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Abstract: The execution of simulation experiments becomes increasingly resource-
intensive, either due to the increasing scale and complexity of the simulation model 
or the nature of the experiment itself. Popular approaches, like simulation-based 
optimisation and data farming, require extensive computational resources. Therefore, 
an appropriate methodology is needed to distribute simulation workloads onto 
complex computing infrastructures efficiently. Containerisation and container 
orchestration are promising approaches toward this goal. This paper discusses the 
requirements needed to utilise containerisation for simulation, gives an example of a 
container-based computational infrastructure for experimentation, and shows how 
containerisation and container orchestration benefit simulation execution. 

1 Introduction 
Computational power is a limiting factor for simulation. Over the past decades, the 
increasing performance of personal computer hardware allowed focusing the 
execution of simulation experiments on the use of single PCs. When the complexity 
of one single simulation run – or the sheer number of simulation experiments as in 
data farming or simulation optimisation (Lechler et al. 2021) – exceeds the capacity 
of a single PC (see Sanchez et al. 2021), there is a need to use more powerful 
computing systems (Król et al. 2013) as an environment for running simulations.   
Evaluation of how simulation experiments can be sped up using high-performance 
computing infrastructures began in the 1970s (Taylor 2019). The ongoing trend of 
cloud computing and virtualisation techniques offers an interesting opportunity to 
revisit this topic: containerisation can encapsulate the simulation and makes it 
independent of the cluster technology. And by using container orchestration tools, 
scalability becomes readily available for simulation experimentation.  
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The research on high-performance computing infrastructures is diverse and growing. 
For example, Scalarm and DIRAC present different computing infrastructures to 
distribute simulation workloads onto multiple computing nodes in heterogeneous 
environments (Król et al. 2013). Anagnostou et al. 2019 evaluated recent 
technological approaches with their work on simulation experimentation frameworks, 
applying a micro-services auto-scaling approach utilising MiCADO. MiCADO 
focuses on efficiently utilising cloud resources, dynamically scaling the Kubernetes 
cluster it uses for container orchestration. It also extends the manifest files for 
Kubernetes Application Programming Interface (API) objects with its Application 
Description Templates (MiCADO Project 2023). This makes MiCADO less universal 
and adds the risk of delayed implementation to changes in Kubernetes API objects 
and extensions of upstream Kubernetes. Reviewing the recent literature, to the 
authors’ knowledge, no solution is readily available to containerise a given simulation 
tool and run it on a cluster.  
We currently do not see a significant uptick in adopting these methods within the 
simulation community, neither on the side of the practitioner nor the side of software 
vendors. We generally observe a need for more awareness in our community, which 
we would like to address by first discussing the requirements to use these technologies 
for simulation purposes. Additionally, we show a straightforward approach to 
building a container-based computer cluster as a framework for running simulation 
experiments to make this technology more accessible.  
The remainder of this article is structured as follows: First, we discuss some 
requirements and prerequisites for containerisation and container orchestration of 
simulation workloads. This is followed by describing how we set up the simulation 
cluster at the University of the Bundeswehr Munich. To illustrate the capabilities of 
different computing infrastructures, we give an overview of experimentation results 
and how Kubernetes benefits the user in addressing more computational resources for 
simulation workloads. Lastly, as an outlook, we propose possible next steps and 
research opportunities.  

2 Requirements to use containerisation for simulation 
Using containers for simulation execution comes with different requirements for the 
simulation engines. We group these into three categories, which will be discussed in 
the following subsections: 
 Modelling requirements

o Automated model generation
 Integration

o External trigger
o Headless simulation

 Usability in container environments
o Operating system
o Ephemeral simulation models
o Licensing
o Containerization
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2.1 Modelling requirements 
Modelling requirements describe how well models can be exchanged with a 
simulation package. The simulation package needs to support the creation of models 
by external systems. Especially with running simulation experiments on a larger scale, 
where it is more feasible to generate new models instead of parameterising a hand-
made model, the ability to automatedly generate models for a given simulator 
becomes increasingly important. Simulation packages allow automated ways of 
model building to different degrees. Higher levels mean more of the generator is 
independent of the simulation package, allowing for more flexibility and possible 
reuse for other packages. Several levels of automation can be considered: 

