et al., 2014). For 
instance, Muvea et al. (2014) showed that onion plants root-inoculated with Trichoderma 
demonstrated significantly lower feeding punctures by Thrips tabaci. Similarly, Trichoderma spp. 
have shown protective effects on plants against leaf-chewing herbivores through the modulation 
of direct and indirect defenses (Contreras-Cornejo, Del-Val, et al., 2018; Contreras-Cornejo, 
Macías-Rodríguez, et al., 2018; Rodríguez-González et al., 2018; Zhou et al., 2018). For example, 
the inoculation of roots with T. atroviride reduced the foliar damage caused by the leaf-chewing 
herbivore Spodoptera frugiperda (Contreras-Cornejo, Macías-Rodríguez, et al., 2018) in maize 
plants. 

 

Justification, aims and model system   

 

It is predicted that by 2050, the global population will reach approximately 9.1 billion people. In 
order to feed the increasing world population, a raise of about 70% in agricultural food 
production is required (Godfray et al., 2010). At the same time, biotic (i.e., pathogenic fungi and 
bacteria, insect herbivores, weeds, viruses) and abiotic (i.e., global warming, environmental 
pollution) stress factors are responsible for extensive crop yield losses and thus threaten food 
security. So far, the conventional agricultural methods followed to increase crop productivity and 
protect plants against biotic and abiotic stresses have resulted in serious environmental pollution 
and ecological damage. Therefore, the adoption of sustainable and environmentally friendly 
agricultural practices is a promising strategy to overcome these challenges and ensure high 
quantity and quality of yields in the coming years. In this frame, the interest in using beneficial 
microbes in agriculture has increased significantly due to the ability of these microbes to promote 
plant growth and productivity, improve plant resistance against pathogens and insect pests and 
ameliorate plant tolerance to abiotic stressors (Fernández-Lizarazo & Moreno-Fonseca, 2016; Lee 
Díaz et al., 2021; Wubs et al., 2019). 

In the present Doctoral study, tomato (Solanum lycopersicum) was used as a model plant to 
investigate the effect of two beneficial root microbes- the AMF Rhizophagus irregularis and the 
growth-promoting fungus Trichoderma harzianum- on modulating its direct and indirect 
defenses against herbivory. Tomato belongs to the Solanaceae plant family (Al‐Hilphy et al., 
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2021) and is the second most cultivated vegetable crop throughout the world. It is also one of 
the most extensively consumed vegetables, and a rich source of bioactive chemicals (i.e., vitamin 
A and C, carotenoids and phenolics) with several advantages for human health (Domínguez et al., 
2020; Lorenzo & Munekata, 2016; Vargas-Ramella et al., 2021; Zamuz et al., 2021). However, 
tomato is highly susceptible to numerous pests, which can severely affect its yield, nutritional 
value and taste (Zhang et al., 2021).  

As herbivore pests, were used larvae of the leaf-chewing lepidopterans Manduca sexta L. and 
Spodoptera exigua (Hübner). Manduca sexta (Lepidoptera: Sphingidae), commonly known as the 
tobacco hornworm or Carolina sphinx moth, has been extensively used as a model system for 
insect biochemistry research, physiology, neurobiology, development, and immunity (Baldwin, 
2001; Kanost et al., 2016; Riddiford et al., 2003; Shields & Hildebrand, 2001; Späthe et al., 2013). 
M. sexta larvae are oligophagous insect pests of the Solanaceae plant family (del Campo C & 
Renwick, 1999) -specialized in the nightshade (Yamamoto & Fraenkel, 1960)- therefore, can 
tolerate a substantial challenge from the defense metabolites synthesized by solanaceous plants 
(Kanost et al., 2016). Spodoptera exigua (Lepidoptera: Noctuidae), commonly known as the beet 
armyworm, is a polyphagous widely distributed insect, whose larvae feed on several crop species, 
such as cotton, cabbage, alfalfa, lettuce, and tomato (Moulton et al., 2000; Wang et al., 2006; 
Zheng et al., 2011). Despite, their low degree of specialization, S. exigua larvae can cause severe 
losses on tomato crop production (Taylor & Riley, 2008). At the same time, unlimited use of 
insecticides to control S. exigua populations has led to the evolution of its insecticide resistance 
(Delorme et al., 1988; Mascarenhas et al., 1998; Moulton et al., 2000). Therefore, there is a great 
need for novel, environmentally friendly approaches to protect tomato crops from S. exigua.  

In the last decades, metabolomic analyses have provided novel insights in the metabolomic shifts 
that underlie the complex relationships of plants with herbivores and fungi (Peters et al., 2018; 
Salazar et al., 2018; Sardans et al., 2020; Sardans et al., 2011). In particular, the field of “Eco-
metabolomics” (Kuzina et al., 2009; Peñuelas & Sardans, 2009) includes studies that aim at 
elucidating the responses, acclimatization, and adaptation of living organisms to adverse 
environmental conditions (Allevato et al., 2019; Rivas-Ubach et al., 2018; Rivas-Ubach et al., 
2013). In the framework of my PhD study, I used an integrated “omics” approach, combining 
transcriptomics and metabolomics, with the aim to unravel the molecular and chemical 
mechanisms that underlie microbe-induced resistance against insect herbivores. Overall, this 
study aimed to explore the potential of root symbionts in protecting crop plants against insect 
herbivores. The results of this research most likely will contribute to the transformation of 
conventional to sustainable agriculture, characterized by a drastic reduction in the use of 
chemical insecticides in order to protect the environment and human health.  
 

The results of my study are presented in three chapters, each with a specific hypothesis: 

1. Root inoculation of tomato plants with the arbuscular mycorrhizal fungus R. irregularis 

and the growth-promoting fungus T. harzianum would affect the leaf metabolome and 
this effect would cascade up influencing the metabolome of the oligophagous insect 
herbivore M. sexta, leading to changes in its metamorphosis success. (Chapter 1).  
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2. Root inoculation with R. irregularis and T. harzianum would cause a wide re-arrangement 
in the transcriptome and metabolome of tomato leaves in response to M. sexta herbivory 
(Chapter 2). 

3. Root inoculation of tomato plants with R. irregularis and T. harzianum would enhance 
plant indirect defense responses to S. exigua, by increasing the attraction of the 
omnivorous predator Macrolophus pygmaeus. This enhancement would be mediated by 
changes in the emission of HIPVs (Chapter 3).  
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Overview of the manuscripts 

Manuscript 1 

 

Title  

Cascading effects of root microbial symbiosis on the development and metabolome of the 

insect herbivore Manduca sexta L.  

 

Publication status 

This manuscript has been published in the open access journal Metabolites, MDPI. 

 

Bibliographical data 

Papantoniou, D.; Vergara, F.; Weinhold, A.; Quijano, T.; Khakimov, B.; Pattison, D.I.; Bak, S.; van 

Dam, N.M.; Martínez-Medina, A. Cascading Effects of Root Microbial Symbiosis on the 

Development and Metabolome of the Insect Herbivore Manduca sexta L. Metabolites 2021, 11, 

731. https://doi.org/10.3390/metabo11110731   

 

Short summary 

In thesis manuscript 1, it was shown that the beneficial root fungi, R. irregularis and T. harzianum, 

affected the metabolome of tomato shoots leading to enhanced levels of defense metabolites. 

This effect cascaded up on the metabolome of M. sexta herbivores fed on root-inoculated plants, 

thereby negatively affecting their development and metamorphosis. These findings point to the 

potential of using beneficial root microbes in order to sustainably protect crops against insect 

herbivores. 
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Manuscript 2 

 

Title 

Root colonization by the mutualistic fungi Trichoderma harzianum or Rhizophagus irregularis 

alters the transcriptomic and metabolomic defense response of tomato plants to Manduca sexta 

L. herbivory  

 

Publication status 

Thesis manuscript 2 is not published/ or submitted for publication. Parts of this chapter will be 

submitted for publication in the coming future after being enriched with more experimental data 

and analyses. The supplementary material related to the data presented in this chapter can be 

found in the following link or in the CD-ROM included in each thesis copy. 

 

Short summary 

In thesis manuscript 2, it was shown that the root mutualists, R. irregularis and T. harzianum, 

modulated tomato plant defenses in response to M. sexta herbivory, both on the transcriptomic 

and metabolomic level. Herbivory led to the upregulation of genes involved in stress-related 

responses. It is thus conceivable that root mutualists could serve as a promising tool in 

sustainable crop protection.  

 

 

 

 

 

 

 

 

 

 

 

https://docs.google.com/spreadsheets/d/1F-dA3cQRrcmmOJNx6mQ-my6NpnG3OiPn/edit?usp=sharing&ouid=108480551436506509447&rtpof=true&sd=true


19 
 

 

Manuscript 3 

 

 

Title  

Root symbionts alter herbivore-induced indirect defenses of tomato plants by enhancing 

predator attraction 

 

Publication status 

This manuscript has been published in the journal Frontiers in Physiology, special section 

Invertebrate Physiology. 

 

Bibliographical data 

Papantoniou D, Chang D, Martínez-Medina A, van Dam NM and Weinhold A (2022) Root 

symbionts alter herbivore-induced indirect defenses of tomato plants by enhancing predator 

attraction. Front. Physiol. 13:1003746. https://doi.org/10.3389/fphys.2022.1003746 

 

Short summary 

In thesis manuscript 3, it was shown that the root mutualists, R. irregularis and T. harzianum, are 
able to modulate the indirect defenses of tomato in response to S. exigua herbivory. The blend 
of volatiles emitted by microbe-inoculated herbivore infested plants was more attractive to the 
omnivorous mirid bug M. pygmaeus. These findings thus highlight the potential of employing 
root symbionts in Integrated Pest Management (IPM) applications.  
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Root colonization by the mutualistic fungi Trichoderma harzianum or 

Rhizophagus irregularis alters the transcriptomic and metabolomic 

defense response of tomato plants to Manduca sexta L. herbivory    

 

1. Introduction  

 

Insect herbivory is one of the most important factors causing severe economic losses in 
agricultural production. It is estimated that approximately 10-30% of crop production is lost due 
to insect pests on a global scale (Savary et al., 2019). The continuous “battle” between insects 
and plants has led the latter to the development of complex, sophisticated defense mechanisms 
to confront their enemies (Karban & Baldwin, 2007; Walling, 2000; War et al., 2012). Direct plant 
defense mechanisms include the formation of physical barriers against insect herbivores and/or 
the synthesis of compounds that exert repellent, anti-nutritive or toxic effects on the herbivore 
enemies (Fürstenberg-Hägg et al., 2013).  

Early events in plant-herbivore interactions include the recognition of the attacker, and the 
activation of signal transduction pathways throughout the attacked plant’s tissues (Mithofer & 
Boland, 2008). Detection of leaf damage due to herbivory results in the depolarization of the 
plasma membrane potential, followed by protein phosphorylation, and activation of plasma 
membrane proteins (Arimura et al., 2009; Maffei et al., 2004; Maffei et al., 2007a; Mithöfer et 
al., 2009). These processes lead to the mobilization and generation of diverse signaling 
molecules, such as free cytocolic calcium (Ca2+), nitric oxide, and reactive oxygen species (ROS) 
(Maffei et al., 2007b). Subsequently, a wide signaling network mediated by transcription factors 
and phytohormones is activated in the attacked plants (Schuman & Baldwin, 2016; Wu & 
Baldwin, 2010).  

Phytohormone-mediated signal transduction pathways regulate the induced defense responses 
to herbivory. Among phytohormone pathways, the pathway regulated by jasmonic acid (JA) has 
a prominent role in the regulation of plant defenses against chewing herbivores, such as beetles 
and caterpillars (Howe & Jander, 2008; Wasternack & Hause, 2013). Other hormones such as 
salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) interact with the JA pathway in the 
orchestration of defenses (Heidel‐Fischer et al., 2014). Several studies indicate that the cellular 
responses to phytohormone signals are highly interconnected. Indeed, both positive and 
negative cross-talk occur among hormonal-regulated pathways, allowing the plant to fine-tune 
the appropriate defense responses (Bonaventure, 2014; Bostock et al., 2001; Glazebrook et al., 
2003; Spoel et al., 2003; Van Wees et al., 2000).  

In their complex environments, plants also interact with mutualistic organisms such as root 
mutualistic microbes (Pineda et al., 2010). Root mutualistic microbes can enhance plant growth 
and protect plants against biotic and abiotic stresses (Lee Díaz et al., 2021).  Root colonization by 
certain mutualistic microbes induces an immune response in plants, rendering the entire plants 
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more resistant to the attack of pathogens and pests. This phenomenon is known as Induced 
Systemic Resistance (ISR), and it is characterized by a priming effect that results in a more 
efficient activation of the plant immune responses upon attack. ISR provides plants with broad-
spectrum resistance against a variety of pathogens and pests that attack their shoots and roots 
(Pozo & Azcón-Aguilar, 2007; Sanchez et al., 2005; Van Wees et al., 2008; Zamioudis & Pieterse, 
2012).  

