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Zusammenfassung
Calculus of unbounded spectrahedral shadows and their polyhedral

approximation

von Daniel Dörfler

Die vorliegende Dissertation widmet sich der polyedrischen Approximation von
nicht notwendigerweise beschränkten spektraedrischen Schatten und dem Rech-
nen mit ihnen. Diese Mengen sind die Bilder von Spektraedern, den zulässigen
Bereichen semidefiniter Programme, unter linearen Transformationen. Zwei benen-
nenswerte Eigenschaften spektraedrischer Schatten sind ihre Abgeschlossenheit be-
züglich verschiedener Mengenoperationen sowie die Möglichkeit sie mithilfe linea-
rer Operatoren zwischen symmetrischen Matrizen auf endliche Weise darzustellen.
Außerdem bilden polyedrische Mengen eine echte Teilklasse von ihnen. Dadurch
eignet sich die Methode der polyedrischen Approximation, um diese Mengen annä-
hernd durch Objekte derselben Klasse mit einfacherer Struktur zu beschreiben.

Grundlagen über affine Räume und lineare Abbildungen, Konvexität und semi-
definite Optimierung werden in Kapitel 1 wiederholt. In Kapitel 2 wird ein Kalkül
für spektraedrische Schatten entwickelt. Neben dem Herausarbeiten ihrer Abge-
schlossenheit unter zahlreichen Mengenoperationen werden insbesondere explizi-
te Darstellungen der resultierenden Menge als spektraedrische Schatten hergeleitet.
Dabei stehen Operationen, die auf unbeschränkte Mengen führen, wie z.B. Polarke-
gel, konische Hülle und Rezessionskegel, im Fokus.

Kapitel 3 widmet sich der Approximation kompakter spektraedrischer Schatten
im Hausdorff-Abstand. Es werden zwei Algorithmen zur Approximation durch Po-
lyeder vorgestellt und gezeigt, dass diese terminieren und korrekt sind. In Vorberei-
tung darauf wird außerdem ein Algorithmus entwickelt, der relativ innere Punkte
sowie die affine Hülle eines spektraedrischen Schattens berechnet. Abschließend
werden Grenzen der polyedrischen Approximierbarkeit bezüglich des Hausdorff-
Abstandes im Allgemeinen untersucht und, aufbauend auf bekannten Resultaten,
diejenigen Mengen charakterisiert, die eine solche Approximation erlauben.

In Kapitel 4 werden Approximationskonzepte entwickelt, die mit Unbeschränkt-
heit verträglich sind. Zuerst wird der Begriff der (#, d)-Approximation zur äußeren
Approximation abgeschlossener spitzer konvexer Mengen eingeführt. Es wird ge-
zeigt, dass Folgen solcher Approximationen bei abnehmenden Approximationsfeh-
lern konvergieren. ImHinblick auf ein Verfahren für ihre Berechnung wird anschlie-
ßend ein Algorithmus zur polyedrischen Approximation der Rezessionskegel spek-
traedrischer Schatten entwickelt, dessen Endlichkeit und Korrektheit ebenfalls be-
wiesen wird. Durch Kombination der bis dahin vorgestellten Algorithmen wird ein
Verfahren zur Berechnung von (#, d)-Approximationen abgeleitet. Im letzten Teil der
Arbeit wird ein weiterer Approximationsbegriff basierend auf Homogenisierungen
konvexer Mengen eingeführt. Die sogenannten homogenen d-Approximationen er-
weisen sich als schwächer im Vergleich zu (#, d)-Approximationen, lassen sich aber
vielfältiger nutzen. Insbesondere beschränken sie sich nicht auf Außenapproxima-
tionen und sind verträglich mit Polarität. Um homogene d-Approximationen zu
berechnen, wird der vorhandene Algorithmus zur Approximation von Rezessions-
kegeln auf Homogenisierungen spektraedrischer Schatten angewandt.
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Abstract
Calculus of unbounded spectrahedral shadows and their polyhedral

approximation

by Daniel Dörfler

The present thesis deals with the polyhedral approximation and calculus of spec-
trahedral shadows that are not necessarily bounded. These sets are the images of
spectrahedra, the feasible regions of semidefinite programs, under linear transfor-
mations. Two remarkable properties of spectrahedral shadows are their closedness
under various set operations as well as the possibility to represent them in a finite
manner using linear operators between symmetric matrices. Moreover, spectrahe-
dral shadows contain polyhedral sets as a proper subclass. Therefore, the method of
polyhedral approximation is a useful device to approximately describe them using
members of the same class with a simpler structure.

Basics about affine spaces and linear functions, convexity and semidefinite pro-
gramming are recapitulated in Chapter 1. In Chapter 2 we develop a calculus for
spectrahedral shadows. Besides showing their closedness under numerous set op-
erations, we derive explicit descriptions of the resulting sets as spectrahedral shad-
ows. Special attention is paid to operations that result in unbounded sets, such as
the polar cone, conical hull and recession cone.

Chapter 3 is dedicated to the approximation of compact spectrahedral shadows
with respect to the Hausdorff distance. We present two algorithms for the computa-
tion of polyhedral approximations of such sets. Convergence as well as correctness
of both algorithms are proved. As a supplementary tool we also present an algo-
rithm that generates points from the relative interior of a spectrahedral shadow and
computes its affine hull. Finally, we investigate the limits of polyhedral approxima-
tion in the Hausdorff distance in general and, extending known results, characterize
the sets that admit such approximations.

In Chapter 4 we develop concepts and tools for the approximation of spectrahe-
dral shadows that are compatible with unboundedness. We begin with presenting
the notion of (#, d)-approximation for the outer approximation of closed pointed con-
vex sets. We show that sequences of approximations converge to the true set if the
approximation errors diminish. In view of an algorithm for their computation we
develop an algorithm for the polyhedral approximation of recession cones of spec-
trahedral shadows first. Its finiteness and correctness is proved. By combining the
algorithms presented so far we derive an algorithm for the computation of (#, d)-
approximations. In the last part another notion of approximation, called homoge-
neous d-approximation, is introduced. It is based on the concept of homogenization
of a convex set and is weaker than the notion of (#, d)-approximation but addresses
two of its shortcomings. In particular, it is not limited to outer approximations and
exhibits an elegant behavior under polarity. In order to compute homogeneous d-
approximations we apply the algorithm for the approximation of recession cones to
homogenizations of spectrahedral shadows.
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Chapter 1

Introduction

Archimedes, the Greek mathematician, wrote a treatise titledMeasurements of a Circle
ca. 250 BCE [Kno86]. It contains three propositions, the third of which states: The
ratio of the circumference of any circle to its diameter is less than 22

7 but greater than 223
71

[Hea97]. Using modern notation, the proposition is rephrased as

223
71

< p <
22
7
,

i.e. Archimedes proved a lower and an upper bound of p that is correct up to two
decimal places. He derives the bounds by inscribing and circumscribing 96-sided
regular polygons to a circle and measuring their circumference. Then he showed
that 223

71 is a lower bound for the circumference of the inscribed polygon and that 22
7

is an upper bound for the circumference of the circumscribed polygon, which results
in the claim. Archimedes’s approach is an example of polyhedral approximation of the
unit circle. He realized that better polyhedral approximations yield better approx-
imations of p and that p can be computed to any prescribed accuracy using this
method. Indeed, in 1630 the astronomer Christoph Grienberger used Archimedes’s
method to calculate p to 39 decimal places [AH01].
While in the above example polyhedral approximation is merely a tool to approxi-
mate p, it has become a profoundmethod in convex analysis with applications rang-
ing through various branches of mathematics in modern literature. In the 1903 arti-
cle [Min03] Minkowski argued that every compact convex set in three-dimensional
Euclidean space can be approximated arbitrarily well by polyhedra. Although it is
not explicitly stated in the article, his line of argumentation also applies to general
n-dimensional Euclidean space. This is later mentioned by Bonnesen and Fenchel in
[BF34].
Since then, polyhedral approximation has been applied in mathematical program-
ming, in particular in multiple objective optimization [Ben98; RW05; ESS11; HLR14;
LRU14; Dör+22; AUU22], in approximation methods for general convex optimiza-
tion problems [CG59; Kel60; Vei67; BY11] and in mixed-integer convex optimiza-
tion [DG86; WP95; KLW16]. Other areas of application include machine learning
[Gie+19; YBR08] and large deviation probability theory [NR95].
Despite polyhedral approximation being an interesting problem on its own, interest
in it is also driven by the fact that polyhedra form a class of sets that have a simple
structure in the sense that they can be described by finitely many points and direc-
tions or, equivalently, by finitely many linear inequalities. For that matter, they have
already been studied in ancient Greek mathematics, for example by Euclid, who de-
scribes the construction of the five platonic solids in his Elements [Euc56].
In this thesis we develop polyhedral approximation algorithms for a special class of
convex sets called spectrahedral shadows or semidefinitely representable sets. They are
obtained as linear projections of spectrahedra and therefore form a superclass thereof.
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Spectrahedra are intersections of the cone of positive semidefinite matrices with
affine subspaces and are closely related to semidefinite programming, where they
arise as feasible regions. Semidefinite programming is the problem of maximizing
a linear function over a spectrahedron. The field has gained a lot of traction with
the development of efficient interior point methods in the last decade of the last cen-
tury, making them computationally tractable. Moreover, semidefinite programming
subsumes linear programming as a special case. Hence, semidefinite programs con-
stitute one of the largest class of optimization problems that can be solved in poly-
nomial time to arbitrary precision [VB96]. They have a wide range of applications
in combinatorial optimization, where they are used to obtain approximate solutions
to NP-hard problems such as the max cut problem [Hel00; GM12], in systems and
control theory [VB99], in machine learning, in particular low rank approximation
[CR09], and polynomial programming, where semidefinite optimization is used to
treat sum-of-squares optimization problems [PT20].
Fueled by the growing popularity of semidefinite programming, spectrahedra and
their projections have attracted researchers’ attention and efforts were undertaken to
gain a better understanding of these classes of sets and their geometrical properties
[GR95; Net11]. Understanding which sets can be cast as spectrahedral shadows also
means understanding which problems can be modeled as semidefinite optimization
problems and therefore solved in polynomial time. Various research has been con-
ducted in this regard [HN10; NS09; HN12; GWZ15; Sch18b].
The literature on polyhedral approximation algorithms and spectrahedral shadows
cited so far focuses on compact sets. Indeed, the case of unbounded sets is scarcely
discussed. Two important resources are [NR95] by Ney and Robinson, who give
a characterization of the sets that can be approximated by polyhedra in Hausdorff
distance, and [Ulu18] by Ulus, who gives a similar characterization in the context of
convex multiple objective optimization. With the present thesis we investigate not
necessarily bounded spectrahedral shadows and provide methods for their polyhe-
dral approximation. This provides means to investigate the geometry of these sets,
visualize them in dimensions two and three and, hopefully, drive further research.

1.1 Outline and results of this thesis

In the remainder of this chapter we recapitulate facts about linear algebra, convexity
and semidefinite programming, that are used throughout the subsequent chapters.
We mostly stick to the notation and terminology in the books by Rockafellar [Roc70]
and Boyd and Vandenberghe [BV04].
We develop a calculus for spectrahedral shadows in Chapter 2. Thereby, we show
that spectrahedral shadows are closed under a multitude of set operations, such as
intersections, linear transformations, Minkowski sums, taking the polar or taking
the conical hull, and derive explicit semidefinite representations for these sets. One
particular focus is on constructing the recession cone of a spectrahedral shadow,
which has not been achieved in the literature before. Our derivation relies on an
exact duality theory for semidefinite optimization due to Ramana [Ram97].
Chapter 3 is devoted to the polyhedral approximation of compact spectrahedral
shadows in the Hausdorff distance. An inner and an outer approximation algo-
rithm are presented in [Cir19]. We build upon these algorithms and present another
outer approximation algorithm based on a norm scalarization. We show that the in-
ner approximation algorithm from [Cir19] and our outer approximation algorithm
fit into the framework for the polyhedral approximation of general compact convex
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sets presented in [Kam92; Kam93; Kam94] and derive convergence results. We illus-
trate the functioning of the algorithms and compare their performance on examples.
It turns out that the Hausdorff distance is no adequate measure to quantify the qual-
ity of a polyhedral approximation if the set to be approximated is unbounded. In the
last part of Chapter 3 we investigate the limits of polyhedral approximation in the
Hausdorff distance. We compare the characterizations of polyhedral approximabil-
ity from [NR95] and [Ulu18] and prove relationships between the two.
The development of polyhedral approximation algorithms for unbounded spectra-
hedral shadows is the focus of Chapter 4. In connection with the results of the
preceding chapter we define a notion of polyhedral approximation for convex sets
called (#, d)-approximation. One important component which makes this notion ap-
plicable in the unbounded case in contrast to the Hausdorff distance is the involve-
ment of the recession cones of the polyhedron and the convex set. The represen-
tation derived in Chapter 2 turns out to be useful in this context. We prove that
(#, d)-approximations define a meaningful concept by showing that sequences of ap-
proximations converge to the actual set if # and d diminish. Thereafter, we present
an algorithm for the approximation of recession cones of spectrahedral shadows us-
ing a metric on the space of closed convex cones defined in [WW67; RW98; IS10] as
the error measure. We combine this algorithm with one presented in Chapter 3 to
derive an algorithm for the computation of (#, d)-approximations of spectrahedral
shadows. Correctness and finiteness of the algorithms are proved and numerical
experiments are conducted. In the last part of this thesis we introduce the concept
of homogeneous d-approximation, another notion of polyhedral approximation that
is more general than that of (#, d)-approximation but converges in the same sense.
It arises naturally from the identification of a convex set with a certain convex cone
called its homogenization. These are commonly used in convex analysis to reduce
problems concerning convex sets to ones concerning convex cones, see e.g. [Bri20].
We investigate the relation of both approximation concepts and show that homo-
geneous d-approximations exhibit a particularly nice behavior under polarity. Ulti-
mately, we apply the recession cone algorithm to homogenizations of spectrahedral
shadows. After an exhaustive search of the literature, we believe that it is the first
time such approximation concepts compatible with unboundedness are considered
and corresponding algorithms tailored to spectrahedral shadows are developed.

1.2 Affine spaces and linear functions

Throughout this thesis we work with inner product spaces over the field R of real
numbers. Most frequently we use the real n-space Rn, but, since semidefinite opti-
mization will play a role later, we also work with the spaceM` of real `⇥ `-matrices,
i.e. M` = R`⇥`, and the space S ` of real symmetric ` ⇥ `-matrices. By writing (·)T

we mean the transpose of the object it is applied to, which will typically be vectors,
matrices or linear functions. Therefore, it holds S ` =

�
M 2 M`

��MT = M
 
. The

space M` is isomorphic to R`2 by identifying an element x 2 R`2 with the matrix
0

B@
x1 · · · x(`�1)`+1
... . . . ...
x` · · · x`2

1

CA

and vice versa. Likewise, S ` is isomorphic toRN for N = `(`+1)
2 due to the symmetry.

However, it is convenient to work with M` and S ` in order to avoid unnecessarily
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complicating the notation.
The spaceRn consists of column vectors and is equippedwith the dot product or scalar
product. For x, y 2 Rn this is denoted by xTy. By the above mentioned isomorphism
the dot product can be extended to M` or S `. It is easy to verify that for X,Y 2 M`

one obtains the expression
tr
⇣
XTY

⌘
,

written as X • Y, where tr denotes the trace, i.e. the sum of eigenvalues of the matrix
product XTY, see [BV04; GM12]. Of course, for X,Y 2 S ` the inner product simpli-
fies to X • Y = tr(XY).
Whenever we are dealing with a set, we will assume that it is nonempty unless oth-
erwise stated. One important type of sets, that are needed to explain the structure
of spectrahedra and spectrahedral shadows later on, are affine subspaces. We make
the following definitions and statements for Rn, but they can be given with respect
to M` or S ` in exactly the same way.

Definition 1.1. A set M ✓ Rn is called an affine subspace of Rn if for every x, y 2 M
and l 2 R it holds that lx+ (1� l)y 2 M. Thus, M is an affine subspace if every
line passing through two points in M is itself contained in M.

Given an arbitrary set M ✓ Rn, the smallest, with respect to inclusion, affine
subspace containing M is called the affine hull of M. It can be be expressed as

affM =

(
m

Â
i=1

lixi
�����m 2 N,l 2 Rm, xi 2 M, i = 1, . . . ,m, eTl = 1

)
,

where e denotes the vector whose components are all equal to one of appropriate
size.

Definition 1.2. For a vector w 2 Rn \ {0} and a scalar g 2 R the set

H(w,g) =
n
x 2 Rn

���wTx = g
o

is called a hyperplane. The vector w is called the normal vector of H(w,g). The sets

H�(w,g) =
n
x 2 Rn

���wTx 6 g
o
,

H+(w,g) =
n
x 2 Rn

���wTx > g
o

are called negative and positive halfspace, respectively. Both sets may also simply be
called halfspaces.

Definition 1.3. For a set M ✓ Rn a hyperplane H(w,g) is called a supporting hy-
perplane of M at x if x 2 M \ H(w,g) and M ✓ H�(w,g) or M ✓ H+(w,g). The
halfspace that contains M is called a supporting halfspace of M at x.

The parameters w and g uniquely determine a hyperplane up to multiplication
with a nonzero factor. The concept of supporting hyperplanes plays a crucial role
in the constructions of approximation algorithms in Chapters 3 and 4. While being
affine subspaces themselves, hyperplanes are also the building blocks of them as
explained in the following theorem.

Theorem 1.4 (cf. [Roc70, Theorem 1.4]). Let A 2 Rm⇥n and b 2 Rm. Then the set
{x 2 Rn

| Ax = b} is an affine subspace. Conversely, every affine subspace can be repre-
sented in this way.
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Thus, affine subspaces are intersections of hyperplanes or, equivalently, the so-
lutions sets to systems of linear equations. Similarly, the halfspaces associated with
a hyperplane can be understood as the building blocks of closed convex sets, which
we will discuss in the next section.
Since linear functions play an important role in describing affine subspaces, it is
helpful to briefly discuss the type of functions that we need later. Like in the pre-
vious theorem, the linear functions between Rn and Rm are identified by m ⇥ n-
matrices. In describing spectrahedral shadows in Chapter 2 we also use linear func-
tions between the spaces Rn and S ` as well as between S k and S `. Indeed, those
functions can also be represented by matrices of appropriate size by identifying suit-
able bases, see [HK71, Ch. 3, Theorem 11]. However, in the context of semidefinite
programming it is more convenient to express them in a different way, as it is for
example done in [NN94; Boy+94; BPT13].

Definition 1.5. For A1, . . . , An 2 S ` the function A : Rn ! S ` defined by

A(x) =
n

Â
i=1

Aixi

is called a linear pencil of size `.

When speaking about linear pencils, the value of n is typically apparent from the
context or will be mentioned explicitly. Obviously, a linear pencil is a linear function
and every linear function from Rn to S ` can be represented as a linear pencil of
size ` by considering the ordered basis

�
Eij 2 M`

�� i, j = 1, . . . , `
 
on S `, where Eij

denotes the matrix that has a 1 at position ij and 0 everywhere else. In this way, we
can identify every linear function betweenRn and S ` by nmatrices belonging to S `.
Similarly, every linear mapA between S k and S ` can be represented as

A(X) =
k

Â
i=1

k

Â
j=1

Aijxij

for matrices Aij 2 S `, i, j = 1, . . . , k.

Definition 1.6. LetU andW be inner product spaces with inner products h·, ·iU and
h·, ·iW and let A : U ! W be a linear function. A linear function AT : W ! U is
called adjoint of A if

hA(x), yiW = hx, AT(y)iU

holds for all x 2 U and y 2 W.

It is well-known that the adjoint of a linear function is unique given that U and
W are finite-dimensional, see [HK71, Ch. 3, Theorem 21]. Furthermore, the identity
(AT)T = A holds [Rom05, Theorem 3.19]. Adjoint functions are relevant in conic
programming, where they arise in the formulation of dual problems [Nem07]. We
use the adjoints of the linear functions discussed above frequently in Chapters 2, 3
and 4. Hence, we state explicit representations of them in terms of their defining
matrices below.

Proposition 1.7. Let A : Rn ! Rm, A : Rn ! S ` and A : S k ! S ` be linear functions
defined by A(x) = Ax for A 2 Rm⇥n, A(x) = Ân

i=1 Aixi for A1, . . . , An 2 S ` and
A(X) = Âk

i=1 Âk
j=1 Aijxij for Aij 2 S `, i, j = 1, . . . , k, respectively. Then

(i) AT(y) = ATy,
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(ii) AT(Y) = (A1 • Y, . . . , An • Y)T,

(iii) for A0

ij =
1
2
�
Aij + Aji

�
, i, j = 1, . . . , k, it holds

AT(Y) =

0

B@
A0

11 • Y · · · A0

1k • Y
... . . . ...

A0

k1 • Y · · · A0

kk • Y

1

CA .

Proof. Assertion (i) is basic knowledge and can be found in [HK71, Ch. 3, Theorem
23], for example. For a proof of (ii) see [GM12, Lemma 4.5.3]. To show the last
statement, we compute

A(X) • Y =

 
k

Â
i=1

k

Â
j=1

Aijxij

!
• Y

=

 
k

Â
i=1

 
Aiixii +

k

Â
j=i+1

�
Aij + Aji

�
xij

!!
• Y

=

 
k

Â
i=1

 
Aiixii + Â

j 6=i

1
2
�
Aij + Aji

�
xij

!!
• Y

=

 
k

Â
i=1

k

Â
j=1

A0

ijxij

!
• Y

=
k

Â
i=1

k

Â
j=1

⇣
A0

ij • Y
⌘
xij

= AT(Y) • X.

In the second line we use the symmetry of X and in the fifth the linearity of the inner
product.

Note, that we identify both the linear function from Rn to Rm and the m ⇥ n-
matrix representing this function with the symbol A in the above statement.

Definition 1.8. For matrices A 2 Rm1⇥n1 and B 2 Rm2⇥n2 the Kronecker product be-
tween A and B is the (m1m2)⇥ (n1n2)-matrix

0

B@
a11B · · · a1n1B
... . . . ...

am1B · · · am1n1B

1

CA

denoted by A⌦ B.

It is straightforward to verify that (A⌦ B)T = AT ⌦ BT.
In order to stay close to the common matrix terminology we adopt the following
notation from [GM12], which we mainly utilize in Chapter 2. If U1, . . . ,Un and
W1, . . . ,Wm are inner product spaces and Aij : Uj ! Wi are linear functions for all
i, j, we write 0

B@
A11 · · · A1n
... . . . ...

Am1 · · · Amn

1

CA
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for the linear function A0 : U1 � . . .�Un ! W1 � . . .�Wm defined by

A0(x1, . . . , xn) =

 
n

Â
j=1

A1j(xj), . . . ,
n

Â
j=1

Amj(xj)

!
.

