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Abstract: Semiconductor wafer fabrication facilities (wafer fabs) often prioritize two 
operational objectives: work-in-process (WIP) and due date. WIP-oriented and due 
date-oriented dispatching rules are two commonly used methods to achieve workload 
balance and on-time delivery, respectively. However, it often requires sophisticated 
heuristics to achieve both objectives simultaneously. In this paper, we propose a novel 
approach using deep-Q-network reinforcement learning (DRL) for dispatching in 
wafer fabs. The DRL approach differs from traditional dispatching methods by using 
dispatch agents at work-centers to observe state changes in the wafer fabs. The agents 
train their deep-Q-networks by taking the states as inputs, allowing them to select the 
most appropriate dispatch action. Additionally, the reward function is integrated with 
workload and due date information on both local and global levels. Compared to the 
traditional WIP and due date-oriented rules, as well as heuristics-based rule in 
literature, the DRL approach is able to produce better global performance with regard 
to workload balance and on-time delivery. 

1 Introduction 
In semiconductor wafer fabs, dispatching rules are commonly applied as shop floor 
control policies to achieve specific objectives, such as workload balance and on-time 
delivery. Among the WIP-oriented rules, minimum inventory variability scheduling 
(MIVS) (Li et al. 1997) stands out as a representative method for workload balance. 
MIVS prioritizes operations with high WIP and downstream operations with low WIP 
to prevent starvation at the downstream operations. Conversely, it assigns low priority 
to operations with low WIP and downstream operations with high WIP. MIVS aims 
to keep the WIP of each operation close to the average target WIP level, which 
effectively reduces WIP variation and accelerates job movement. 
As many wafer fabs change from mass production to mass customization to satisfy 
customers, due dates become another critical factor. Due date-oriented rules like 
operational due date (ODD) (Keskincocak and Tauyr 2004) are applied to achieve on- 
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time delivery. ODD rule breaks up slack time into as many segments as the number 
of operations of a job, which means it considers due dates for all intermediate 
operations. The ODD value of operation i is defined as: ODD = ReleaseTime + RPT(i) 
* DDFF, where RPT(i) denotes the raw processing time for a sequence of processing 
steps or operations from operation 1 to operation i (including operation i) and DDFF 
denotes target due date flow factor which is the ratio of target cycle time and raw 
processing time of a job.  
In modern wafer fabs, achieving both WIP and due date targets simultaneously is a 
major challenge as workload balance and on-time delivery are conflicting objectives 
(Zhou 2015). WIP-oriented rules often overlook job due dates, while the due date-
oriented rules prioritize tardy jobs most possibly at the expense of workload balance. 
To address this challenge, a heuristic-based composite rule (Zhou and Rose 2011) that 
combines three single rules, i.e., least work at next queue rule (LWNQ, the job with 
the least workload at the downstream queue is preferred), ODD rule and shortest 
processing time rule (SPT, the job with the shortest processing time is preferred), is 
developed in a previous study. A design of experiment is used to calculate the scaling 
parameters which determine the contribution of each single rule. The composite rule 
outperforms the three single rules in terms of cycle time and tardiness performance. 
However, its disadvantage is that the performance depends heavily on user-defined 
scaling parameters, making it computationally expensive to achieve globally optimal 
performance. Therefore, self-learning methods such as machine learning offer 
promising approaches for dispatch decision-making in achieving workload balance 
and on-time delivery.  
Deep reinforcement learning (DRL) has attracted more and more attention for 
decision-making problems in recent years (Panzer et al. 2021). Riedmiller and 
Riedmiller (1999) proposed a RL approach in which agents deal with specified 
features of the factory to optimize global sum tardiness. Similarly, Waschneck et al. 
(2018) applied Google DeepMind’s deep-Q-network agent algorithm at an abstract 
frontend-of-line semiconductor production facility taking due date as global 
optimization objective. Sakr et al. (2021) proposed an application of DRL for 
dispatching and resource allocation in a real semiconductor manufacturing system. 
Both of the input states and reward function consist of local and global information of 
the wafer fabs. Different from the literature, our study aims to find out if the DRL is 
able to solve the problem of conflicting objective, i.e., workload balance and on-time 
delivery, for wafer fabs. In this paper, an independent dispatch agent is defined to 
achieve self-learning for dispatch decision. Firstly, the agent is responsible for 
observing the state changes of wafer fabs. Then it learns to take action for dispatch 
decision by employing the deep-Q-network reinforcement learning. After that it 
receives rewards, which are the key performance indicators (KPIs) in wafer fabs, to 
correct its action. The agent continuously learns and improves its decision-making 
abilities in order to select the most optimal dispatch decision.  
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2 Simulation Environment and Deep Reinforcement 
Learning 