Among plant mutualistic microbes, two well-studied examples are the arbuscular mycorrhizal 
fungi (AMF) and Trichoderma fungi. AMF are obligate root biotrophs, which form symbiotic 
associations with approximately 80% of terrestrial plants (Brundrett & Tedersoo, 2018). 
Mycorrhizal plants exhibit increased water and nutrient uptake (in particular phosphorus, 
nitrogen and micronutrients), and enhanced resistance to abiotic and biotic stress factors (Hodge 
& Storer, 2015; Smith & Read, 2010; Sally E Smith & F Andrew Smith, 2011). In return, AMF obtain 
photosynthesis-derived carbohydrates from the plants (Bago et al., 2003; Lanfranco et al., 2018; 
Solaimanand & Saito, 1997). The filamentous fungi of the genus Trichoderma spp. are commonly 
found in the rhizosphere and have been broadly studied due to their mycoparasitic properties 
and their ability to produce a plethora of bioactive compounds (Harman et al., 2004; Velázquez-
Robledo et al., 2011; F Vinale et al., 2008; Francesco Vinale et al., 2008). Moreover, selected 
Trichoderma isolates can stimulate plant growth, enhance nutrient uptake, and elicit plant 
defenses against abiotic and biotic stress factors (Lorito & Woo, 2015; Shoresh et al., 2010; 
Studholme et al., 2013). Notably, colonization of roots by arbuscular mycorrhiza and Trichoderma 
fungi can lead to systemic biochemical changes in the composition and concentration of primary 
and secondary metabolites in above-ground plant tissues (Andrade et al., 2013; Coppola, Diretto, 
et al., 2019; Fiorentino et al., 2018; Mayo-Prieto et al., 2019; Rivero et al., 2021; Schweiger et al., 
2014; Schweiger & Müller, 2015; Sofo et al., 2012; Song et al., 2011; Zhou et al., 2018). Such 
changes can affect the quality of host plants for insect herbivores, affecting thus herbivore 
development, reproduction, and survival.  

There has been an intense research effort to unravel the main mechanisms regulating the impact 
of beneficial microbes on plant immunity during the last years. However, our knowledge on the 
mechanistic basis of ISR is still highly fragmented, based on targeted analysis of few traits, and 
limited to one level of plant biological organization (Gruden et al., 2020). The current 
implementation of systems biology approaches is contributing to significantly overcome such 
biases, and to better understand the broad spectrum of mechanisms regulating plant-microbe-
insect interactions (Coppola, Diretto, et al., 2019; Gupta et al., 2022; Kaling et al., 2018; 
Mashabela et al., 2022).  Here, we pursued a integrative -omics approach to address how the two 
different root mutualistic fungi, the arbuscular mycorrhizal fungus Rhizophagus irregularis and 
the plant growth-promoting fungus Trichoderma harzianum, affect the transcriptomic and 
metabolomic response of tomato plants to Manduca sexta herbivory. With this aim, we used a 
high-throughput RNA sequencing and metabolomics analysis, followed by the integration of both 
datasets. The untargeted analysis, involving the independence of previous assumptions has 
allowed us to hypothesize plant-related mechanisms involved in microbe-mediated induced 
resistance by root mutualistic fungi against insect herbivores.  
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2. Material and methods  

 

2.1 Plant, fungal and insect material  

 

Seeds of Solanum lycopersicum cv. Moneymaker (Intratuin, the Netherlands) were surface-
sterilized in 4% (v/v) sodium hypochlorite (NaOCl) for 10 minutes, then thoroughly rinsed in 
water. After sterilization, the seeds were placed on finely coarsed, moist vermiculite and kept in 
the dark for three days at 28°C. Inoculum of the arbuscular mycorrhizal fungus Rhizophagus 

irregularis (INOQ-Sprint) was purchased from INOQ GmbH (Schnega, Germany) 
(https://inoq.de/), with 220 mycorrhizal units per mL in sand. Trichoderma harzianum T-78 (CECT 
20714, Spanish Type Culture Collection; provided by J.A. Pascual, CEBAS-CSIC) was cultured on 
potato dextrose agar plates for 5 days at 28°C in dark, as described by Martínez-Medina et al. 
(2014). T-78 inoculum was prepared on commercial oat, bentonite and vermiculite according to 
Martínez-Medina et al. (2009). Manduca sexta (Lepidoptera, Sphingidae) eggs were obtained 
from the Max Planck Institute for Chemical Ecology (Jena, Germany). The M. sexta culture was 
reared on artificial diet and maintained according to Grosse-Wilde et al. (2011).  

 
2.2 Plant growth conditions 

 

Ten days after germination, the seedlings were transplanted into 350 mL pots filled with a sand-
vermiculite mixture (1:1, v/v). Microbial inoculation was achieved by mixing the microbial inocula 
through the sand-vermiculite mixture before transplanting the seedlings. For the mycorrhizal 
treatment, the sand-vermiculite mixture was inoculated with 10% v/v of R. irregularis inoculum, 
according to Papantoniou et al. (2021). Inoculation with Trichoderma harzianum was achieved 
by mixing the T. harzianum inoculum in the sand-vermiculite mixture to a final density of 1 × 106 

conidia g−1 before transplanting, according to Papantoniou et al. (2021). 

The plants were grown under greenhouse conditions (T= 25-27°C, RH= 65-70%). They were 
watered with tap water every second day, and half-strength Hoagland solution (Hoagland & 
Arnon, 1950) was provided once per week to support them with the essential nutrients. 

 

2.3 Fungal colonization 

 

Five weeks after transplanting, root colonization by R. irregularis was assessed after clearing 
washed roots in 10% KOH and subsequent staining of fungal structures with 5% ink (Koh-I-Noor) 
and 2% acetic acid (Vierheilig et al., 2005). To calculate the percentage of total root colonization, 
we used the gridline intersection method (Giovannetti & Mosse, 1980) using a binocular stereo 
microscope. We found that the percentage of root colonization was about 30-40% in all 

https://inoq.de/
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mycorrhiza-inoculated plants. To quantify the amount of colony forming units (CFU) of T. 

harzianum, we sampled substrate from the rhizosphere. We used the plate count technique using 
potato dextrose agar (PDA), amended with 50 mg L−1 rose bengal and 100 mg L−1 streptomycin. 
Plates were incubated at 28°C in darkness, and CFUs were counted after 5 days. The CFUs were 
calculated per gram of dry (1 week, 50°C) soil (Martínez-Medina et al., 2011). We found that the 
populations of T-78 in the soil were similar to the inoculation level (1 × 106 conidia g−1) in all T-78 
inoculated plants.  

 

2.4 Manduca sexta infestation  

 

Five weeks after transplanting, the corresponding plants were infested with two neonate 
Manduca sexta larvae. Larvae were placed on the three apical leaflets of the third true leave 
(counted from the soil), inside a clip cage (30 mm diameter). Empty clip cages were used similarly 
for non-herbivory treatments. The experiment consisted of 6 treatments: non-microbe plants 
without herbivory (hereafter referred as Nm), non-microbe plants challenged with M. sexta 
(hereafter referred as Nm_h), R. irregularis plants without herbivory (hereafter referred as Rhi), 
R. irregularis plants challenged with M. sexta (hereafter referred as Rhi_h), T. harzianum plants 
without herbivory (hereafter referred as Tri) and T. harzianum plants challenged with M. sexta 

(hereafter referred as Tri_h). Each treatment consisted of 6 independent plants as biological 
replicates. After 24 h, the larvae were removed, and the leaflets contained within the clip cage 
were harvested and immediately flash frozen in liquid nitrogen and stored at −80°C.  

 

2.5 RNA isolation and sequencing 

 

For RNA-seq analysis, three biological replicates per treatment were used, each consisting of 
pooled material from two plants. We extracted total RNA from tomato leaf samples using the 
RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA), according to the manufacturer's instructions. 
All samples were treated with DNase Ⅰ on column using the Qiagen RNase‐Free DNase Set. RNA 
quality was evaluated by determining the RNA Integrity Number (RIN) using Agilent 2100 Bio-
analyzer and RNA LabChip in the Agilent 2100 Bio-Analyzer (Agilent Technologies, Santa Clara, 
CA, United States). For the library preparation, the samples with a RIN value ≥9 were used. The 
strand specific paired-end libraries were constructed using the Illumina TruSeq Stranded mRNA 
LT Sample Prep Kit (Illumina) and sequenced on the NovaSeq 6000 platform (Illumina) from both 
ends.  

 

 

2.6 Read mapping and transcript quantification 
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The quality of raw RNA-seq reads was evaluated using FastQC (Andrews, 2010) before a trimming 
step using Trimmomatic v0.39 (Bolger et al., 2014) for the removal of adapter sequences and 
low-quality reads. Briefly, low-quality sequence stretches at the end of the reads were identified 
and trimmed through a sliding window approach. This “sliding” approach averaged the quality of 
a stretch of 4-mers from the end of the reads and trimmed it whenever their average base calling 
quality dropped below 15 (Phred+33 encoding). After trimming, the algorithm “slided” evaluated 
the quality of the next 4-mer and continued trimming until the identification of a block with an 
average base calling quality above 15 (SLIDINGWINDOW:4:15). For the removal of adapter 
sequences, Illumina adapter sequences were fed to the Trimmomatic algorithm allowing a 
maximum of two mismatches for a positive identification of an adapter sequence under both 
available alignment modes, normal and palindrome. Alignment quality thresholds of 30 and 10 
were set for the palindrome and normal alignment modes, respectively, and a minimum of 4-
mers were required for identifying and cutting an adapter sequence in palindrome mode. Both 
reads were kept for all read-throughs (ILLUMINACLIP: adapter_sequences.fa:2:30:10:4:TRUE). 
After the trimming steps, all reads below 50 bp were discarded (MINLEN:50). Ribosomic RNA 
reads were filtered out of the trimmed reads using SortMeRNA v4.2 (Kopylova et al., 2012). High 
quality trimmed and filtered reads were pseudomapped to a reference sequence including the 
tomato ITAG4.1 transcriptome (Hosmani et al., 2019) and transcript abundances were estimated 
afterwards using the suite Salmon v1.4 (Patro et al., 2017). Briefly, by using the Salmon index we 
built an index of the reference sequence including a concatenation of all ITAG4.1 transcript 
sequences plus the sequence of the tomato genome assembly SL4.0 as decoy using k-mers of 
length 31. Then, we ran Salmon quant over the previously generated index and different subsets 
of filtered and trimmed samples including all samples (herbivory samples and non-herbivory). 
Different attributes were specified to Salmon quant for correcting biases observed during the 
quality control steps (seqBias, gcBias, posBias), and enhancing the accuracy of the quantification 
estimates (validateMappings, useVBOpt). 

We employed the DESeq2 package (Love et al., 2014) for the identification of differentially 
expressed genes (DEGs) by using the Wald test function included in the package. Log2 fold 
changes (LFC) resulting from pairwise comparisons were corrected “shrinked” using the apeglm 
package (Zhu et al., 2019). Only the genes with an absolute shrink LFC value above 1 and a Wald 
test q-value below 0.01 were considered as differentially expressed. We also used DESeq2 for 
the pre-processing of the transcriptomic data for all the downstream multivariate and integrative 
analyses. Briefly, the different datasets were normalized by the median of ratios method and rlog 
transformed (Love et al., 2014). Likelihood Ratio Test (LRT) was used as an unsupervised filter for 
the rlog transformed datasets. Only variables with an LRT q-value below 0.05 were kept for 
downstream analysis including functional enrichment, clustering, and multivariate analyses as 
principal component analysis (PCA) and sparse Partial Least Squares (sPLS) analysis.  
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2.7 Metabolite extraction and metabolome analysis 

 

For metabolomic analysis, six biological replicates per treatment were used, each one consisting 
in one independent plant. We extracted metabolites from tomato leaf samples and quantified 
those following previous protocols (De Vos et al., 2011; Moreno-Pedraza et al., 2019; Rogachev 
& Aharoni, 2011) with some modifications. Briefly, sample extract aliquots were diluted to 1:5 
and 1:50 in extraction buffer [acetate buffer (25%) and methanol (75%)] –the 1:50 dilution 
allowed us to correctly detect the tomatine peak without exceeding the mass analyzer detection 
limit- 1 µL from each sample dilution (1:5 and 1:50) was injected in an Ultra Performance Liquid 
Chromatography (UPLC) (Dionex 3000, Thermo Scientific) equipped with a C18 column (Acclaim 
TM RSLC 120, CN: 071399) kept at 40 °C. The mobile phases (LC-MS grade solvents) were 
composed of solvent A: 0.05% (v/v) aqueous formic acid and solvent B: 0.05% (v/v) formic acid in 
acetonitrile. The multi-step gradient for solvent B was 0−1 min 5%, 1−4 min 28%, 4−10 min 36%, 
10−12 min 95%, 12−14 min 95%, 14−16 min 5%, 16−18 min 5%. The flow was 400 µL min-1. We 
detected compounds using a maXis impact HD Mass Spectrometer-quadrupole Time-of-Flight 
(MS-qToF) (Bruker Daltonics). Data were acquired in positive mode with settings similar to 
Moreno-Pedraza et al. (2019). Subsequently, we processed the data according to Moreno-
Pedraza et al. (2019) with slight modifications for feature detection, retention time correction, 
and feature alignment. The parameters were; mass accuracy: MS1 tolerance = 0.01 Da, retention 
time-begin = 0.7 min, retention time-end = 10 min, mass range-begin = 50 mass to charge ratio 
(m/z), mass range-end = 1500 m/z; peak detection parameters: minimum peak height = 1000 
amplitude, mass slice width = 0.1 Da, smoothing method = linear weighted moving average, 
smoothing level = 3 scans, minimum peak width = 5 scans; alignment parameters settings: 
retention time tolerance = 0.05 min, MS1 tolerance = 0.015 Da. Samples were normalized by the 
total intensity of the chromatogram. We generated three different datasets including all samples, 
herbivory samples and non-herbivory samples. Resulting datasets were z-score transformed prior 
to their use in PCA and sPLS analyses. 