This notation is useful because we have

A0T =

0

B@
AT

11 · · · AT
m1

... . . . ...
AT

1n · · · AT
mn

1

CA

just as with matrices, which can be verified by a simple calculation. We omit the
horizontal and vertical lines if the Aij are matrices. In the special case Wi = S `i ,
i = 1, . . . ,m, we identify the elements of S `1 � . . . � S `m by block diagonal matri-
ces in S `1+···+`m . Another notation we use for linear functions A : U1 ! W1 and
B : U2 ! W2 between inner product spaces U1,U2,W1 andW2 is A� B. It is defined
as the function ✓

A 0
0 B

◆

between U1 �U2 and W1 �W2. Thereby, the zeros denote functions that are identi-
cally zero between the respective spaces. As above, this definition is in accordance
with the definition of direct sum for matrices.

1.3 Convexity

Special convex sets play a central role in this thesis. Hence, we recapitulate some
important facts from the literature.

Definition 1.9. A set C ✓ Rn is called convex if for every x, y 2 C and l 2 [0, 1] it
holds that lx+ (1� l) y 2 C. Thus, C is a convex set if every line segment between
two points in C is itself contained in C.

Given an arbitrary set M ✓ Rn, the smallest, with respect to inclusion, convex
set containing M is called the convex hull of M. It can be expressed as

convM =

(
m

Â
i=1

lixi
�����m 2 N,l 2 Rm, xi 2 M, i = 1, . . . ,m, eTl = 1

)
.

The field of convex analysis, which entails the study of convex sets, has experienced
an upsurge with the formalization and development of linear, and later convex, op-
timization theory in the middle of the last century. Convexity proved to be a key
ingredient to the development of efficient optimization algorithms. This can in part
be attributed to the multitude of nice properties convex sets admit. One of these
properties is that convexity is preserved under many set operations such as inter-
section, linear transformations, Minkowski addition, polarity and others, see [BF34;
Roc70; Hol75; HL01; AT03].
In the upcoming chapters we mainly work with convex sets that are unbounded.
The simplest such sets are cones.

Definition 1.10. A convex set K ✓ Rn is called a convex cone if for every x 2 K and
µ > 0 it holds that µx 2 K. Thus, K is a convex cone if every halfline originating
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at the origin through a point in K is itself contained in K. A convex cone K is called
pointed if it satisfies K \ (�K) = {0}.

An example of a pointed convex cone is the nonnegative orthant Rn
+ defined as

{x 2 Rn
| xi > 0, i = 1, . . . , n}. It is ubiquitous in the formulation of linear optimiza-

tion problems, see [PB14]. Similarly to the definition of convex hull the conical hull of
a set M ✓ Rn is the smallest convex cone which contains M. It is denoted by coneM
and defined as the set

(
m

Â
i=1

µixi
�����m 2 N, µ 2 Rm

+, x
i
2 M, i = 1, . . . ,m

)
.

If M is convex, then it is easily seen that coneM = {µx | µ > 0, x 2 M}. We use the
convention cone∆ = {0} in order to include edge cases, cf. Theorem 1.16 below.

Definition 1.11. Given a convex set C ✓ Rn the recession cone 0•C of C is the set

{d 2 Rn
| 8x 2 C, 8µ > 0 : x+ µd 2 C} .

An element d 2 0•C with kdk = 1 is called a direction of C or direction of recession of
C. The set C is called pointed if 0•C is pointed.

Remark 1.12. One finds literature in which every element of 0•C is called a direction
of C including the zero vector. We do not adopt this notion and restrict ourselves to
vectors of unit length. This is no restriction as every nonzero element of 0•C can be
obtained from a direction of C through scaling with some positive constant. On the
contrary, we can assign to every nonzero d 2 0•C the direction d/kdk. Moreover,
for a convex set that is also closed it is common to call it linefree if it has a pointed
recession cone. This resembles the fact that a closed convex set is linefree if and only
if it does not contain any nontrivial affine subspace, in particular it does not contain
lines, see [Hol75; Bat88].

Remark 1.13. The denotation 0•C is due to the fact that directions of C ✓ Rn can be
interpreted as points at infinity in the following sense, cf. [Roc70]. There is a natural
correspondence between points c 2 C and the halflines

�
µ(cT, 1)T 2 Rn+1

�� µ > 0
 

of the cone cone(C ⇥ {1}). The directions d of C then correspond to the halflines�
µ(dT, 0)T 2 Rn+1

�� µ > 0
 
, which lie in a hyperplane parallel to C⇥ {1}. This sug-

gests referring to directions as points at infinity of C. In this way, every convex set
in Rn can be identified by a convex cone in Rn+1. These sets are called homogeniza-
tions and it is a popular approach in convex analysis to reduce questions concerning
convex sets to questions about convex cones, see [Bri20]. We exploit this strategy in
Chapter 4 and develop an approximation algorithm based on homogenizations.

If C is a convex set that is also closed and d 6= 0, then it is sufficient to require that
the halfline {x+ µd | µ > 0} is contained in C for only one point x in order for d to
be a direction of C according to [Roc70, Theorem 8.3]. Moreover, a closed convex set
C is bounded if and only if 0•C = {0}, see [Roc70, Theorem 8.4]. Recession cones
are important building blocks of unbounded convex sets because they describe their
asymptotic behavior. In order to express this formally in Theorem 1.16, we need the
concept of extreme points and extreme directions.

Definition 1.14. Let C ✓ Rn be convex. A convex set F ✓ C is called a face of C if

8x, y 2 C,l 2 (0, 1) : lx+ (1� l)y 2 F =) x, y 2 F.
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A face of dimension n � 1 is called a facet and a zero-dimensional face an extreme
point. A direction d of C is called an extreme direction of C if there exists a point x 2 C
such that the halfline {x+ µd | µ > 0} is a face of C.

We denote the set of extreme points of C by extC and the set of extreme directions
by extdirC. Note that in general the sets extdirC and extdir 0•C are not equal.

Example 1.15. Consider the closed convex set C =
�
x 2 R2

+

�� x1x2 > 1
 
, which is

the epigraph of a hyperbola. Then 0•C = R2
+ and its extreme directions are (1, 0)T

and (0, 1)T. However, C does not admit any extreme directions.

Extreme points and directions are important because they entail all the informa-
tion needed to generate a closed pointed convex set. The following result is called
the Klee-Minkowski-Hirsch-Hoffman-Goldman-Tucker theorem.

Theorem 1.16 (cf. [Hol75]). Let C ✓ Rn be a closed pointed convex set. Then

C = conv (extC) + cone (extdirC) .

Corollary 1.17 (cf. [Roc70, Corollary 18.5.3]). Let C ✓ Rn be a closed pointed convex
set. Then extC 6= ∆.

Corollary 1.18 (cf. [Roc70, Corollary 18.5.2]). Let K 6= {0} ✓ Rn be a closed pointed
convex cone. Then K = cone (extdirK).

The Klee-Minkowski-Hirsch-Hoffman-Goldman-Tucker theorem can be under-
stood as an internal representation of C. In contrast, it is also possible to give an
external representation of a closed convex set as hinted at in the remark after Theo-
rem 1.4.

Proposition 1.19 (cf. [BV04]). Let C ✓ Rn be a closed convex set. For every boundary
point x̄ of C there exists a supporting halfspace H�(w,g) of C at x̄. If, in addition, C is a
cone, then g = 0.

Definition 1.20. Let C ✓ Rn be convex and let x̄ 2 C. The normal cone of C at x̄,
denoted by NC(x̄), is defined as the set

n
w 2 Rn

��� 8x 2 C : wT (x� x̄) 6 0
o
.

By definition H�(w,g) being a supporting halfspace of C at x̄ implies wTx 6 g
for all x 2 C and wT x̄ = g. Thus, a supporting halfspace can be associated with a
linear function that attains its maximum on C. The normal cone NC(x̄) collects all
the linear functions that achieve their maximum over C at x̄.

Theorem 1.21 (cf. [HL01]). A closed convex set C ✓ Rn is the intersection of all halfspaces
that support C at any point.

A very important special type of convex sets that we frequently use are polyhe-
dra. They are the convex sets for which the representations according to Theorems
1.16 and 1.21 can be realized in a finite manner.

Definition 1.22 (cf. [Gru07]). Let A 2 Rm⇥n and b 2 Rm. The set

P = {x 2 Rn
| Ax 6 b}

is called a polyhedron. The tuple (A, b) is called an H-representation of P. If P is also
bounded, it is called a polytope.
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According to the definition, P is the intersection of the m halfspaces H�(aiT, bi),
i = 1, . . . ,m, where ai denotes the i-th row of A. Hence, by eliminating redundancy
in an H-representation, it constitutes a finite internal representation in the sense of
Theorem 1.21. Analogously, a finite external representation can be given.

Definition 1.23 (cf. [Gru07]). Let V 2 Rn⇥m and D 2 Rn⇥r. The tuple (V,D) is
called a V-representation of the polyhedron

n
Vl + Dµ

��� l 2 Rm
+, µ 2 Rr

+, e
Tl = 1

o
.

Calling the set in the definition a polyhedron as well is justified by the celebrated
Weyl-Minkowski theorem.

Theorem 1.24 (Weyl-Minkowski theorem, see [Gru07, Theorem 14.3]). Every polyhe-
dron has a V-representation. Conversely, every set with a V-representation is a polyhedron.

Given a polyhedron P with V-representation (V,D) and assuming that no col-
umn of D is the zero vector, P can be written as

P = conv
n
v1, . . . , vm

o
+ cone

⇢
d1

kd1k
, . . . ,

dr

kdrk

�
,

where vi, i = 1, . . . ,m, and dj, j = 1, . . . , r, are the columns of V and D, respectively.
Therefore, a polyhedron is the Minkowski sum of the convex hull of finitely many
points and the conical hull of finitely many directions. The assumption that every
column of D is nonzero is no restriction because every conical hull contains the ori-
gin by definition. Hence, every zero column of D can be omitted. The extreme points
of P are called vertices and the set of all vertices is denoted by vert P.
We have seen that supporting halfspaces to a closed convex set C ✓ Rn can be ob-
tained by maximizing a linear function over C. Those functions that yield such a
halfspace are determined by the normal cones to C. A relation to 0•C is given in
Proposition 3.7. Another useful tool for finding supporting halfspaces is the projec-
tion onto C. For y 2 Rn we consider the problem

min {kx� yk | x 2 C} ,

i.e. we are interested in the points of C closest to y with respect to the Euclidean
distance. It is a classical result that for closed convex C the minimum is uniquely
attained, hence it is justified, see [HL01]. We denote the above minimum by d (y,C)
and define

pC (y) = argmin {kx� yk | x 2 C}

as the projection of y onto C.

Proposition 1.25 (cf. [HL01, Theorem 3.1.1]). Let C ✓ Rn be a closed convex set and let
x̄ 2 C, y 2 Rn. Then the following are equivalent:

(i) x̄ = pC (y),

(ii) (y� x̄)T (x� x̄) 6 0 for all x 2 C.

If, in addition, C is a cone, then
(y� x̄)T x̄ = 0.

If y 2 C, then one clearly has d (y,C) = 0 and pC (y) = y. Otherwise, d (y,C) > 0
and the halfspace H�(y � pC (y) ,g) with g = (y � pC (y))TpC (y) supports C at
pC (y).
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1.4 Semidefinite programming

Semidefinite optimization problems play a crucial role in the development of ap-
proximation algorithms in Chapters 3 and 4. The algebraic objects needed to de-
scribe these problems are positive semidefinite matrices.

Definition 1.26. A matrix X 2 S ` is called positive semidefinite if xTXx > 0 holds for
all x 2 R`. Matrix X is called positive definite if the inequality is strict for all x 6= 0.
Positive semidefiniteness and positive definiteness of X are denoted by X < 0 and
X � 0, respectively.

The set of positive semidefinite and positive definite matrices of size ` are written
as S `

+ and S `
++, i.e.

S
`
+ =

n
X 2 S

`
���X < 0

o

and
S
`
++ =

n
X 2 S

`
���X � 0

o
,

respectively. It is well-known that S `
+ is a closed pointed convex cone that has

nonempty interior. Given symmetric matrices X,Y of the same size, we write X < Y
and X � Y if X � Y < 0 and X � Y � 0, respectively. Moreover, X 4 Y and X � Y
is equivalent to �X < �Y and �X � �Y.

Proposition 1.27 (cf. [HJ13]). Let X 2 S `. The following statements are equivalent:

(i) X is positive semidefinite,

(ii) all eigenvalues of X are nonnegative,

(iii) all principal minors of X are nonnegative,

(iv) there exists a matrix L 2 Rk⇥` such that X = LTL, where k is the rank of X.

Similar results can be formulated for positive definite matrices, see e.g. [LV12;
HJ13]. A helpful tool in the treatment of positive semidefinite and definite matrices
is the Schur complement.

Proposition 1.28 (cf. [Zha05]). Let X 2 M`1 , Y 2 R`1⇥`2 , Z 2 M`2 and consider the
block matrix

W =

✓
X Y
YT Z

◆
.

Then the following hold:

(i) W � 0 () X � 0 and Z�YTX�1Y � 0,

(ii) W � 0 () Z � 0 and X�YZ�1YT � 0,

(iii) if X � 0, then W < 0 () Z�YTX�1Y < 0,

(iv) if Z � 0, then W < 0 () X�YZ�1YT < 0.

Note that a positive definite matrix is invertible. The expressions Z � YTX�1Y
and X�YZ�1YT are called Schur complements ofW.
Semidefinite programming is the task of maximizing or minimizing a linear function
over the intersection of an affine subspace with the cone of positive semidefinite ma-
trices. It can be seen as a generalization of linear programming which aims to max-
imize or minimize a linear function over the intersection of an affine subspace with
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the cone Rn
+. Both problem types belong to the class of conic optimization problems,

see [PB14]. A semidefinite program in standard form, also called primal program or
primal problem, can be written as

min C • X s.t. A
T(X) = b

X < 0
(SDP)

for data C 2 S `, b 2 Rm and a linear pencil A of size `. Recall that we identify the
map A with matrices A1, . . . , Am 2 S `. Hence, the first constraint can equivalently
be expressed as

A1 • X = b1
...

Am • X = bm
according to Proposition 1.7. Any point satisfying the constraints to an optimization
problem is called feasible point and the corresponding problem is called feasible. The
set of all feasible points is referred to as the feasible region. A feasible point X of
(SDP) that satisfies X � 0 is a strictly feasible point. If the problem (SDP) admits a
strictly feasible point, it is called strictly feasible. A feasible point X⇤ of (SDP) with
C • X⇤ 6 C • X for all feasible points X is referred to as a solution to (SDP). A solution
X⇤ realizes the optimal value C • X⇤, i.e. the objective function value attained at X⇤.
To every problem of type (SDP) we can assign a dual problem (SDP*) as

max bTy s.t. A(y) 4 C. (SDP*)

The dual feasible region consists of all points y 2 Rm for which the linear combi-
nation Âm

i=1 �Aiyi of the matrices �A1, . . . ,�Am associated with A translated by
C is positive semidefinite. Strict feasibility of (SDP*) is defined analogously as for
(SDP). A problem of the form (SDP*) is again a semidefinite optimization problem
and the different formulations (SDP) and (SDP*) can be converted into each other,
see [VB96]. The primal and dual problem are connected through an elaborate duality
theory that yields weak and strong duality results.

Lemma 1.29 (weak duality, cf. [VB96]). Let X be feasible for (SDP) and y be feasible for
(SDP*). Then bTy 6 C • X.

Theorem 1.30 (strong duality, cf. [BL00]). Let (SDP) be strictly feasible and bounded
below, i.e. the set {C • X |X is feasible for (SDP)} has an infimum p⇤. Then an optimal
solution y⇤ to (SDP*) exists and

bTy⇤ = p⇤.

Analogously, if the dual problem (SDP*) is strictly feasible and bounded above, i.e. the set�
bTy

�� y is feasible for (SDP*)
 
has a supremum d⇤, then an optimal solution X⇤ to (SDP)

exists and
C • X⇤ = d⇤.

It is evident that if the primal and dual problem are strictly feasible, then optimal
solutions to both exist and the optimal values coincide. The assumptions sufficient
for strong duality to hold, namely strict feasibility and boundedness of the objective
function values, are called regularity conditions or constraint qualifications. They
constitute the main difference to the duality theory for linear programming, where
strong duality holds without further assumptions. Some effects of this limitation
will become apparent in the following chapter.
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Chapter 2

Calculus of spectrahedral shadows

This chapter is concerned with the development of a calculus for spectrahedra and
spectrahedral shadows. We show that the latter are closed under a number of common
set operations. Spectrahedral shadows have been studied extensively in the litera-
ture and the closedness under some operations that we consider is certainly known.
Important references in this regard are [GR95; HN09; NS09; HN10; HN12; Net11;
BPT13]. What sets our approach apart is that we derive explicit representations of
the resulting sets in terms of the describing data of the spectrahedral shadows. More-
over, we treat unbounded sets in detail and find representations of the polar and the
recession cone of a spectrahedral shadow. In particular, recession cones have not
been studied before. A similar set calculus for the compact case is due to Ciripoi
[Cir19].

2.1 Spectrahedra and their projections

Definition 2.1 (cf. [BPT13]). Let A be a linear pencil of size ` and A0 2 S `. The set

C = {x 2 Rn
| A0 +A(x) < 0}

is called a spectrahedron. The expression A0+A(x) < 0 is referred to as a linear matrix
inequality, abbreviated as LMI.

Thus, spectrahedra are the feasible regions of the semidefinite optimization prob-
lems of type (SDP). They are closed convex sets because an LMI is equivalent to the
infinitely many inequalities

yT (A0 +A(x)) y = yyT • (A0 +A(x)) > 0

for all y 2 R`, which describe halfspaces in S `. Moreover, defining spectrahe-
dra by a single LMI is no restriction over having finitely many. Given two LMIs
A0 +A(x) < 0 and B0 + B(x) < 0, they can be written as the single LMI

✓
A0 +A(x) 0

0 B0 + B(x)

◆
< 0

with a block diagonal structure.

Remark 2.2. A simple calculation shows that the block diagonal matrix
0

BBB@

A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Am

1

CCCA
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is positive semidefinite if and only if all the blocks A1, . . . , Am are positive semidefi-
nite.

Spectrahedra, being defined by linear matrix inequalities, can be understood as
a generalization of polyhedra, which can be defined by finitely many linear inequal-
ities through an H-representation. Indeed, every polyhedron is also a spectrahe-
dron. To see this, consider the polyhedron P =

�
x 2 Rn

�� aiTx 6 bi, i = 1, . . . ,m
 
.

The defining inequalities of P can be interpreted as positive semidefiniteness of the
1⇥ 1-matrices bi � aiTx, i = 1, . . . ,m. Taking the above remark into account P can be
written as

P =

8
>>><

>>>:
x 2 Rn

���������

0

BBB@

b1 � a1Tx 0 · · · 0
0 b2 � a2Tx · · · 0
...

... . . . ...
0 0 · · · bm � amTx

1

CCCA
< 0

9
>>>=

>>>;
,

which is the spectrahedron
8
><

>:
x 2 Rn

�������

0

B@
b1

. . .
bm

1

CA+
n

Â
j=1

0

B@

�a1j
. . .

�amj

1

CA xj < 0

9
>=

>;
.

Hence, all spectrahedra that are defined by diagonal matrices are in fact polyhedra.
However, verifying polyhedrality of a spectrahedron is not as straightforward as
checking whether the spectrahedron is defined by diagonal matrices because it is
always possible to add a redundant LMI to the definition of a spectrahedron that
does not describe a polyhedron. A thorough investigation of this problem is found
in [BRS15]. The above derivation demonstrates that all results about spectrahedra
in this chapter also apply to polyhedra. A comprehensive calculus for the class of
polyhedra and polyhedral convex functions is developed in [CLW19]. In particular,
a stronger version of Proposition 2.28 below holds for the polyhedral case.
It is possible to describe spectrahedra in another way that sets them apart from poly-
hedra. According to Proposition 1.27 a matrix is positive semidefinite if and only if
all its principal minors are nonnegative. Therefore, a point x̄ is contained in the
spectrahedron

C = {x 2 Rn
| A0 +A(x) < 0}

if and only if all 2` � 1 principal minors pj of A0 +A(x) are nonnegative at x̄, that is
x̄ belongs to the set

�
x 2 Rn �� p1(x) > 0, . . . , p2`�1(x) > 0

 

defined by finitely many polynomial inequalities. Note that the degree of the poly-
nomials pj is at most `. Any set admitting such a representation is called a basic
closed semialgebraic set. They are studied as part of the field of real algebraic geom-
etry which is concerned with the solution sets to systems of polynomial equations
and inequalities, see e.g. [BCR98]. This suggests to study spectrahedra and their
properties within this framework and, indeed, this is done in the literature men-
tioned at the beginning of this chapter. However, we take a different approach and
investigate these sets through the lens of convex analysis and are more focused on
the properties of spectrahedra as convex sets rather than solution sets to polynomial
inequalities. It is noteworthy that spectrahedra form a proper subset of the class of
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FIGURE 2.1: A spectrahedron defined by a linear pencil of size 3 and
the set of zeros of its principal minors.

basic closed semialgebraic sets. This is evident from the fact that the latter do not
even have to be convex.

Example 2.3. Consider the following spectrahedron C ✓ R2 that is defined by a
linear pencil of size 3:

C =

8
<

:x 2 R2

������

0

@
1� x1 0 1

0 x1 + 2 x2 � 1
1 x2 � 1 x2 + 1

1

A < 0

9
=

;

=

8
<

:x 2 R2

������

0

@
1 0 1
0 2 �1
1 �1 1

1

A+

0

@
�1 0 0
0 1 0
0 0 0

1

A x1 +

0

@
0 0 0
0 0 1
0 1 1

1

A x2 < 0

9
=

; .

It is defined by the region where its 7 principal minors

p1(x) = �x21x2 + x1x22 � x21 � x22 � 3x1x2 � x1 + 4x2 � 1

p2(x) = �x21 � x1 + 2
p3(x) = �x1x2 � x1 + x2
p4(x) = �x22 + x1x2 + x1 + 4x2 + 1
p5(x) = �x1 + 1
p6(x) = x1 + 2
p7(x) = x2 + 1

are nonnegative. The boundary of C is then contained in the set of points where at
least one of the polynomials pj, j = 1, . . . , 7, vanishes. Figure 2.1 shows spectrahe-
dron C as the shaded region as well as the sets

�
x 2 R2

�� pj(x) = 0
 
, j = 1, . . . , 7.

Note that the set of zeros of p5 and p6 are contained in that of p2.

