
Simulation in Produktion und Logistik 2023
Bergmann, Feldkamp, Souren und Straßburger (Hrsg.)
Universitätsverlag Ilmenau, Ilmenau 2023
DOI (Tagungsband): 10.22032/dbt.57476

Simulation-Based Resolution of Deadlocks in
Automated Guided Vehicles using Deep

Reinforcement Learning
Simulationsgestützte Lösung von Deadlocks bei fahrerlosen

Transportsystemen mit Hilfe von Deep Reinforcement Learning

Mustafa Jelibaghu, Michael Eley, Alexander Palatnik
Technische Hochschule Aschaffenburg, Aschaffenburg (Germany),

{mustafa.jelibaghu, michael.eley, alexander.palatnik}@th-ab.de

Abstract: This paper discusses the use of deep reinforcement learning to resolve
deadlocks in material flow systems with automated guided vehicles (AGVs). The
paper proposes a strategy for dealing with deadlocks based on a single Agent
reinforcement learning approach (SARL). The agent will find the optimal solution
strategy in real time. The proposed approach is evaluated using a material flow
simulation for a real use case in industry. The effectiveness in reducing the occurrence
of deadlocks as well as the number of collisions in the system is demonstrated. This
study highlights the potential of deep reinforcement learning for improving the
performance and efficiency of material flow systems with AGVs.

1 Introduction
Automated guided vehicles (AGVs) are fleets of autonomous vehicles that transport
material or products in warehouses or production environments. AGVs are
increasingly used in the logistics industry to automate the internal material flow, as
they are more efficient, safer and cost-effective than manual transport systems.
In the process, the vehicles have to carry out the transport orders in compliance with
safety and quality standards achieving the required throughput. The planning process
for AGV-fleets includes dispatching, scheduling and routing.
 Dispatching refers to the allocation of orders to individual AGVs. Here it is

decided which vehicle should take over which order. Dispatching must take into
account the available resources, such as the number of AGVs, their capacity and
availability, as well as the location and requirements of the orders.

 Scheduling is about determining the processing sequence and transportation times
of the orders. The main objective is to optimize the throughput of the material flow
while securing due dates.

DOI: 10.22032/dbt.57796

https://doi.org/10.22032/dbt.57476
https://doi.org/10.22032/dbt.57796

252 Jelibaghu, Mustafa; Eley, Michael; Palatnik, Alexander

 Routing is about determining the optimal driving route for each individual vehicle
in order to complete the jobs assigned to the vehicle within the given time
constraints. Deadlock can occur when the vehicles are following the shortest path
calculated by the algorithm and end up in a situation where they are unable to pass
each other. This is usually done using an algorithm such as Dijkstra (Javaid 2013),
which is based on a directed graph. The directed graph represents the nodes
(vehicles and other resources) and edges (connections between the resources) and
the algorithm calculates the shortest path between the nodes.

The planning of dispatching, scheduling and routing is crucial for the productivity and
efficiency of the internal material flow. Particular attention must be paid to detecting
and avoiding deadlocks during routing. Such a deadlock occurs when two or more
AGVs block each other and cannot longer continue their journey because they are
waiting for each other to release a resource (see Figure 1). This leads to orders not
being processed at the planned times or the material flow even coming to a standstill.
Deadlocks occur specifically when the problems outlined above are solved one after
the other in the specified order. To resolve deadlocks, there are various strategies such
as using waiting or changing the route of the individual vehicles (re-routing) (e.g.,
(Xu et al. 2014), (Hussain et al. 2015)). However, these strategies are not always
effective, and resolving one deadlock can lead to another deadlock.
In the classic planning process, these problems are considered one after the other in
the specified order. Despite careful planning, so-called deadlocks can occur that can
significantly impair the productivity and efficiency of the logistics processes.
In our scenarios we use the power of machine learning approach. Reinforcement
Learning (RL) is a possible approach to solving deadlocks in warehouses. RL is a
machine learning technique in which an agent makes decisions in an environment
through trial-and-error learning in order to maximize a reward. The Deep Q-Network
(DQN) Algorithm is a special form of RL based on deep learning and uses the Q-
learning method to learn an optimal decision strategy.
The article is structured as follows. The relevant literature is discussed in the section
2. Section 3 describes the simulation environment used. An approach to avoiding
deadlocks based on Markov Decision Process (MDP) and DQN is presented in the
section 4. The two concluding sections 5 and 6 summarize test results and give an
outlook on possible extensions.