 

2.8 Functional enrichment, Principal Component Analysis (PCA) and sparse Partial Least 

Squares (sPLS) analyses 

 

We performed GO functional enrichment analysis over ranked DEGs lists using g:Profiler 
(Raudvere et al., 2019). Briefly, DEGs were split between upregulated and downregulated, and 
then ranked by their shrank LFC values. Ranked lists were used as the ordered input for g:Profiler. 
In parallel, we also performed a hierarchical clustering analysis over the abundance of all 
transcripts included in PCA and sPLS analyses based on their MapMan functional categories. 
Hierarchical clustering was carried out using the pRocessomics package 
(https://github.com/Valledor/ pRocessomics). 

Integration of transcriptome and metabolome levels was performed through an sPLS regression 
analysis using transcriptomic and metabolomic datasets as prediction and response matrices, 

https://github.com/Valledor/
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respectively. Samples in the metabolome data matrix belonging to the same pool in the 
transcriptome matrix were averaged to correct for asymmetries in the number of biological 
replicates between the involved -omics levels incompatible with the sPLS analysis.  PCA and sPLS 
(Lê Cao et al., 2009) analyses were performed using the pRocessomics package. All sPLS-derived 
transcript-metabolite correlation networks were processed in Cytoscape (Cytoscape consortium 
2021). 

3. Results and discussion 

 

3.1 Transcriptomic dataset description 

 

The transcriptomics dataset described changes in the expression of 24,859 genes. Within this 
gene set, 7,352 genes were differentially expressed (LRT,  0.05) (Supplementary table S2) and 
2,059 showed expression changes in the transition from non-herbivory to herbivory conditions 
(|shrink LFC| > 1,  0.01) (Figure 1A). Among the genes differentially expressed in the transition 
from non-herbivory to herbivory, we found a core of 706 common genes that were differentially 
expressed among the Nm, Rhi and Tri treatments. We also found genes that were differentially 
expressed exclusively in the case of Rhi (321), Tri (401) and Nm plants (176) (Figure 1A). 
Interestingly, 220 common genes were differentially expressed under herbivory in both Rhi and 
Tri plants. When focusing only on the data under herbivory, we found that only 6 genes were 
differentially expressed between Nm and Rhi plants; and 13 genes were differentially expressed 
between Nm and Tri plants (Figure 1B). 

 

Figure 1. Venn diagram visualization of the differentially expressed genes (DEGs). (A) DEGs of 
tomato plants (non-herbivory vs. herbivory) in all three treatments: non-microbe (symbolized as 
Nm and depicted in grey), Trichoderma harzianum-inoculated (symbolized as Tri and depicted in 
blue) and Rhizophagus irregularis-inoculated (symbolized as Rhi and depicted in yellow). (B) DEGs 
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of tomato plants when comparing Nm vs. Rhi (left side, depicted in yellow), and Nm vs. Tri (right 
side, depicted in blue) after herbivory. 

 

3.2 Results from GO enrichment and MapMan analyses of the transcriptomic dataset 

The gene ontology (GO) enrichment analysis over non-herbivory vs. herbivory LFC ranked DEGs 
showed herbivory response elements commonly shared among non-microbe and microbe-
inoculated plants (Figure 2A). Among the herbivory-triggered upregulated DEGs, we found genes 
coding for peptidase inhibitor activity, transferase activity, catalytic activity, transferring of acyl 
groups and lipid metabolic process. Interestingly, the transferase/catalytic activity categories 
were further enriched in the microbe-inoculated (Rhi and Tri) plants. Protease inhibitors are 
substantial compounds of direct plant defense responses, acting as effective anti-nutritional 
defense against insect herbivores (Howe & Jander, 2008). Similar to our results, several studies 
have demonstrated that mycorrhizal and Trichoderma fungi can enhance the expression of 
different protease inhibitors upon herbivory leading to enhanced resistance (Alınç et al., 2021; 
Bacht et al., 2019; Coppola, Cascone, et al., 2019; Coppola, Diretto, et al., 2019; Kaling et al., 
2018; Li et al., 2019; Song et al., 2013).  

 

 

Figure 2. Visualization of Gene Ontology (GO) enrichment and MapMan analyses for the 

transcriptomic data set. (A) GO enrichment analysis (over non-herbivory vs. herbivory) for the 
differentially expressed genes set (DEGs) in all three treatments: non-microbe (symbolized as 
Nm, depicted in grey) Trichoderma harzianum-inoculated (symbolized as Tri, depicted in blue) 
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and Rhizophagus irregularis-inoculated (symbolized as Rhi, depicted in yellow). (B) MapMan-
based hierarchical clustering (over non-herbivory vs. herbivory) for the DEGs in all three 
treatments (non-microbe-Nm, Trichoderma harzianum-inoculated-Tri and Rhizophagus 

irregularis-inoculated-Rhi). The intensity of differential expression among the hierarchically 
clustered genes is given in a color scale from yellow to dark blue. 

In addition, we found microbe-specific changes among the upregulated categories, as for 
instance, the higher enrichment in the category “response to water” that was observed 
specifically for Rhi plants. This finding was further reinforced by the upregulation of three 
dehydrins in the same samples, including the dehydrin TAS14. Members of the group 2 of Late-
Embryogenesis-Abundant (LEA) proteins, called dehydrins, are mainly found in plants and are 
typically accumulated in dehydrating plant tissues, in seeds and/or in tissues subjected to 
environmental stresses including drought, salinity and low temperature (Veeranagamallaiah et 
al., 2011). Upon herbivory, insect injuries can cause increases in water loss (Dunn & Frommelt, 
1998; Ostlie & Pedigo, 1984; Sun et al., 2015). Therefore, the higher enrichment observed in the 
category “response to water”, including the upregulation of the three dehydrins in Rhi plants, 
may be linked to the ability of AMF to ameliorate water deficit stress upon herbivory. Along the 
same lines, several studies have reported that AMF are capable of helping plants to resist water 
deficit (Fernández-Lizarazo & Moreno-Fonseca, 2016a; Jia-Dong et al., 2019; Zou et al., 2021).  

Our analysis also revealed an upregulation of several Ethylene Responsive Factor (ERF) genes in 
the Rhi_h plants (Table 1, Supplementary Table S13). The ethylene-regulated pathway is involved 
in plant defense responses (van Loon et al., 2006). Interestingly, it has been suggested that 
ethylene participates in mycorrhizal-induced resistance as well (Jiang et al., 2021; López-Ráez et 
al., 2010; Pozo et al., 2010).  Similar to our finding, in a previous study by Cervantes-Gámez et al. 
(2016), the authors showed that the majority of mycorrhiza-responsive DEGs observed in tomato, 
was classified in the category “hormone metabolism”, with the sub-category related to ethylene 
showing the highest number of DEGs. Our observations may thus indicate that the ethylene-
regulated pathway is involved in mycorrhiza-induced resistance against M. sexta herbivory.  
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Table 1. Highlighted DEGs from pairwise comparisons between herbivory and non-herbivory 
treatments in R. irregularis-inoculated plants (Rhi_nh vs. Rhi_h) and from R. irregularis-
inoculated and non-inoculated herbivory-stressed plants (Nm_h vs. Rhi_h). For each DEG, the 
table includes ITAG4.1 identifier (Gene ID), shrinked Log2 Fold Change (LFC) and q-value (padj) for 
each pairwise comparison, along gene symbol and description data.   

 

Several other stress response genes were exclusively upregulated in Rhi_h plants including two 
peroxidases, a gene regulating Radical-Induced Cell Death 1 (RCD1) and an early nodulin-like gene 
(Table 1, Supplementary table S4). Exposure to abiotic and biotic stresses results in the formation 
of reactive oxygen species (ROS) in plants (Babbar et al., 2021; Erb & Reymond, 2019; Kámán‐
Tóth et al., 2019; Liu et al., 2021; Schwarzländer et al., 2009; Zou et al., 2015). In order to protect 
themselves against ROS, plants are equipped with ROS-scavenging enzymatic systems comprising 
of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) (Babajani et al., 2009). 
Increased peroxidase levels have been shown to enhance plant’s ability to tolerate insect feeding 
(Gulsen et al., 2010; Mai et al., 2016). In addition, the study of Li et al. (2019) demonstrated that 
mycorrhizal colonization increased peroxidase activity, thereby resulting in higher resistance of 
alfalfa plants (Medicago sativa) against pea aphid (Acyrtosiphon pisum) herbivory (Li et al., 2019). 
Therefore, the upregulation of two genes coding for peroxidases in the Rhi_h plants suggest a 
mycorrhiza-mediated effect on ROS detoxification in response to M. sexta herbivory. ROS 
production is also able to trigger a signal cascade leading to various outputs including tolerance, 
acclimatization, and cell death in response to abiotic and biotic stresses (Dat et al., 2000; Mittler, 
2002; Vranová et al., 2002). RCD1 has been shown to control disease responses, cell death, and 
the meristem fate in a ROS-dependent manner (Cheng et al., 1995; Overmyer et al., 2005; Teotia 
& Lamb, 2011). Therefore, ROS production, because of M. sexta herbivory, probably resulted in 
the upregulation of RCD1 in Rhi_h plants.  

 Rhi_nh vs Rhi_h Nm_h vs. Rhi_h   

Gene ID LFC padj LFC padj Symbol Description 

Solyc06g035940 8.5 4.0E-8 7.2 5.0E-4 SlANL2B Homeobox protein 
ROC5 

Solyc07g150103 7.1 1.0E-5 7.6 8.0E-4  Early nodulin-like 
Solyc07g052510 2.0 7.0E-4 - -  Peroxidase 

Solyc10g076240 1.8 2.0E-3 - -  Peroxidase 

Solyc02g062390 5.6 1.6E-14 - -  Dehydrin 
Solyc02g084840 1.3 2.8E-5 - -  Dehydrin 

Solyc01g095080 4.8 2.0E-3 - - ACC ACC synthase 

Solyc01g095080 3.3 1.1E-5 - - ACC ACC synthase 
Solyc02g084850 2.1 6.8E-7 - - TAS14 ABA-inducible 

dehydrin 
Solyc05g051380 1.4 5.0E-3 - - AP2/ERF AP2-like ERF AIL6 
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Furthermore, an early nodulin-like gene was exclusively upregulated in our Rhi_h plants. Genes 
coding for nodulins were first characterized while studying host plant responses to the 
development of symbiotic root nodules. More recently, several studies have identified that these 
genes are also present in non-legume plant species holding key roles in hormone and solute 
transport during various processes (Denancé et al., 2014). For example, several nodulin genes 
were found as differentially expressed in the roots of rice (Oryza sativa) upon colonization by 
Azospirillum brasilense (Thomas et al., 2019). The upregulation of an early nodulin-like gene in 
Rhi_h might thus indicate that this gene plays a role in the hormonal regulation of mycorrhizal 
plants in response to M. sexta herbivory.  

Remarkably, an oxidative stress-related peptide methionine (R)-sulfoxide reductase protein was 
downregulated in Rhi_h plants (Table 1, Supplementary table S4). Methionine sulfoxide 
reductases (MSRs) play protective roles upon abiotic and biotic environmental constraints in 
plants (Rey & Tarrago, 2018; Rouhier et al., 2006). Furthermore, the involvement of jasmonates 
in MSR gene expression has been reported in several studies. For instance, in A. thaliana, the 
expression of a MSR gene was strongly induced by linolenic acid, which is a precursor of jasmonic 
acid (JA) (Mata-Pérez et al., 2015). On the other hand, treatment of tomato seedlings with JA 
caused either downregulation or no change in the expression levels of four MSR genes (Dai & 
Wang, 2012). These findings point to a complex regulation of MSR gene expression by 
jasmonates.  

Among herbivory-associated downregulated DEGs, the same enrichment analysis pointed at 
categories related to “response to auxin”, “response to stimulus”, “protein dimerization activity” 
and “transferase/hydrolase activity”. It is remarkable that a stronger enrichment in the 
downregulation of “response to auxin” was observed for Tri plants. This was associated with the 
downregulation of eight small auxin upregulated RNA (SAUR) genes (Supplementary table S4). 
SAURs belong to a family of auxin-responsive genes present in most of the higher plant species. 
Trichoderma strains are able to produce auxin-related compounds (Contreras-Cornejo et al., 
2009). As it has been reported, in Arabidopsis plants, Trichoderma-produced elicitors facilitate 
changes in root architecture and increase plant biomass through auxin signaling (Garnica‐Vergara 
et al., 2016). Similarly to our results, the tomato gene Solyc09g008175.1 that codes for the SAUR-
like auxin responsive protein family was downregulated in tomato plants treated with T. 

atroviride P1 (Coppola, Cascone, et al., 2019). Therefore, we hypothesize that inoculation of 
tomato roots with T. harzianum resulted in the upregulation of the auxin signaling pathway that 
could subsequently lead to an increase in plant biomass in the absence of herbivory. However, it 
is probable that after M. sexta infestation, T. harzianum-inoculated plants shifted from growth- 
to defense-related responses, and this subsequently led to the observed downregulation of SAUR 
genes.  

MapMan-based hierarchical clustering over the differentially expressed gene set (LRT,  0.05) 
clearly separated herbivory from non-herbivory samples (Figure 2B).  Herbivory triggered the 
downregulation of processes related to photosynthesis, protein biosynthesis, and nutrient 
uptake. On the contrary, herbivory triggered the upregulation of processes related to stress 
responses such as polyamine, secondary and amino acid metabolism. Additionally, herbivory led 
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to stronger upregulation of regulatory- (multi process regulation, chromatin organization) and 
cell growth- (cell wall, cell cycle, cytoskeleton organization) related categories in herbivore-
infested plants (Figure 2B). Interestingly, these shifts were stronger in the microbe-inoculated 
plants, and particularly in the Tri ones.  