Example 2.4. The Euclidean n-ball

Br(c) = {x 2 Rn
| kx� ck 6 r}
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of radius r > 0 centered at c 2 Rn is a spectrahedron. This can be seen by applying
Proposition 1.28. We reformulate the condition kx� ck 6 r as

r > kx� ck () r2 � (x� c)T(x� c) > 0

() r� (x� c)T
1
r
I(x� c) > 0,

where I denotes the identity matrix of appropriate size. The expression on the left
in the last inequality is a Schur complement of the (n+ 1)⇥ (n+ 1)-matrix

✓
rI x� c

(x� c)T r

◆

due to the identity r�1 I = (rI)�1. Therefore, we obtain the representation

Br(c) =
⇢
x 2 Rn

����

✓
rI x� c

(x� c)T r

◆
< 0

�
,

which is a spectrahedron. We point out that it is possible to derive a smaller repre-
sentation of Br(c) as a spectrahedron using only n⇥ n-matrices, see [Kum16].

Further examples conveying an impression which types of sets spectrahedra en-
compass are found in [BPT13, Chapter 6].
For a polyhedron P ✓ Rn with H-representation (A, b) such that every row of A is
nonzero the interior of P, denoted int P, can be expressed as the set

{x 2 Rn
| Ax < b} .

That is, a point belongs to the interior of P if and only if all the defining inequalities
of P are satisfied strictly, see [Zie95, Lemma 2.8]. Naturally, one asks whether a
similar result holds for the spectrahedral case, i.e. do we have

intC = {x 2 Rn
| A0 +A(x) � 0}

for the spectrahedron C = {x 2 Rn
| A0 +A(x) < 0}? The situation in this case is

different. If there exists x̄ with A0 +A(x̄) � 0, then x̄ is an interior point of C. To
see this, note that a positive definite matrix has positive eigenvalues [HJ13] and the
minimum eigenvalue function is concave [BV04]. Hence, for every direction d 2 Rn

and small enough # > 0, A0 +A (x̄+ #d) � 0 holds. On the contrary, consider the
spectrahedron

C =

⇢
x 2 R2

����

✓
x1 + x2 + 1 �x1 � x2 � 1
�x1 � x2 � 1 x1 + x2 + 1

◆
< 0

�
. (2.1)

Although C is not defined by diagonal matrices, it can easily be seen from a refor-
mulation using principal minors that it is the polyhedron

�
x 2 R2

�� x1 + x2 > �1
 
.

Hence, the origin is an interior point of C. However, the matrix
✓

1 �1
�1 1

◆

is not positive definite. This shortcoming is overcome by applying a suitable trans-
formation to the data of C that does not change C itself.
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Proposition 2.5. Let C = {x 2 Rn
| A0 +A(x) < 0} be given. Then there exists a matrix

V such that
C =

n
x 2 Rn

���VT (A0 +A(x))V < 0
o

and
intC =

n
x 2 Rn

���VT (A0 +A(x))V � 0
o
.

Proofs can be found in [GR95, Corollary 5] and [HV07, Lemma 2.3]. The first one
also asserts that the columns of the matrix V must span the orthogonal complement
of the intersection of the null spaces of thematrices Ai, i = 0, . . . , n, and in the second
it is shown that if 0 2 intC, then V can be chosen such that VTA0V = I. We will
from now on assume that spectrahedra are given in a form according to Proposition
2.5. Moreover, if x̄ 2 intC, then no generality is lost by assuming that 0 2 intC
because we can consider the set C� {x̄}, which is easily seen to be a spectrahedron
again.

Example 2.6. We turn to the spectrahedron defined in Equation (2.1) again. The
intersection of the null spaces of the definingmatrices is

�
t(1, 1)T

�� t 2 R
 
. Choosing

V = 1
2 (1,�1)T yields

C =

⇢
x 2 R2

����V
T

✓
x1 + x2 + 1 �x1 � x2 � 1
�x1 � x2 � 1 x1 + x2 + 1

◆
V > 0

�

=
�
x 2 R2 �� x1 + x2 > �1

 
.

and intC =
�
x 2 R2

�� x1 + x2 > �1
 
.

Definition 2.7 (cf. [BPT13]). Let A and A be linear pencils of size ` and A0 2 S `.
The set

S =
�
x 2 Rn �� 9 y 2 Rm : A0 +A(x) +A(y) < 0

 

is called a spectrahedral shadow or projected spectrahedron or semidefinitely representable
set.

The name originates from the fact that a spectrahedral shadow S is the orthogo-
nal projection of the spectrahedron

C =

⇢✓
x
y

◆
2 Rn+m

���� A0 +
�
A A

� ✓x
y

◆
< 0

�

onto the x component. The set C and the vector y are called a lift of S and a lifting
variable in this context. Clearly, every spectrahedron is a spectrahedral shadow with
m = 0. On the other hand, spectrahedra are not stable under projection, i.e. a
projected spectrahedron is not necessarily spectrahedral.

Example 2.8. Consider the set C =
�
x 2 R2

+

�� x1x2 > 1
 
. It is described by the LMI

✓
x1 1
1 x2

◆
< 0.

Its projection onto x1 is the set S = R++ which is not closed and therefore not a
spectrahedron. The sets are illustrated in Figure 2.2.

Thus, spectrahedral shadows describe a more general class of convex sets than
spectrahedra. This is in contrast to the polyhedral case where it is known that
the projection of a polyhedron is again a polyhedron. Fourier-Motzkin elimination
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C

S

FIGURE 2.2: Spectrahedra are not stable under orthogonal projec-
tions.

[Mot36] is an algorithmic procedure for eliminating variables from systems of linear
inequalities. It can be used to compute quantifier-free descriptions of polyhedra that
are projections of higher dimensional polyhedra in H-representation. Therefore, it
certifies that polyhedra are closed under projections. The method is sensitive to the
size of the H-representation of the high dimensional polyhedron. In particular, if an
H-representation of the polyhedron

P =
�
x 2 Rn �� 9 y 2 Rm : Ax+ Ay 6 b

 

with b 2 Rd is sought, then Fourier-Motzkin elimination produces a description of P
with at most 4(d/4)2m inequalities, many of whichmight be redundant, see [Mon10].
Hence, the complexity is doubly exponential and the method is not practical. In
[Wei17; CLW19] another method, that is less sensitive to the dimension of the input
polyhedron, is proposed to compute both an H- and V-representation of a projected
polyhedron using methods from multiple objective linear programming.

Remark 2.9. As mentioned above, spectrahedra are properly contained in the class
of basic closed semialgebraic sets. This larger class also lacks the property of being
stable under projections because closedness might not be preserved. Analogously to
the generalization of spectrahedra to spectrahedral shadows is the transition of basic
closed semialgebraic sets to semialgebraic sets. Those are the sets that can be generated
from basic closed semialgebraic sets by taking finite unions, finite intersections and
complements. Every semialgebraic set in Rn can be written as a finite union of sets
of the form

{x 2 Rn
| p1(x) = · · · = pk(x) = 0, pk+1 > 0, . . . , pm > 0}

for polynomials pi, i = 1, . . . ,m, k 6 m, see [BCR98, Proposition 2.1.8]. The Tarski-
Seidenberg theorem [BPR06, Theorem 2.76] states that the projection of a semialge-
braic set is again semialgebraic. This particularly implies that spectrahedral shad-
ows are semialgebraic sets. Explicit descriptions of them in terms of polynomials
can be obtained with cylindrical algebraic decomposition [Col75], a quantifier elim-
ination algorithm for semialgebraic sets. Helton and Nie [HN10] conjectured that
every convex semialgebraic set is a spectrahedral shadow. Scheiderer proved that
the Helton-Nie conjecture is true in the plane [Sch18a] and, recently, showed that it
does not hold in dimensions three and above [Sch18b]. Hence, the class of convex
semialgebraic sets is in fact larger than the class of spectrahedral shadows.
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The modeling power of spectrahedral shadows and their relevance to semidefi-
nite programming make them an active area of research. Applications include sys-
tem and control theory [Boy+94], structural optimization, wire and transistor design
[VB99] and matrix rank minimization [Faz02]. Therefore, deriving explicit semi-
definite representations of sets is desired. One popular approach is called Lasserre
Relaxation [Las09]. It is a method to construct an approximation to a set S given
in terms of polynomial equations and inequalities that is a spectrahedral shadow.
The general idea is to introduce a lifting variable for every monomial in the descrip-
tion of S. Thereby, the equations and inequalities become linear. The nonlinearity
is then introduced by a positive semidefiniteness condition coming from the lifting
variables. Another method for constructing semidefinite representations is called
localization, see [BPT13]. The idea is to describe S as the composition of set oper-
ations that preserve the semidefinite representable set type applied to simple sets
for which descriptions as spectrahedral shadows are known. In [NS09] this is done
to derive an explicit representation as a spectrahedral shadow of the convex hull of
the union of finitely many spectrahedral shadows. We follow the second approach
in this work because it yields exact semidefinite representations given that S is a
spectrahedral shadow. As already mentioned in Section 1.4, the problems (SDP) and
(SDP*) can be transformed into each other. Hence, the feasible region of (SDP) can
be formulated as a LMI. However, this is a tedious process and typically increases
the size of the involved matrices. This motivates us to define a representation for
spectrahedral shadows that is more flexible than a single LMI as in Definition 2.7.

Definition 2.10. For A0 2 S `, linear pencils A and A of size ` and B of size k,
A : S k ! S `, B 2 Rd⇥n, B 2 Rd⇥m and b 2 Rd the tuple

�
A0,A,A,A, B, B,BT, b

�
is

called a representation of the spectrahedral shadow

S =

8
><

>:
x 2 Rn

�������
9 y 2 Rm,Z 2 S

k :
A0 +A(x) +A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = b

Z < 0

9
>=

>;
.

It follows from the considerations above that S is indeed a spectrahedral shadow.
The advantage of using this representation is flexibility. If one were to apply the re-
sults in this chapter to a spectrahedral shadow S, he could do so directly using the
representation of S that is available to him, e.g. from an application. Reformulating S
to obtain an appearance according to Definition 2.7 is not necessary. Even more gen-
eral representations are possible, e.g. by allowing upper and lower bounds instead
of equalities or projecting only a submatrix of Z, at the cost of additional parameters.
Our representation is a middle ground between flexibility and bloat.

Remark 2.11. If any parameter in a representation of a spectrahedral shadow is not
present, it is written as ?. For example, the tuple (A0,A,?,?,?,?,?,?) describes
a spectrahedron as defined in Definition 2.1. This is equivalent to the ranges of A,
A,A, BT containing only the zero element in the respective codomains and B, B and
b being zero matrices and the zero vector of appropriate sizes, respectively.

2.2 Representations under set operations

We will now derive representations of spectrahedra and spectrahedral shadows un-
der set operations that preserve the set type.
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Proposition 2.12 (intersection). Let S1, S2 ✓ Rn be spectrahedral shadows represented by
⇣
A1

0,A
1,A1,A1, B1, B1,B1T, b1

⌘
and

⇣
A2

0,A
2,A2,A2, B2, B2,B2T, b2

⌘
,

respectively. Then the intersection S1 \ S2 ✓ Rn is a spectrahedral shadow represented by
✓
A1

0 � A2
0,
✓

A1

A2

◆
,A1 �A2,A1

�A2,
✓
B1

B2

◆
, B1 � B2,

⇣
B
1
� B

2
⌘T

,
✓
b1
b2

◆◆
.

Proof. A straightforward calculation yields

S1 \ S2 =

8
>>>>>>><

>>>>>>>:

x 2 Rn

�������������

9
y1 2 Rm1 , y2 2 Rm2

Z1
2 S

k1 ,Z2
2 S

k2
:

A1
0 +A

1(x) +A1(y1) +A1(Z1) < 0

A2
0 +A

2(x) +A2(y2) +A2(Z2) < 0

B1x+ B1y1 + B
1T(Z1) = b1

B2x+ B2y2 + B
2T(Z2) = b2

Z1 < 0,Z2 < 0

9
>>>>>>>=

>>>>>>>;

=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

x 2 Rn

������������������

9 y 2 Rm1+m2 ,Z 2 S
k1+k2 :

A1
0 � A2

0 +

✓
A1

A2

◆
(x) +

⇣
A1 �A2

⌘
(y) +

⇣
A1

�A2
⌘
(Z) < 0

✓
B1

B2

◆
x+

⇣
B1 � B2

⌘
y+

⇣
B
1
� B

2
⌘T

(Z) =
✓
b1
b2

◆

Z < 0

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

.

In the second equation we implicitly set

y =

✓
y1
y2

◆
and Z =

✓
Z1 V
VT Z2

◆

for a matrix V 2 Rk1⇥k2 . It is not necessary to explicitly add the condition V = 0
because Z < 0 implies Z1 < 0 and Z2 < 0 and because A1 �A2 and (B1 � B2)T do
not act on V. Hence, there is a solution to the system in the first line if and only if
there is a solution to the system in the second line with V = 0.

Corollary 2.13. Let C1, C2 ✓ Rn be spectrahedra defined by the linear pencils A, B and
matrices A0, B0 of sizes `1 and `2, respectively. Then the intersection C1 \ C2 ✓ Rn is a
spectrahedron defined by the linear pencil

✓
A

B

◆

and the matrix A0 � B0 of sizes `1 + `2.

Proof. Apply Proposition 2.12 with m1 = m2 = k1 = k2 = 0 and B1 = B2 = b1 =
b2 = ? to obtain

C1 \ C2 =

(
x 2 Rn

�����

✓
A0 0
0 B0

◆
+

n

Â
i=1

✓
Ai 0
0 Bi

◆
xi < 0

)
.
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Another operation under which spectrahedra are stable is the Cartesian product.

Proposition 2.14 (Cartesian product). Let S1 ✓ Rn1 , S2 ✓ Rn2 be spectrahedral shadows
represented by

⇣
A1

0,A
1,A1,A1, B1, B1,B1T, b1

⌘
and

⇣
A2

0,A
2,A2,A2, B2, B2,B2T, b2

⌘
,

respectively. Then the Cartesian product S1 ⇥ S2 ✓ Rn1+n2 is a spectrahedral shadow
represented by
✓
A1

0 � A2
0,A

1
�A

2,A1 �A2,A1
�A2, B1

� B2, B1 � B2,
⇣
B
1
� B

2
⌘T

,
✓
b1
b2

◆◆
.

Proof. The Cartesian product is defined as

S1 ⇥ S2 =

8
>>>>>>>>>><

>>>>>>>>>>:

✓
x1
x2

◆
2 Rn1+n2

����������������

9 y1 2 Rm1 , y2 2 Rm2 ,Z1
2 S

k1 ,Z2
2 S

k2 :

A1
0 +A

1(x1) +A1(y1) +A1(Z1) < 0

A2
0 +A

2(x2) +A2(y2) +A2(Z2) < 0

B1x1 + B1y1 + B
1T(Z1) = b1

B2x2 + B2y2 + B
2T(Z2) = b2

Z1 < 0,Z2 < 0

9
>>>>>>>>>>=

>>>>>>>>>>;

=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

x 2 Rn1+n2

��������������������

9 y 2 Rm1+m2 ,Z 2 S
k1+k2 :

A1
0 � A2

0 +
⇣
A

1
�A

2
⌘
(x) +

⇣
A1 �A2

⌘
(y) +

⇣
A1

�A2
⌘
(Z) < 0

⇣
B1

� B2
⌘
x+

⇣
B1 � B2

⌘
y+

⇣
B
1
� B

2
⌘T

(Z) =
✓
b1
b2

◆

Z < 0

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

.

In the last expression we have set

x =

✓
x1
x2

◆
, y =

✓
y1
y2

◆
and Z =

✓
Z1 V
VT Z2

◆

for a matrix V 2 Rk1⇥k2 . This definition of Z is valid with the same line of argumen-
tation as in the proof of Proposition 2.12.

Corollary 2.15. Let C1 ✓ Rn1 , C2 ✓ Rn2 be spectrahedra defined by the linear pencils
A, B and matrices A0, B0 of sizes `1 and `2, respectively. Then the Cartesian product
C1 ⇥ C2 ✓ Rn1+n2 is a spectrahedron defined by the linear pencil A � B and the matrix
A0 � B0 of sizes `1 + `2.

Proof. Apply Proposition 2.14 with m1 = m2 = k1 = k2 = 0 and b1 = B2 = b1 =
b2 = ? to obtain

C1 ⇥ C2 =

(✓
x1
x2

◆
2 Rn1+n2

�����

✓
A0 0
0 B0

◆
+

n1

Â
i=1

✓
Ai 0
0 0

◆
x1i +

n2

Â
i=1

✓
0 0
0 Bi

◆
x2i < 0

)
.
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Proposition 2.16 (Minkowski sum). Let S1, S2 ✓ Rn be spectrahedral shadows repre-
sented by

⇣
A1

0,A
1,A1,A1, B1, B1,B1T, b1

⌘
and

⇣
A2

0,A
2,A2,A2, B2, B2,B2T, b2

⌘
,

respectively. Then the Minkowski sum S1 + S2 ✓ Rn is a spectrahedral shadow represented
by

0

@A1
0 � A2

0,?,
⇣

A1 A1
⌘
�

⇣
A2 A2

⌘
,A1

�A2,M1,M2,M3,

0

@
b1
b2
0

1

A

1

A

with

M1 =

0

@
0
0
I

1

A , M2 =

0

@
B1 B1

B2 B2

�I �I

1

A and M3 =
�
B1 � B2 0

�T .

Proof. By definition the Minkowski sum is

S1 + S2 =
n
x 2 Rn

��� 9 x1 2 Rn, x2 2 Rn : x = x1 + x2, x1 2 S1, x2 2 S2
o

=

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

x 2 Rn

����������������������

9
x1 2 Rn, y1 2 Rm1 ,Z1

2 S
k1

x2 2 Rn, y2 2 Rm2 ,Z2
2 S

k2
:

A1
0 +A

1(x1) +A1(y1) +A1(Z1) < 0

A2
0 +A

2(x2) +A2(y2) +A2(Z2) < 0

B1x1 + B1y1 + B
1T(Z1) = b1

B2x2 + B2y2 + B
2T(Z2) = b2

x� x1 � x2 = 0

Z1 < 0,Z2 < 0

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

.

The claim now follows by grouping the projected variables into

y =

0

BB@

x1
y1
x2
y2

1

CCA 2 R2n+m1+m2 and Z =

✓
Z1

Z2

◆
2 S

k1+k2

and combining the inequalities and equations. The equality x � x1 � x2 = 0 is ex-
pressed by the bottom rows of M1, M2, M3 and the respective right hand side.

The Minkowski sum of two spectrahedra is not necessarily a spectrahedron, but
always a spectrahedral shadow. To explain this it is relevant to know another prop-
erty of spectrahedra. In [GR95] it is shown that their faces are exposed. This means
that every face is either empty, the whole set or the intersection of a supporting hy-
perplane with the set itself, i.e. if F is a face of a spectrahedron C, then there exist
w 6= 0 and g such that F = H(w,g) \ C under the condition ∆ 6= F 6= C.

Example 2.17. Consider the sets C1 = B1(0) and C2 = [�1, 1]⇥ {0}, both of which
are spectrahedra, cf. Example 2.4. In fact, C2 is polyhedral. Their Minkowski sum is
shown in Figure 2.3. It is the convex hull of the union of the sets B1((�1, 0)T) and
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C1

C2

FIGURE 2.3: The Minkowski sum of the unit ball C1 = B1(0) and the
set C2 = [�1, 1]⇥ {0}. Marked by dots are four faces which are not

exposed. Thus, the set is not a spectrahedron.

B1((0, 1)T) and admits four nonexposed faces. Hence, C1 + C2 cannot a spectrahe-
dron.

Remark 2.18. Every face of a spectrahedron is itself a spectrahedron.

Proposition 2.19 (affine transformation). Let S ✓ Rn be a spectrahedral shadow repre-
sented by (A0,A,A,A, B, B,BT, b), M : Rn ! Rp be a linear transformation and c 2 Rp.
Then the affine transformation M[S] + {c} ✓ Rp of S is a spectrahedral shadow represented
by ✓

A,?,
�
A A

�
,A,

✓
0
I

◆
,
✓

B B
�M 0

◆
,
�
B 0

�T ,
✓
b
c

◆◆
.

Proof. The set M[S] + {c} can be written as

{z 2 Rp
| 9 x 2 Rm : z = Mx+ c, x 2 S} .

Rearranging the equation and expanding the definition of S yields
8
>>>>>>>>>><

>>>>>>>>>>:

z 2 Rp

����������������

9

x 2 Rn

y 2 Rm

Z 2 S
k
:

A0 +
�
A A

� ✓x
y

◆
+A(Z) < 0

�
B B

� ✓x
y

◆
+ B

T(Z) = b

z�
�
M 0

� ✓x
y

◆
= c

Z < 0

9
>>>>>>>>>>=

>>>>>>>>>>;

.

Combining the two systems of equations into a single system concludes the proof.

Since orthogonal projection is a special kind of linear transformation, the image
of a spectrahedron under a linear map is not a spectrahedron in general. However,
if a bijective affine transformation is applied to a spectrahedron, the property of
spectrahedrality is unaltered, see [GR95].

Remark 2.20. The Minkowski sum is a special case of a linear transformation of the
Cartesian product. For spectrahedral shadows S1, S2 ✓ Rn we have the identity

S1 + S2 = M[S1 ⇥ S2],
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where M : R2n ! Rn, (x1, x2)T 7! x1 + x2. Therefore, an alternative way to obtain a
representation of the Minkowski sum is to combine the results of Propositions 2.14
and 2.19.

It is also possible to represent faces of spectrahedral shadows.

Proposition 2.21 (face of a spectrahedral shadow). Let S ✓ Rn be a spectrahedral
shadow represented by (A0,A,A,A, B, B,BT, b) and assume S is the projection of a spec-
trahedron in the space Rn+m ⇥ S k. Then every face F ✓ Rn of S is a spectrahedral shadow
represented by

✓
A0,A,A,A,

✓
B

w1T

◆
,
✓

B
w2T

◆
,
�
B W

�T ,
✓
b
g

◆◆

for some w1 2 Rn, w2 2 Rm, W 2 S k and g 2 R.

Proof. Let F ✓ Rn be a face of S. If F = S, then the claim follows immediately by
choosing w1 = 0, w2 = 0, W = 0 and g = 0. Similarly, for F = ∆ one can choose the
same values for w1, w2 and W and set g = 1. Now assume that ∆ 6= F 6= S. Denote
by C ✓ Rn+m ⇥ S k the spectrahedron that projects to S and by p : Rn+m ⇥ S k ! Rn

the projection (x, y,Z) 7! x, i.e. S = p[C]. Then F = p�1[F] \ C is a face of C. Since
F is an exposed face, there exists a hyperplane H((w1,w2,W),g) ✓ Rn+m ⇥ S k such
that

F = H((w1,w2,W),g) \ C.

The face F projects to F under p. Hence, we conclude

F = p
⇥
F
⇤

= p

2

66664

8
>>>><

>>>>:

0

@
x
y
Z

1

A 2 Rn+m
⇥ S

k

����������

A0 +A(x) +A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = b

w1Tx+ w2Ty+ W • Z = g

Z < 0

9
>>>>=

>>>>;

3

77775

=

8
>>>><

>>>>:

x 2 Rn

����������

9
y 2 Rm

Z 2 S
k :

A0 +A(x) +A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = b

w1Tx+ w2Ty+ W • Z = g

Z < 0

9
>>>>=

>>>>;

.