1. No automation
2. Parameterization of a hand-made model
3. Bootstrapping models based on external data
4. External generation of model files
5. Online model generation using an API

Although automated model generation is not a new topic, its increasing relevance in 
the face of online simulation and digital twins has yet to lead vendors to support 
higher-level automation approaches. Therefore, careful consideration of automated 
model generation capabilities should be given when scaling up model execution. 

2.2 Integration 
Integration requirements describe how well a simulation package can be integrated 
into another software system, e.g., how well it can be started and executed. For 
execution, generally, containerised software in Kubernetes is running headless. 
Graphical User Interfaces (GUIs) allowing access to the backend software may be run 
as independent web services if needed. This fundamental aspect of containers affects 
the usage of containerisation technology for simulation execution.  
Besides running headless, how a simulation run can be triggered is a big concern. In 
most simulation environments, the user starts a simulation run by clicking a button on 
the GUI. Automating simulation runs, this is no longer a feasible solution. Although 
most simulation packages bring their simulation execution environment, these are 
typically not yet designed to support simulations on distributed infrastructures. 
Building such systems requires developing an experiment manager and an external 
way to trigger a simulation run. The most common way this is supported is by using 
command-line interfaces. A more convenient option could be starting simulations 
utilising an API.  

2.3 Usability in container environments 

2.3.1 Operating system 

Containerisation is a form of operating system virtualisation. (Huawei Technologies 
Co. Ltd. 2023) summarises the evolution of containerisation, beginning with the 
chroot-command and finishing with modern containerisation formats like Docker or 
LXC. As containers use the kernel of the host operating system (OS), Linux-based
containers can only run on hosts with Linux. This, in turn, means that the simulation
model to be containerised must run on Linux, restricting the number of simulation
engines that can be used for model creation as only some engines support Linux.
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Simulation engines requiring Windows can only be run as a Windows container. This 
means that a hybrid cluster, consisting of both Linux and Windows worker nodes, is 
necessary, as the control plane of Kubernetes must run on Linux (Kubernetes 2023). 
A hybrid configuration of Kubernetes generates a performance loss, as it is no longer 
possible to allocate all the available resources when nodes of several operating 
systems need to be provided. This mix of systems increases the complexity of resource 
allocation. 

Table 1: List of simulation tools and the support of Linux-based OSs 

Simulation tool Linux support? 
ANSYS Yes 
Anylogic Yes 
Factory Explorer No (Windows only) 
Flexsim No (Windows only) 
Matlab/Simulink Yes 
OpenModelica Yes 
Simio No (Windows only) 

Table 1 gives an overview of different simulation tools we have used for various 
purposes (discrete event simulation, fluid simulation, etc.) and whether they support 
Linux. This small overview shows that although Linux support is not an exception, 
even popular simulation tools require Windows.  

2.3.2 Ephemeral simulation models 

As a container orchestrator, Kubernetes aims to have all containers running. If 
containers fail, it automatically restarts them as new instances, possibly on a different 
worker node. This characteristic of containers is called ephemeral, meaning they can 
get killed and restarted at any given time due to internal or external causes, e.g., 
software updates, load balancing, or simulation failures. Therefore, simulation models 
that run as containers in Kubernetes should support this ephemeral nature. Here are a 
few ideas on how to handle simulation in such an environment: 
 One of the easiest ways of handling the ephemeral nature of containers inside

Kubernetes is accepting the killing of execution runs and restarting it. This comes
with the question of monitoring lost simulation runs. Kubernetes has several
extensions that provide extensible monitoring and logging features, which can be
used to keep track of prematurely stopped scenario calculations.