2.1 Problem Statement 
Semiconductor wafer fabs are considered as one of the most complex manufacturing 
systems because of its production variations such as mix products, re-entrant flow, 
hundreds of work-centers, machine breakdown, setup and batch processing. To 
achieve expected objectives, dispatching rules are commonly used as a way of shop 
floor control. WIP-oriented rules reduce variability by controlling the flow of jobs, 
which is able to speed up job movement and reduce cycle time. However, it often 
balances workload at the expense of the pace of job movement, for example, some 
jobs finish ahead of schedule, while others become tardy. On the contrary, due date-
oriented rules focus on the job movement with right pace toward due date, which often 
results in high WIP level and cycle time. When both low WIP level and good on-time 
delivery performance are desired simultaneously, it can be challenging to achieve both 
objectives using either a WIP-oriented rule or a due date-oriented rule alone. 

2.2 Deep Reinforcement Learning 
Deep reinforcement learning is a type of machine learning algorithm that involves 
training an artificial neural network to learn how to make decision in a dynamic 
environment (Panzer et al. 2021). Agents interact with the environment by taking 
actions with action-selection policy , and receive feedback in the form of 
reward which is expressed as action-value function . The Q-function is the 
accumulated discount future reward when policy  is utilized. The optimal Q-function 
∗  is defined as the maximum reward that can be obtained by applying the 

optimal policy (Equation (1)), where s is the state, a is the action, t is the time-step,  
is the discount factor with a value in [0,1],  is the action-selection policy. The agent 
applies artificial neural network called deep-Q-network as the Q-function 
approximation to predict the expected reward. Through iteratively training the deep-
Q-network is able to approximate the optimal Q-function ∗. 

∗ (1)
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2.3 Simulation Environment 

Figure 1: Simulation environment containing deep reinforcement learning 

Figure 1 illustrates the simulation environment used in this study. The simulation 
software is Factory eXplorer (FX) which is a commercial simulation software for 
factories. A job shop management framework that addresses issues of workload 
balance and due date control (Zhou and Rose 2015) is developed. The framework 
comprises two components which are dispatcher and performance evaluator. The 
dispatcher implements various operational control strategies and calculates the job 
priority when a dispatch decision is required. The performance evaluator calculates 
KPIs to assess the performance of each strategy. To integrate the concept of DRL, a 
dispatch agent is introduced in this study. The agent mainly interacts with the factory 
simulation by observing state changes and receiving rewards. Upon detecting an 
available machine, the agent determines the next action (i.e., job selection) using its 
own deep-Q-network. Based on the factory states, the deep-Q-network predicts the 
optimal dispatch decision, and the agent executes it to receive rewards that are the 
KPIs from the performance evaluator. The agent trains the network via temporal 
difference learning using the differences between current and historical rewards, with 
the objective to predict better action over time. Table 1 presents the deep-Q-network 
configuration details. 
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Table 1: An overview of the deep-Q-network 

Input state  (see Section 2.4) Each work-center has two states 
Each job in the queue has three states 

Output action  Each output neuron represents the Q value 
of the job 

Reward  (see Section 2.5) Reward function consists of four parts 
Topology Input layer -> 2 Hidden layers (128 and 64 

neurons) -> Output layer 
Learning method Temporal difference learning 
Activation function Rectified linear unit 
Learning rate 0.01 
Discounted rate 0.8 

 