Combining the equations yields the result.

The fact that spectrahedral shadows need not be closed allows us to remove faces
without losing semidefinite representability.

Proposition 2.22 (removing a face). Let S ✓ Rn be a spectrahedral shadow represented by
(A0,A,A,A, B, B,BT, b) that is the projection of a spectrahedron in the space Rn+m ⇥ S k.
Then for every face F of S the set S \ F is a spectrahedral shadow represented by

0

@A0 �

✓
�g 1
1 0

◆
,

0

@
A

w1T

0

1

A ,
✓

A

w2T

◆
� 1,

0

@
A
W
0

1

A , B,
�
B 0

�
,BT, b

1

A

for some w1 2 Rn, w2 2 Rm, W 2 S k and g 2 R.
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Proof. First, assume that ∆ 6= F 6= S. Let C, p and F be defined as in the proof of
Proposition 2.21. Then C \ F projects to S \ F, i.e. p

⇥
C \ F

⇤
= S \ F. The set C \ F is

given as 8
<

:

0

@
x
y
Z

1

A 2 C

������
w1Tx+ w2Ty+ W • Z 6= g

9
=

; .

Without loss of generality the expression w1Tx + w2Ty + W • Z � g may assumed
to be nonnegative on C because H((w1,w2,W),g) is a supporting hyperplane of
C. Otherwise we replace w1, w2, W and g with their negations. Using the Schur
complement we can equivalently express the inequality condition by the LMI

✓
w1Tx+ w2Ty+ W • Z� g 1

1 t

◆
< 0 (2.2)

for some t 2 R. If w1Tx + w2Ty+ W • Z � g is zero, then the matrix is not positive
semidefinite because the off-diagonal entries are nonzero, see [HJ13]. Otherwise we
can choose t large enough such that the LMI is satisfied. We obtain the result by
combining the LMIs in the definition of C and (2.2) and applying p to C \ F.
If F = ∆ or F = S, then we set g = �1 or g = 1 and the other parameters in (2.2)
to zero, respectively. In the first case (2.2) is fulfilled for all t > 1, which results in
S \ F = S, in the second case the first diagonal entry is negative. Hence the LMI is
inconsistent and we have S \ F = ∆.

We have shown that we can remove a finite number of faces from a spectrahedral
shadow without changing the set type. This result is generalized by Netzer [Net11]
to infinitely many faces given certain conditions. For two spectrahedral shadows
S1 ✓ S2 he defines the set S1 " S2 that is obtained by removing all faces of S2 that
are disjoint from S1 and shows that S1 " S2 is a spectrahedral shadow.
Example 2.23. We return to the spectrahedral shadow S = B1(0) + ([�1, 1]⇥ {0})
from Example 2.17 again. According to Proposition 2.16 set S is the projection of a
spectrahedron C ✓ R6 that is defined by the system

✓
1+ x1 y1
y1 1� x1

◆
< 0

✓
1+ x2 0

0 1� x2

◆
< 0

✓
x� x1 � x2
y� y1 � y2

◆
=

✓
0
0

◆
y2 = 0

(2.3)

onto the x and y components. We want to describe the spectrahedral shadow that
results when the three faces

F1 =
⇢✓

x
y

◆
2 R2

�����1 6 x 6 1, y = �1
�
, F2 =

⇢✓
1
1

◆�
and F3 =

⇢✓
�1
1

◆�

of S are removed. Denote by p the projection that maps C to S. In order to apply
Proposition 2.22 we need to find the supporting hyperplanes of C that generate the
faces p�1[Fi] \ C, i = 1, . . . , 3, when intersected with C. The face p�1[F1] \ C of C is
the set
n
(x, y, x1, y2, x2, y2)T 2 R6

��� x = x2, x1 = 0,�1 6 x2 6 1, y = y1 = �1, y2 = 0
o
.

This results by plugging y1 = �1 into the system (2.3) which yields x1 = 0. Since the
condition �1 6 x 6 1 is already implied by y = �1, we conclude that p�1[F1] \ C
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F1

F2F3

C1

C2

FIGURE 2.4: The spectrahedral shadow from Example 2.17 is the pro-
jection of a spectrahedron in R6. The three faces F1, F2 and F3 indi-
cated in red have been removed. The resulting set is again a spectra-

hedral shadow that is projected from R9.

is the intersection of C with the hyperplane H1 = H((0, 1, 0, 0, 0, 0)T,�1). Similarly,
the face p�1[F2] \ C is the singleton set

�
(1, 1, 0, 1, 1, 0)T

 
and it is straightforward

to verify that
p�1[F2] \ C = H2 \ C,

where H2 = H((0,�1, 0, 0,�1, 0)T,�2). Analogously, p�1[F3] \ C corresponds to
the hyperplane H3 = H((0,�1, 0, 0, 1, 0)T,�2). Observe that C ✓ H+

i for every
i 2 {1, . . . , 3}. Now we can apply Proposition 2.22 for each face Fi. Note that remov-
ing a face requires the introduction of a single auxiliary variable. Therefore, the set
S \ (F1 [ F2 [ F3) is the spectrahedral shadow in the variables x and y described by
system (2.3) and the LMIs

✓
y+ 1 1
1 t1

◆
< 0,

✓
�y� x2 + 2 1

1 t2

◆
< 0 and

✓
�y+ x2 + 2 1

1 t3

◆
< 0,

i.e. it is the projection of a spectrahedron from R9. The set is shown in Figure 2.4.

One can take the procedure of removing faces the furthest and remove all faces
of a spectrahedral shadow except the set itself. This yields the relative interior of the
set, see [Roc70].

Definition 2.24. Let C ✓ Rn be a convex set. The relative interior of C, denoted
relintC, is defined as {x 2 Rn

| 9 # > 0 : B#(x) \ affC ✓ C}.

Every nonempty convex set has a point in its relative interior and if the set
is full dimensional the relative interior coincides with the interior. Moreover, for
x̄ 2 relintC the identity relintC = {x 2 Rn

| 9 # > 0 : x+ #(x� x̄) 2 C} holds, cf.
[Roc70].

Proposition 2.25 (relative interior). Let S ✓ Rn be a spectrahedral shadow represented
by (A0,A,A,A, B, B,BT, b). Then the relative interior of S is a spectrahedral shadow rep-
resented by

0

@M1,

0

@
A

0
0

1

A ,M2,

0

@
A
0
0

1

A , B,
�
B Bx̄� b 0

�
,BT, Bx̄

1

A
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for a fixed x̄ 2 relint S and

M1 = �A(x̄)�
✓
0 1
1 0

◆
�

✓
1 1
1 0

◆
and M2 =

0

@
A A0 +Ax̄ 0
0 E11 E22
0 �E11 E22

1

A .

Proof. For a point x̄ 2 relint S we can express the relative interior of S as the set
{x 2 Rn

| 9 # > 0 : x+ # (x� x̄) 2 S}. Expanding the set membership yields

relint S =

8
><

>:
x 2 Rn

�������
9

# > 0
y 2 Rm

Z 2 S
k
:
A0 + (1+ #)A(x)� #A(x̄) +A(y) +A(Z) < 0

(1+ #)Bx� #Bx̄+ By+ B
T(Z) = b

Z < 0

9
>=

>;

=

8
>>>>>>><

>>>>>>>:

x 2 Rn

�������������

9 # > 0, y 2 Rm,Z 2 S
k :

1
1+ #

A0 +A(x)�
#

1+ #
A(x̄) +A(y) +A(Z) < 0

Bx�
#

1+ #
Bx̄+ By+ B

T(Z) =
1

1+ #
b

Z < 0

9
>>>>>>>=

>>>>>>>;

=

8
>>>><

>>>>:

x 2 Rn

����������

9 # 2 (0, 1), y 2 Rm,Z 2 S
k :

�A(x̄) +A(x) +A(y) + (A0 +A(x̄)) # +A(Z) < 0

Bx+ By+ (Bx̄� b) # + B
T(Z) = Bx̄

Z < 0

9
>>>>=

>>>>;

.

In the last equation we have substituted # for 1/(1+ #). The conditions # > 0 and
1� # > 0 can be expressed with the Schur complement as

✓
# 1
1 t

◆
< 0 and

✓
1� # 1
1 t

◆
< 0

for an additional variable t 2 R. Finally, the relative interior of S is the set
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

x 2 Rn

��������������������

9 (y, #, t)T 2 Rm+2,Z 2 S
k :

�A(x̄) +A(x) +A(y) + (A0 +A(x̄)) # +A(Z) < 0
✓
0 1
1 0

◆
+

✓
1 0
0 0

◆
# +

✓
0 0
0 1

◆
t < 0

✓
1 1
1 0

◆
+

✓
�1 0
0 0

◆
# +

✓
0 0
0 1

◆
t < 0

Bx+ By+ (Bx̄� b) # + B
T(Z) = Bx̄

Z < 0

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

.

In order to explicitly express the relative interior of a spectrahedral shadow S, we
need to know a point x̄ from the set beforehand. If the representation of S satisfies
certain additional conditions, it might be possible to state a suitable x̄ immediately.
For example, if A0 � 0 and b = 0, then x̄ = 0 is an interior point of S. However,
it is not trivial to specify such an x̄ in general. In the next chapter we approach this
problem algorithmically and present a procedure that computes a relative interior
point in Algorithm 3.1. This allows us to deal with the drawback of Proposition2.25.
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2.2.1 Operations involving polarity

We now turn to set operations that involve polarity.

Definition 2.26 (cf. [Roc70]). For a convex set C ✓ Rn the sets C� and C⇤ defined as
n
u 2 Rn

��� 8 x 2 C : xTu 6 1
o

and
n
u 2 Rn

��� 8 x 2 C : xTu 6 0
o

are called the polar and polar cone of C, respectively. They are the sets of linear func-
tions that are bounded above on C by either 1 or 0. Additionally, if C is a cone, then
C� = C⇤.

Due to the universal quantifier in the definitions, polars of spectrahedral shad-
ows are closely related to semidefinite programming. Themain goal of this section is
to derive an explicit description of S� for a spectrahedral shadow S. The proof relies
on duality results for semidefinite programming. Remember that unlike for linear
programming strong duality may fail in the semidefinite case. This is a challenge
in the derivation of S� that we deal with by either assuming additional properties
about S or by a strong duality theory due to Ramana [Ram97; RTW97] in Theorems
2.32 and 2.35, respectively.
There are differences in the spectrahedral and the projected case that we want to
outline. Therefore it is beneficial to consider these cases separately.

Proposition 2.27 (see [GR95]). Let C ✓ Rn be a spectrahedron defined by the linear pencil
A and matrix A0 of size ` and suppose that A0 < 0. Then the polar C� of C is the closure of
the set

C+ =
n
u 2 Rn

��� 9 V 2 S
` : u = �A

T(V), A0 • V 6 1,V < 0
o
.

The set C+ is called the algebraic polar of C in [GR95]. It is a spectrahedral shadow
represented by ⇣

1,?,?,�A, I,?,AT, 0
⌘

forA : S ` ! S1,A(V) = Â`
i=1 Â`

j=1 (A0)ij vij. Note that S1 = R andA(V) = A0 • V.
Hence, we can represent the polar of a spectrahedron C as a spectrahedral shadow
up to closure. The only assumption on C is that A0 < 0 or, equivalently, the origin
is contained in the set. This requirement is due to the fact that the polar of a set
always contains the origin and it holds (C�)� = cl conv (C [ {0}), see [Roc70]. If
C is a spectrahedron containing the origin, the latter set is just C itself. Thus, if C
is a spectrahedron containing a point x̄, the proposition can at least be applied to
the translated set C � {x̄}. In [GR95] it is shown that the algebraic polar and the
polar of a spectrahedron can be different, i.e. its algebraic polar need not be closed.
However, we can dispose of the closure operation by a stronger assumption.

Proposition 2.28. Let C ✓ Rn be a spectrahedron defined by the linear pencil A and
matrix A0 of size ` and suppose there exists a point x̄ 2 Rn satisfying A0 +A(x̄) � 0.
Then C� = C+.

Proof. The polar of C is defined as

C� =
n
u 2 Rn

��� 8 x 2 C : xTu 6 1
o

=
n
u 2 Rn

��� sup
n
xTu

��� x 2 C
o
6 1

o

=
n
u 2 Rn

��� sup
n
xTu

��� A0 +A(x) < 0
o
6 1

o
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=
n
u 2 Rn

��� inf
n
A0 • V

����u = A
T(V),V < 0

o
6 1

o

=
n
u 2 Rn

��� 9 V 2 S
` : u = �A

T(V), A0 • V 6 1,V < 0
o

= C+.

The fourth equality holds because the supremum is bounded above and we have
strict feasibility for x̄, which allows us to apply Theorem 1.30. For the same reason
the fifth equality holds because it implies that the infimum is attained.

Taking into account the above remark about the interior of spectrahedra, Propo-
sition 2.28 allows us to express the polar of a spectrahedron with nonempty interior
as a spectrahedral shadow. In general, one cannot expect to find a description of C�

as a spectrahedron. This is illustrated in the next example, thus, establishing that
spectrahedra are not closed under polarity.

Example 2.29. Consider the spectrahedron

C =

8
<

:x 2 R2

������

0

@
1 1

2x1 0
1
2x1 �x2 0
0 0 �x1

1

A < 0

9
=

; =

⇢
x 2 R2

���� x2 6 �
1
4
x21

�
\�R2

+.

By applying Proposition 2.28 we can calculate C� as the set of all points u 2 R2 that
admit the existence of a matrix V 2 S3

+ such that the system
0

@
1 0 0
0 0 0
0 0 0

1

A • V 6 1, �

0

@
0 1

2 0
1
2 0 0
0 0 �1

1

A • V = u1 and �

0

@
0 0 0
0 �1 0
0 0 0

1

A • V = u2

is solved. This is equivalent to v11 6 1, u1 = v33 � v12 and u2 = v22. Due to the block
structure of the data we can, without loss of generality, assume that V has the same
structure. Then V < 0 is equivalent to

vii > 0 i = 1, . . . , 3

v11v22 � v212 > 0.
(2.4)

It immediately follows that u2 > 0 for all u 2 C�. Now, assume that u > 0. Then
(2.4) is solved by setting v12 = 0 which implies R2

+ ✓ C�. If u21 6 u2, then we can
choose v33 = 0 and v11 = 1. This yields the inclusion

�
u 2 R2

�� u21 6 u2
 
+R2

+ ✓ C�.
Finally, if u1 < 0 and u21 > u2, then

v11v22 � v212 = v11u2 � v233 + 2v33u1 � u21 6 u2 � u21 < 0,

i.e. (2.4) has no solution. Thus, C� is in fact equal to
�
u 2 R2

�� u21 6 u2
 
+R2

+. Ob-
serve that the singleton {0} is a face of this set that is not exposed. Hence, C� can
not be a spectrahedron. The sets C and C� are shown in Figure 2.5.

We will now discuss the projected case. The first question we want to give an
answer to is whether there is an analogue to Proposition 2.27, i.e. does the closure of
the algebraic polar S+ of a spectrahedral shadow S coincide with its polar S�? Here,
we define S+ as the set pT�1[C+] for the spectrahedron C that projects to S and the
corresponding projection p such that S = p[C]. This definition is justified because it
is in harmony with the behavior of polarity under linear transformations, cf. [Roc70,
Corollary 16.3.2]. Now, it turns out that only a containment is guaranteed.
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C

�R2
+

C�

R2
+

FIGURE 2.5: The dual pair C and C� from Example 2.29. The dot-
ted lines indicate the sets

�
x 2 R2 �� 4x2 6 x21

 
and

�
x 2 R2 �� x2 > x21

 

which are polar to each other. The set C is the intersection of the first
set with the cone �R2

+. Its polar set is the Minkowski sum of the po-
lar of the second set and the cone R2

+. Note the nonexposed face of
C� indicated by a black dot. It certifies that C� is not a spectrahedron.

Proposition 2.30 (algebraic polar). Let S ✓ Rn be a spectrahedral shadow represented
by (A0,A,A,A, B, B,BT, 0) and suppose that A0 < 0. Then its algebraic polar S+ is a
spectrahedral shadow represented by

0

@0,?,B,
�
�AT 0

�
,

0

@
�I
0
0

1

A ,

0

@
BT

BT

0

1

A ,

0

@
�AT 0
�AT 0
A0 1

1

A ,

0

@
0
0
1

1

A

1

A

and it holds cl S+ ✓ S�.

Proof. Denote by C ✓ Rn+m ⇥ S k the spectrahedron that projects to S and by p the
corresponding projection such that S = p[C]. The algebraic polar C+ of C is given
as the set

8
>>>>>><

>>>>>>:

0

@
u
w
U

1

A 2 Rn
⇥Rm

⇥ S
k

������������

9 v 2 Rd,V 2 S
` :

u = �A
T(V) + BTv

w = �A
T(V) + BTv

U 4 �AT(V) + B(v)
1 > A0 • V
V < 0

9
>>>>>>=

>>>>>>;

(2.5)

which is evident by considering the primal-dual pair

max uTx+ wTy+U • Z s.t. A0 +A(x) +A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = 0

Z < 0

and
min A0 • V s.t. u = �A

T(V) + BTv

w = �A
T(V) + BTv

U 4 AT(V) + B(v)
V < 0

of semidefinite programs. The conditions A0 < 0 and b = 0 simply mean the origin
is contained in C. Hence, by applying Proposition 2.27 we have C� = clC+. We now
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conclude

S� = p[C]� = pT�1[C�] = pT�1[clC+] ◆ clpT�1[C+] = cl S+.

The second equation holds due to [Roc70, Corollary 16.3.2] and the inclusion merely
resembles the fact that linear transformations are continuous. The representation of
S+ follows from rearranging and grouping the equations and LMIs in (2.5) and tak-
ing into account that pT�1[C+] = {u 2 Rn

| (u, 0, 0) 2 C+
} as well as that A0 • V 6 1

is equivalent to A0 • V + s = 1 for some s > 0.

It is possible for the inclusion in the proposition to be strict.

Example 2.31. Consider the spectrahedral shadow

S =

⇢
x 2 R

���� 9 y 2 R :
✓
�y x
x 0

◆
< 0

�

projected from R2. Since the bottom right entry is zero, it holds x = 0 whenever the
defining pencil of S is positive semidefinite. Hence, S = {0} and S� = R. According
to Proposition 2.30 the set S+ consists of all points y 2 R such that the system

y = �

✓
0 1
1 0

◆
• V and 0 = �

✓
�1 0
0 0

◆
• V

has a solution in S2
+. The second equation yields v11 = 0 and the positive semidefi-

niteness of V implies v12 = 0. Thus, S+ = {0} = cl S+. This also demonstrates that
the discrepancy between S� and cl S+ can be arbitrarily bad.

Analogously to Proposition 2.28 we can close the gap between S� and S+ by
imposing stronger assumptions upon S.

Theorem 2.32 (polar set, first version). Let S ✓ Rn be a spectrahedral shadow represented
by (A0,A,A,A, B, B,BT, b) and assume there exist x̄ 2 Rn, ȳ 2 Rm and Z 2 S k

++ such
that A0 +A(x̄) +A(ȳ) +A(Z) � 0 and Bx̄+ Bȳ+ BT(Z) = b. Then the polar S� of S
is a spectrahedral shadow represented by

0

@0,?,B,
�
�AT 0

�
,

0

@
�I
0
0

1

A ,

0

@
BT

BT

bT

1

A ,

0

@
�AT 0
�AT 0
A0 1

1

A ,

0

@
0
0
1

1

A

1

A .

Proof. The proof follows the same argumentation as the proof of Proposition 2.28
with the semidefinite programs replaced by the primal-dual pair

max uTx s.t. A0 +A(x) +A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = b

Z < 0

and
min A0 • V + bTv s.t. u = �A

T(V) + BTv

0 = �A
T(V) + BTv

0 4 �AT(V) + B(v)
V < 0

for which strong duality holds.
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Remark 2.33. The theorem reveals another motivation for using the representation
of a spectrahedral shadow defined in 2.10. The feasible region of the dual program
has essentially the same structure as the feasible region of the primal, i.e. it describes
a representation of a spectrahedral shadow. Notice, however, that the data A and A

from the LMI in the primal program appear as part of the equalities in the dual in
the form of their adjoints. The operator B swaps its role in the same way. Thus, if
we had considered a spectrahedral shadow defined only by a LMI, then its polar set
would not immediately be given by another LMI but by equality constraints and an
additional reformulation would be necessary.

We are now able to represent the polar of a spectrahedral shadow given that it
satisfies a Slater-like constraint qualification. This raises two problems. Firstly, it is
not trivial to determine whether the conditions are satisfied by a given representa-
tion. Secondly, if a series of different set operations are applied to a spectrahedral
shadow, some of which involve polarity, then the conditions cannot be guaranteed
to be satisfied by the intermediate sets even if the original spectrahedral shadow ful-
fills them.
In the next paragraph we deal with both problems by deriving a stronger version of
Theorem 2.32. It is based on an exact duality theory for semidefinite programs due
to Ramana [Ram97]. He formulates the following dual program to (SDP*), which he
denotes Extended Lagrange-Slater Dual.

min C • (Vp+1 +Wp+1 +Wp+1T)

s.t. AT(Vp+1 +Wp+1 +Wp+1T) = b

Vp+1 < 0

A
T(Vi +Wi +WiT) = 0 i = 1, . . . , p

C • (Vi +Wi +WiT) = 0 i = 1, . . . , p

Vi�1 < WiTWi i = 1, . . . , p+ 1

W1 = 0

(ELSD)

The variables are Vi 2 S ` and Wi 2 M`, i = 1, . . . , p + 1, where p = min {m, `}.
Problem (ELSD) is a semidefinite program because the constraints Vi�1 < WiTWi

can equivalently be stated as
✓
Vi�1 Wi

WiT I

◆
< 0

using Schur complement for i = 1, . . . , p + 1. Ramana establishes a strong duality
result for the pair (SDP*) and (ELSD). We repeat the main result of his work for
conciseness.

Theorem 2.34 ([Ram97, Theorem 6]). The following hold for the problems (SDP*) and
(ELSD):

(i) if y is feasible for (SDP*) and Vi, Wi, i = 1, . . . , p+ 1, are feasible for (ELSD), then
bTy 6 C • (Vp+1 +Wp+1 +Wp+1T),

(ii) if (SDP*) is feasible, then its optimal value is finite if and only if (ELSD) is feasible,

(iii) if (SDP*) and (ELSD) are feasible, then their optimal values coincide,

(iv) whenever the optimal values of (SDP*) and (ELSD) coincide, (ELSD) has a solution.
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In [RTW97] it is shown that this duality approach is equivalent to the one in
[BW81], which proposes to a given convex program a regularized program that re-
quires the computation of the so-called minimal cone of the problem and satisfies
strong duality statements. Moreover, an extended dual program to (SDP) is intro-
duced as well which reads as

max bTvp+1

s.t. A(vp+1) +Wp+1 +Wp+1T 4 C

A(vi) +Wi +WiT < 0 i = 1, . . . , p

bTvi = 0 i = 1, . . . , p

A(vi�1) < WiTWi i = 1, . . . , p+ 1

W1 = 0.