 Keeping track and storing the progress of simulation runs. Therefore, killed
instances of the model can be restarted without losses using cached data. To keep
an up-to-date image of the current simulation state in storage, continuous updates
to this image are required, which causes a significant amount of data to be
transferred and stored. Besides the general cost of storing, there will likely be an
adverse effect on simulation speed due to these tasks. Therefore, this approach is
only feasible in an environment where successfully finishing simulation runs is
otherwise unlikely due to very long simulation runs or unstable computing
hardware.
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 Starting additional instances, adding redundancy, and decreasing the risk of data
loss in case of a container failure. As most simulations already utilise replications
to achieve sufficient confidence intervals, adding additional runs depending on
stability would not increase the load by a large margin.

Using containerisation technologies for simulating models at scale brings with it the 
need to consider the premature termination of simulation containers. This affects the 
number of simulation runs that can be completed. Furthermore, it requires 
consideration of the data collected during one run. While simulation models that 
purely run in memory usually leave no trace when their surrounding container 
disappears, simulation models reporting data during the simulation run to a database 
require more involved handling as incomplete data needs to be cleaned in case the 
container fails. 

2.3.3 Licensing problems 

The software vendor’s approach to licensing is also a topic worth considering when 
deciding on a simulation package. When considering licensing, the cost structure 
should be reviewed. There are simulation packages where costs depend only on the 
model development environment. This allows very flexible scaling of the simulation 
to new or different projects. Then there are per-user/seat licenses, which can be 
challenging to scale in a legally safe way. A third option is a licensing model, which 
charges per core, which can get expensive when sufficient hardware is available. 
Another side to licensing, besides the cost and legality, is the way the developer 
enforces licensing. From our point of view, licensing servers with concurrent licensing 
are ideal for a dynamic environment like Kubernetes. Any licensing scheme enforced 
by hardware restrictions significantly limits its use in a container environment. 
Examples are license codes tailored to a specific PC or hardware keys provided as 
USB dongles. 

2.3.4 Containerization 

Creating container images depends on the choice of the container engine. Multiple 
engines like Docker (Docker Inc. 2023), Podman (Podman 2023) or Apptainer 
(Apptainer Project 2023) are available, all of which have a similar approach to image 
creation, utilising a descriptive file that defines all steps necessary for 
containerisation, which we will call the “containerisation file” in the following. 
The containerisation file generally begins with a base image, e.g., an Alpine Linux 
image, and defines which libraries and binaries to add. In the case of a simulation 
model, you need to package your simulation tool of choice so the simulation engine 
is available inside the container. Supporting installation via the command line, 
containerisation of the chosen simulation tools is done by adding a single command 
to the containerisation file. If this simple installation method via the command line is 
not supported, a more tedious approach must be utilised for installing the simulation 
tool.  
A wholly optimised containerisation process for simulation models means that 
simulation package developers provide usable images of their simulation software, 
streamlining the containerisation process of simulation models. 
In a perfect world, simulation software developers would provide a base image of 
their simulation package, where the user only needs to add their model.  
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3 Our current setup  
Creating our simulation cluster based on Kubernetes has been an iterative process, 
starting with small test configurations and moving to clusters sufficient for large-scale 
parallelised simulation experiments. This section describes the setup of the simulation 
cluster we currently use at the University of the Bundeswehr Munich. 
The cluster runs on a server that consists of 40 hosts. Instead of running Kubernetes 
on bare-metal – meaning that the cluster has access to the OS of the hosts – a 
virtualisation layer is between the physical hardware and the Kubernetes cluster. The 
usage of virtualisation has two benefits:  
1. Added flexibility: instead of purely running Kubernetes on the cluster, 

virtualisation enables us to run independent virtual machines for particular use 
cases, e.g., different guest operating systems. 