We also found a higher upregulation of an anthocyanin 5-aromatic acyltransferase and three type 
Ⅰ and Ⅱ protease inhibitors in Tri_h plants (Table 2, Supplementary Table S4, S6). Anthocyanins 
are products of secondary plant metabolism belonging to the chemical group of flavonoids. They 
play important roles in plant development, such as providing protection against UV radiation, low 
temperature, drought stress and pathogens (Cao et al., 2016; Ren et al., 2014; Shafiq & Singh, 
2018). In accordance with our observation, several studies have shown that Trichoderma strains 
are known to enhance plant secondary metabolism, including anthocyanins (Coppola, Diretto, et 
al., 2019). 

Table 2. Highlighted DEGs from pairwise comparisons between herbivory and non-herbivory 
treatments in T. harzianum-inoculated plants (Tri_nh vs. Tri_h) and from Trichoderma 

harzianum-inoculated and non-inoculated herbivory-stressed plants (Nm_h vs. Tri_h). For each 
DEG, the table includes ITAG4.1 identifier (Gene ID), shrinked Log2 Fold Change (LFC) and q-value 
(padj) for each pairwise comparison, along gene symbol and description data. 

 Tri_nh vs Tri_h Nm_h vs. Tri_h   

Gene ID LFC padj LFC padj Symbol Description 

Solyc05g047510 5.7 1.0E-4 - -  Jasmonate 
sulfotransferase 

Solyc12g008740 5.7 4.0E-4 - - ACC ACC synthase 
Solyc01g095080 3.1 1.0E-5 - - ACC ACC synthase 

Solyc12g042210 2.7 1.0E-3 - - AP2/ERF Ethylene-response 
factor 

Solyc09g089500 - - 2.2 5.5E-4  Protease inhibitor Ⅰ 

Solyc10g081300 - - 1.9 3.7E-3  Metacaspace-9 

Solyc05g052650 1.8 3.0E-3 - -  Anth. 5-aromatic 
acyltransferase 

Solyc11g021060 - - 1.6 8.9E-3  Protease inhibitor Ⅱ 

Solyc06g034360 - - 1.6 8.3E-3  Pectineserase 

Solyc08g079890 - - 1.6 7.3E-3 P69Ⅰ Subtilase (possible 
phytaspase) 

Solyc09g025310 - - 1.5 5.7E-3 KIRA-1L NAC TF (Ath KIRA 1 
homolog) 

Solyc03g098795 - - 1.0 9.4E-6  Protease inhibitor Ⅱ 

Solyc08g078900 - - -1.2 3.4E-5 DEA1 Differentially 
expressed in 
response to 
Arachidonic Acid 1 
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Inoculation with T. harzianum was also associated to changes in signaling mechanisms and 
herbivory response genes, as pointed by the differential enrichment in “catalytic and transferase 
activity-related” GO categories, and the upregulation of “secondary/polyamine metabolism” and 
“multi- process regulation” MapMan categories (Figure 2AB). Among the modulated signaling-
related elements, several genes encoding for isoforms of the ethylene synthesis enzyme 1-
aminocyclopropane-1-carboxylate synthase (ACC synthase) and an APETALA2/ETHYLENE 
RESPONSIVE FACTOR (AP2/ERF) were differentially modulated in these plants (Table 2, 
Supplementary Table S4), suggesting a Trichoderma-triggered modulation of ethylene signaling 
under stress. Similar to our findings, two recent studies have suggested a role for ethylene 
pathway in Trichoderma-induced herbivore resistance (Coppola, Cascone, et al., 2019; Coppola, 
Diretto, et al., 2019). 

We further observed the downregulation of the Differentially Expressed in response to 

Arachidonic Acid 1 gene (DEA1) in Tri_h plants. DEA1 is a circadian-regulated gene in tomato 
belonging to the 8-cysteine motif (8CM) proline-rich family proteins (PRPs) (Weyman et al., 
2006). DEA1 has been shown as an arachidonic acid-, pathogen-, and JA-inducible gene (Saikia et 
al., 2020; Weyman et al., 2006).   Therefore, the observed suppression of DEA1 in Tri-h plants 
could be linked to the modulation of JA levels due to M. sexta herbivory.  

This analysis also allowed us to identify microbe-associated effects under non-herbivory 
conditions. The abundance of growth-related categories (protein biosynthesis, cell wall 
organization) was higher in microbial inoculated plants. We also found a higher regulation of 
processes related to nutrient uptake in Rhi plants. This is not surprising as colonization by AMF 
and Trichoderma is known to increase the primary metabolism in plants, and the absorption of 
several nutrients, such as phosphorus and nitrogen (Cervantes-Gámez et al., 2016; Li et al., 2015; 
Mazzei et al., 2016; Parihar & Bora, 2018; Shoresh et al., 2010; Smith & Read, 2010). This has 
been linked to a better performance of colonized plants, and a higher tolerance against herbivory 
(Borowicz, 2013; Contreras-Cornejo, Macías-Rodríguez, et al., 2018; Coppola, Diretto, et al., 
2019; Jung et al., 2012; Kula et al., 2005; Shrivastava et al., 2015; Zhou et al., 2018). 

3.3 Results from the multivariate analysis over the transcriptomic dataset  

 

We then performed Principal Component Analysis (PCA) over two different subsets of data: the 
differentially expressed gene set (LRT,  0.05) including all treatments (Nm, Nm_h, Rhi, Rhi_h, 
Tri, Tri_h) (Figure 3A) and a dataset including the differentially expressed genes among herbivory 
samples (Rhi_h, Nm_h, Tri_h) (LRT,  0.05) (Figure 3B). PCA over the first dataset successfully 
separated herbivory and non-herbivory samples and grouped herbivory samples by the presence 
of mutualistic microbes in its first principal component (PC1) (Figure 3A). PC1 was overall 

Solyc02g091990 -1.9 3.0E-3 - - ACC ACC synthase 
Solyc03g093560 -2.0 1.2E-5 - - AP2/ERF Ethylene-response 

factor 
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correlated to downregulation of photosynthesis and chloroplastic protein synthesis genes, and 
to upregulation of stress response genes (protease inhibitors, LapA1, arginase) (Supplementary 
table 8). The second component (PC2) gathered variables associated to the modulation of the 
plant response by the mutualistic microbes. This component was correlated to chromatin 
organization and cell cycle/division (cyclins, kinesins) genes, which were further, but not 
significantly accumulated in Tri_h plants.  

 

 

Figure 3. Visualization of the multivariate analysis for the transcriptomic dataset. (A) Principal 
Component Analysis (PCA) over the differentially expressed genes set including all three 
treatments. The analysis included the dataset of differentially expressed genes among non-
herbivory samples: non-microbe (symbolized as Nm, depicted in grey triangles), Trichoderma 

harzianum-inoculated (symbolized as Tri, depicted in blue triangles) and Rhizophagus irregularis-
inoculated (symbolized as Rhi, depicted in yellow triangles); and the dataset of differentially 
expressed genes among herbivory samples: Nm_h-grey dots, Tri_h-blue dots, Rhi_h-yellow dots. 

(B) Principal Component Analysis (PCA) over the differentially expressed genes set among 
herbivory samples (Nm_h, Tri_h, Rhi_h). 

PCA over the “herbivory” dataset separated samples by the presence of mutualistic microbes and 
by the identity of the mutualistic microbe (Figure 3B). The PC1 explained mostly the Tri 
modulation of herbivory response, including stress response genes (protease inhibitors, 
programmed cell death (PCD), secondary metabolism, signaling, and cell wall-related genes), 
whose expression was significantly different in Tri_h plants (Table 2, Supplementary table 10). In 
response to various abiotic and biotic stresses, plants undergo PCD. PCD depends on the outcome 
of several biochemical events that occur in response to stress, such as the generation of ROS, 
ionic influx/efflux, biosynthesis of phytohormones, phytoalexins and polyamines (Prasad et al., 
2022). Interestingly, Trichoderma strains have been reported to induce PCD to fungal 
phytopathogens through the production of antimicrobial compounds, such as peptaibols (Shi et 
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al., 2012; Tijerino et al., 2011). The PC2 explained mostly the Rhi modulation of herbivory 
response including genes such as the early nodulin-like protein 1 and the transcription factor 
AP2/B3 (Table 1, Supplementary table 6). 

 

 

3.4 Metabolomics dataset description and results from the multivariate analysis 

Metabolomics dataset generated over the same samples included in total 2,920 signals with 464 
showing significant intensity differences between treatments (ANOVA,  0.05) (Supplementary 
table S5). The multivariate analysis over the metabolomics dataset revealed a clear separation 
between herbivory and non-herbivory samples, as occurred with the transcriptomic dataset 
(Figure 4). Herbivory and non-herbivory samples were separated along PC1. Interestingly, the 
PC2 separated the samples in relation to the microbial treatment. This separation was more 
evident than in the case of the transcriptomic dataset (Figure 4).  

 

 

Figure 4. Visualization of the multivariate analysis for the metabolomic dataset. Principal 
Component Analysis (PCA) over herbivory vs. non-herbivory samples for all three treatments. The 
analysis included non-herbivory samples: non-microbe (symbolized as Nm, depicted in grey 
triangles) Trichoderma harzianum-inoculated (symbolized as Tri, depicted in blue triangles) and 
Rhizophagus irregularis-inoculated (symbolized as Rhi, depicted in yellow triangles) and 
herbivory samples including Nm_h (grey dots), Tri_h (blue dots) and Rhi_h (yellow dots). 
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3.5 Results from the transcriptomic and metabolomics integrative analysis 

Integrative sparse Partial Least Squares (sPLS) analysis over the top 500 variables within the 
differentially expressed gene and metabolite sets (LRT,  0.05; ANOVA,  0.05) (used as 
prediction and predicted matrices, respectively) successfully split samples by herbivory 
treatment in Principal Component 1 (Figure 5A). Notably, Principal Component 2 mostly 
separated the samples depending on the microbial treatment.   

 

 

Figure 5. Visualization of the transcriptomic and metabolomic integrative analysis. (A) sparse 
Partial Least Squares discriminant analysis (sPLS) analysis over the differentially expressed genes 
and metabolites sets for all three treatments (non-inoculated-Nm, Trichoderma harzianum-
inoculated-Tri and Rhizophagus irregularis-inoculated-Rhi) with and without herbivory. (B) sPLS 
analysis exclusively within herbivory samples Nm_h (grey dots), Tri_h (blue dots), Rhi_h (yellow 
dots). 

Following the global sPLS analysis, we performed a second sPLS-based integration approach over 
the herbivory dataset. This analysis successfully separated our samples by the presence of 
mutualistic microbes and by the species of these mutualists (Figure 5B). Subsequently, we 
performed a correlation network analysis over this data set. As a result, we generated two 
correlation sub-networks enriched in elements modulated by the presence of Tri or Rhi, 
respectively (Figure 6). The Tri-focused network summarized the modulation of herbivory 
response due to the presence of Tri fungus, placing the metabolite signals 886, 1508 and 2551 at 
its center. This network depicts the modulation of programmed cell death (PCD) showed by the 
enhancement of KIRA1 homolog (KIRA1-L), Metacaspase-9, and P69I subtilisin. In addition, this 
modulation was concomitant with the upregulation of protease inhibitors and cell wall 
remodeling elements such as pectinesterase (Figure 6A, Table 2, Supplementary table S4, S6, 
S11). Rhi-focused herbivory sub-network expands around the 2922 metabolite signal, which is 
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differentially accumulated in Rhi_h plants (Figure 6B). This metabolite signal was positively 
correlated to auxin-related elements such as the IAA36 (Solyc06g066020) and Big grain 1-like A 
(Solyc08g062180) genes. The central metabolite signal was also positively correlated to ribosome 
maturation and sulphate transport, but negatively correlated to the transformation of 
phosphatydiletanolamine to phosphatidylcholine (Figure 6B).  

 

 

Figure 6. Visualization of the correlation network analysis within the herbivory dataset. (A) 

Correlation subnetwork analysis enriched for elements modulated by the presence of 
Trichoderma harzianum (Tri) depicted in blue nodes. (B) Correlation subnetwork analysis 
enriched for elements modulated by the presence of Rhizophagus irregularis (Rhi) depicted in 
yellow nodes. The nodes depicted in grey color represent elements that were enriched in both 
microbial treatments independently of the microbial identity. 

 

4. Conclusions 

 

The transcriptomic analysis showed that in the absence of herbivory, microbial-inoculated plants 
exhibited enhanced levels of growth-related categories, such as protein biosynthesis and cell wall 
organization. Remarkably, nutrient uptake was higher regulated in the Rhi plants. PCA over 
herbivory vs. non-herbivory datasets, successfully separated herbivory samples from the non-
herbivory ones in PC1. This component was overall correlated to: ⅰ) downregulation of 

photosynthesis and cholroplastic protein synthesis genes, and ⅱ) upregulation of stress-
responsive genes, as for instance, protease inhibitors. On the other hand, PC2 gathered variables 
associated specifically with the microbial-triggered modulation of tomato plant defenses to 
herbivory. The PCA performed exclusively over the herbivory samples dataset separated the 
samples by the presence of mutualistic microbes, and by the identity of each microbe, as well. 
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On one hand, PC1 explained mostly the Tri-triggered modulation of tomato plant defenses 
against M. sexta herbivory, including stress-responsive genes (PIs, PCD, secondary metabolism, 
signaling, and cell wall-related genes). On the other hand, PC2 explained the Rhi-tirggered 
modulation of tomato defenses to M. sexta herbivory, gathering genes such as two peroxidases, 
an early nodulin-like gene, a gene regulating RCD, and the TF AP2/B3.   