(ELSD*)

Strong duality analogous to the statements in Theorem 2.34 connects the pair (SDP)
and (ELSD*) of semidefinite programs. We can use these duality results to derive
a description of the polar set of a spectrahedral shadow. This is already done for
spectrahedra in [Ram97].

Theorem 2.35 (polar set, second version). Let S ✓ Rn be a spectrahedral shadow repre-
sented by (A0,A,A,A, B, B,BT, b). Then a point u 2 Rn belongs to the polar S� if and
only if the system

�A
T(Vp+1 +Wp+1

1 +Wp+1T
1 ) + BTvp+1 = u

A0 • (Vp+1 +Wp+1
1 +Wp+1T

1 ) + bTvp+1 6 1

Vp+1 < 0

�A
T(Vi +Wi

1 +WiT
1 ) + BTvi = 0 i = 1, . . . , p

�A
T(Vi +Wi

1 +WiT
1 ) + BTvi = 0 i = 1, . . . , p+ 1

�AT(Vi +Wi
1 +WiT

1 ) + B(vi) +Wi
2 +WiT

2 < 0 i = 1, . . . , p+ 1

A0 • (Vi +Wi
1 +WiT

1 ) = 0 i = 1, . . . , p

bTvi = 0 i = 1, . . . , p

Vi�1 < WiT
1 Wi

1 i = 1, . . . , p+ 1

�AT(Vi�1) + B(vi�1) < WiT
2 Wi

2 i = 1, . . . , p+ 1

W1
1 = 0,W1

2 = 0

is consistent for some Vi 2 S `, vi 2 Rd, Wi
1 2 M`, Wi

2 2 Mk, i = 1, . . . , p+ 1, with
p = min {n+m+ k, `+ d}.

Proof. Denote the system in the claim without the inequality in the second line by
(?). Following the construction in [RTW97, Section 4], the Extended Lagrange-Slater
Dual to

max uTx s.t. x 2 S (P)

can be formulated as

min A0 • (Vp+1 +Wp+1
1 +Wp+1T

1 ) + bTvp+1

s.t. (Vi, vi,Wi
1,W

i
2)

p+1
i=1 solves (?) .

(ELSD-P)
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Strong duality holds for the pair (P) and (ELSD-P) according to Theorem 2.34. The
remaining part of the proof is identical to the proof of Proposition 2.28 with the
corresponding pair of semidefinite programs replaced by (P) and (ELSD-P).

The theorem allows us to explicitly describe the polar of a spectrahedral shadow
S in terms of LMIs and equationswithout further assumptions on the set. This comes
at the cost of a description whose size grows polynomial in the size of the descrip-
tion of S, i.e. if S is projected from Rn+m ⇥ S k and described by an LMI of size ` and
d equations, then S� is projected from Rn+d(p+1) ⇥ S `(p+1) ⇥ M`(p+1) ⇥ Mk(p+1).
Hence, although Theorem 2.35 is stronger than Theorem 2.32, it is preferred to ap-
ply the latter from a practical perspective to obtain a smaller description whenever
possible.
Before we continue with the recession cone in the next subsection, we cover the polar
cone, normal cone, closure and convex hull of the union.

Corollary 2.36 (polar cone operation). Let S ✓ Rn be a spectrahedral shadow represented
by (A0,A,A,A, B, B,BT, b) and assume there exist x̄ 2 Rn, ȳ 2 Rm and Z 2 S k

++ such
that A0 +A(x̄) +A(ȳ) +A(Z) � 0 and Bx̄+ Bȳ+ BT(Z) = b. Then the polar cone S⇤
of S is a spectrahedral shadow represented by

0

@0,?,B,
�
�AT 0

�
,

0

@
�I
0
0

1

A ,

0

@
BT

BT

bT

1

A ,

0

@
�AT 0
�AT 0
A0 1

1

A , 0

1

A .

Proof. The proof is very similar to the proofs of Theorem 2.32 and Proposition 2.28
with the 1 on the right hand side replaced with 0.

Clearly, an analogous result to Theorem 2.35 can be formulated for the polar cone
by setting the right hand side in A0 • (Vp+1 +Wp+1

1 +Wp+1T
1 ) + bTvp+1 6 1 to 0. We

omit this here and instead hint at another way to represent the polar cone.

Proposition 2.37 (cf. [Roc70]). For spectrahedral shadows S1, S2 ✓ Rn the following hold
true:

(i) if 0 2 S1, then cl S1 = (S1�)
�,

(ii) if 0 2 conv (S1 [ S2), then cl conv (S1 [ S2) = (S1� \ S2�)�,

(iii) (cone S1)
� = S⇤1 ,

(iv) NS1(x̄) = (S1 � {x̄})⇤.

Remark 2.38. The first part of Proposition 2.37 indicates how one can express the
closure of a spectrahedral shadow. Theorems 2.32 or 2.35 have to be applied twice
to the set. By (ii) we are able to compute the closure of the convex hull of the sets
S1 and S2 because we can represent intersections and polars by Proposition 2.12 and
Theorem 2.35, respectively. Another approach is found in [HN09; NS09] where the
result is generalized to finitely many spectrahedral shadows. Statement (iii) can be
easily verified from the definitions of polar set and polar cone. If we can represent
the conical hull of a spectrahedral shadow, then the polar cone ensues. We treat the
conical hull in the next subsection. Finally, an expression for the normal cone follows
from (iii) and Proposition 2.16.
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2.2.2 Representing the closure of the recession cone

For a spectrahedron C = {x 2 Rn
| A0 +A(x) < 0} it is straightforward to verify

that 0•C = {x 2 Rn
| A(x) < 0}. The same is not true for spectrahedral shadows. In

particular, the recession cone of a spectrahedral shadow S does not need to coincide
with the projection of the recession cone of the spectrahedron that projects to S.

Example 2.39. Consider the projection S =
�
x 2 R

�� 9 y 2 R : y� x2 > 0
 
of the epi-

graph C of the function x 7! x2. This set is a spectrahedral shadow because the
condition y� x2 > 0 is equivalent to

✓
y x
x 1

◆
< 0.

Clearly, S is the whole real line which is its own recession cone. The recession cone
0•C is generated by the direction (0, 1)T, which, projected onto the first variable, is
just the singleton {0}.

Hence, a more thorough treatment is necessary to obtain the recession cone of a
spectrahedral shadow S. In this subsection we use the results about polar operations
to derive an explicit expression for cl 0•S. Our approach relies on the following
known relationship between 0•S and the polar S�.

Proposition 2.40 ([Roc70, Theorem 14.6]). Let S ✓ Rn be a spectrahedral shadow con-
taining the origin. Then it is true that (0•S)� = cl cone S�.

It follows that cl 0•S is the set (cone S�)�, which, taking Proposition 2.37 (iii) into
account, is the same as (S�)⇤. The result also sheds light on the fact why we fail to
determine the recession cone correctly in the above example. Since the assignment
x = 0 and y = 1 is strictly feasible for the shadow S, we can apply Theorem 2.32 to
obtain the polar

S� =
⇢
u 2 R

���� 9 V 2 S
2
+ : u =

✓
0 1
1 0

◆
• V, 0 =

✓
1 0
0 0

◆
• V,

✓
0 0
0 1

◆
• V 6 1

�
.

The second equality states v11 = 0 which implies v12 = 0 and u = 0 due to the
positive semidefiniteness of V. We would now need to compute the polar cone of
S� to obtain cl 0•S. However, there is no positive definite assignment of V in the
representation of S� because v11 = 0. Therefore, Corollary 2.36 is not applicable.
This failure of strong duality is the crux of Example 2.39. If we were able to apply
the corollary, then, indeed, the recession cone of S would be the projection of 0•C.

Proposition 2.41 (conical hull). Let S ✓ Rn be a spectrahedral shadow represented by
(A0,A,A,A, B, B,BT, b). Then the conical hull cone S is a spectrahedral shadow repre-
sented by ✓

0,
✓

A

M1

◆
,M2,

✓
A
0

◆
, B,
�
B �b 0

�
,BT, 0

◆

with
M1 =

✓
E11 ⌦

✓
0 1
1 0

◆
· · · Enn ⌦

✓
0 1
1 0

◆ ◆

M2 =

0

@
A A0 0

0 I ⌦
✓
1 0
0 0

◆
I ⌦

✓
0 0
0 1

◆
1

A .
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Proof. By convexity of S its conical hull is

cone S = {µx 2 Rn
| µ > 0, x 2 S}

= {z 2 Rn
| 9 x 2 Rn, µ > 0 : z = µx, x 2 S}

=

⇢
z 2 Rn

���� 9 µ > 0 :
z
µ
2 S
�
[ {0}

=

8
><

>:
z 2 Rn

�������
9

µ > 0
y 2 Rm

Z 2 S
k
:
A0µ+A(z) +A(µy) +A(µZ) < 0

Bz+ Bµy+ B
T(µZ) = µb

µZ < 0

9
>=

>;
[ {0}

=

8
>>>>>><

>>>>>>:

z 2 Rn

������������

9

µ 2 R

t 2 R

y0 2 Rm

Z0
2 S

k

:

A(z) +A(y0) + A0µ+A(Z0) < 0
✓
µ zi
zi t

◆
< 0 i = 1, . . . , n

Bz+ By0 � bµ+ B
T(Z0) = 0

Z0 < 0

9
>>>>>>=

>>>>>>;

.

In the fourth step we expand the definition of S and multiply the LMIs and equa-
tions by µ. Note that if y and Z are valid assignments for z/µ 2 S, then we can
choose y0 = µy and Z0 = µZ to express z 2 µS. To justify the last equation
we first consider the inclusion from left to right. If µ is positive than we can set
t > µ�1 max

�
z2i
�� i = 1, . . . , n

 
to satisfy the LMIs involving t. Otherwise the LMIs

force all zi to be equal to 0. For the other inclusion assume that z 6= 0. Then zi 6= 0
for some i 2 {1, . . . , n}. From the positive semidefiniteness it follows µt > z2i > 0
and, since µ and t are also nonnegative, they must actually both be positive. The
case z = 0 is trivial. To conclude the proof note that

✓
µ zi
zi t

◆
< 0 () Eii ⌦

✓
0 1
1 0

◆
zi + I ⌦

✓
1 0
0 0

◆
µ+ I ⌦

✓
0 0
0 1

◆
t < 0

for Eii, I 2 Sn.

In general, the conical hull of a spectrahedron is not a spectrahedral cone.

Example 2.42. Consider the spectrahedron C =
�
x 2 R2

�� x2 > x21
 
. Its conical hull

is the set
�
x 2 R2

�� x2 > 0
 
[ {0}, which is not closed. However, it is a projected

spectrahedron because

coneC =

⇢
x 2 R2

���� 9 y 2 R2 :
✓
x2 x1
x1 y1

◆
< 0,

✓
y1 x1
x1 y2

◆
< 0,

✓
y1 x2
x2 y2

◆
< 0

�

by Proposition 2.41.

Due to Proposition 2.40, it is easier to describe the polar (0•S)� of the recession
cone of S than the recession cone of S itself given a representation of S.

Corollary 2.43 (polar of the recession cone). Let S ✓ Rn be a spectrahedral shadow repre-
sented by (A0,A,A,A, B, B,BT, b) containing the origin and assume there exist x̄ 2 Rn,
ȳ 2 Rm and Z 2 S k

++ such that A0 + A(x̄) + A(ȳ) + A(Z) � 0 and Bx̄ + Bȳ +
BT(Z) = b. Then the polar (0•S)� of the recession cone of S is the closure of the spectrahe-
dral shadow represented by

✓
0,?,B,�AT,

✓
�I
0

◆
,
✓
BT

BT

◆
,
✓
�AT

�AT

◆
, 0
◆
.
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Proof. Since S contains the origin, one has (0•S)� = cl cone S� according to Proposi-
tion 2.40. Moreover, we can apply Theorem 2.32 because S satisfies Slater-like con-
ditions. Hence, applying Theorem 2.32 to S and Proposition 2.41 to the resulting set
yields that the set cone S� is represented by

0

@0,
✓

0
M1

◆
,M2,

✓
�AT 0
0 0

◆
,

0

@
�I
0
0

1

A ,

0

@
BT 0 0
BT 0 0
bT �1 0

1

A ,

0

@
�AT 0
�AT 0
A0 1

1

A , 0

1

A

for M1 as defined in Proposition 2.41 and

M2 =

0

@
B 0 0

0 I ⌦
✓
1 0
0 0

◆
I ⌦

✓
0 0
0 1

◆
1

A .

Writing the set explicitly, we get

cone S� =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

x 2 Rn

��������������������

9

y 2 Rd

µ, t 2 R

Z 2 S
`+1

:

B(y)�
�
AT 0

�
(Z) < 0

✓
µ xi
xi t

◆
< 0 i = 1, . . . , n

BTy�
�
AT 0

�
(Z) = x

BTy�
�
AT 0

�
(Z) = 0

bTy� µ+

✓
A0 0
0 1

◆
• Z = 0

Z < 0

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

.

We can decompose the matrix Z 2 S
`+1
+ into a block diagonal matrix with blocks

Z0 2 S `
+ and z 2 R+ because the involved operators do not act on the remaining

entries of Z. Therefore, the only difference to the claimed representation is the oc-
currence of the LMIs in the second line and the equality bTy� µ+ A0 • Z0 + z = 0.
We show that these can be omitted. Denote by M the spectrahedral shadow with
the claimed representation. Clearly, cone S� ✓ M. If x 2 M, then there exist y 2 Rd

and Z0 2 S `
+ that satisfy the conditions imposed by the representation. Assume

bTy+ A0 • Z0 6 0. Choosing µ = 1 and z = 1� bTy� A0 • Z0 satisfies the equality
with z > 0. Moreover, we can choose t large enough such that

✓
µ xi
xi t

◆
< 0

holds for all i 2 {1, . . . , n}, i.e. t > max
�
x2i
�� i = 1, . . . , n

 
. On the other hand, if

bTy+ A0 • Z0 > 0, then we can set µ = bTy+ A0 • Z0, t > µ�1 max
�
x2i
�� i = 1, . . . , n

 

and z = 0 to fulfill the conditions.

We can now formulate the main result of this subsection.

Theorem 2.44 (closure of the recession cone). Let S ✓ Rn be a spectrahedral shadow rep-
resented by (A0,A,A,A, B, B,BT, b) containing the origin and assume there exist x̄ 2 Rn,
ȳ 2 Rm and Z 2 S k

++ such that A0 + A(x̄) + A(ȳ) + A(Z) � 0 and Bx̄ + Bȳ +
BT(Z) = b. Then a point u 2 Rn belongs to cl 0•S if and only if the system

Bvp+1
� B

T(Vp+1 +Wp+1
1 +Wp+1T

1 ) = Bu
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�A(vp+1) +A(Vp+1 +Wp+1
1 +Wp+1T

1 ) +

Wp+1
2 +Wp+1T

2 < �A(u)

Vp+1 < 0

Bvi � B
T(Vi +Wi

1 +WiT
1 ) = 0 i = 1, . . . , p

�A(vi) +A(Vi +Wi
1 +WiT

1 ) +Wi
2 +WiT

2 < 0 i = 1, . . . , p

Vi�1 < WiT
1 Wi

1 i = 1, . . . , p+ 1

�A(vi�1) +A(Vi�1) < WiT
2 Wi

2 i = 1, . . . , p+ 1

W1
1 = 0,W1

2 = 0

is consistent for some Vi 2 S k, vi 2 Rm, Wi
1 2 Mk, Wi

2 2 M`, i = 1, . . . , p+ 1, with
p = min {n+ d+ `, n+m+ k}.

Proof. From Proposition 2.40 it follows that cl 0•S = (cl cone S�)� = (cone S�)�. The
set cone S� is a spectrahedral shadow represented by

✓
0,?,B,�AT,

✓
�I
0

◆
,
✓
BT

BT

◆
,
✓
�AT

�AT

◆
, 0
◆

according to Corollary 2.43. We now apply Theorem 2.35 to this set. This yields
u 2 cl 0•S if and only if the system

�
�I 0

�
v̄p+1 = u

Vp+1 < 0
�
�I 0

�
v̄i = 0 i = 1, . . . , p

�B
T(Vi +Wi

1 +WiT
1 ) +

�
B B

�
v̄i = 0 i = 1, . . . , p+ 1

A(Vi +Wi
1 +WiT

1 )�
�
A A

�
(v̄i) +Wi

2 +WiT
2 < 0 i = 1, . . . , p+ 1

Vi�1 < WiT
1 Wi

1 i = 1, . . . , p+ 1

A(Vi�1)�
�
A A

�
(v̄i�1) < WiT

2 Wi
2 i = 1, . . . , p+ 1

W1
1 = 0,W1

2 = 0

is consistent. The proof is completed by simplifying the system. To this end we
decompose the variables v̄i 2 Rn+m into v0i 2 Rn and vi 2 Rm. From the first
and third equalities it follows v0p+1 = �u and v0i = 0, i = 1, . . . , p, respectively.
Substituting these values into the rest of the system concludes the proof.
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Chapter 3

Polyhedral approximation of
compact spectrahedral shadows

The tools developed in the preceding chapter allow systematic computations with
spectrahedral shadows. Although it is useful to express the result of calculus opera-
tions explicitly, a representation gives little insight into the appearance and geometry
of a shadow. In this chapter we partially address this shortcoming by developing al-
gorithms that compute polyhedral approximations of spectrahedral shadows in the
compact case. On one hand, this allows us to visualize such sets and, on the other
hand, it provides an approximate description of a given spectrahedral shadow in
terms of linear inequalities. This is desired because polyhedra can be seen as a sim-
pler class of sets than spectrahedra and their projections in the sense that they are
described by linear functions rather than polynomials of higher degree. The results
in this chapter are partially based on the article [Dör22] titled On the approximation
of unbounded convex sets by polyhedra and published in Journal of Optimization Theory
and Applications.

3.1 Historical overview

We want to give an overview of the literature on the development and application
of polyhedral approximation algorithms. The following is not restricted to spectra-
hedra or their projections as most of the literature studies general convex sets or sets
defined as intersections of level sets of convex functions which contain spectrahe-
dral shadows as a special case. Since we need to quantify the quality of a polyhedral
approximation, we need to measure the distance between sets. The prevalent way
of doing this is with respect to the Hausdorff distance, which defines a metric on the
space of compact subsets of Rn.

Definition 3.1. A compact convex set C ✓ Rn containing the origin in its interior is
called a convex body.

Definition 3.2 (cf. [HL01]). For sets M1,M2 ✓ Rn the excess of M1 over M2, denoted
by e [M1,M2], is defined as

sup
x2M1

d (x,M2) .

The square brackets emphasize the fact that the excess is not symmetric in its
arguments. If the set M1 is bounded, then e [M1,M2] is finite, but in general this
need not be the case. If it is also closed, then the supremum is attained by some
point from M1 and can be substituted for a maximum. This is true in particular if
M1 is a convex body. The Hausdorff distance can easily be expressed using excesses.
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Definition 3.3. For sets M1,M2 ✓ Rn the Hausdorff distance between M1 and M2 is
defined as

max {e [M1,M2] , e [M2,M1]}

and denoted by dH (M1,M2).

Definition 3.4 (cf. [RW98]). A sequence {Mk}k2N of subsets ofRn is said toHausdorff
converge or H-converge to a set M ✓ Rn if limk!• dH (Mk,M) = 0.

As mentioned in the introduction, the first explicit appearance of polyhedral ap-
proximation known to the author is due to Minkowski in his 1903 treatise Volumen
und Oberfläche [Min03]. He shows that every convex body C ✓ R3 can be approxi-
mated by a convex set O that is the level set of a convex function and has differen-
tiable boundary such that C ✓ O ✓ (1+ #)C for any predefined # > 0. As part of
his proof he constructs a polytope P with the property C ✓ P ✓ O by considering
a space-filling tessellation of R3 made up of cubic cells with edge length depending
on # and C. Polytope P is then defined as the convex hull of the union of all cells
having nonempty intersection with C. Bonnesen and Fenchel extract this technique
and present it for general dimension in their Book Theorie der konvexen Körper [BF34].
Moreover, they conclude that for every convex body C ✓ Rn there exists a sequence
of polytopes {Pk}k2N that H-converges to C. Fejes Tóth [Fej48] improves upon this
result in 1948 for the cases that C ✓ R2 is bounded by a rectifiable Jordan curve that
is sufficiently smooth and C ✓ R3 being an ellipsoid. For these two cases he shows
that there exist sequences {Pk}k2N of polyhedra with k vertices that are inscribed in
C, i.e. their vertices lie on the boundary of C, such that

lim
k!•

k2dH (Pk,C) < • and lim
k!•

kdH (Pk,C) < •,

respectively. Moreover, he computes these limits in terms of curvature properties of
C. The latter result is extended to arbitrary dimension and convex bodies C ✓ Rn

with three times continuously differentiable boundary by Schneider [Sch81]. Explicit
bounds on the Hausdorff distance were independently obtained by Bronstein and
Ivanov [BI75] in 1975 and Dudley [Dud74] in 1974. They show that the estimate

dH (P,C) 6 c(C)
k2/(n�1)

holds for a polytope P with k vertices inscribed in C. Here, c(C) is a constant de-
pending on C. The same relation holds for a polytope P with k facets that is circum-
scribed to C, i.e. the facets of P correspond to hyperplanes that support C. Since
then, many improvements have been achieved for special cases and metrics other
than the Hausdorff distance were considered. An elaborate survey of these result is
due to Bronstein [Bro08].
The first usage of polyhedral approximation from an algorithmic perspective ap-
pears to be due to Cheney and Goldstein [CG59] and, independently, also Kelley
[Kel60]. They consider the problem of minimizing a linear function over a convex
body C with differentiable boundary. To find an approximate solution to the prob-
lem they start with an initial polytope P0 ◆ C and solve the linear program that
arises by replacing C with P0. If the solution is contained in C, the original problem
is solved. Otherwise, a hyperplane H is found that separates the solution and C.
Assuming H� is the corresponding halfspace containing C, the polyhedral approxi-
mation is refined as P1 = P0 \ H�. This process is called cutting because the solution
of the linear program is cut off from the set of interest by H. Repeating this process
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yields a sequence of solutions of linear programs that converge to the solution of
the convex program and a sequence of polytopes containing C that approximate C
well around the solution. In 1967, their method is refined by Veinott [Vei67] in the
sense that the hyperplanes used throughout the algorithm support C in a boundary
point. This advantage is offset by the increased computational effort required to find
these points, i.e. for each point of support a subproblems is solved using interval bi-
section. The development of polyhedral approximation algorithms then continued
in different fields of optimization, in particular global optimization, mixed-integer
convex optimization and vector optimization. Veinott’s algorithm is modified to
find the minimum of a concave function over C in [Hof81]. Improvements, where
some of the assumptions are relaxed, are due to Thiê.u, Tâm and Ba’n [TTB83]. In
[BH91] the algorithm is combined with branch-and-bound techniques to solve the
same problem but with simpler subproblems and in [Hor+91] it is applied to min-
imize the difference of two convex functions over C. In mixed-integer optimiza-
tion the concept of cutting was popularized by Gomory [Gom58], who developed
the well-known Gomory cuts to solve integer linear programs. Duran and Gross-
man [DG86] apply polyhedral outer approximation to solve mixed-integer convex
programs. They identify an equivalent mixed-integer linear program that arises by
computing a polyhedral approximation of the feasible region of the relaxation of
the original problem. To find the halfspaces generating the polyhedral approxima-
tion they solve a convex subproblem for every feasible assignment of integer vari-
ables. In 1995, Westerlund and Pettersson [WP95] apply Kelley’s algorithm to this
problem class. An improvement of their algorithm is presented in [KLW16] where
the supporting points for the polyhedral approximation are found using a simple
line search. Lassez and Lassez [LL92] use polyhedral approximation to compute
V-representations of projections of high dimensional polyhedra. A main feature
of their algorithms is its generality, i.e. no assumptions are made about the input
polyhedron. Similar methods are used in [Löh+19] where bilevel problems with
polyhedral constraint sets are solved by solving an associated polyhedral projec-
tion problem. Kamenev [Kam92; Kam93; Kam94] develops general approximation
schemes for both outer and inner polyhedral approximation of convex bodies. These
schemes, called cutting and augmenting schemes, respectively, subsume many of the
approximation algorithms in the literature. We discuss these general procedures in
detail in the next section. In 1998, Benson adapted the methods developed in the
realm of global optimization to solve linear vector optimization problems [Ben98].
He observes that the image space is typically smaller than the preimage space of such
problems and exploits this by approximating a polyhedral set in the image space that
is associated with the vector linear program. The term Benson algorithm or Benson-
type algorithmwas adopted by the vector optimization community and subsequently
various extensions of the original algorithm have come forth, see e.g. [RW05; SE08a].
Alongside dual algorithms [SE08b; ELS12; HLR14] generalizations to the convex
case have also been developed [ESS11; LRU14; Dör+22; AUU22; Wag+22].