2 Literature Review
There are many problem-specific approaches in the literature for deadlock handling.
The problem is not only discussed in context of logistics but also in computer science.
In addition to the sequential solution of scheduling and routing, approaches are also
discussed in the literature in which the two subproblems are solved simultaneously,
e.g., (Wang et al. 2019; Vivaldini et al. 2015; Li et al. 2019). In practice, however, the
problem often arises with the solutions generated in such wise that the plans
determined in this way cannot be implemented as planned due to disruptions in the
operational process, and deadlocks therefore arise at other points.
In order to resolve deadlocks, there are various strategies, such as using waiting or
changing the route of the individual vehicles (re-routing), e.g., (Xu et al. 2014;
Sumanas et al. 2022). However, these strategies are not always effective, and

Deadlock resolution with deep reinforcement learning 253

resolving one deadlock can lead to another deadlock. Deadlocks can be detected by
using graph theory. Here, the transport flow is modelled as a directed graph and
searched to detect deadlocks. Graph theory is an effective method for detecting
deadlocks and is discussed extensively in the literature, e.g., (Yao et al. 2016; Ni et
al. 2009; Wang et al. 2013).
The use of machine learning algorithms to prevent deadlocks in a simulation-based
learning environment is explored in (Müller et al. 2022). He chooses a RL approach
that uses a DQN algorithm to learn a policy for detect and resolution deadlocks. For
future research he proposes second approach "Multi-Agent Reinforcement Learning
(MARL)" because the first approach in (Müller et al. 2022) with increasing the
number of AGVs brings with it an exponential possible action that an AGV can make
in the environment (see Figure 5).
In (Kuhnle 2020), MARL is used. MARL is a popular technique for coordinating
agents in complex environments. In the context of an AGV system, MARL can be
used to prevent deadlocks by enabling the agents to learn and adapt their behavior
based on the system's dynamics and the actions of other agents. To apply MARL to
an AGV system, each AGV is modelled as an agent, and the agents are trained to
cooperate to avoid deadlocks. MARL is suitable for problems where multiple agents
need to collaborate or compete to achieve a common goal, while DQN is suitable for
problems where a single agent needs to learn how to take optimal actions in a given
environment. Both approaches have their own advantages and limitations, and the
choice of approach depends on the specific problem and the requirements of the
application.
It is true that Artificial Intelligence (AI) approaches can help solve deadlocks in
warehouses more effectively than classic approaches. By using machine learning and
other AI techniques, complex algorithms can be created that enable fast and accurate
analysis of the warehouse structure and processes. AI systems can also be continually
optimized to respond to changes in storage conditions or requirements. When adapting
AI approaches to real layouts, however, it must be noted that the examples presented
in the literature cannot always be directly transferred to reality. The topology of the
warehouse can vary from company to company, and warehouse structures can also
change over time within the same company. For this reason, it is important that AI
approaches are adapted to the specific needs and requirements of a given warehouse.
In order to close the gap between the examples presented in the literature and the
requirements in reality, detailed analyses must be carried out to understand the
specific conditions and requirements of a bearing. This can be done through the use
of data analysis tools and machine learning models applied to real warehouse data. In
this way, AI models can be created that are specifically tailored to the needs of the
warehouse and can therefore deliver the best results.

3 Simulation Model
As part of the research project, a real application for an AGV system was considered
and modelled in Plant Simulation (see Figure 1). The application is a high-bay
warehouse with several aisles that the AGVs can only enter and exit from one side
(dead ends). There are three AGVs available that have the task of moving pallets from
the goods receipt, where the orders are created automatically and assigned to the

254 Jelibaghu, Mustafa; Eley, Michael; Palatnik, Alexander

AGVs (well known as dispatching), to the high rack. At the beginning the AGVs are
located at the park station.
In Plant Simulation, the different strategies for detecting, avoiding and resolving
deadlocks will be implemented and compared in terms of their performance. A
deadlock situation is shown in Figure 1. The deadlock occurs because the AGV01
currently located on the STR02 wants to enter aisle02. At the same time, the AGV02
wants to leave aisle02.
The simulation model is a digital twin of the logistics system, allowing for
experimentation with different scenarios and the optimization of system performance.
The model can simulate the movement of materials through the system and track the
performance of different components, such as AGVs and conveyor systems. This can
help identify potential bottlenecks and areas for improvement.

Figure 1: Illustration of a deadlock with three AGVs at the beginning of dead ends

Compared to other approaches in the literature, the complexity of our concept is very
high. The number of dead ends and AGVs in the simulation model are realistic. Figure
1 shows that five dead ends and two-lane paths are examined more closely.