In the multivariate analysis conducted over the metabolomics dataset, a clear separation was 
displayed between herbivory and non-herbivory samples, as happened with the transcriptomic 
analysis. Herbivory and non-herbivory samples were separated along PC1, and PC2 separated the 
samples depending on the mutualistic microbe. Furthermore, the integrative sPLS analysis 
performed within DEGs and the dataset of metabolites successfully split the samples by herbivory 
in PC1. On the other hand, PC2 separated the samples in respect to the mutualistic microbe. 
Narrowing down our analysis, the sPLS-based integration performed exclusively over the 
herbivory dataset successfully split the samples according to the mutualistic microbes. The 
correlation network analysis over the same dataset revealed two correlation sub-networks, Rhi 
and Tri, enriched in elements modulated by the presence of mycorrhiza and Trichoderma, 
respectively.  
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General discussion  

My research presented in this dissertation showed that the beneficial root microbes R. irregularis 

and T. harzianum mediate plant-insect interactions. Their presence in the roots of tomato was 

associated with important ecological effects on several levels. The two root mutualists caused a 

widespread re-arrangement of herbivore-induced plant responses at the plant 

transcriptome/metabolome level (Chapter 2) and in the emission of herbivore-induced plant 

volatiles (Chapter 3), as well. Remarkably, they negatively affected the performance of the 

specialist insect herbivore M. sexta (Chapter 1) and enhanced the attraction of a third trophic 

level insect, the predator M. pygmaeus (Chapter 3) towards S. exigua-infested tomato plants. 

The combination of insect performance bioassays with untargeted plant and insect 

metabolomics (Chapter 1); the integration of plant RNA-sequencing with untargeted plant 

metabolomics (Chapter 2); and the combination of olfactometer bioassays with targeted volatile 

and plant gene expression analyses (Chapter 3) were used to link the observed biological effects 

with changes in the plant defense phenotypes triggered by beneficial microbes. In conclusion, 

the current study provides evidence that the two beneficial microbes caused important effects 

over three trophic levels, namely the plant, its herbivores, and their natural enemies. We discuss 

the main results of this Doctoral thesis in the frame of (1) the impact of the mutualistic microbes 

on plant anti-herbivore response, including defense regulation and changes in the secondary 

metabolism of the plant; (2) the impact of the mutualistic microbes on the physiology of the 

insect herbivores; and (3) the impact of the mutualistic microbes on the third trophic level.  

 

1. Impact of beneficial root fungi on plant anti-herbivore responses 

 

Root mutualistic fungi are able to affect plant resistance against arthropod pests (Pineda et al., 

2015; Pineda et al., 2010; Ramamoorthy et al., 2001), either through changes in plant vigor, or 

through changes in plant endogenous regulators, and ultimately plant defenses (Pieterse et al., 

2014; Pineda et al., 2010; Pozo & Azcón-Aguilar, 2007; Van der Ent et al., 2009; Van Wees et al., 

2008; Vannette & Hunter, 2009). Colonization by arbuscular mycorrhizal fungi (AMF) is reported 

to evoke stronger and faster defense responses in the host plant, in comparison with plants that 

are not colonized, leading to the expression of mycorrhizal-induced resistance [MIR; (Jung et al., 

2012; Pozo & Azcón-Aguilar, 2007; Pozo et al., 2010)]. A number of studies have confirmed the 

major role of jasmonic acid (JA) in regulating mycorrhizal-induced resistance (He et al., 2017; Jung 

et al., 2012; Nair et al., 2015; Pozo* et al., 2009; Schoenherr et al., 2019; Song et al., 2013). By 

following an untargeted transcriptomic approach, such as RNA sequencing, in this study, I aimed 

to investigate novel mechanisms that might underlie MIR.  
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1.1 Induced resistance triggered by beneficial root fungi is concomitant with the regulation of 

the ethylene- and auxin-regulated pathways 

 

Beneficial root microbes, such as AMF, plant growth-promoting fungi and rhizobacteria (PGPF 

and PGPR, respectively) can induce plant systemic immunity, called induced systemic resistance 

(ISR) (Pozo & Azcón-Aguilar, 2007; Van Loon et al., 1998). Several phytohormones have been 

shown to mediate microbe-induced resistance (Pieterse et al., 2009; Pieterse et al., 2014). Among 

them, JA holds a prominent role (Pieterse et al., 1996; Pozo et al., 2008; Van der Ent et al., 2009; 

Van Loon et al., 1998; Van Wees et al., 2008). Nevertheless, as more resistance-inducing agents 

are being characterized, the involvement of additional signaling pathways in the induction of 

plant resistance becomes evident. To this direction, untargeted approaches can prove helpful 

tools to unravel other phytohormones that might contribute to the regulation of microbe-

induced resistance as well. As shown in Chapter 2, genes involved in ethylene signaling were 

differentially expressed in T. harzianum- and in R. irregularis-inoculated plants under herbivory. 

In particular, genes coding for isoforms of the ethylene synthesis enzyme 1-aminocyclopropane-

1 carboxylate synthase (ACC synthase) and the APETALA2/ETHYLENE RESPONSIVE FACTOR 

(AP2/ERF) transcription factor (TF) were shown as differentially expressed in Trichoderma-plants 

after M. sexta herbivory. Trichoderma spp. are able to induce JA-/ET-regulated ISR, resulting in 

enhanced plant protection against biotic stressors (Segarra et al., 2009; Shoresh et al., 2005; Tucci 

et al., 2011). In accordance with these results, genes coding for several ERF TFs were also 

upregulated in tomato plants root-inoculated with T. harzianum T22 and T. atroviride P1 

(Coppola, Cascone, et al., 2019; Coppola, Diretto, et al., 2019). Furthermore, ERF TFs are involved 

in innate plant immunity. For example, in Arabidopsis, AP2/ERF TFs are involved in JA-inducible 

gene expression, and are known as octadecanoid-responsive elements, which positively regulate 

the expression of JA- and ET-mediated defense-related genes (Pré et al., 2008). In analogy to T. 

harzianum-inoculated plants, the transcriptomic analysis also showed the upregulation of 

ethylene responsive factor (ERF) genes in the mycorrhizal plants under herbivory. It has been 

suggested that ethylene holds a regulatory role in mycorrhizal-induced resistance (López-Ráez et 

al., 2010; Pozo et al., 2010). Moreover, in several studies, ethylene-responsive TFs have been 

reported among the highly upregulated genes in AMF-plants, suggesting the regulatory role they 

may hold (Cervantes-Gámez et al., 2016; Fiorilli et al., 2009; Liu et al., 2007). Taken together, 

these results seem to indicate that the ethylene-regulated pathway was induced by AMF and T. 

harzianum resulting in the induction of plant defenses against M. sexta herbivory.  

We also found that eight small auxin upregulated RNA (SAUR) genes were downregulated in the 

T. harzianum-inoculated plants after herbivory. Beneficial microbes are able to facilitate their 

establishment in the host plant through the manipulation of defense signaling pathways, such as 

the JA and salicylic acid (SA) pathways. At the same time, they are also capable of manipulating 

phytohormones, such as auxins, cytokinins (CKs), ET, abscisic acid (ABA), and gibberellins (GAs) 

(Van der Ent et al., 2009; Zamioudis & Pieterse, 2012). This hormonal modulation is involved not 
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only in the effect of beneficial microbes on plant defense, but also in plant growth and 

development (Guzmán-Guzmán et al., 2019). Trichoderma strains have been reported to produce 

auxin-related compounds (Contreras-Cornejo et al., 2009; Guzmán-Guzmán et al., 2019) upon 

plant colonization. The role of Trichoderma-synthesized auxin in root architecture has not been 

fully elucidated yet (Hoyos-Carvajal et al., 2009; Nieto-Jacobo et al., 2017). However, there is 

evidence that in Arabidopsis plants, Trichoderma-produced elicitors facilitate changes in root 

architecture and increase plant biomass through auxin signaling (Garnica‐Vergara et al., 2016). 
Therefore, it is likely that in this study, inoculation of tomato roots with T. harzianum led to 

upregulation of the auxin signaling pathway and promotion of plant growth in the absence of 

herbivory. Nevertheless, it is possible that after M. sexta infestation, T. harzianum-inoculated 

plants shifted from growth to defense responses, hence resulting in the observed 

downregulation of SAUR. 

 

1.2 Beneficial root fungi alter the levels of plant secondary metabolites and protease 

inhibitors in tomato plants 

 

The metabolomic analysis conducted in Chapter 1 showed that root-inoculation with AMF and T. 

harzianum resulted in increased levels of secondary metabolites in tomato leaves. In particular, 

the levels of steroidal glycoalkaloids such as α-tomatine, α-dehydrotomatine and their isomers 

were elevated in the leaves of microbe-inoculated plants with and without herbivory. In addition, 

the transcriptomic analysis conducted in Chapter 2 revealed that a gene coding for anthocyanin 

5-aromatic acyltransferase and genes coding for protease inhibitors were higher expressed in 

herbivore-infested T. harzianum-inoculated plants. To counter herbivore attack, plants produce 

secondary metabolites, such as phenolic compounds, terpenes, nitrogen- and sulphur-containing 

compounds; and proteins, such as protease inhibitors (PIs), which have toxic, repellent, and/or 

anti-nutritional effects on herbivores (Usha Rani & Jyothsna, 2010; War et al., 2012; War et al., 

2018). Moreover, AMF and Trichoderma spp. have been reported to induce plant resistance 

against herbivores through alterations in plant secondary metabolism (Coppola, Diretto, et al., 

2019; Rivero et al., 2021; Shrivastava et al., 2015).  

As shown in Chapter 1, some secondary metabolites were over accumulated in the leaves tomato 

plants inoculated with beneficial fungi. Among these compounds, the alkaloid α-tomatine, which 

has a prominent role in tomato anti-herbivore defenses, was annotated. Solanaceae is a 

widespread family of species rich in alkaloids, including tropane alkaloids, glycoalkaloids (such as 

α-tomatine), pyrollizidine and indole alkaloids, which are naturally produced as a defense 

mechanism against insects (Jerzykiewicz, 2007). Solanaceae alkaloids exert both lethal and sub-

lethal effects, and their toxicity is manifested at all levels of biological organization (Chowański 
et al., 2016). Alkaloids can affect nerve transmission in insects, disturbing the cell membrane and 

cytoskeletal structure, causing the collapse and leakage of cells (Mbata & Payton, 2013). Several 
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studies have reported the effects of pure Solanaceae-produced secondary metabolites on 

herbivorous insects. For instance, feeding of M. sexta larvae on artificial diet containing α-

tomatine resulted in inhibition of larval growth (Weissenberg et al., 1998), and S. exigua larvae 

that were fed upon diet containing nicotine, exhibited increased lethality and decreased body 

mass (Kumar et al., 2014). Similarly, rearing of Myzus persicae aphids on artificial diets containing 

the alkaloids α-solanine and α-chaconine resulted in reduced feeding and fecundity of adults as 

well as reduced weight and increased mortality of nymphs (Fragoyiannis et al., 1998).   

The transcriptomic analysis conducted in Chapter 2 revealed that M. sexta herbivory resulted in 

the upregulation of processes related to stress responses, including polyamine, secondary and 

amino acid metabolism. Interestingly, stronger shifts were observed in the T. harzianum root-

inoculated plants, including the increased expression of a gene coding for anthocyanin 5-

aromatic acyltransferase and three types of protease inhibitors Ⅰ and Ⅱ. 

The anthocyanin 5-aromatic acyltransferase is involved in the synthesis of anthocyanins, which 

are synthesized via the flavonoid branch of the phenylpropanoid pathway. Anthocyanins protect 

plants against various abiotic and biotic stress factors (Cao et al., 2016; Chalker‐Scott, 1999; Ren 
et al., 2014; Shafiq & Singh, 2018) and their biosynthetic pathway has been extensively studied 

in several plant species (Koes et al., 2005; Lepiniec et al., 2006; Quattrocchio et al., 1993). 

Flavonoids show insecticidal effects and help plants to ward off phytophagous insects (Wang et 

al., 2014; Züst & Agrawal, 2017). For example, Kariyat et al. (2019) showed that flavonoids 

present in wild type sorghum (Sorghum bicolor (L.) Moench family: Graminaceae) caused 

significantly higher mortality and reduced the population growth of the corn leaf aphid 

(Rhopalosiphum maidis Finch). Furthermore, the flavonoid-rich pericarp extract of corn (Zea 

mays) negatively affected the growth, development, and adult fitness traits in M. sexta (Tayal, 

Somavat, Rodriguez, Martinez, et al., 2020; Tayal, Somavat, Rodriguez, Thomas, et al., 2020). It is 

thus possible that root-inoculation with T. harzianum resulted in the enhancement of tomato 

plant defenses through the upregulation of the gene coding for the anthocyanin 5-aromatic 

acyltransferase. However, the expression levels of the gene phenylalanine ammonia lyase (PAL), 

which belongs to the early stage biosynthetic genes of the phenylpropanoid biosynthetic 

pathway, were unaffected by T. harzianum root inoculation, as shown in Chapter 3. The 

contradiction between these two results might be due to the difference between the 

lepidopteran caterpillars used in Chapters 1 and 3. Manduca sexta (used in Chapter 1) and 

Spodoptera exigua (used in Chapter 3) are both chewing herbivores, and hypothetically induce 

similar defense pathways in the host plant. Nevertheless, they differ in their degree of 

specialization and produce different elicitor molecules that are then perceived by the host plant 

and can differently influence its defense responses.  

In this frame, the study of Bosch et al. (2014) reported that tomato plants responded differently 

to S. exigua and M. sexta feeding, suggesting that insect-derived molecules present in the oral 

secretions (OS) of the two herbivores are likely responsible for this dissimilarity. As they 

observed, the application of native S. exigua OS on wounded tomato leaves resulted in 
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substantial increase in the activity of polyphenol oxidase (PPO), which is a reliable marker of 

tomato defense response and insect performance (Constabel et al., 1995; Felton et al., 1989). On 

the contrary, application of M. sexta native OS on wounded tomato leaves caused a modest 

induction of foliar PPO activity. To get a deeper insight into this effect, the authors focused on 

the OS produced by each insect species. After denaturation of the OS of both herbivores by heat 

treatment, no difference was observed between S. exigua and M. sexta PPO-inducing activity. 