3.2 Cutting and augmenting schemes

In this section we develop two polyhedral approximation algorithms tailored to
compact spectrahedral shadows with nonempty interior. One algorithm computes
a circumscribed approximating polyhedron of a given spectrahedral shadow, while
the other computes an inscribed approximation. Both algorithms fit into a frame-
work of adaptive approximation schemes due to Kamenev [Kam92] called cutting
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and augmenting schemes. These describe a class of outer and inner polyhedral ap-
proximation algorithms for convex bodies, respectively, in which, at each iteration,
a known polyhedral approximation is refined.
Given a convex body C ✓ Rn and a polyhedral approximation Pk with C ✓ Pk, an
iteration of a cutting scheme is the execution of the steps

1. Choose a unit direction u 2 Rn.

2. Construct Pk+1 = Pk \ H� (u, sC(u)).

Here, sC(u) denotes the support function of C at u, i.e.

sC(u) = sup
n
uTx

��� x 2 C
o
.

Since C is bounded and closed, its support function is finite everywhere and the
supremum is always attained, respectively. Hence, H (u, sC(u)) is a supporting hy-
perplane of C. One iteration of an augmenting scheme for Pk ✓ C is described by
the steps

1. Choose a point p on the boundary of C.

2. Construct Pk+1 = conv (Pk [ {p}).

Kamenev derives convergence results for a particular subclass of cutting and aug-
menting schemes called Hausdorff schemes. These are algorithms that admit the exis-
tence of a constant g > 0 such that

dH (Pk, Pk+1) > gdH (Pk,C) (3.1)

holds in every iteration k of a cutting or augmenting scheme.

Theorem 3.5 (cf. [Kam92, Theorem 2]). Let C ✓ Rn be a convex body and {Pk}k2N be
a sequence of polyhedra generated by a Hausdorff scheme. Then for every k > 0 there exists
k0 such that for all k > k0

dH (Pk,C) 6 (1+ k)
c(C)

k1/(n�1)

holds for a constant c(C) depending on C.

Remark 3.6. A similar result holds for the Nikodym metric instead of the Haus-
dorff metric. Moreover, Kamenev gives an improved upper bound with denomina-
tor k2/(n�1) for sets with twice continuously differentiable boundary.

In order to formulate the algorithms in Subsection 3.2.2 we need three semidefi-
nite programs associated with a spectrahedral shadow S ✓ Rn and their duals that
give insights into the geometry of S. Solving the first problem can be interpreted
as determining the maximum shift of a hyperplane with fixed normal vector that is
possible within S. The problem is parameterized by a nonzero vector w 2 Rn and
can be stated as

max wTx s.t. A0 +A(x) + A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = b

Z < 0,
(P1 (w, S))
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that is maxwTx subject to x 2 S for a spectrahedral shadow defined according to
Definition 2.10. Put differently, solving (P1 (w, S)) amounts to the evaluation of the
support function of S at w. The corresponding dual program is given as

min A0 • V + bTv s.t. �A
T(V) + BTv = w

�A
T(V) + BTv = 0

�AT(V) + B(v) < 0
V < 0.

(D1 (w, S))

The existence of a solution to problem (P1 (w, S)) is related to the polar of the reces-
sion cone of S.

Proposition 3.7. Let S ✓ Rn be a closed spectrahedral shadow and w 2 relint (0•S)�.
Then (P1 (w, S)) has an optimal solution (x⇤, y⇤,Z⇤). Moreover, if w 6= 0, then the hyper-
plane H(w,wTx⇤) supports S at x⇤.

Proof. According to [Roc70, Corollary 14.2.1] the polarity relation

(0•S)� = cl {u 2 Rn
| sS(u) < •}

holds and the convexity of S implies

relint (0•S)� = relint {u 2 Rn
| sS(u) < •} ,

see [Roc70, Theorem 6.3]. Hence, sS(w) < •, i.e. the optimal value of (P1 (w, S))
is finite. Now, since w belongs to the relative interior of the effective domain of the
support function sS, the subdifferential ∂sS(w) is nonempty, see [Roc70, Theorem
23.4]. The set ∂sS(w), however, is exactly the set of solutions to (P1 (w, S)) according
to [Roc70, Corollary 23.5.3]. Finally, the supporting property follows for w 6= 0
because wTx 6 sS(w) = wTx⇤ for x⇤ 2 ∂sS(w) and all x 2 S.

Clearly, if S is compact, then (P1 (w, S)) has a solution for every w 2 Rn. Solu-
tions to (P1 (w, S)) and (D1 (w, S)) also reveal some information about the polar S�
under additional assumptions on S.

Proposition 3.8. Let S ✓ Rn be a closed spectrahedral shadow and assume that the prob-
lem (P1 (w, S)) is strictly feasible for w 2 relint (0•S)�. Then solutions (x⇤, y⇤,Z⇤) to
(P1 (w, S)) and (V⇤, v⇤) to (D1 (w, S)) exist and the following hold:

(i) if A0 • V⇤ + bTv⇤ = 0, then w 2 0•S�,

(ii) if A0 • V⇤ + bTv⇤ > 0, then the hyperplane H(x⇤, 1) supports S� at w
A0•V⇤+bTv⇤ .

Proof. Since w 2 relint (0•S)� and S is closed, a solution (x⇤, y⇤,Z⇤) to (P1 (w, S))
exists according to Proposition 3.7. Strict feasibility implies strong duality. Hence, a
dual solution (V⇤, v⇤) exists as well. Now, assume A0 • V⇤ + bTv⇤ = 0. Since 0 2 S�
and S� is closed, it suffices to show µw 2 S� for all µ > 0, see [Roc70, Theorem 8.3].
Define Vµ = µV⇤ and vµ = µv⇤. Then Vµ < 0 because V⇤ < 0. Moreover, feasibility
of (V⇤, v⇤) for (D1 (w, S)) yields µw = �AT(Vµ) + BTvµ, 0 = �AT(Vµ) + BTvµ and
�AT(Vµ) + B(vµ) < 0. It also holds A0 • Vµ + bTvµ = µ

�
A0 • V⇤ + bTv⇤

�
= 0 6 1.

Finally, since (P1 (w, S)) is strictly feasible, we can apply Theorem 2.32 and conclude
µw 2 S�.
It remains to show the second assertion. Therefore, assume A0 • V⇤ + bTv⇤ > 0. We
conclude x⇤ 6= 0 because wTx⇤ = A0 •V⇤ + bTv⇤ > 0 holds due to strong duality. Let
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w = (A0 • V⇤ + bTv⇤)�1w, V = (A0 • V⇤ + bTv⇤)�1V⇤ and v̄ = (A0 • V⇤ + bTv⇤)�1v⇤.
Then (V, v̄) is feasible for (D1 (w, S)) and it holds A0 • V + bTv̄ = 1, i.e. w 2 S�. By
definition of the polar it holds x⇤Tu 6 1 for all u 2 S�. Moreover, we have

x⇤Tw =
x⇤Tw

A0 • V⇤ + bTv⇤
=

A0 • V⇤ + bTv⇤

A0 • V⇤ + bTv⇤
= 1,

where the second equality is validated by strong duality again.

Remark 3.9. There is not a similar polarity relation for the case that A0 •V⇤ + bTv⇤ is
negative in the previous proposition. The reason is that this implies that the origin
is not contained in S. In that case it can happen that the hyperplane H(x⇤, 1) does
not support S� at all. However, since S� = (cl conv (S [ {0}))�, we can assume
without loss of generality that S contains the origin in which case the optimal values
of neither (P1 (w, S)) nor (D1 (w, S)) can be negative.

Remark 3.10. Taking Proposition 2.5 into account, the assumption that (P1 (w, S))
is strictly feasibly can be interpreted as the spectrahedron projecting to S having
nonempty interior.

The second pair of primal-dual semidefinite programs we consider is

max t s.t. A0 +A(x) +A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = b

Z < 0
x = p+ td,

(P2 (p, d, S))

i.e. max t subject to p+ td 2 S, and

min (A0 +A(p)) • V + (b� Bp)T v s.t. �A
T(V) + BTv = w

�A
T(V) + BTv = 0

�AT(V) + B(v) < 0
V < 0

dTw = 1

(D2 (p, d, S))

for parameters p, d 2 Rn. Typically, we assume that p 2 S and d is a direction. Then
problem (P2 (p, d, S)) can be motivated as follows. Starting at the point p 2 S the
maximum distance is to be determined that can be moved in direction d without
leaving the set. If S is compact, then the maximum distance will be attained in the
point where halfline {p+ td | t > 0} intersects the boundary of S.

Proposition 3.11. Let S ✓ Rn be a closed spectrahedral shadow and p 2 S. Then the
following hold:

(i) if (P2 (p, d, S)) is unbounded, then d 2 0•S,

(ii) if (P2 (p, d, S)) is strictly feasible with finite optimal value t⇤, then an optimal solution
(V⇤, v⇤,w⇤) to (D2 (p, d, S)) exists and the hyperplane H(w⇤,w⇤Tp+ t⇤) supports
S at p+ t⇤d.

Proof. Since p 2 S, there exist yp 2 Rm and Zp 2 S k such that the point (p, yp,Zp, tp)
is feasible for (P2 (p, d, S))with tp = 0. Now, the unboundedness of the problem im-
plies the existence of feasible points (xt, yt,Zt, t) for every t > 0. The last constraint
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asserts that p + td 2 S for every t > 0 and the closedness of S implies d 2 0•S.
The existence of a dual solution in the second statement is guaranteed by the strict
feasibility of the primal and the finiteness of t⇤ according to Theorem 1.30. Let x 2 S.
Then there exist y 2 Rm and Z 2 S k

+ such that A0 +A(x) +A(y) +A(Z) < 0 and
Bx+ By+ BT(Z) = b. We compute

w⇤Tx�
⇣
w⇤Tp+ t⇤

⌘
= w⇤T(x� p)� (A0 +A(p)) • V⇤ + (b� Bp)T v⇤

=
⇣
�A

T(V⇤) + BTv⇤
⌘T

(x� p)�

(A0 +A(p)) • V⇤ + (b� Bp)T v⇤

= �V⇤
• (A0 +A(x)) + v⇤T (Bx� b) + 0Ty

= �V⇤
•

�
A0 +A(x) +A(y)

�
+ v⇤T

�
Bx+ By� b

�
+ 0 • Z

6 �V⇤
•

�
A0 +A(x) +A(y) +A(Z)

�
+

v⇤T
⇣
Bx+ By+ B

T(Z)� b
⌘

6 0.

The first equality is true due to strong duality. In the second, fourth and fifth line we
have used the first, second and third constraint of (D2 (p, d, S)), respectively. The last
inequality holds because x 2 S and V⇤ < 0. Hence, we conclude w⇤Tx 6 w⇤Tp+ t⇤
for all x 2 S. Finally, the supporting property at p+ t⇤d follows from dTw⇤ = 1.

Clearly, if the direction is chosen as d = v� p for some point v /2 S, then the op-
timal value t⇤ of (P2 (p, d, S)) is finite and satisfies t⇤ 2 (0, 1). Similar to Proposition
3.8 we can infer information about S� from solutions to the two problems.

Proposition 3.12. Let (x⇤, y⇤,Z⇤, t⇤) and (V⇤, v⇤,w⇤) be solutions to (P2 (p, d, S)) and
(D2 (p, d, S)), respectively. Given strong duality the following hold:

(i) if A0 • V⇤ + bTv⇤ = 0, then w⇤ 2 0•S�,

(ii) if A0 • V⇤ + bTv⇤ > 0, then the hyperplane H(x⇤, 1) supports S� at w⇤

A0•V⇤+bTv⇤ .

Proof. The proof of the first part is similar to the corresponding part in the proof of
Proposition 3.8. Regarding the second statement we obtain the relation

w⇤Tx⇤ = w⇤T(p+ t⇤d) = w⇤Tp+ t⇤ = A0 • V⇤ + bTv⇤ > 0

from which we conclude x⇤ 6= 0. For the second equation we invoke dTw⇤ = 1 and
for the third we use strong duality and the first constraint of (D2 (p, d, S)). Moreover,
for w = (A0 • V⇤ + bTv⇤)�1w⇤ we have

x⇤Tw = (p+ t⇤d)T w

=
⇣
A0 • V⇤ + bTv⇤

⌘�1 ⇣
pTw⇤ + t⇤

⌘

=
⇣
A0 • V⇤ + bTv⇤

⌘�1 ⇣
pTw⇤ + (A0 +A(p)) • V⇤ + (b� Bp)Tv⇤

⌘

=
⇣
A0 • V⇤ + bTv⇤

⌘�1 ⇣
pTw⇤ + pT

⇣
A

T(V⇤)� BTv⇤
⌘
+ A0 • V⇤ + bTv⇤

⌘

=
⇣
A0 • V⇤ + bTv⇤

⌘�1 ⇣
pTw⇤

� pTw⇤ + A0 • V⇤ + bTv⇤
⌘

= 1.
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To conclude the proof, we need to show w 2 S�. This is true because (V, v̄,w) is
feasible for (D2 (p, d, S))where V = (A0 •V⇤ + bTv⇤)�1V⇤, v̄ = (A0 •V⇤ + bTv⇤)�1v⇤
and A0 • V + bTv̄ = 1.

The last problem we discuss is closely related to the projection operator defined
in Chapter 1. It is given as

min kp� xk s.t. A0 +A(x) +A(y) +A(Z) < 0

Bx+ By+ B
T(Z) = b

Z < 0
(P3 (p, S))

for a parameter p 2 Rn typically not belonging to S. Hence, part of a solution to
(P3 (p, S)) is just the projection pS (p) of p onto S. Proposition 1.25 outlines how a
solution to the problem generates a supporting hyperplane to S. The dual program
reads as

max � (A0 +A(p)) • V � (b� Bp)T v s.t. �A
T(V) + BTv = w

�A
T(V) + BTv = 0

�AT(V) + B(v) < 0
V < 0

kwk 6 1.

(D3 (p, S))

Proposition 3.13. Let (x⇤, y⇤,Z⇤) and (V⇤, v⇤,w⇤) be solutions to the problems (P3 (p, S))
and (D3 (p, S)), respectively. Given strong duality the following hold:

(i) if A0 • V⇤ + bTv⇤ = 0, then w⇤ 2 0•S�,

(ii) if A0 • V⇤ + bTv⇤ > 0, then the hyperplane H(x⇤, 1) supports S� at w⇤

A0•V⇤+bTv⇤ .

Proof. The proof is similar to the proofs of Propositions 3.8 and 3.12.

Remark 3.14. Problems similar to (P1 (w, S)) and (P2 (p, d, S)) are commonly used in
multiple objective optimization as scalarization techniques, see e.g. [Eic08; Löh11].
Recently, problems involving norms have also been considered [Dör+22; AUU22].

3.2.1 Computing relative interior points

One of the assumptions of the algorithms will be that the spectrahedral shadow S
to be approximated has nonempty interior in order to make them fit into the setting
of Kamenev’s schemes. We present an algorithm that verifies this assumption for
a given input S ✓ Rn. The algorithm computes the affine hull of S as well as a
point x̄ 2 relint S. Thus, if the affine hull of S is the whole space, x̄ is actually an
interior point of S, which gives a certificate whether int S 6= ∆. Another important
motivation for the algorithm is that it closes the gap in Proposition 2.25. Remember,
that we can express relint S as a spectrahedral shadow given that a fixed point x̄ of
the relative interior is known. The algorithm below will provide such a point. A
similar algorithm that computes an interior point of a compact convex set is found
in [Löh11, Section 5.5].
In the following, we assume that S is bounded. This is no restriction because for
every x 2 S the set relint S \ B1(x) is nonempty, see e.g. [Roc70, Theorem 6.1].
Moreover, S \ B1(x) is again a spectrahedral shadow according to Example 2.4 and
Proposition 2.12.
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ALGORITHM 3.1: Relative interior point algorithm
Input: a compact spectrahedral shadow S ✓ Rn

Output: a point x̄ 2 relint S, finite sets L and L? generating the subspace
aff (S� {x̄}) and its orthogonal complement (aff (S� {x̄}))?

1 X  ∆
2 L  ∆
3 L?  ∆
4 while

��L [ L?
�� < n do

5 compute w 6= 0 such that dTw = 0 for all d 2 L [ L?
6 compute a solution (xw, yw,Zw) to (P1 (w, S))
7 compute a solution (x�w, y�w,Z�w) to (P1 (�w, S))
8 if wTxw = wTx�w then

9 L?  L? [ {w}

10 else

11 L  L [ {xw � x�w}

12 end

13 X  X [ {xw, x�w}

14 end

15 x̄  
1
|X| Âx2X x

Theorem 3.15. Algorithm 3.1 works correctly, i.e. the point x̄ satisfies x̄ 2 relint S and
for the linear hulls lin L and lin L? it holds aff S = {x̄} + lin L and (lin L)? = lin L?,
respectively.

Proof. The algorithm terminates after exactly n iterations of the loop in lines 4–14
because in every iteration either one element is added to L? in line 9 or L in line 11.
Solutions to the problems in lines 6 and 7 exist for every w according to Proposition
3.7 because S is compact. The elements of L [ L? are linearly independent. To see
this, first consider an element ` 2 L and observe that it holds ` 6= 0 because L is
updated if and only if wT` 6= 0. Now, assume that during some iteration of the
algorithm xw � x�w is to be added to L and xw � x�w 2 lin

�
L [ L?

�
. Then

xw � x�w = Â
`2L[L?

l``

for some l` 2 R. According to line 5 we have wT` = 0 for all ` 2 L [ L?, but
wT (xw � x�w) 6= 0 because L is updated. This is a contradiction as w 6= 0. The ele-
ments of L? are linearly independent in L [ L? due to the choice of w in line 5. This
implies (lin L)? = lin L? at termination. Next, we show that lin L = aff (S� {x̄}).
The point x̄ belongs to S because convX ✓ S. Hence, aff (S� {x̄}) = lin (S� {x̄}).
For xw � x�w 2 L we have

xw � x�w = (xw � x̄)� (x�w � x̄) 2 lin (S� {x̄}) .

Therefore, lin L ✓ lin (S� {x̄}). The other inclusion follows because L [ L? spans
Rn. It remains to prove that x̄ 2 relint S. Since x̄ belongs to relint convX by its
definition in line 15, it suffices to show that convX and S have the same dimension.
Then convX ✓ S implies relint convX ✓ relint S, see e.g. [Roc70, Corollaries 6.3.3
and 6.5.2]. Assume that the dimension of convX is smaller than the dimension of
S. Then there exists a direction ` 2 lin L with ` 2 (lin convX� {x̄})?. Then for
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all points xw and x�w added to X in line 13 it holds `T (xw � x�w) = 0, i.e. ` 2

lin L?. This is a contradiction to ` 2 lin L. Therefore, convX and S have the same
dimension.

Remark 3.16. Algorithm 3.1 is formulated for spectrahedral shadows S, but it would
suffice to state it for spectrahedra. In particular, if C is a spectrahedron that maps to
S under the projection p, i.e. S = p[C], then relint S = p[relintC] holds, see [Roc70,
Theorem 6.6]. However, since the algorithm operates in the typically lower dimen-
sional ambient spaceRn of the spectrahedral shadow S, working with S directly can
be beneficial.

We illustrate the algorithm on an example.

Example 3.17. Consider the disk S =
�
x 2 R2

�� x21 + x22 6 1
 
⇥ {0} embedded inR3.

We apply Algorithm 3.1 to S. At the beginning of the first iteration of the while loop
in lines 4–14 the sets L and L? are empty. Hence, any nonzero w is valid in line 5.
Here, w = (0.5, 0, 0.5)T is chosen, which yields xw = (1, 0, 0)T and x�w = (�1, 0, 0)T.
Consequently, the point (2, 0, 0)T is added to L in line 11. In the next iteration a
nonzero point w with w1 = 0 needs to be computed, e.g. w = (0, 1, 0)T. For this
assignment the problems (P1 (w, S)) and (P1 (�w, S)) yield the points (0, 1, 0)T and
(0,�1, 0)T, respectively. Again, the set L is updated. In the last loop run the direction
w = (0, 0, 1)T is computed. Since S is contained in the hyperplane H(w, 0), the
direction is appended to L?. Moreover, any point in S is a valid part of a solution in
lines 6 and 7 because w has a constant value of zero as a linear function over S. For
illustration we choose xw = (0.5, 0.5, 0)T and x�w = (�0.5, 0, 0)T. At termination
the set X consists of the points

0
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0
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and the returned relative interior point is

x̄ =
1
12

0

@
0
1
0

1

A .

The steps of the algorithm are shown in Figure 3.1.