4 Deadlock Resolution based on Deep Reinforcement
Learning Agent

Reinforcement learning is a branch of machine learning that involves an agent
learning to interact with an environment to maximize a reward signal (see Figure 2).
The goal is for the agent to learn an optimal policy, which maps states to actions, that
maximizes the expected cumulative reward over time.
Formally, reinforcement learning can be described using the Markov Decision Process
(MDP) (Sutton and Barto 2005) framework, which consists of the following
components:
 State space (S): a set of possible states that the agent can be in.
 Action space (A): a set of possible actions that the agent can take.
 Transition function (T): a function that specifies the probability of moving to a

new state given the current state and action.

Deadlock resolution with deep reinforcement learning 255

 Reward function (R): a function that specifies the immediate reward received by
the agent for taking a particular action in a particular state.

 Discount factor (γ): a value between 0 and 1 that determines the importance of
future rewards relative to immediate rewards.

Figure 2: Agent/Environment Interaction

At each time step, the agent observes the current state of the environment, selects an
action according to its policy, and receives a reward from the environment. The goal
of the agent is to learn a policy that maximizes the expected cumulative reward over
time. This can be done using a variety of reinforcement learning algorithms, such as
Q-learning, SARSA, and DQN, which use different methods to estimate the optimal
policy, e.g., (Müller et al. 2022; Sutton and Barto 2005).
Deep Q-Network is a type of reinforcement learning algorithm that uses a neural
network to approximate the Q-value function. The Q-value function represents the
expected reward for taking a particular action in a given state and is used to guide the
decision-making process in a dynamic environment. In our case we consider the DQN
algorithm. Because the Agent can learn from experience, handle complex
environments, find optimal policies, and adapt to changing environments.
The DQN algorithm consists of two key components: the neural network and the
experience replay memory. The neural network is used to approximate the Q-value
function and takes the state of the environment as input and outputs the expected Q-
values for each action. The experience replay memory is used to store and randomly
sample previous experiences, which helps to stabilize the training process and prevent
overfitting.
During training, the DQN agent interacts with the environment by selecting actions
based on the current state and the Q-values predicted by the neural network. The agent
then receives a reward and observes the new state, which is added to the experience
replay memory. The neural network is then updated using a combination of the
Bellman equation and stochastic gradient descent, which helps to adjust the Q-values
based on the observed rewards and states.
The Bellman equation (1) is a key component of the DQN algorithm and is used to
update the Q-values based on the observed rewards and states. The Bellman equation
can be written as:

 ᇱ ᇱ (1)

256 Jelibaghu, Mustafa; Eley, Michael; Palatnik, Alexander

where is the Q-value for state and action , is the reward received for
taking action in state , γ is the discount factor, ᇱ is the next state, and ᇱ is the
action taken in the next state. The term ᇱ ᇱ represents the maximum Q-
value for the next state ᇱ, and is used to estimate the expected future reward.
The DQN algorithm uses a variation of the Bellman equation, known as the Q-learning
update rule, to adjust the Q-values during training. The Q-learning update rule can be
written as:

In equation (2):
 is the Q-value for state and action .
 is the learning rate, which determines how much the Q-values are updated in

each iteration.
 is the immediate reward for taking action in state .
 is the discount factor, which determines how much weight to give to future

rewards.
 ᇱ ᇱ is the maximum Q-value over all actions ᇱ in the next state ᇱ

 ᇱ ᇱ is the Q-value for the next state ᇱ and action ᇱ.
The equation (2) represents the update rule for the Q-values, which are updated after
every action taken by the agent in the environment. The goal of the DQN algorithm is
to learn the optimal Q-values for all state-action pairs, so that the agent can choose
the action that maximizes its expected future reward in any given state.
Overall, the DQN algorithm is a powerful and flexible tool for reinforcement learning,
and has been used successfully in a variety of applications, including robotics, game
playing, and autonomous driving, e.g., (Lee and Yusuf 2022; Mnih et al. 2013; Friji
et al. 2020).
In our simulation model in Figure 1, states of the AGVs are sent to agents as a matrix
input. These possible states are position of the AGVs, velocity of the AGVs, and the
position of the destination of the order. These parameters will form our states.
The second important input parameter for an agent is reward or punishment. is
defined as reward. Arriving at its destination, AGV will be awarded with highest
reward. The unnecessary steps or movements are seen as punishment. The collisions
are defined as punishment. This means that the AGVs try to avoid collisions as much
as possible. After the agent has received the following inputs (such as the states of the
AGVs and the associated rewards), the agent will perform a random action based
on the Epsilon Greedy algorithm. Possible actions are defined as moving forward,
moving backward, and stop. Based on these actions, the agent will develop its Q-value
function.
The Epsilon Greedy algorithm is a simple way to balance exploration and exploitation
in the DQN algorithm. During the training phase, the DQN agent must explore the
environment to find the optimal policy, but at the same time, it must exploit the
information it has learned to maximize the expected reward. The Epsilon Greedy
algorithm achieves this balance by allowing the agent to choose the best action with
high probability (exploitation), but also randomly select a non-optimal action with
low probability (exploration), e.g., (Sutton and Barto 2005; Mignon and Luis de
Azevedo da Rocha 2017).