The authors hypothesized that the induction of PPO activity in tomato is mediated by a heat-

labile, likely proteinaceous constituent that is present in S. exigua and not in M. sexta OS (Bosch 

et al., 2014). Providing that the fatty acid amino acid conjugates (FACs) that are known to differ 

in composition in the OS of the two insect species (Diezel et al., 2009) are heat stable (Engelberth 

et al., 2007; Roda et al., 2004), they were unlikely to be responsible for the marked difference. 

Thus, the authors proposed the enzyme glucose oxidase (GOX) as an obvious candidate.  

Besides secondary metabolites, protease inhibitors (PIs) also have a prominent role in plant 

defenses against herbivores, as they cover one of the most abundant classes of defensive 

proteins in plants (Hanley et al., 2007; War et al., 2012). PIs bind to the digestive enzymes in the 

insect gut and inhibit their activity, thereby reducing protein digestion, resulting in shortage of 

amino acids, and slow development/starvation of insects (Azzouz et al., 2005; Haq et al., 2004; 

Santamaria et al., 2012; Zhu-Salzman & Zeng, 2015). Here, a higher upregulation of genes coding 

for three types of protease inhibitors (PIs) Ⅰ and Ⅱ was observed in the T. harzianum-colonized 

plants in response to herbivory. Similar to the results here, tomato plants root-inoculated with T. 

atroviride strain P1 exhibited enhanced levels of genes coding for protease inhibitors, and this 

effect was associated with the reduced development and survival of S. littoralis herbivores 

(Coppola, Cascone, et al., 2019).  

Interestingly, a significant interactive effect between the secondary metabolite nicotine and the 

trypsin proteinase inhibitor (TPI) has been reported for wild tobacco, Nicotiana attenuata, which 

is the primary host plant of M. sexta (Steppuhn & Baldwin, 2007). In this study, the authors 

showed that nicotine by itself strongly affected S. exigua larval mass, whereas TPI alone was 

ineffective. However, the interaction between nicotine and TPI resulted in plants that were more 

resistant to herbivory. Therefore, the authors concluded that the resistance effect of TPI depends 

on the production of nicotine in N. attenuata plants. Although my study system included M. sexta 

insects feeding on another solanaceous species, S. lycopersicum, an interactive effect between 

α-tomatine and tomato protease inhibitors might have also contributed to the diminished 

performance of M. sexta larvae fed on T. harzianum-inoculated tomato plants. 

 

1.3 Beneficial root fungi alter plant stress response  

 

The transcriptomic analysis conducted in Chapter 2 revealed that for the R. irregularis-colonized 

plants, neither genes involved in the synthesis of secondary metabolites, nor genes coding for 



96 
 

protease inhibitors were upregulated in response to herbivory. However, two peroxidases, a 

gene regulating Radical-Induced Cell Death 1 (RCD1), and an early nodulin-like gene were 

exclusively upregulated in these plants. Plant peroxidases carry out various functions in a broad 

range of physiological processes during plant growth and development, wound healing, reactive 

oxygen species (ROS) removal, and defense response against pathogen or insect attack 

(Bindschedler et al., 2006; Cosio & Dunand, 2009; Daudi et al., 2012; Passardi et al., 2005). The 

finding about peroxidases in this study is in line with other studies, where mycorrhiza-colonized 

plants showed increased peroxidase activity, which resulted in increased plant resistance (Bastías 

et al., 2018; Li et al., 2019). ROS formation in plants under biotic and abiotic stress can also result 

in radical-induced cell death. For instance, in A. thaliana plants, the RCD1 protein has been 

associated to hormonal regulation of several stress-responsive genes (Ahlfors et al., 2004). In 

conclusion, it seems that mycorrhiza affect peroxidases and ROS detoxification in tomato plants, 

leading to enhanced resistance against insect herbivores.  

 

2. Impact of beneficial root fungi on herbivore physiology 

 

Plant secondary metabolites are able to repel insect herbivores or deter their feeding. 

Furthermore, they can cause direct toxic symptoms on herbivores, leading to inhibition of their 

development that can subsequently result in insect death (Divekar et al., 2022). However, the 

effect of mycorrhizal-induced resistance and Trichoderma-induced resistance on insect herbivore 

physiology have not been thoroughly explained yet. Therefore, in this study, I investigated the 

metabolites accumulated in the gut and fat body tissues of M. sexta insects reared on mycorrhiza- 

and T. harzianum-inoculated tomato plants, and the phenotypes of the insects, aiming to gain 

better insights into the impact of AMF and T. harzianum on insect herbivore performance.   

 

2.1. Root colonization by beneficial fungi impairs M. sexta physiology and performance 

towards the insect life cycle  

 

The majority of M. sexta larvae reared on T. harzianum-colonized tomato plants developed into 

abnormal pupae and exhibited higher mortality rates; whereas most of the larvae fed upon 

mycorrhizal tomato plants developed into moths with anomalous morphology that did not 

emerge. Several studies have reported the negative effect of Trichoderma strains on insect 

herbivores, in terms of growth and development (Alınç et al., 2021; Berini et al., 2016; Coppola, 
Cascone, et al., 2019), mortality (Contreras-Cornejo, Macías-Rodríguez, et al., 2018; Coppola, 

Cascone, et al., 2019; Coppola, Diretto, et al., 2019), and population growth (Pappas et al., 2021). 

In parallel, the effect of mycorrhization on herbivorous insects depends on the degree of 

specialization of the herbivore and its feeding guild. It can be summarized that mycorrhization 
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negatively affects generalist leaf chewers, while having a positive or neutral effect on phloem 

feeders and specialist chewers (Fontana et al., 2009; Gange et al., 2002; Gehring & Bennett, 2009; 

Goverde et al., 2000; Hartley & Gange, 2009; Koricheva et al., 2009; Pineda et al., 2010; Rivero et 

al., 2021; Vicari et al., 2002).  In the present study, the metamorphosis of the specialist M. sexta 

was negatively affected when fed either on mycorrhizal or on T. harzianum-inoculated plants.  

The analysis of the metabolites accumulated in the insect’s tissues showed that piperidine was 

significantly increased in the guts of M. sexta larvae reared on R. irregularis-inoculated plants. 

Piperidine-containing alkaloids derive from the amino acid L-lysine. Piperidine-alkaloids can 

cause an acute toxic response to adult livestock animals by causing musculoskeletal deformities 

(Matsuura & Fett-Neto, 2015). Green et al. (2012) further stated that piperidine-containing 

alkaloids are responsible for teratogenic effects on mammals; and in humans, the accidental 

consumption of these compounds can induce toxicity symptoms (Hotti & Rischer, 2017).   

Other metabolites found in M. sexta gut and fat bodies might have also contributed to the 

impaired insect metamorphosis observed in this study. Among these, carnitine-derived 

metabolites were annotated in the gut and fat body tissues of the larvae reared on microbe-

inoculated plants. Furthermore, the metabolite annotated as octanoic acid was found in higher 

accumulation in the fat bodies of T. harzianum-reared larvae. Fat is always a major component 

of insect fat bodies (Arrese & Soulages, 2010). When the organism needs energy, stored fatty 

acids (FAs) are metabolized by hydrolysis (lipolysis) through catalysis by lipases. In turn, FAs can 

be used for the production of adenosine triphosphate (ATP) through β-oxidation (Van der Horst 

& Rodenburg, 2010). In addition, long-chain FAs must be conjugated to carnitine for effective 

transport across the mitochondrial membrane. In a recent study, changes in the abundance of 

acyl-carnitines were linked to changes in β-oxidation in M. sexta insects (Wone et al., 2018). Apart 

from being a source of energy, fatty acids have important physiological roles as components of 

cell membranes, cuticular lipids, waxes, as well as precursors in the synthesis of lipid regulators 

and hormones (Canavoso et al., 2001). Therefore, it is hypothesized that changes in the 

abundance of FAs in the gut and fat bodies of M. sexta larvae observed in this experiment might 

have affected either the β-oxidation process or other processes, in which FAs play a significant 

role, resulting thus in the impairment of M. sexta metamorphosis. 

The levels of the metabolite annotated as benzamide were shown higher in the fat body tissues 

of the T. harzianum-fed larvae as well. Benzamides are simple derivatives of benzoic acid (Fellah 

et al., 2020) and have been widely used as pesticides. For instance, the recently discovered and 

commercialized benzamide-containing pesticide, broflanidine, is highly effective against various 

pests, including insect species in the orders of Lepidoptera, Thysanoptera and Coleoptera 

(Katsuta et al., 2019). Moreover, Mathé-Allainmat et al. (2012) identified the quiniclidine 

benzamide compound LMA10203, which acts as a partial agonist of the insect nicotinic 

acetylcholine receptor (nAChR) subtypes. Nicotinic acetylcholine receptors play an important 

role in the insect central nervous system because they are involved in learning and memory 

processes (Gauthier, 2010; Gauthier et al., 2006), and are specific targets of neonicotinoid 
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insecticides (Millar & Denholm, 2007; Tomizawa & Casida, 2003). Thus, it seems that the higher 

levels of benzamide annotated in the fat bodies of T. harzianum-fed larvae may have played a 

role in impeding M. sexta metamorphosis.  

Root colonization by mutualistic microbes also altered the pattern of fatty acid amides (FAAs) in 

the gut and fat body tissues of M. sexta that were reared on these plants. This effect might also 

influence the elicitors of M. sexta larvae. Elicitors are referred to insect-derived compounds that 

activate plant defense pathways (Felton & Tumlinson, 2008). They are commonly found in insect 

OS and are able to upregulate defense genes and phytohormones and induce the synthesis of 

specific plant volatiles and secondary metabolites (Helms et al., 2014; Helms et al., 2013). 

However, insect elicitor compounds can also serve beneficial roles for the insect itself. For 

instance, a type of elicitors, the FACs enhance nitrogen metabolism for many caterpillar species 

(Helms et al., 2014; Helms et al., 2013; Helms et al., 2017; Mori & Yoshinaga, 2011; Yoshinaga et 

al., 2008). Therefore, changes occurring in the pattern of FAAs profile of M. sexta larvae reared 

on microbe-inoculated plants might subsequently hampered nitrogen assimilation for the 

herbivores, and this may explain the negative effects observed in their metamorphosis. 

 

2.2 Beneficial root fungi possibly reduce the levels of glutathione in tomato plants 

 

It was found that the levels of the metabolite annotated as glutathione were reduced in the guts 

of larvae fed on microbe-inoculated plants. Glutathione S-transferases (GSTs) are detoxification-

related enzymes that belong to a multi-gene family (Eaton & Bammler, 1999). GSTs are involved 

in Phase Ⅱ detoxification of a wide variety of plant defensive chemicals and act by catalyzing the 

conjugation of glutathione to xenobiotics (Eaton & Bammler, 1999). Therefore, GSTs play a major 

role in the protection of specialized insect herbivores against plant secondary metabolites. Thus, 

the decreased levels of the metabolite annotated as glutathione in the guts of larvae reared on 

microbe-inoculated plants might be linked to the observed aberrant metamorphosis of the 

herbivores fed upon these plants.  

 

2.3 Linking the insect and plant metabolomes 

 

The analyses of plant and insect metabolome performed in Chapter 1 revealed that the 

abundance of the steroidal glycoalkaloid α-tomatine was higher not only in the leaves of microbe-

inoculated plants, but also in the gut and fat body tissues of M. sexta larvae reared upon tomato 

plants root-inoculated with mutualistic microbes. In general, M. sexta is highly tolerant and 

adapted to detoxifying defensive chemicals (i.e., tomatine and nicotine) contained in its 

solanaceous host plants, compared to generalist insects feeding on the same plant species 
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(Glendinning, 2002; Wink & Theile, 2002). However, feeding of M. sexta larvae on artificial diet 

containing low and average levels of a combination of major tomato defensive metabolites, 

including also tomatine, resulted in reduced food consumption, extended the developmental 

time, and lowered the final weight of herbivores (Osier et al., 1996). In addition, a study 

examining the effect of differing levels of nicotine on M. sexta development, showed that the 

increase in nicotine concentrations contained in the artificial diet offered to M. sexta larvae was 

correlated with an almost linear decrease of their pupal mass (Harvey et al., 2007). Therefore, 

the results of the present study indicate that despite its high degree of specialization, M. sexta 

can be negatively affected by the specialized secondary metabolites produced by its host plants.  

Based on the transcriptomic analysis of Chapter 2, genes involved in secondary metabolism 

(anthocyanin synthesis-related and PI-related) were higher upregulated in T. harzianum-

inoculated tomato plants. Feeding of M. sexta larvae upon these plants would possibly cause 

oxidative stress effects on the herbivores. Consequently, the levels of metabolites participating 

in the detoxification process of plant defensive metabolites, such as glutathione, would be 

increased. However, in order to draw solid conclusions about the potential effects of plant 

defensive metabolites on M. sexta performance and life cycle are required: (1) additional 

experiments including the implementation of selected tomato defensive metabolites (i.e., α-

tomatine, anthocyanins) in the diet of M. sexta larvae, and/or (2) experiments using tomato lines 

impaired in the synthesis of specific secondary metabolites. 