3.2.2 Outer and inner polyhedral approximation algorithms

In order to state the approximation algorithms we need to concretize the steps for
the augmenting and cutting scheme outlined at the beginning of this section. In
particular, we need to provide rules for choosing a direction in every iteration of a
cutting scheme and for choosing a boundary point in every iteration of an augment-
ing scheme. For these steps the semidefinite programs introduced earlier are vital.
Moreover, we need to construct initial outer respectively inner approximations as a
starting point for the schemes.
Polyhedral approximation algorithms for spectrahedral shadows are also studied
in [Cir19]. In fact, the augmenting scheme presented as Algorithm 3.3 below ap-
pears therein. However, there is a discrepancy between this algorithm and the cut-
ting scheme that is presented in [Cir19] in the sense that convergence properties are
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FIGURE 3.1: Algorithm 3.1 applied to the set from Example 3.17. The
different iterations are shown from left to right and top to bottom.

proved for the former but could not be obtained for the latter. We eliminate this gap
in this section and present a different cutting scheme that admits the same conver-
gence properties as Algorithm 3.3, see Theorems 3.20 and 3.22 below.
For the remainder of this section we assume that the spectrahedral shadow S is a
convex body. This assumption is not overly restrictive. Indeed, if the origin is not
contained in the interior of S, but S is full dimensional, then we can use Algorithm
3.1 to compute a point x̄ 2 int S and work with the set S� {x̄} instead, which has
the origin in its interior. If S is not full dimensional, we can restrict the ambient space
to the affine hull of S. The closedness of S is merely of theoretical importance, i.e.
to ensure that solutions to the discussed semidefinite programs exist. In practice, an
interior-point method would be employed to solve the problems to within a given
accuracy, which is possible regardless of whether S is closed. Hence, the only real
limitation is the boundedness of S. We account for that in Remark 3.19.

Definition 3.18. For a convex set C ✓ Rn and # > 0 a polyhedron P ✓ Rn is called
an #-Hausdorff-approximation or #-H-approximation of C if dH (P,C) 6 #.

Clearly, if P is an #-H-approximation of C, then this is also true for clC because
polyhedra are closed sets. The property of being an #-H-approximation is used as a
termination condition in the algorithms, which we are now prepared to formulate.
We begin with stating a cutting scheme for S. For a predefined error tolerance # it
computes an outer #-H-approximation P of S. Algorithm 3.2 describes the method
in pseudo code.

The algorithm starts by initializing the polyhedral approximation as the whole
space, which trivially contains S. Next, an initial compact outer approximation is
computed in lines 2–5. Therefore, problem (P1 (w, S)) is solved for every standard
unit vector w 2 {ei | i = 1, . . . , n} and the negative ones vector w = �e. These so-
lutions generate supporting halfspaces to S according to Proposition 3.7. The initial
outer approximation is set as the intersection of all such halfspaces. In the main loop
in lines 7–14 of the algorithm the current approximation is successively refined. To
this end (P3 (v, S)) is solved for every vertex v of the current approximation, i.e. for
every vertex its projection pS (v) = xv onto S is computed. Clearly, knowledge of the
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ALGORITHM 3.2: Cutting scheme algorithm for compact spectrahedral
shadows
Input: a spectrahedral shadow and convex body S ✓ Rn, error tolerance

# > 0
Output: an outer #-H-approximation P of S

1 P  Rn

2 for w 2 {�e, e1, . . . , en} do

3 compute a solution (xw, yw,Zw) to (P1 (w, S))
4 P  P \ H�(w,wTxw)
5 end

6 k  •
7 while k > # do
8 for v 2 vert P do

9 compute a solution (xv, yv,Zv) to (P3 (v, S))
10 end

11 v̄  argmax {kv� xvk | v 2 vert P}
12 P  P \ H�(v̄� xv̄,g) where g = (v̄� xv̄)Txv̄
13 k  kv̄� xv̄k
14 end

set vert P or, equivalently, a V-representation of P is required to perform these com-
putations. However, during the algorithm only an H-representation of P is known
because the initial approximation as well as the refinement in line 12 are defined as
an intersection of halfspaces. The task of computing a V-representation from an H-
representation of a polyhedron is called vertex enumeration and the reverse problem is
called facet enumeration. The package bensolve tools [LW16; CLW18] or the library
cddlib are available to solve these problems. It has been pointed out recently that
the methods implemented therein are prone to numerical problems caused by using
floating point arithmetic. Hence, it might be beneficial to use alternative methods
that only compute approximate V-representations but are compatible with floating
point arithmetic such as the one presented for n = 2 and n = 3 in [Löh20]. Among
all vertices v of P one yielding the largest distance d (v, S) is chosen. This vertex is
denoted by v̄ and the current approximation quality is set to kv̄� xv̄k = d (v̄, S) in
line 13. If this value is positive than we obtain a hyperplane supporting S at xv̄ and
separating S and v̄ according to Proposition 1.25. In this case we cut off v̄ of the
current approximation, i.e. we refine P as

P \ H�

⇣
v̄� xv̄, (v̄� xv̄)T xv̄

⌘
.

On the other hand, if v̄ = xv̄, we do not need to update the polyhedral approxima-
tion anymore because all vertices are already contained in S. This scenario occurs if
and only if S is itself a polyhedron and P = S. In this case the current approxima-
tion is simply intersected with the whole space in line 12. These steps are iterated
until the current approximation error k is certifiably not larger than the predefined
error tolerance #. Note that a solution to the problem (P3 (v, S)) needs to be com-
puted only once and can be used in subsequent iterations if v remains a vertex of P.
Since in every iteration k is set to max {d (v, S) | v 2 vert P} and S ✓ P, in fact one
has k = dH (P, S), see [Bat86, Theorem 3.3]. Hence, the algorithm terminates if the
Hausdorff distance between the approximating polyhedron P and the spectrahedral
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FIGURE 3.2: Illustration of Algorithm 3.2 applied to the set Swhich is
the polar of the set from Example 2.17. The first image shows the ini-
tial approximation computed by lines 2–5 in blue. The dotted lines
and the red points visualize the distances from the vertices of the
outer approximation to S and the projections of the vertices onto S,
respectively. The vertex v̄ = (�2, 1)T is the furthest from the set and
selected in line 11. The dashed line is the supporting hyperplane con-
taining pS (v̄) that is obtained from a solution of (P3 (v̄, S)). The sec-
ond picture shows the approximation after v̄ is cut off. It is the set
that is obtained after the first iteration of lines 7–14. After another
iteration the set in the top right is the current approximation. The
bottom row depicts the outer approximations for # = 0.1, # = 0.01

and # = 0.001 with 10, 23 and 63 facets, respectively.

shadow S is at most #. The functioning of Algorithm 3.2 is depicted in Figure 3.2.

Remark 3.19. The initialization step of Algorithm 3.2 in lines 2–5 can be used to
verify whether the set S that is input to the algorithm is actually bounded. If S is
unbounded, then there exists an index i 2 {1, . . . , n} and a sequence {xk}k2N ✓ S
such that either limk!• (xk)i = • or limk!• (xk)i = �•. In the former case problem
(P1 (ei, S)) is unbounded and in the latter case (P1 (�e, S)) is unbounded. Hence, if
S is unbounded, then at least one of the programs in line 3 is unbounded, and, on
the contrary, if one of the problems (P1 (w, S)) is unbounded, so is S.

We are able to obtain a convergence result for Algorithm 3.2 that is compatible
with Theorem 3.5.

Theorem 3.20. Algorithm 3.2 works correctly, in particular it terminates with an outer #-
H-approximation P of a compact spectrahedral shadow S containing the origin in its interior.
Moreover, for the sequence {Pk} of outer approximations computed by Algorithm 3.2, the
value of dH (Pk, S) decreases with order O

⇣
1

k1/(n�1)

⌘
.

Proof. Since S is compact, optimal solutions (xw, yw,Zw) to the problems (P1 (w, S))
in line 3 exist for every w 2 {�e, e1, . . . , en} according to Proposition 3.7. Further-
more, the hyperplanes H(w,wTxw) support S at xw. Hence, S ✓ H�(w,wTxw)
and the initial approximation P computed in lines 1–5 contains S. Moreover, P is
bounded because 0•P =

�
x 2 Rn

��wTx 6 0,w = �e, e1, . . . , en
 
= {0}, cf. [Roc70].

Let Pk be the approximation computed after k iterations of the loop in lines 7–14. A
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solution (xv, yv,Zv) to (P3 (v, S)) always exists, see [HL01]. Proposition 1.25 guar-
antees that the hyperplane H(v̄ � xv̄, (v̄ � xv̄)Txv̄) in line 12 supports S at xv̄ and
S ✓ H�(v̄ � xv̄, (v̄ � xv̄)Txv̄). Hence, the updated polyhedral approximation con-
tains S. Suppose the algorithm terminates after K iterations with polyhedron PK.
Then for k defined in line 13 it holds k 6 #. By definition we have

k = max {kv� xvk | v 2 vert PK} . (3.2)

Since S ✓ PK, the Hausdorff distance dH (PK, S) is attained as e [PK, S]. It follows
from [Bat86, Theorem 3.3] that e [PK, S] is attained at a vertex of PK, i.e.

e [PK, S] = max {kv� xvk | v 2 vert PK} = k. (3.3)

Therefore, PK is an outer #-H-approximation of S. To prove the second part of the
theorem let Pk be the approximation after iteration k of the algorithm. Following the
same argumentation that lead to Equations (3.2) and (3.3) we obtain dH (Pk, S) = k =
kv̄� xv̄k. For the updated polyhedron Pk+1 in line 12 it holds

dH (Pk+1, Pk) = dH
⇣
H(v̄� xv̄, (v̄� xv̄)Txv̄), Pk

⌘
= kv̄� xv̄k = dH (Pk, S) .

Thus, Algorithm 3.2 constitutes a Hausdorff scheme with constant g = 1 as defined
in (3.1). The rate of O

⇣
1

k1/(n�1)

⌘
now follows from Theorem 3.5. In particular, Algo-

rithm 3.2 terminates after finitely many iterations.

Using polarity we also obtain a polyhedral approximation of the polar S� from
Algorithm 3.2. If {Pk}

K
k=1 is the sequence of polyhedral outer approximations com-

puted throughout one execution of the algorithm, then one can investigate how the
sequence

�
P�

k
 K
k=1 of polar approximations relates to S�. First of all, there is the re-

lation P�

k ✓ S� for all k 2 {1, . . . ,K} because the polyhedra Pk contain S and the po-
larity operation is inclusion-inverting, see [Roc70]. Moreover, the values dH

�
P�

k , S
�
�

decrease with the same rate as dH (Pk, S) in the number k of iterations. This follows
from the fact that {Pk}

K
k=1 is generated by a Hausdorff scheme according to Theorem

3.20 and [Kam08, Theorem 7]. In particular, Inequality (3.1) holds for the sets P�

k and
S� but with a possibly different constant g. Depending on the scales of the sets S
and S� the termination criterion of Algorithm 3.2 might behave badly with the ap-
proximation of S�, i.e. dH (PK, S) 6 # holds due to Theorem 3.20 but only the upper
bound

dH (P�
K, S

�) 6 dH (PK, S)
r0(PK)r0(S)

,

where r0(PK) and r0(S) are the radius of the largest Euclidean ball centered at the
origin that is contained in PK and S, respectively, is known, see [Kam02, Lemma 1].
Hence, the approximation quality of P�

K depends on the position of the origin relative
to the boundary of S. In order to obtain a description of P�

K Proposition 2.28 can be
applied.
We now turn to the presentation of an augmenting scheme for S. For a predefined
error tolerance # it computes an inner g#-H-approximation P of S for some constant
g > 1 that depends on the geometry of S and an initial inner approximation. Unlike
the cutting scheme, which is based on problem (P3 (v, S)), the augmenting scheme
utilizes (P1 (w, S)) in its main loop. The method is presented as pseudo code in
Algorithm 3.3.
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ALGORITHM 3.3: Augmenting scheme algorithm for compact spectrahedral
shadows
Input: a spectrahedral shadow and convex body S ✓ Rn, error tolerance

# > 0
Output: an inner g#-H-approximation P of S for some g > 1

1 P  ∆
2 for d 2 {�e, e1, . . . , en} do

3 compute a solution (td, xd, yd,Zd) to (P2 (0, d, S))
4 P  conv (P [ {xd})
5 end

6 k  •
7 while k > # do
8 for every facet of P defined by a hyperplane H(w,g) do
9 compute a solution (xw, yw,Zw) to (P1 (w, S))

10 end

11 (w,g)  argmax
n

wTxw�g
kwk

���H(w,g) \ P is a facet of P
o

12 P  conv (P [ {xw})

13 k  
wTxw�g

kwk

14 end

In the first step of the algorithm the current approximation is initialized as the
empty set. Then, analogously to Algorithm 3.2, an initial approximation is com-
puted. However, problem (P2 (0, d, S)) is solved for d = �e and every direction
d = ei, i = 1, . . . , n, to obtain a first inner approximation. Since 0 2 S, every solution
(td, xd, yd,Zd) yields a point on the boundary of S, in particular xd = tdd. The initial
approximation P is constructed as the convex hull of these n + 1 boundary points
describing a full dimensional polyhedron contained in S. Lines 7–14 comprise the
main loop of Algorithm 3.3, in which the polyhedral approximation is successively
enlarged. To this end (P1 (w, S)) is solved for every normal direction w of a facet
H(w,g) \ P of P. This step requires the computation of an H-representation of P,
which is only known by its vertices during the algorithm, in every iteration. A facet
which admits the largest shift within S, i.e. for which the value

�
wTxw � g

�
/ kwk is

maximized among solutions (xw, yw,Zw) to (P1 (w, S)), is chosen. The correspond-
ing normal vector is denoted by w in line 11. Proposition 3.7 implies that the point
xw lies on the boundary of S. It is appended to a V-representation of the current
approximation in the update step in line 12 yielding a new inner approximation

conv (P [ {xw}) ,

which is again contained in S. The approximation error k is set to
�
wTxw � g

�
/ kgk,

that is to the largest distance one can shift a facet of P within the set S. This proce-
dure is repeated until no facet of the current approximation can be shifted a distance
larger than # at which point Algorithm 3.3 terminates. Note that for compact convex
sets C1 and C2 one has the identity

dH (C1,C2) = max {|sC1(w)� sC2(w)| | kwk = 1} (3.4)

involving the support functions of C1 and C2, see e.g. [Gru07, Proposition 6.3]. In
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FIGURE 3.3: Illustration of Algorithm 3.3 applied to the set S which
is the polar of the set from Example 2.17. The initial approximation
computed in lines 2–5 is shown in the first picture. The dotted lines
are the possible shifts of facets of the inner approximation. The red
point marks the solution of (P1 (w, S)), which belongs to the facet ad-
mitting the largest shift. The updated inner approximation after the
first and second iteration of the main loop are portrayed in the second
and third picture. The bottom row displays the approximations ob-
tained for # = 0.1, # = 0.01 and # = 0.001 having 8, 19 and 57 vertices,

respectively.

every iteration of the algorithm the support function of S is evaluated for the direc-
tions w that are normal to a facet of P. Therefore, the value k in line 13 is a lower
bound for the Hausdorff distance dH (P, S). According to [Kam94, Theorem 1] one
also has the upper bound

dH (P, S) 6 R
r

k (3.5)

where Br(0) ✓ P0 ✓ S ✓ BR(0) and P0 is the initial inner approximation computed
in lines 2–5. Hence, Algorithm 3.3 terminates with dH (P, S) 6 g# for some g > 1.
Note that this additional factor g, which does not appear in Algorithm 3.2, arises
from the fact that it is not feasible in practice to evaluate the support function sS for
every direction w. Otherwise, the equality k = dH (P, S) would indeed hold. An
illustration of the augmenting scheme is shown in Figure 3.3.

Similar to Algorithm 3.2 one obtains a polyhedral outer approximation of S�
from the output of Algorithm 3.3 using polarity, i.e. if the inner approximation PK is
returned, then S� ✓ P�

K.

Remark 3.21. We have observed that Algorithm 3.2 can be used to certify whether S
is bounded. In fact, the initialization phase of Algorithm 3.3 can be exploited as well
to verify one of the assumptions on S. If any of the optimal values td in line 3 is less
than or equal to zero, then 0 /2 int S. For instance, if td = 0, then td /2 S for every
t > 0. Hence, the origin must be contained in the boundary of S. Similarly, if td < 0
or (P2 (0, d, S)) is infeasible for any d 2 {�e, e1, . . . , en}, then 0 /2 S because there do
not exist y and Z such that (0, 0, y,Z) is feasible for (P2 (0, d, S)). We conclude that
0 2 int S if and only if every optimal value td to (P2 (0, d, S)) in line 3 is positive.
Considering the problems (P2 (p, d, S)) for a given point p 2 Rn this method can be
used to obtain a containment certificate of p 2 int S. We point out that the point p has
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to be chosen beforehand whereas in Algorithm 3.1 some interior point is computed
given that int S 6= ∆.

A similar convergence result like Theorem 3.20 holds for Algorithm 3.3.

Theorem 3.22. Algorithm 3.3 works correctly, in particular it terminates with an inner g#-
H-approximation P of a compact spectrahedral shadow S containing the origin in its interior
for some g > 1. Moreover, for the sequence {Pk} of inner approximations computed by
Algorithm 3.3, the value of dH (Pk, S) decreases with order O

⇣
1

k1/(n�1)

⌘
.

Proof. Solutions (td, xd, yd,Zd) to the problems (P2 (0, d, S)) in line 3 exist for every
d 2 {�e, e1, . . . , en} because S is compact and 0 2 int S. Moreover, td > 0 and
xd = tdd is a point on the boundary of S according to Proposition 3.11. Therefore, the
set P computed after the loop in lines 2–5 is a full dimensional inner approximation
of S. Let Pk be the approximation computed after k iterations of the loop in lines
7–14. A solution (xw, yw,Zw) to (P1 (w, S)) exists due to Proposition 3.7 and the
point xw utilized in line 12 belongs to the boundary of S. Hence, the updated inner
approximation satisfies P ✓ S. Suppose the algorithm terminates after K iterations
with polyhedron PK. Then for k in line 13 it holds

k = max
⇢

sS(w)� sPK(w)
kwk

����w is normal to a facet of PK
�
6 #

and according to the upper bound (3.5) it follows that there exist 0 < r < R such
that

dH (PK, S) 6
R
r

k 6 R
r

#.

This proves that PK is an inner g#-H-approximation of S. The rate follows imme-
diately from [Kam94, Theorem 2] and Theorem 3.5. In particular, this implies that
Algorithm 3.3 terminates after finitely many steps.

Remark 3.23. Algorithms 3.2 and 3.3 do not rely on any unique properties of spec-
trahedral shadows. In fact, both algorithms can be stated for more general convex
bodies, e.g. sets of the form C = {x 2 Rn

| fi(x) 6 0, i = 1, . . . ,m} for convex func-
tions f1, . . . , fm, in exactly the same way. Furthermore, the convergence result in
Theorems 3.20 and 3.22 applies as well. It needs to be ensured, however, that the
involved optimization problems can be solved for C. These are then general convex
programming problems rather than semidefinite ones.

Example 3.24. We apply Algorithms 3.2 and 3.3 to the spectrahedral shadow

S =

⇢
x 2 R3

���� 9 V 2 S
4 :
✓
I
0

◆
x+ B

T(V) =

✓
0
1

◆
,V < 0

�
,

with

B(v) =

0

BB@

v4 v1 v2 0
v1 v4 v3 0
v2 v3 v4 0
0 0 0 v4

1

CCA .

It is the polar set of the spectrahedron that is defined by the linear matrix inequality
0

@
1 v1 v2
v1 1 v3
v2 v3 1

1

A < 0
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FIGURE 3.4: Outer and inner polyhedral approximation of the set
from Example 3.24 computed for # = 0.01 by Algorithm 3.2 and 3.3,

respectively.

according to Theorem 2.32. The table below summarizes various numerical results
from the application of the algorithms to the spectrahedral shadow S. For instance,
the number of iterations of the main loop and the number of vertices and facets of
the approximations are shown. Figure 3.4 displays the approximations for # = 0.01.
From the results it is evident that both algorithms need a comparable number of
iterations to reach a given error tolerance. This is surprising because the inner ap-
proximations may have a worse approximation quality than the outer approxima-
tions whose Hausdorff distance to S is provably at most #. This is also reflected in
the smaller number of vertices and facets for the inner approximations. Note that,
for this example, Inequality (3.5) and the outer approximation for # = 0.005 yield
R 6 1.15876 and the initial inner approximation yields r > 0.26455, i.e. we obtain
the estimate g 6 4.3801. It would be interesting to investigate whether Algorithm 3.2
typically needs fewer iterations than Algorithm 3.3 to reach the same approximation
quality or whether the upper bound (3.5) can be improved.

TABLE 3.1: Numerical results from Example 3.24.

# 0.1 0.05 0.01 0.005

Alg. 3.2
iterations
vertices
facets

17
38
53

32
68

118

154
312
554

333
670

1330

Alg. 3.3
iterations
vertices
facets

18
22
40

35
39
71

163
167
330

343
347
690

3.3 Limitations of the Hausdorff distance for polyhedral ap-
proximation

We have seen that every compact convex set can be approximated by polyhedra in
the Hausdorff distance to arbitrary precision and that there are algorithms that com-
pute such approximating polyhedra. Moreover, Section 3.1 emphasizes that there
is a vast amount of literature that deals with this problem both from a theoretical
and an algorithmic perspective. In the last section of this chapter we investigate the
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possibility of approximating convex sets by polyhedra with respect to the Hausdorff
distance that are not necessarily bounded. The literature on that matter is scarce.
A possible reason for this lack might be explained by properties of the Hausdorff
distance. It is well known that the Hausdorff distance constitutes a metric on the
space of compact subsets of Rn. This makes it a suitable error measure for approx-
imation in the compact case. However, for unbounded sets the Hausdorff distance
does not need to be finite. A first step towards understanding its limitations in view
of polyhedral approximation is the following result.

Proposition 3.25. Let C1, C2 ✓ Rn be closed convex sets and assume 0•C1 6= 0•C2. Then
dH (C1,C2) = •.

Proof. Without loss of generality let d 2 0•C1 \ 0•C2. The Hausdorff distance be-
tween C1 and C2 can be expressed as

dH (C1,C2) = inf {# > 0 |C1 ✓ C2 + B#(0),C2 ✓ C1 + B#(0)} ,

see e.g. [Gru07, Proposition 6.3]. Choose # > 0 such that C1 \ (C2 + B#(0)) 6= ∆ and
fix an element x from this set. Then x + µd 2 C1 for all µ > 0. The recession cone
of C2 + B#(0) equals 0•C2 according to [Roc70, Corollary 9.1.2]. Hence, there exists
some µ# such that x + µd /2 C2 + B#(0) for all µ > µ#. This yields dH (C1,C2) > #.
Letting # ! • completes the proof.