ᇱ ᇱ (2)

Deadlock resolution with deep reinforcement learning 257

5 Results
The results of the simulation model developed in Plant Simulation and Python were
obtained by running a series of experiments to evaluate the effectiveness of the DQN
agent in resolving deadlocks in the AGV system. The connection between Plant
Simulation and Python was established via the COM interface. The experiments were
conducted using a simulated environment that closely mimics real-world AGV
systems, including the presence of obstacles, varying task priorities, and traffic
congestion.
In the Figure 3, a small number of episodes has been chosen to see if Agent adapts
well to the environment. Two scenarios were analysed. The first scenario is to put
collision avoidance at the dead end and transfer point. It can be seen in Figure 3 that
the collisions in the bearing decrease with the increase in the number of episodes. This
means that the agent controls its behaviour and makes good decisions regarding
collision avoidance.

Figure 3: Collisions per episode for three AGVs.

In the second scenario (see Figure 4), the focus will be on using the Agent to teach
AGVs how to behave in a storage environment to avoid or resolve deadlocks. The
AGVs are trained through trial and error to learn the best actions to take in different
situations, with the ultimate goal of avoiding or solving deadlocks that can occur when
multiple AGVs are moving at the same time.

Figure 4: Cumulative rewards per episode for three AGVs.

258 Jelibaghu, Mustafa; Eley, Michael; Palatnik, Alexander

These illustrations (see Figure 3, Figure 4) show the impact of the DQN agent on the
performance of the system and demonstrate its ability to detect and resolve deadlocks
more effectively than other Conventional algorithms, e.g., (Yoo et al. 2005; Nguyen
and Le 2015).
During the development of the model, it was found that the developed model has a
disadvantage with the increase the number of AGVs (see Figure 5). It can be seen very
clearly that as the number of AGVs increases, the number of possible actions in the
environment increases exponentially.

Figure 5: Increase possible actions when increasing the number of AGVs

In conclusion, the simulation model developed in Plant Simulation and Python
provides a powerful tool for evaluating the effectiveness of different algorithms in
resolving deadlocks in AGV systems. The illustrations generated from the results of
the simulation model provides valuable insights into the performance of the system
and the potential benefits of using reinforcement learning techniques in the
optimization of decision-making processes in complex dynamic environments.

6 Outlook
In fact, the use of neural networks can provide effective solutions to the complex
problems associated with material handling systems using AGVs. The machine
learning approaches, especially reinforcement learning, allow the analysis of large
systems with multiple resources and movements, whereby deadlocks can be detected
and avoided before they occur. In addition, reinforcement learning models can learn
from past experience and predict optimal solution strategies in real time, reducing the
risk of system downtime and increasing overall system efficiency. These methods also
provide a more dynamic and adaptive approach to managing material handling
systems, allowing the system to respond quickly to changes in demand and capacity.
In summary, the integration of neural networks offers a promising avenue to develop
effective solutions to detect, avoid and resolve deadlocks in AGV-based material
handling systems. Multi Agent Reinforcement Learning has shown to be a powerful
technique for solving complex decision-making problems in dynamic environments.
In the case of AGV systems, multi-agent reinforcement learning can be particularly
useful for detecting deadlocks and resolving them more effectively than other
algorithms such as DQN.

Deadlock resolution with deep reinforcement learning 259

Acknowledgement
The research was funded by the Bavarian State Ministry for Economic Affairs,
Regional Development and Energy as part of the R&D program "Information and
communication technology" of the Free State of Bavaria, project title: KAnIS:
Cooperative Autonomous Intralogistics Systems. Project partner: Linde Material
Handling GmbH, Aschaffenburg.

References
Friji, H.; Ghazzai, H.; Besbes, H.; Massoud, Y.: A DQN-based autonomous car-

following framework using RGB-D frames. IEEE Global Conference on Artificial
Intelligence and Internet of Things (GCAIoT) 12-16 December 2020 Dubai
(2020), pp. 1-6. https://doi.org/10.1109/GCAIoT51063.2020.9345899.

Hussain, S.; Kumar, S.; Janardh, G.: Deadlock avoidance and re-routing of automated
guided vehicles in flexible manufacturing systems. International Journal of
Advances in Production and Mechanical Engineering (IJAPME) 1 (2015) 4.