 

3. Impact of beneficial root fungi on plant interaction with the third trophic level 

 

Root mutualistic microbes are able to influence indirect defenses of plants and the recruitment 

of natural enemies of herbivorous pests (Babikova et al., 2013; Battaglia et al., 2013; Guerrieri et 

al., 2004; Katayama et al., 2011). Therefore, in this study, I aimed to understand the effect of R. 

irregularis and T. harzianum on the induction of tomato indirect defenses against the herbivore 

S. exigua and on the attraction of the predator M. pygmaeus.  

 

3.1 Beneficial root fungi affect the profile of herbivore-induced plant volatiles and the 

attraction of natural enemies  

 

I investigated the impact of R. irregularis and T. harzianum on indirect defenses of tomato plants 

in response to herbivory. With this aim, I analyzed the blend of volatiles emitted by microbe-

inoculated plants under herbivory and measured the attraction of the zoophytophagous predator 

M. pygmaeus towards herbivore-infested plants. The volatile compound analysis conducted in 

Chapter 3 indicated that herbivory by caterpillars of S. exigua strongly enhanced the emission of 
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herbivore-induced plant volatiles, in particular green leaf volatiles (GLVs), methyl salicylate 

(MeSA) and terpenoids (mono- and sesquiterpenes). Root colonization by mycorrhiza slightly 

affected the release of a monoterpene tentatively identified as α-terpinene. In parallel, the 

volatile tentatively identified as α-phellandrene was found enhanced, albeit marginally 

significantly so, in T. harzianum-inoculated plants. The interaction effect between the 

herbivorous insect S. exigua and the two root symbionts significantly affected the expression 

levels of the gene coding for salicylic acid methyltransferase (SAMT). This enzyme catalyzes the 

production of the phenylpropanoid compound MeSA from SA. However, the emission of MeSA 

was exclusively affected by herbivory, indicating the dominant effect of herbivory in shaping 

tomato’s volatile synthesis.  

The olfactometer assays showed that among S. exigua-infested plants, the root-inoculated plants 

were more attractive to M. pygmaeus. Especially, in the case of mycorrhizal plants, we found a 

stronger attraction of the female predators compared to the non-inoculated plants. This result 

may be explained by the slightly enhanced emission of the volatile tentatively identified as α-

terpinene from mycorrhizal plants. Alpha-terpinene has been reported to significantly affect the 

attraction of M. pygmaeus predators toward herbivore-infested tomato plants (De Backer et al., 

2015). Interestingly, when comparing between microbe-inoculated plants, the predators 

preferred the T. harzianum-inoculated instead of the mycorrhiza-inoculated ones. This finding 

might be explained by the slighter enhanced emission of the volatile tentatively identified as α-

phellandrene from T. harzianum-inoculated plants compared to the mycorrhizal ones. Alpha-

phellandrene has been annotated in the blend of volatile compounds determining the preference 

of M. pygmaeus for tomato plants (Battaglia et al., 2013). Arbuscular mycorrhizal fungi and 

Trichoderma species use different mechanisms of colonization and induction of biochemical, 

physiological and molecular responses in their host plants (Hermosa et al., 2012; S. E. Smith & F. 

A. Smith, 2011). Thus, it is hypothesized that the presence of T. harzianum in the roots of 

herbivore-infested plants might resulted in slightly increased emission of α-phellandrene in 

comparison with the mycorrhizal plants. Such effect might subsequently influence the preference 

of M. pygmaeus predators. However, choice experiments comparing the responses of M. 

pygmaeus toward the volatile compounds α-phellandrene and α-terpinene are required in order 

to investigate which of the two volatiles could be more effective in attracting the natural enemy.  

 

3.2 Linking the changes in plant and herbivore biology triggered by beneficial root fungi with 

the third trophic level functioning 

 

Plant-microbial interactions can influence aboveground indirect plant defenses either by altering 

plant size/vigor or by modulating plant primary and secondary metabolism (Rasmann et al., 

2017).  Beneficial root microbes can strongly influence plant growth rate, size, architecture, and 

vigor (Smith & Read, 2010), which can have negative or positive effects on indirect defenses. 



101 
 

Several studies have reported that more vigorous plants support larger and more vigorous pest 

populations (Cornelissen et al., 2008), which in turn promote larger parasitoid or predator 

populations (Kher et al., 2014), that facilitate natural enemy searching efficiency (Andow & 

Prokrym, 1990; Aslam et al., 2013; Hassell & Southwood, 1978). The transcriptomic analysis 

conducted in Chapter 2 of this study showed that differentially expressed genes (DEGs) belonging 

to growth-related categories were upregulated in microbe-inoculated plants in the absence of 

herbivory. Remarkably, processes related to nutrient uptake were higher regulated in 

mycorrhizal plants in the absence of herbivory. Therefore, it is hypothesized that the increased 

nutritional content of the mycorrhizal tomato plants could possibly host a more vigorous 

population of insect herbivores and would subsequently support and accommodate a more 

vigorous population of natural enemies. However, measuring the nutritional content of non-

inoculated and mycorrhizal tomato plants, and exploring further the potential effects of any 

resulting nutritional differences on herbivore and natural enemy populations was not into the 

goals of this study.   

Besides plant growth, root mutualistic fungi can also cause changes in primary and secondary 

plant metabolites in their host plants (Schweiger et al., 2014). These metabolic changes affect 

not only the performance of the insect herbivores themselves, but also their interactions with 

predators and parasitoids (Minton et al., 2016). The impacts of beneficial fungi on the 

interactions between herbivores and their natural enemies qualitatively vary, as the quality of 

the herbivores (as preys) for their natural enemies can be either enhanced or reduced by the 

beneficial fungi. As shown in Chapter 1, root mutualistic fungi altered the secondary metabolism 

of M. sexta and the larvae fed upon inoculated plants showed higher oxidative stress. The 

increased levels of defense metabolites in insect tissues might increase the larval developmental 

time for non-adapted herbivores and consequently the time available for successful attack by 

natural enemies, following the “slow-growth-high-mortality” hypothesis proposed by Clancy and 

Price (1987). As shown in Chapter 1, no significant differences were detected between M. sexta 

larvae fed upon non-inoculated and microbe-inoculated tomato plants regarding the time 

required for larvae to enter the pre-pupal stage. This result might be explained by the fact that 

M. sexta is better adapted to the secondary metabolites synthesized by plants of the Solanaceae 

family. Nevertheless, at this point, it should be acknowledged that the biological system used in 

Chapter 3 involved S. exigua as the herbivorous insect and not M. sexta. Spodoptera exigua is a 

polyphagous, non-adapted insect species fed on a broad range of plants, including also tomato. 

Therefore, in the same experimental set-up, the developmental time of S. exigua larvae reared 

on beneficial microbe-inoculated plants could hypothetically differ from the developmental time 

of larvae reared on non-inoculated plants due to an increase in the levels of secondary 

metabolites. This effect might subsequently positively affect predation/parasitism by natural 

enemies.  

Apart from extending the required developmental time, the increased levels of defense 

metabolites in insect tissues can reduce the immune capacity of the herbivore hosts, thus 
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enhancing the chances of successful parasitism (Schmid-Hempel, 2009; Smilanich et al., 2011; 

Vinson, 1990). However, the enhanced levels of defense metabolites in the tissues of herbivore 

hosts can also negatively affect their natural enemies. As an example, nicotine incorporated into 

the diet of M. sexta caused statistically significant reductions in the survival of its parasitoid, 

Cotesia congregata (Say) (Barbosa et al., 1986; Thorpe & Barbosa, 1986). Similarly, Harvey et al. 

(2007) reported that the nicotine contents in the diet of parasitized M. sexta L1 larvae 

significantly affected the cocoon mass of C. congregata. Compared to the control diet, parasitoid 

cocoon mass declined with nicotine in the host diet. The effect was almost linearly correlated 

with the dietary nicotine concentrations (Harvey et al., 2007). Regarding generalist predators, 

several studies have described negative consequences on them because of feeding upon preys 

containing higher levels of secondary metabolites (Malcolm, 1992; Paradise & Stamp, 1990; 

Stamp et al., 1991; Traugott & Stamp, 1996) as well. On the contrary, a study investigating the 

consequences of the ingestion of a combination of secondary metabolites, including α-tomatine, 

for M. sexta larvae and the generalist stinkbug predator Podiscus maculiventris (Say), showed 

that even if the defense metabolites negatively affected the prey growth, they had no effect on 

growth, survival, and fecundity of the stinkbug predator (Osier et al., 1996). Interestingly, the 

authors underlined that a combination of factors may affect the influence of defense metabolites 

on tritrophic interactions. Such factors include the type (Stamp & Yang, 1996; Traugott & Stamp, 

1996) and concentration (Stamp et al., 1991; Traugott & Stamp, 1996) of the secondary 

metabolites, other defensive metabolites contained in the prey diet (Stamp & Yang, 1996), prey 

scarcity (Bozer et al., 1996), the age of the predator (Stamp & Yang, 1996) and temperature 

(Stamp & Yang, 1996; Traugott & Stamp, 1996). 

 

4. The use of beneficial root fungi in Integrated Pest Management for controlling insect 

pests 

 

Integrated Pest Management (IPM) is a holistic approach to combat pests (including herbivores, 

pathogens, and weeds) using a combination of preventive and curative actions, and only applying 

synthetic pesticides when there is an urgent need (Karlsson Green et al., 2020). Since January 

2014, all European Union (EU) professional growers are obliged to apply IPM tactics according to 

the EU Directive Sustainable Use (Directive 2009/128/EC). In this frame, the results of this 

Doctoral study indicate that the use of root beneficial fungi, such as R. irregularis and T. 

harzianum, could serve as a promising tool to protect crop plants even against specialist 

herbivorous insects. I found that these fungi shaped the plant defense phenotype, including 

important secondary metabolites protecting plants against herbivores. Moreover, I found 

important sub-lethal effects associated to induced resistance, including a lower ability of insects 

to feed from root-inoculated plants and successfully complete their metamorphosis. This could 

affect the insect populations that attack crops. I further found that the effect of these mutualistic 
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fungi cascades up to the third trophic level, by affecting the volatile organic compounds emitted 

by the plant and improving the attraction of a natural enemy.     

 

4.1 The potential of beneficial root fungi in sustainable agriculture: Opportunities and 

challenges  

 

In analogy to the present study, recent studies using the same model plant and a wide range of 

beneficial microbes have underlined the ability of beneficial root microbes to protect plants 

against abiotic and biotic stress factors (Moustaka et al., 2021a, 2021b; Orine et al., 2022; 

Zitlalpopoca-Hernandez et al., 2022). Within the last decades, several factors have severely 

affected agricultural production and food security. Among these factors are: 1) the increased 

frequency and severity of extreme environmental phenomena (i.e. extreme temperatures, 

drought, high salinity), which are directly associated to the climate change; 2) the intensified 

demand for food supply due to the ongoing increase of the global population; and 3) the 

development of insect herbivore and plant pathogen resistance against chemical pesticides, as a 

result of the uncontrolled application of pesticides in agriculture. Under these circumstances, 

beneficial root fungi represent a promising alternative to the use of chemical pesticides for 

sustainable agriculture. Nevertheless, important barriers still prevent us from the wide 

application of beneficial microbes in agricultural production.  

One of these barriers is the high context-dependency that characterizes the plant-microbe 

interactions (Lee Díaz et al., 2021). This means that microbe-mediated plant resistance against 

insect herbivores and phytopathogens is triggered when a specific set of conditions is met and is 

conditional on environmental factors that influence the outcome of plant-microbe interactions 

(Lee Díaz et al., 2021). Therefore, more interdisciplinary research aiming to uncover the 

mechanisms that underlie context-dependency in plant-microbe interactions is highly required. 

Suggested approaches to mitigate the unpredictability in the use of beneficial microbes in 

agriculture, include: 1) experiments performed under conditions that more realistically mimic the 

complex set of conditions in agricultural systems (i.e. field experiments); 2) testing targeted sets 

of environmental conditions (Lee Díaz et al., 2021); and 3) the use of consortia of microbial 

inoculants (Canfora et al., 2021), and dual or multi-species inoculations to evaluate how microbes 

interact with each other and with the plant, which is also the case in the agricultural fields 

(Gadhave et al., 2016; Minchev et al., 2021; Straub et al., 2008; Zitlalpopoca-Hernandez et al., 

2022).  

On the other hand, although the positive impact of beneficial root microbes on crop protection 

and production are acknowledged, farmers still perceive these products as challenging to adopt 

mostly due to their complexity and low observability of positive effects in the field (Ploll et al., 

2022). Effective communication strategies, which will bring together different stakeholders, 

including researchers, farmers, manufacturers, and policy makers, could help to inform farmers 
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about the positive aspects of beneficial microbe use and accelerate their adoption as part of 

sustainable agricultural practices.   
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Summary in English and German 

Summary 

 

Plants and insect herbivores have been interacting for several hundred million years. During their 

co-evolution, they have both evolved strategies to overcome each other’s defense mechanisms. 
The evolutionary arms race between plants and insect herbivores has resulted in the 

development of a sophisticated defense system that allows plants to recognize herbivore attack 

and activate plant immune responses to ward off herbivores. Plants confront herbivores both 

directly and indirectly. Direct plant defenses include physical characteristics that protect plants 

against herbivores and the production of toxic and/or anti-nutritive compounds that either kill 

or retard the development of the herbivorous enemies. Indirect defenses include the emission 

of a blend of volatile compounds that specifically attract the natural enemies of the herbivores, 

or the provision of food rewards and shelter to enhance the effectiveness of natural enemies. 