2. Added security: the virtualisation layer isolates the host kernel from the kernels of 
the guests used by Kubernetes. 

Rancher – a cluster management tool – is used to configure the cluster. Rancher itself 
runs as a container inside of a smaller Kubernetes cluster. Ranchers WebUI allows 
the configuration of the virtual machines that run Kubernetes, automatically creates 
the virtual machines, and sets up the Kubernetes cluster. Rancher uses a particular 
distribution of Kubernetes called RKE2 (Rancher Kubernetes Engine 2), which is 
more lightweight than upstream Kubernetes and focuses on security (Rancher Labs 
2023). It also comes with “containerd” (containerd 2023) as the embedded container 
runtime and supports hybrid cluster configurations consisting of both Linux and 
Windows worker nodes. Rancher not only automates the cluster creation process but 
also simplifies the installation of additional software, e.g., monitoring software or 
storage provisioning, through integrated software repositories and automated 
installation utilising Helm charts. 
In line with best practices, the current simulation cluster of the University of the 
Bundeswehr Munich consists of multiple control planes and worker nodes. Each of 
them is running on Ubuntu. The control plane is composed of three nodes, ensuring 
high availability, that do not run simulation workloads, therefore needing far fewer 
resources. Six cores and six gigabytes of Random-access Memory (RAM) are 
sufficient for the workloads the control plane nodes have to execute. We currently use 
a basic set of four worker nodes, which provide the infrastructure to compute 
simulation workloads. The virtual machines are configured to consume almost all host 
resources, using 60 of the 64 cores available and one terabyte of RAM. This provides 
a computational power of 240 cores and four terabytes of RAM for this cluster. This 
represents about 10 % of the resources available. If more computing power is required, 
Rancher allows us to quickly scale the cluster up, adding worker nodes and increasing 
the cluster’s computational resources. Figure 1 visualises the simulation cluster in 
detail.   
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Figure 1: Setup of the current simulation cluster 

4 Performance testing 
The first test case run on our simulation cluster is based on our work on utilisation 
thresholds for equipment groups described in (Pappert et al. 2017). The simulation 
engine used in this project is an in-house development in Java, with the model being 
created by simply calling methods of the meta-model. With Java being platform-
independent, containerisation was a simple process, only needing a base container 
image that provides the Java Runtime Environment. Furthermore, the experiment 
engine was designed with distributed execution in mind, meeting many of the 
requirements for utilising containerisation mentioned above.  
With our historical changes to the computational infrastructure used, we can retrace 
the performance gain achieved by utilising different setups, finally leading to 
containerisation and Kubernetes. Figure 2 visualises the performance – measured by 
the number of scenarios evaluated per day – based on other computational 
infrastructures. The shown infrastructures use different underlying hardware; 
therefore, the depicted performance gain can primarily be attributed to the extension 
of the hardware resources. The last two entries show our current simulation server in 
two different levels of scaling. The primary benefit we see in using Kubernetes comes 
with its ease of scaling. Once a small cluster is set up on a small portion of hardware, 
scaling available processing power to full capacity is but a matter of a few minutes. 



400 Seufferth, Daniel; Stein, Heiderose; Pappert, Falk Stefan; Rose, Oliver 

Figure 2: Performance comparison based on different computational infrastructures 
shows the number of scenarios calculated daily for each setup 

5 Summary and further research 
We have shown an example setup using Rancher and Kubernetes to facilitate the 
creation of large-scale computational infrastructure. It is built solely with free and 
open-source software so that it can be used as a template for other Kubernetes clusters. 
As the software used supports several kinds of infrastructures – different cloud 
providers and on-premises infrastructure – it is flexible and can be used in 
environments that differ from the one discussed here. The resulting cluster simplifies 
the allocation of computing resources, making more extensive computing 
infrastructures accessible to the user. 
We have discussed different requirements regarding utilising containerisation for 
simulation workloads on distributed infrastructures. Several of these points should be 
further researched to streamline the containerisation process of simulation models and 
increase the acceptance of containerisation in the simulation community. 
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