2.4 System States 
The agent needs to learn to make decisions based on the changing states of the system 
which is the wafer fabs in this case. System states are important as they provide key 
information for the agent to learn accurately and take proper action. The deep-Q-
network facilitates the transformation between system states and action. The system 
states are considered as inputs and fed into the deep-Q-network. In this study, the 
system states are defined based on the workload and due date, as they are the major 
concerns. They consist of work-center states and the states of jobs in the queue. 
 Work-center states: 

o Number of its machines considering machine breakdown 
o Number of machines at its downstream work-centers (one-step-ahead) 

considering machine breakdown 
 Job states: 

o Operation due date 
o Final due date 
o Workload indicator of its downstream work-centers (one-step-ahead) (Zhou 

and Rose 2019) 
The work-center states are determined by the availability of machines at current work-
center and its one-step-ahead downstream work-centers. The agent must learn to 
assess whether these work-centers have sufficient capacity to process jobs in the event 
of machine breakdowns. For example, if a downstream work-center is already 
overloaded and loses capacity due to a breakdown, the agent should not assign more 
jobs to it.  
When considering job states, the agent takes into account both the operation due date 
and the final due date. The operation due date serves as a small milestone for the agent 
to learn whether jobs are progressing at the correct pace through the wafer fabs. The 
final due date represents the deadline milestone for completing a job to avoid being 
tardy. In addition to due dates, the agent also assesses the workload indicator, which 
is defined as the sum of production hours, including load/unload time and raw 
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processing time of the operation, at the current work-center and its one-step-ahead 
downstream work-centers. Based on this information, the agent can learn to choose 
jobs that are appropriate for the workload at downstream processes.  

2.5 Reward Function 
The reward function determines the reward or penalty that the agent receives based 
on its actions in the environment. Therefore, the reward function is designed to 
encourage the agent to take actions that lead to positive outcomes and avoid actions 
that lead to negative outcomes. The reward function is similar to the system state in 
that it incorporates feedback from both work-centers and jobs at both local and global 
levels, as shown in Equation (2).  

, , _ , , _ ,     (2) 
Assuming the agent selects job i for processing at work-center j at time t, the 
corresponding reward function consists of four parts. The value of each part is 
normalized to ensure each part contributes equally to the overall reward function. 
 , _ : is the sum of workload deviations of current work-center j 

and its one-step-ahead downstream work-center. Workload deviation is the 
difference between target workload and actual workload. 

 , : is the queue time of the job i, which is the time difference between current 
time t and job arrival time. 

 , : is the difference between current time t and the operation due date for job 
i. 

 _ , : is the sum of tardiness of the jobs belonging to the same product 
type as job i in the whole wafer fabs. Tardiness is the deviation between current 
time t and final due date. 

The first part, which is the sum of workload deviation of the current and downstream 
work-center, provides feedback on whether the actual workload is high or low 
compared to the target workload. As previously described, the agent considers the 
dynamic workload situation when learning the system. Therefore, the workload 
deviation tells the agent if selecting a job will have positive or negative effect on the 
workload situation, i.e., if it will result in an overloaded or underloaded work-center. 
The value of workload deviation can be positive or negative. From the viewpoint of 
workload balance, the agent should select a job to avoid congestion in downstream 
work-center, and consequently, the agent obtains a high value of workload deviation. 
The queue time of the job is the second part of the reward. A high WIP level often 
occurs at a high-utilized work-center as jobs spend considerable time in the queue. In 
this case, queue time is a useful indicator that tells the agent to prioritize jobs with 
long queue time to reduce the WIP level. Additionally, this can potentially reduce the 
cycle time of the job. 
The third part of the reward function is the deviation from the operation due date, 
which indicates whether the selected job will be delayed or not. The higher deviation 
value implies that the job is deviating more from its operation due date, and selecting 
such a job may have a cascading effect on subsequent operations.  Therefore, the agent 
should choose jobs that minimize this deviation to avoid potential delays. Compared 
to the final due date, the operation due date is a more precise indictor for preventing 
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tardiness as it allows the agent to track the progress of each operation and take 
corrective actions in timely manner.  
When a job is already tardy for its final due date, the last part of the reward function 
- accumulated tardiness of the product type becomes an important factor. Unlike the
operation due date deviation, the accumulated tardiness is always positive and only
considers jobs that are already late for their final due date. Thus, when more and more
jobs of a product type become tardy, the agent is encouraged to prioritize processing
jobs of that type to reduce the overall tardiness.

3 Simulation Model, Experiment and Results 

3.1 Simulation Model 
The whole wafer fabs dataset MIMAC6 from Measurement and Improvement of 
Manufacturing Capacities (MIMAC) is used for this study. The interested readers are 
referred to Fowler and Robinson (1995). The MIMAC6 is a typical complex wafer 
fabs model including: 
 9 products, 9 process flows, maximum 355 process steps.
 24 wafers in a lot (job). 2777 lots are released per year under fab loading of 100%.
 104 tool groups (work-centers), 228 tools (machines). 46 single processing tool

groups, 58 batching processing tool groups.
 Sequence dependent setup, rework, MTTR (mean time to repair), and MTBF

(mean time between failures) of tool group.