However, in their complex environments, plants also form mutualistic relationships with 

beneficial soil microbes, such as the arbuscular mycorrhizal fungi (AMF) and plant growth-

promoting fungi (PGPF). Beneficial microbes have been long studied for their positive impact on 

plant growth, nutrition and yield as well as for their plant protective effects against abiotic and 

biotic stress factors. Nevertheless, more studies involving a combination of transcriptomic and 

metabolomic approaches are required in order to understand better the mechanisms used by 

beneficial microbes to induce plant resistance against insect herbivores. In this Doctoral study, I 

investigated the impact of the beneficial root microbes Rhizophagus irregularis and Trichoderma 

harzianum on tomato direct and indirect defense responses against insect herbivores. I used a 

combination of metabolomic and transcriptomic approaches in order to unravel the molecular 

and chemical mechanisms that underlie microbe-induced resistance of tomato against 

herbivores. In Chapter 1 of this dissertation, I aimed to investigate the effect of the two beneficial 

microbes on the plant and insect metabolome. Moreover, I wanted to answer whether microbe-

induced changes in the plant metabolome could cascade up on the metabolome of Manduca 

sexta larvae feeding on the leaves of microbe-inoculated plants. By setting up an insect bioassay, 

I studied the life cycle of M. sexta larvae reared on non-inoculated and microbe-inoculated 

plants. I observed that root inoculation of tomato with R. irregularis and T. harzianum impaired 

M. sexta larvae pupation and adult emergence. In order to explain this finding, I used an 

untargeted metabolomic approach to study: ⅰ) the metabolites accumulated in the leaves of 

microbe-inoculated plants, and ⅱ) the metabolites accumulated in the gut and fat body tissues 

of the M. sexta larvae fed upon microbe-inoculated plants. The levels of tomato secondary 

metabolites (α-tomatine, α-dehydrotomatine) were increased in the leaves of microbe-

inoculated plants. In addition, carnitine-derived metabolites, compounds such as piperidine, 

octanoic acid and benzamide were higher accumulated in the M. sexta larvae tissues. 

Remarkably, the levels of α-tomatine were also higher in the gut and fat body tissues of M. sexta 
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larvae reared on microbe-inoculated plants. Therefore, it was concluded that the beneficial 

microbes altered the metabolome of plants, enhanced the synthesis of defense-related 

compounds, and this effect cascaded up on the metabolome of the insects fed on microbe-

inoculated plants, thereby impairing M. sexta physiology and life cycle. In Chapter 2 of this 

dissertation, I pursued an integrated -omics approach in order to address the impact of the two 

beneficial microbes on the transcriptomic and metabolomic response of tomato to M. sexta 

herbivory. Therefore, I used a high-throughput RNA sequencing and metabolomic analysis, 

followed by the combination of the two approaches. The transcriptomic analysis separated non-

infested from herbivore-infested samples. Herbivory was correlated with the downregulation of 

genes involved in photosynthesis and the upregulation of genes involved in stress responses. In 

response to herbivory, genes involved in secondary metabolism were upregulated in T. 

harzianum-inoculated plants. In parallel, genes involved in stress-related responses were 

upregulated in R. irregularis-inoculated plants.  The metabolomic analysis clearly separated non-

infested from herbivore-infested samples as well. Interestingly, the integrative analysis, 

performed over herbivory samples, separated the samples based on the beneficial microbe used. 

The correlation network analysis, performed over the same dataset, resulted in the formation of 

two correlation sub-networks, Rhi-focused and Tri-focused, enriched in elements modulated by 

the presence of R. irregularis and T. harzianum, respectively. In Chapter 3 of this dissertation, I 

aimed to investigate the impact of the two beneficial microbes on the induction of indirect 

defenses in response to herbivory by Spodoptera exigua larvae. With this aim, I initially tested 

the attraction of the zoophytophagous predator Macrolophus pygmaeus towards non-inoculated 

and microbe-inoculated herbivore-infested plants. Furthermore, I analyzed the herbivore-

induced volatiles emitted by non-inoculated and microbe-inoculated plants as well as the 

expression levels of genes involved in the synthesis of herbivore-induced volatiles. It was 

observed that among herbivore-infested plants, M. pygmaeus preferred the microbe-inoculated 

compared to the non-inoculated ones. In addition, inoculation with beneficial microbes had a 

marginal effect on the emission of specific terpenoids that might affect the choice of M. 

pygmaeus. However, the gene expression analysis showed that the interaction effect between 

herbivory and beneficial microbes significantly affected the expression levels of only one marker 

gene. In conclusion, the results presented in this PhD study indicate that the beneficial root 

microbes R. irregularis and T. harzianum mediate plant-insect interactions and can trigger 

important effects over the three trophic levels: the plant, its herbivores, and their natural 

enemies. Thus, these findings strengthen the potential of beneficial root fungi to be used in 

agriculture as a promising alternative tool to reduce the use of chemical insecticides, ensure crop 

productivity and food security, and protect human health as well as the environment. 
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Zusammenfassung 

 

Pflanzen und Insektenfresser stehen seit mehreren hundert Millionen Jahren in Wechselwirkung. 

Während ihrer gemeinsamen Evolution haben beide Strategien entwickelt, um die 

Abwehrmechanismen des jeweils anderen zu überwinden. Das evolutionäre Wettrüsten 

zwischen Pflanzen und Insektenfressern hat zur Entwicklung eines ausgeklügelten 

Abwehrsystems geführt, das es den Pflanzen ermöglicht, Angriffe von Pflanzenfressern zu 

erkennen und pflanzliche Immunreaktionen zur Abwehr von Pflanzenfressern zu aktivieren. 

Pflanzen sind sowohl direkt als auch indirekt mit Pflanzenfressern konfrontiert. Zu den direkten 

pflanzlichen Abwehrmechanismen gehören physische Merkmale, die die Pflanzen vor 

Pflanzenfressern schützen, sowie die Produktion von toxischen und/oder nährstofffeindlichen 

Verbindungen, die Entwicklung der pflanzenfressenden Feinde entweder töten oder verzögern. 

Zu den indirekten Abwehrmechanismen gehören die Emission einer Mischung flüchtiger 

Verbindungen, die speziell die natürlichen Feinde der Pflanzenfresser anlockt, oder die 

Bereitstellung von Nahrung und Unterschlupf, um die Wirksamkeit der natürlichen Feinde zu 

erhöhen. In ihrer komplexen Umwelt gehen Pflanzen jedoch auch mutualistische Beziehungen 

mit nützlichen Bodenmikroben wie den arbuskulären Mykorrhizapilzen (AMF) und 

pflanzenwachstumsfördernden Pilzen (PGPF) ein. Nützliche Mikroben werden seit langem wegen 

ihrer positiven Auswirkungen auf Pflanzenwachstum, Ernährung und Ertrag sowie wegen ihrer 

pflanzenschützenden Wirkung gegen abiotische und biotische Stressfaktoren untersucht. 

Dennoch sind weitere Studien erforderlich, die eine Kombination aus transkriptomischen und 

metabolomischen Ansätzen beinhalten, um die Mechanismen besser zu verstehen, die von 

nützlichen Mikroben genutzt werden, um Pflanzenresistenz gegen Insektenherbivoren zu 

erzeugen. In dieser Doktorandenstudie untersuchte ich die Auswirkungen der Nutzmikroben 

Rhizophagus irregularis und Trichoderma harzianum auf die direkten und indirekten 

Abwehrreaktionen von Tomaten gegen Insektenherbivoren. Ich verwendete eine Kombination 

aus metabolomischen und transkriptomischen Ansätzen, um die molekularen und chemischen 

Mechanismen zu entschlüsseln, die der mikrobeninduzierten Resistenz der Tomate gegen 

Pflanzenfresser zugrunde liegen.  

In Kapitel 1 dieser Dissertation wollte ich die Auswirkungen der beiden nützlichen Mikroben auf 

das Metabolom von Pflanzen und Insekten untersuchen. Darüber hinaus wollte ich herausfinden, 

ob die durch die Mikroben hervorgerufenen Veränderungen im Metabolom der Pflanze sich auch 

auf das Metabolom von Manduca sexta-Larven auswirken, die sich von den Blättern der mit 

Mikroben beimpften Pflanzen ernähren. Mit Hilfe eines Insekten-Bioassays untersuchte ich den 

Lebenszyklus von M. sexta-Larven, die auf nicht inokulierten und mikrobeninokulierten Pflanzen 

aufgezogen wurden. Ich stellte fest, dass die Inokulation von Tomatenwurzeln mit R. irregularis 

und T. harzianum die Verpuppung und den Schlupf von M. sexta-Larven beeinträchtigte. Um 

diesen Befund zu erklären, habe ich einen ungezielten metabolomischen Ansatz zur 

Untersuchung verwendet: I) die Metaboliten, die sich in den Blättern der mit Mikroben 
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geimpften Pflanzen ansammelten, und II) die Metaboliten, die sich im Darm und im Fettgewebe 

der M. sexta-Larven ansammelten, die sich von mit Mikroben geimpften Pflanzen ernährten. Der 

Gehalt an Sekundärmetaboliten der Tomate (α-Tomatin, α-Dehydrotomatin) war in den Blättern 

der mit Mikroben beimpften Pflanzen erhöht. Darüber hinaus wurden von Carnitin abgeleitete 

Metaboliten, Verbindungen wie Piperidin, Octansäure und Benzamid in den Geweben der M. 

sexta-Larven stärker angereichert. Bemerkenswerterweise war auch der Gehalt an α-Tomatin im 

Darm- und Fettkörpergewebe von M. sexta-Larven, die auf mit Mikroben beimpften Pflanzen 

aufgezogen wurden, höher. Daraus wurde gefolgert, dass die nützlichen Mikroben das 

Metabolom der Pflanzen veränderten, die Synthese von abwehrrelevanten Verbindungen 

erhöhten und dieser Effekt sich kaskadenartig auf das Metabolom der Insekten auswirkte, die 

mit mikrobeninokulierten Pflanzen gefüttert wurden, wodurch die Physiologie und der 

Lebenszyklus von M. sexta beeinträchtigt wurden. 

In Kapitel 2 dieser Dissertation verfolgte ich einen integrierten -omics-Ansatz, um die 

Auswirkungen der beiden nützlichen Mikroben auf die transkriptomische und metabolomische 

Reaktion der Tomate auf die Herbivorie von M. sexta zu untersuchen. Dazu verwendete ich eine 

Hochdurchsatz-RNA-Sequenzierung und eine Metabolomanalyse, gefolgt von einer Kombination 

der beiden Ansätze. Die transkriptomische Analyse trennte nicht befallene von durch Herbivoren 

befallenen Proben. Herbivorie korrelierte mit der Herunterregulierung von Genen, die an der 

Photosynthese beteiligt sind, und der Hochregulierung von Genen, die an Stressreaktionen 

beteiligt sind. Als Reaktion auf Herbivorie wurden Gene, die am Sekundärstoffwechsel beteiligt 

sind, in mit T. harzianum beimpften Pflanzen hochreguliert. Parallel dazu wurden Gene, die an 

Stressreaktionen beteiligt sind, in mit R. irregularis beimpften Pflanzen hochreguliert.  Die 

metabolomische Analyse trennte auch eindeutig zwischen nicht befallenen und von Herbivoren 

befallenen Proben. Interessanterweise trennte die integrative Analyse, die anhand der 

Herbivorenproben durchgeführt wurde, die Proben auf der Grundlage der verwendeten 

nützlichen Mikrobe. Die Analyse des Korrelationsnetzes, die mit demselben Datensatz 

durchgeführt wurde, ergab zwei Korrelations-Subnetze, die mit Elementen angereichert waren, 

die durch die Anwesenheit von R. irregularis und T. harzianum moduliert wurden.   

In Kapitel 3 dieser Dissertation wollte ich die Auswirkungen der beiden nützlichen Mikroben auf 

die Induktion indirekter Abwehrmechanismen als Reaktion auf Herbivorie durch Spodoptera 

exigua-Larven untersuchen. Zu diesem Zweck testete ich zunächst die Anziehungskraft des 

zoophytophagen Räubers Macrolophus pygmaeus auf nicht beimpfte und mit Mikroben 

beimpfte Pflanzen, die von Herbivoren befallen waren. Darüber hinaus analysierte ich die von 

Pflanzenfressern induzierten flüchtigen Stoffe, die von nicht beimpften und mit Mikroben 

beimpften Pflanzen abgegeben werden, sowie die Expressionsniveaus von Genen, die an der 

Synthese von Pflanzenfresser-induzierten flüchtigen Stoffen beteiligt sind. Es wurde festgestellt, 

dass M. pygmaeus unter den von Herbivoren befallenen Pflanzen, die mit Mikroben geimpften 

gegenüber den nicht geimpften Pflanzen bevorzugte. Darüber hinaus hatte die Inokulation mit 

nützlichen Mikroben einen marginalen Einfluss auf die Emission spezifischer Terpenoide, die 
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Wahl von M. pygmaeus beeinflussen könnten. Die Analyse der Genexpression zeigte jedoch, dass 

der Interaktionseffekt zwischen Herbivorie und nützlichen Mikroben das Expressionsniveau von 

nur einem Markergen signifikant beeinflusste. Die in dieser Doktorarbeit vorgestellten 

Ergebnisse deuten darauf hin, dass die nützlichen Wurzelmikroben R. irregularis und T. 

harzianum Wechselwirkungen zwischen Pflanzen und Insekten vermitteln und wichtige 

Auswirkungen auf die drei trophischen Ebenen haben können: die Pflanze, ihre Herbivoren und 

ihre natürlichen Feinde. Diese Ergebnisse untermauern das Potenzial der nützlichen Wurzelpilze, 

in der Landwirtschaft als vielversprechende Alternative eingesetzt zu werden, um den Einsatz 

chemischer Insektizide zu verringern, die Produktivität der Pflanzen und die Ernährungssicherheit 

zu gewährleisten und die menschliche Gesundheit sowie die Umwelt zu schützen. 
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