Javaid, A.: Understanding Dijkstra’s algorithm. SSRN Electronic Journal (2013).
https://doi.org/ 10.2139/ssrn.2340905.

Kuhnle, A.: Adaptive order dispatching based on reinforcement learning application
in a complex job shop in the semiconductor industry. Ph.D Thesis, Karlsruher
Institut für Technologie, Karlsruhe (Germany). 2020.
https://doi.org/10.5445/IR/1000127740.

Lee, M.; Yusuf, H.: Mobile robot navigation using deep reinforcement learning.
Processes 10 (2022) 12. https://doi.org/10.3390/pr10122748.

Li, X.; Zhang, C.; Yang, W.; Qi, M.: Multi-AGVs conflict free routing and dynamic
dispatching strategies for automated warehouse. In: Kim, K.; Kim, H. (Eds.)
Mobile and Wireless Technology 2018. ICMWT 2018. Lecture Notes in Electrical
Engineering 513 (2019). https://doi.org/10.1007/978-981-13-1059-1_26.

Mignon, A.; Luis de Azevedo da Rocha, R.: An adaptive implementation of epsilon-
greedy in reinforcement learning. Procedia Computer Science 109 (2017), pp.
1146-1151, https://doi.org/10.1016/j.procs.2017.05.431.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.;
Riedmiller, M.: Playing Atari with deep reinforcement learning. 2013.
https://doi.org/10.48550/arXiv.1312.5602.

Müller, M.; Reggelin, T.; Kutsenko, I.; Zadek, H.; Reyes-Ruiano, L.: Towards
deadlock handling with machine learning in a simulation based learning
environment. Proceedings of the 2022 Winter Simulation Conference 11-14
December 2022 Singapore, 2022, pp. 1485-1496.
https://doi.org/10.1109/WSC57314.2022.10015270.

Nguyen, H.; Le, V.: Detection and avoidance deadlock for resource allocation in
heterogeneous distributed platforms. International Journal of Critical
Infrastructures 6 (2015) 2.

Ni, Q.; Sun, W.; Ma, S.: Deadlock detection based on resource allocation graph. Fifth
International Conference on Information Assurance and Security, Xi'an, China,
2009, pp. 135-138, https://doi.org/10.1109/IAS.2009.64.

260 Jelibaghu, Mustafa; Eley, Michael; Palatnik, Alexander

Sumanas, M.; Petronis, A.; Bucins, V.; Bučinskas, V.; Dzedzickis, A.; Virzonis, D.;
Morkvenaite, V.: Deep q-learning in robotics: improvement of accuracy and
repeatability. Sensors 2022 MDPI 22 (2022) 10.
https://doi.org/10.3390/s22103911.

Sutton, R.; Barto, A.: Reinforcement learning: an introduction. IEEE Transactions on
Neural Networks 16 (2005), pp. 285-286. https://doi.org/
10.1109/TNN.1998.712192.

Vivaldini, K.; Rocha, L.; Becker, M.; Moreria, M.: Comprehensive review of the
dispatching, scheduling and routing of AGVs. Moreira, Matos, A.; Veiga, A.; G.
(Eds.) CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on
Automatic Control. Lecture Notes in Electrical Engineering 321 (2015).
https://doi.org/10.1007/978-3-319-10380-8_48.

Wang, X.; Wang, Q.; Guo, Y.; Lu, J.: Deadlock detection based on parallel graph
theory algorithm. Proceedings of the 2nd International Conference on Computer
Science and Electronics Engineering (ICCSEE 2013), 2013,
https://doi.org/10.2991/iccsee.2013.180.

Wang, Y.; Li, D.; Ouyang, B.; Wu, D.: Artificial Intelligence empowered multi-AGVs
in manufacturing systems. https://arxiv.org/abs/1909.03373, accessed January
13th, 2023.

Xu, J.; Zheng, Z.; Lyu, M.: CGA-based deadlock solving strategies towards vehicle
sensing systems. EURASIP Journal on Wireless Communications and Networking
2014 (2014). https://doi.org/10.1186/1687-1499-2014-214.

Yao, B.; Yin, J.; Wu, W.: Deadlock avoidance based on graph theory. International
Journal of u- and e- Service, Science and Technology 9 (2016), pp. 353-362.
https://doi.org/10.14257/ijunesst.2016.9.2.34.

Yoo, J.; Sim, E.; Cao, C.; Park, J.: An algorithm for deadlock avoidance in an AGV
system. The International Journal of Advanced Manufacturing Technology 26
(2005), pp. 659-668. https://doi.org/10.1007/s00170-003-2020-4.