3.2 Simulation Experiment and Results 
The concept of dispatch agent and deep-Q-network has been implemented in C++ and 
integrated into FX simulation software. Each work-center in the MIMAC6 model, 
which contains 104 work-centers, is theoretically controlled by a dispatch agent. 
Work-centers with high utilization rate are often overloaded, resulting in significant 
job queue time. To account for computational complexity, a preliminary study is 
conducted, and the deep reinforcement learning approach is applied to only the top 5 
highest-utilized work-centers and their 27 upstream work-centers. As a result, a total 
of 32 work-centers are controlled by dispatch agents, each with its own deep-Q-
network, while the remaining 72 work-centers are controlled by the FIFO rule. During 
the training phase, the MIMAC6 model is simulated for 104 weeks, while another 
simulation of 78 weeks is carried out during the deployment phase. The first 26 weeks 
are considered as warm-up periods and excluded from statistical analysis. The fab 
loading is set at 95%, and the target due date flow factor for operation due date and 
final due date is set at 2.2. 
Figure 2 displays the evolution of WIP over 52 weeks. The curve for the FIFO rule 
shows the most fluctuation, while the ODD rule generates a smoother curve with less 
fluctuation. The MIVS and the composite rule are able to accelerate the movement of 
jobs, resulting in lower WIP curves that outperform the FIFO and ODD rules. 
Similarly, the DRL approach also produces a lower WIP curve as it balances WIP as 
part of its target. Moreover, starting from the 37th weeks onwards, the DRL approach 
significantly reduces the WIP level compared to the MIVS and composite rules.  
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Figure 2: WIP curve comparison 

Table 2 presents the performance of the whole wafer fabs, including the average cycle 
time, cycle time variance, cycle time upper percentile 95%, percent tardy job and 
average tardiness of tardy jobs. The DRL approach achieves the best performance in 
terms of average cycle time but not cycle time variance. It balances WIP to accelerate 
job movement while employing due date information to move jobs at a relatively 
smooth pace. As a result, 95% of job cycle times are lower than 35.7 days, which 
leads to the best tardiness performance compared to other four rules.  

Table 2: Performance measurements comparison 

Scenario Avg.  
Cycle Time  
(days) 

Cycle  
Time 
Variance 
(days^2) 

Cycle  
Time 
Upper 
Percentile 
95% (days) 

Percent 
Tardy 
Job (%) 

Avg. 
Tardiness 
for Tardy 
jobs (days) 

FIFO 29.6 1.7 39.1 71.4 2.2 
ODD 29.5 0.3 35.8 72.5 1.5 
MIVS 28.5 1.3 37.2 56.3 1.7 
Composite rule 28.3 1.0 36.3 53.2 0.9 
DRL  
(Agent + FIFO) 

27.2 0.8 35.7 40.6 0.7 

4 Conclusion 
This paper presented a dispatching study based on deep-Q-network reinforcement 
learning with the aim of achieving workload balance and on-time delivery 
simultaneously for wafer fabs. The dispatch agent with deep-Q-network is 
incorporated into FX simulation software. The simulation provides a training 
environment where the agent acquires knowledge and makes dispatch decisions. 
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When a machine becomes available, the agent takes the system states, such as the 
workload of the work-center and due date of the job, as input to train its own deep-Q-
network. Then, the agent selects an action based on the output of the deep-Q-network. 
Finally, the agent obtains reward from the environment to improve its decision-
making for future actions.  
In contrast to earlier contributions, workload balance and on-time delivery are taken 
into consideration as objectives. Therefore, the system states are defined carefully to 
represent the status of the wafer fabs. In addition, in order to encourage the agent to 
select appropriate actions, the reward function is also properly formulated via the 
information of workload and tardiness. The simulation results indicate the DRL 
approach outperforms the FIFO, ODD, MIVS and composite rule in terms of the 
global performance of average cycle time and average tardiness. This indicates that 
the DRL approach is capable of achieving workload balance and on-time delivery 
simultaneously. For future work, we believe there is scope for further improvement 
when all work-centers are controlled by the agents learning decision via deep-Q-
network. 
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