From the proposition it follows that an #-H-approximation of a closed convex set
C must approximate 0•C exactly. Thus, a set with nonpolyhedral recession cone is
not within the scope of polyhedral approximability with respect to the Hausdorff
distance. One may ask whether it is sufficient for a closed convex set C to have
a polyhedral recession cone for an #-H-approximation to exist. The answer to this
question is negative. A characterization of the class of sets that admit polyhedral
#-H-approximations for every # > 0 is due to Ney and Robinson [NR95].

Theorem 3.26 (cf. [NR95, Theorem 2.1]). Let C ✓ Rn be a closed set. Then the following
are equivalent:

(i) C is convex, 0•C is polyhedral and e [C, 0•C] < •,

(ii) there exists a polyhedral cone D ✓ Rn such that for every # > 0 there exists a finite
set V ✓ Rn such that dH (convV + D,C) 6 #.

Further, if (ii) holds, then D = 0•C.

Since 0•C ✓ C � {x} for any x 2 C, the quantity e [0•C,C] is always finite.
Hence, the condition e [C, 0•C] in the theorem is equivalent to the Hausdorff dis-
tance between C and its recession cone being finite. The conditions in Theorem 3.26
constrain the class of sets that can be approximated by polyhedra significantly. Even
simple sets are beyond approximation as is illustrated in Figure 3.5. The approx-
imability of certain convex sets by polyhedra is also investigated by Ulus in [Ulu18]
but in the context of convex vector optimization problems. In order to formulate the
relevant result we need another definition.

Definition 3.27 (cf. [Ulu18]). A convex set C ✓ Rn is said to be self-bounded if there
exists x 2 Rn such that C ✓ {x}+ 0•C.

Ulus gives a sufficient criterion for a closed convex set to be polyhedrally ap-
proximable.
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Proposition 3.28 (cf. [Ulu18, Proposition 3.7 and Remark 3.8]). Let C ✓ Rn be a closed
convex set. If C is self-bounded, then for every # > 0 there exists a finite set V ✓ Rn such
that dH (convV + 0•C,C) 6 #.

If in the proposition 0•C is also a polyhedral cone, then, clearly, C can be ap-
proximated arbitrarily well by polyhedra. The difference to Theorem 3.26 is the self-
boundedness of C instead of the finiteness of e [C, 0•C]. The following result points
out the connections between these conditions. It shows that a converse statement of
Proposition 3.28 can only be obtained under an additional assumption. In this case,
self-boundedness and the condition e [C, 0•C] < • coincide. We also establish the
equivalence to a condition that is a slightly weaker alternative to self-boundedness.

Theorem 3.29. Let C ✓ Rn be a closed convex set. The following statements are equivalent:

(i) e [C, 0•C] < •,

(ii) there exists a bounded set M such that C ✓ M+ 0•C.

If, additionally, int 0•C 6= ∆, then (i) and (ii) are equivalent to

(iii) C is self-bounded.

Proof. We begin with the assertion (i) =) (ii). Denote k = e [C, 0•C] and let x 2 C.
Then kx� p0•C (x)k 6 k and we have

x = (x� p0•C (x)) + p0•C (x) 2 Bk(0) + 0•C.

Since x 2 C is arbitrary, this yields C ✓ Bk(0) + 0•C.
To prove (ii) =) (i) assume C ✓ M + 0•C holds for some bounded set M. We
compute

e [C, 0•C] 6 e [M+ 0•C, 0•C]
= sup

x2M, d20•C
k(x+ d)� p0•C (x+ d)k

6 sup
x2M, d20•C

k(x+ d)� dk

= sup
x2M

kxk

< •.

The implication (iii) =) (ii) holds trivially even if int 0•C = ∆. Hence, it suffices to
show (i) =) (iii) whenever int 0•C 6= ∆ to complete the proof. Assume (i) holds,
i.e. k = e [C, 0•C] < •. We have already seen this implies

C ✓ Bk(0) + 0•C. (3.6)

Let d 2 int 0•C. Then there exists # > 0 such that B#(d) ✓ 0•C. It holds

Bk

⇣k

#
d
⌘
=

k

#
B#(d) ✓

k

#
0•C = 0•C.

The second equation is valid because 0•C is a cone. After translation this yields the
relation Bk(0) ✓

�
�

k
# d
 
+ 0•C. Moreover,

Bk(0) + 0•C ✓

n
�

k

#
d
o
+ 0•C+ 0•C =

n
�

k

#
d
o
+ 0•C.

Again, the equality holds because 0•C is a cone. Finally, we invoke (3.6) and con-
clude that C is self-bounded.
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C0•C C0•C C0•C

FIGURE 3.5: An illustration of the relationships in Theorem 3.29. The
set on the left is contained in its own recession cone. Hence, it is self-
bounded and admits polyhedral approximations. Note, that the set
extC of extreme points of C is unbounded, i.e. C cannot be written as
the sum of a compact set and its recession cone. The central set is dis-
cussed in Example 3.30. The excess of C over its own recession cone
is finite but C is not self-bounded. A set that is neither self-bounded
nor satisfies e [C, 0•C] < • is shown on the right. By traversing the

parabolic arc the distance to 0•C increases without bound.

Example 3.30. A counterexample for the implication (i) =) (iii) is the set

C = conv
⇢✓

±1
0

◆�
+ cone

⇢✓
0
1

◆�
.

It holds e [C, 0•C] =
��(1, 0)T

�� = 1 but, since intC 6= ∆ and int 0•C = ∆, C is not
self-bounded.

The relationships from Theorem 3.29 are also illustrated in Figure 3.5. In view of
the result we suggest calling a convex set self-bounded if it satisfies Condition (ii) of
the theorem. Firstly, this allows for a characterization of polyhedral approximability
in terms of self-boundedness and, secondly, makes the notion compatible with the
usual notion of boundedness. Note, that a bounded convex set is self-bounded in
the sense of Definition 3.27 if and only if it is a singleton. We close this section with
a summary of the results.

Corollary 3.31. Let C ✓ Rn be a closed set. Then the following are equivalent:

(i) for every # > 0 there exists an #-H-approximation of C,

(ii) C is convex, 0•C is polyhedral and e [C, 0•C] < •,

(iii) C is convex, 0•C is polyhedral and C ✓ M+ 0•C for a bounded set M.

Proof. The proof follows immediately from Theorems 3.26 and 3.29.
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Chapter 4

Polyhedral approximation of
unbounded spectrahedral shadows

We have demonstrated in the previous chapter that the Hausdorff distance is a good
measure of approximation quality for the polyhedral approximation of convex bod-
ies but too restrictive for convex sets that are not necessarily bounded. In this final
chapter we develop tools and algorithms that are compatible with unbounded sets
in this regard. The results of this chapter are based on the joint work [DL22] with
Andreas Löhne and the article [Dör22]. To the best of our knowledge this is the first
time that polyhedral approximation of convex sets to such a degree of generality is
considered and explicit algorithms are developed.

4.1 A notion of polyhedral approximation for pointed con-
vex sets

The aim of this section is to find a notion of polyhedral approximation that is appli-
cable to a class of convex sets as large as possible. Being required to compute the
recession cone exactly whenever we want to approximate a convex set by a polyhe-
dron in the Hausdorff distance is already too constraining for this purpose and this
is even disregarding the additional condition we need according to Corollary 3.31.
Hence, a way to quantify similarity between convex cones is required as a starting
point.

Definition 4.1 (cf. [WW67]). Let K1,K2 ✓ Rn be convex cones. The truncated Haus-
dorff distance between K1 and K2, denoted by dtH (K1,K2), is defined as

dH (K1 \ B1(0),K2 \ B1(0)) .

The truncated Hausdorff distance between the cones K1 and K2 considers the
usual Hausdorff distance between K1 and K2 restricted to the unit ball. Since cones
contain the origin, dtH (K1,K2) 6 1 always holds. This is of course due to the choice
of intersecting the sets with the unit ball, which is arbitrary to a certain degree.
Indeed, one might as well intersect K1 and K2 with any convex body and define
dtH (K1,K2) accordingly without losing the following important property. The trun-
cated Hausdorff distance provides a metric on the space of closed convex cones in
Rn, see e.g. [WW67]. While there are other ways for measuring the distance between
closed convex cones which are discussed in the survey article [IS10] by Iusem and
Seeger, we choose the truncated Hausdorff distance because it is derived from the
Hausdorff distance in a natural way and we have used the latter in the preceding
chapter already. With it we define a notion of polyhedral approximation for closed
pointed convex sets.
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CP

 #

0•P 0•C

 d

FIGURE 4.1: Illustration of Definition 4.2. Red polyhedron P on the
left is an (#, d)-approximation of C. The distance of any vertex of P to
the setC is at most #. The recession cones of both sets are shown on the
right with the arc indicating the unit ball. The truncated Hausdorff

distance between them is bounded above by d.

Definition 4.2. Let C ✓ Rn be a closed pointed convex set and #, d > 0. A pointed
polyhedron P is called an (#, d)-approximation of C if the following hold:

(i) e [vert P,C] 6 #,

(ii) dtH (0•P, 0•C) 6 d,

(iii) C ✓ P.

Figure 4.1 illustrates the definition. The notion of (#, d)-approximation specifies
a concept of polyhedral outer approximation. If P is an (#, d)-approximation of a set
C it means that every vertex of P is close to C in Euclidean distance and that the
recession cones of P and C are close to one another in the sense of Definition 4.1. It is
not straightforward to find a similar concept for inner approximations or without a
containment criterion altogether. If Condition (iii) was dropped, then (i) and (ii) can
be satisfiedwhile P is an arbitrarily bad approximation of C. This, for example, is the
case when C is a ball of radius r > 0 and P is comprised of just a single point from C.
Then Pwould be a (0, 0)-approximation of C, which is certainly nonsensical. Hence,
in order to expand the notion to not only outer approximations, it would be required
to adapt the condition e [vert P,C] 6 #. If, for example, an inner approximation
was sought, the roles of P and C would have to be interchanged in that condition
resulting in e [extC, P] 6 # because the analogue of considering vertices of P is to
consider extreme points of C. However, this leads to the same complications due to
which the Hausdorff distance is insufficient in the unbounded setting. In particular,
if P ✓ C and e [C, 0•C] = •, i.e. there do not exist #-H-approximations of C, then
e [extC, P] = • as well. This can easily be deduced from the triangle inequality. It
holds

• = e [C, 0•C] 6 e [C, 0•P] 6 e [C, P] + e [P, 0•P] .

Corollary 3.31 implies that e [P, 0•P] is finite. Therefore, e [C, P] is not finite, but that
is identical to e [extC, P] = •, see [Roc70, Theorem 32.3].
A comment on the fact that only pointed sets are considered in Definition 4.2 is also
expedient. The condition that P is pointed is equivalent to vert P 6= ∆, see Corollary
1.17 for sufficiency, necessity is trivial. Hence, the pointedness of P is required for
Condition (i) and, since C ✓ P, it also applies to C. In fact, if C contains lines,
Condition (i) can not be omitted. For example, if C is the halfspace H�(w,g) and
P = H�(w,g + r), then Conditions (ii) and (iii) are satisfied for every r > 0, but the
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distance between the boundaries of C and P can be arbitrarily large. However, C can
be expressed as the direct sum

C =
⇣
C \ L?

⌘
+ L,

where L is the lineality space of C, i.e. the linear subspace 0•C \ (�0•C), and L? is
its orthogonal complement, see [Roc70]. The set C\ L? in this expression is pointed.
Given C is a spectrahedral shadow, Algorithm 3.1 can be used to compute L or L?
as it holds

L? = affC�

according to [Roc70, Theorem 14.6]. To that effect, it is no restriction to consider
pointed sets in Definition 4.2 because one can always approximate the pointed part
of a convex set C and add its lineality space to the result afterwards.

Remark 4.3. The distinction between # and d in the definition of (#, d)-approximation
is not necessary but it is advisable in two regards. Firstly, these are absolute error
measures and depending on the scale of the set C relative to 0•C it is sensible to
allow them to have differing values. Secondly, dtH (0•P, 0•C) is bounded above by
1 by definition. Therefore, reasonable values for d are smaller than 1, while # is not
restricted in this way.

The notion of (#, d)-approximation can be understood as an extension of the no-
tion of #-H-approximation in the sense that both coincide for outer approximations
in the compact case.

Proposition 4.4. Let C ✓ Rn be a convex body and d < 1. Then the following are equiva-
lent:

(i) P is an (#, d)-approximation of C,

(ii) P is an #-H-approximation of C and C ✓ P.

Proof. Let P be an (#, d)-approximation of C for some d < 1. By definition it holds
that dtH (0•P, 0•C) < 1. Moreover, 0•C = {0} because C is bounded. This implies
that P is bounded as well. Otherwise there existed some d 2 0•P with kdk = 1 and

dtH (0•P, 0•C) > d (d, 0•C) = d (d, {0}) = 1.

This is a contradiction, hence 0•P = {0}. Furthermore it is true that

dH (P,C) = e [P,C] = e [vert P,C] 6 #.

The first equality is valid because C ✓ P. The second one follows from the facts that
P = convvert P according to Theorem 1.16 and compactness of P and that e [P,C]
is attained at a vertex of P, see [Bat86, Theorem 3.3]. Consequently, P is an #-H-
approximation of C.
Now, assume the second statement holds. Since dH (P,C) 6 #, Proposition 3.25
implies that 0•P = 0•C. Therefore, dtH (0•P, 0•C) = 0 and P is bounded. The fact
that e [vert P,C] 6 dH (P,C) 6 # implies that P is an (#, 0)-approximation of C. In
particular, P is also an (#, d)-approximation of C for every d > 0.

In the remainder of this section we demonstrate that (#, d)-approximations pro-
vide a meaningful notion of polyhedral approximation. To this end the concept of
Painlevé-Kuratowski convergence is used, a theory of convergence for sequences of
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sets that applies to a broader class than Hausdorff convergence. The aim is to prove
that a sequence of (#, d)-approximations of a given set C converges to C in the sense
of Painlevé-Kuratowski if # and d diminish. We start out by providing necessary def-
initions, while utilizing the notation from [RW98], which is also the main reference
for this section. LetN• andN #

• denote the collections {N ✓ N |N \ N is finite} and
{N ✓ N |N is infinite} of subsets of N, respectively. The set N• can be regarded
as the set of subsequences of N that contain all natural numbers larger than some
n̄ 2 N and N #

• as the set of all subsequences ofN. Obviously, N• ✓ N #
•.

Definition 4.5. For a sequence {Mk}k2N of subsets of Rn the outer limit is the set
�
x 2 Rn �� 8 # > 0, 9 N 2 N

#
•, 8 k 2 N : x 2 Mk + B#(0)

 
,

denoted by lim supk!• Mk, and the inner limit lim infk!• Mk is the set

{x 2 Rn
| 8 # > 0, 9 N 2 N•, 8 k 2 N : x 2 Mk + B#(0)} .

The outer limit of a sequence {Mk}k2N can be paraphrased as the set of all points
for which every open neighbourhood intersects infinitely many elements Mk of the
sequence. Similarly, the inner limit is the set for which the same is true but for all
elements Mk beyond some k̄ 2 N. In particular, both sets are closed.

Definition 4.6. A sequence {Mk}k2N of subsets of Rn is said to converge to a set
M ✓ Rn in the sense of Painlevé-Kuratowski or PK-converge, written Mk ! M, if

M = lim sup
k!•

Mk = lim inf
k!•

Mk.

Example 4.7 (cf. [RW98, p. 118]). As already mentioned, PK-convergence is more
general than H-convergence. For example, consider the sequence {Mk}k2N defined
by Mk = {x, yk} for points x, yk 2 Rn where kykk ! •. Then Mk ! {x} but
dH (Mk, {x}) = kyk � xk ! •, i.e. {Mk}k2N PK-converges to {x} but fails to con-
verge with respect to the Hausdorff distance.

Although Painlevé-Kuratowski and Hausdorff convergence are different, they
are closely related. In fact, if there exists a bounded set B ✓ Rn such that Mk,M ✓ B,
then {Mk}k2N PK-converges if and only if it H-converges, see [RW98]. Moreover,
PK-convergence can be characterized using the Hausdorff distance for sequences of
convex sets.

Proposition 4.8 (cf. [Mos69, Lemma 1.1] and [SW79, Theorem 4]). Let {Ck}k2N be a
sequence of closed convex subsets of Rn, C ✓ Rn be a closed convex set and x 2 Rn. Then
the following are equivalent:

(i) Ck ! C,

(ii) there exists r̄ > 0 such that for all r > r̄

lim
k!•

dH (Ck \ Br(x),C \ Br(x)) = 0.

Essentially, for sequences of closed convex sets PK-convergence is equivalent
to convergence in the Hausdorff distance of all truncations of sequence elements.
Since we are working in a convex setting, Proposition 4.8 provides an accessible
way to prove convergence. We need three auxiliary results before we can apply it to
a sequence of (#, d)-approximations. The first one gives a bound on the Hausdorff
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distance between a truncation of a closed pointed convex set C and a truncation of
an (#, d)-approximation of C.
Proposition 4.9. Let C ✓ Rn be a closed pointed convex set and P ✓ Rn be an (#, d)-
approximation of C. Then for every r > # and x 2 convvert P there exists v 2 convvert P
such that

dH (P \ Br(x),C \ Br(x)) 6 2 (# + d (r+ kx� vk)) .

Moreover, if the distance dH (P \ Br(x),C \ Br(x)) is attained at p⇤ 2 P \ Br(x), then
v 2 {p⇤}� 0•P.
Proof. The distance function d (y,C) is a convex function of y, see [Roc70]. Therefore,
the condition e [vert P,C] 6 # in Definition 4.2 implies

d (y,C) 6 # (4.1)

for every y 2 convvert P. Now, because P is an (#, d)-approximation of C, r > #
and x 2 convvert P, the set C \ Br(x) is nonempty. Thus, dH (P \ Br(x),C \ Br(x))
is attained as kp⇤ � c⇤k for some p⇤ 2 P \ Br(x) and c⇤ 2 C \ Br(x), see e.g. [Bat86,
Theorem 3.3]. For l 2 [0, 1] let y(l) = lp⇤ + (1 � l)x. We distinguish the two
cases p⇤ 2 convvert P and p⇤ /2 convvert P. First, assume p⇤ 2 convvert P. Then
y(l) 2 convvert P for every l 2 [0, 1], which yields the existence of cl 2 C with
ky(l)� clk 6 # according to (4.1). If kp⇤ � xk 6 #, then

dH (P \ Br(x),C \ Br(x)) = kp⇤ � c⇤k 6 kp⇤ � c0k
6 kp⇤ � xk+ kx� c0k
6 2#.

(4.2)

The first and third inequality hold because kx� c0k 6 # 6 r and x = y(0). In
particular, c0 2 C \ Br(x). If kp⇤ � xk > #, set l⇤ = 1� #

kp⇤�xk . A similar estimate
yields

dH (P \ Br(x),C \ Br(x)) = kp⇤ � c⇤k 6 kp⇤ � cl⇤k

6 kp⇤ � y(l⇤)k+ ky(l⇤)� cl⇤k

6 2#.
(4.3)

To see that the first inequality is valid we need to show that cl⇤ 2 Br(x). This is
true because ky(l⇤)� xk = kp⇤ � xk � # 6 r � # implies B#(y(l⇤)) ✓ Br(x). Now,
assume p⇤ /2 convvert P. Then there exists l 2 (0, 1) such that y

�
l
�
2 convvert P

and y(l) /2 convvert P for all l > l. We define

vl = argmin
���y

�
l
�
� v
�� �� v 2 ({y(l)}� 0•P) \ convvert P

 
. (4.4)

For l > l one can decompose y(l) as y(l) = vl + µldl for some direction dl 2 0•P
and µl > 0. Since P is an (#, d)-approximation of C, there exist c̄l 2 C and d̄l 2 0•C
such that kvl � c̄lk 6 # and

��dl � d̄l

�� 6 d. We compute
��y(l)�

�
c̄l + µld̄l

��� 6 kvl � c̄lk+ µl

��dl � d̄l

�� 6 # + µld. (4.5)

Moreover, it holds
��y
�
l
�
� vl

�� 6
��y
�
l
�
� v1

��. This is seen by observing that (4.4)
implies p⇤ � v1 2 0•P and noting that

1� l

1� l
y
�
l
�
+

✓
1�

1� l

1� l

◆
v1 = y(l)�

l � l

1� l
(p⇤ � v1) ,
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i.e. y(l)� l�l
1�l

(p⇤ � v1) lies on the line segment connecting y
�
l
�
and v1. Since both

of these points belong to convvert P, so does y(l)� l�l
1�l

(p⇤ � v1). Hence, the claim
follows from the definition of vl in (4.4). Considering kdlk = 1, this leads to the
estimate

µl = ky(l)� vlk 6
��y(l)� y

�
l
���+

��y
�
l
�
� vl

��

6
��y(l)� y

�
l
���+

��y
�
l
�
� v1

��

6
��y(l)� y

�
l
���+

��y
�
l
�
� x
��+ kx� v1k

= ky(l)� xk+ kx� v1k
6 r+ kx� v1k .

(4.6)

If d > r�#
r+kx�v1k

, then

dH (P \ Br(x),C \ Br(x)) = kp⇤ � c⇤k 6 kp⇤ � c0k
6 kp⇤ � xk+ kx� c0k
6 r+ #

6 2# + d (r+ kx� v1k) ,

(4.7)

where the first inequality holds because c0 2 C\ Br(0), whichwe have shown above.
Otherwise, the last inequality is violated. In this case we consider the point y (l⇤)

for l⇤ = 1� #+d(r+kx�v1k)
kp⇤�xk 2 [0, 1). This choice yields

{z 2 Rn
| kz� y(l⇤)k 6 # + d (r+ kx� v1k)} ✓ Br(x) (4.8)

because ky(l⇤)� xk = kp⇤ � xk � (# + d (r+ kx� v1k)) and kp⇤ � xk 6 r. Now, if
l⇤ 6 l, then y (l⇤) 2 convvert P and ky (l⇤)� cl⇤k 6 #. We conclude

dH (P \ Br(x),C \ Br(x)) = kp⇤ � c⇤k 6 kp⇤ � cl⇤k

6 kp⇤ � y (l⇤)k+ ky (l)� cl⇤k

6 2# + d (r+ kx� v1k) ,
(4.9)

where cl⇤ 2 C \ Br(x) by (4.8). If l⇤ > l, then, according to (4.5) and (4.6),

dH (P \ Br(x),C \ Br(x)) = kp⇤ � c⇤k 6
��p⇤ �

�
c̄l⇤ + µl⇤ d̄l⇤

���

6 kp⇤ � y (l⇤)k+��y (l⇤)�
�
c̄l⇤ + µl⇤ d̄l⇤

���

6 2 (# + d (r+ kx� v1k)) .

(4.10)

Finally, we conclude

dH (P \ Br(x),C \ Br(x)) 6 2 (# + d (r+ kx� v1k))

by taking into account Estimates (4.2), (4.3), (4.7), (4.9) and (4.10). The other state-
ment of the proposition follows from (4.4), which yields v1 2 {p⇤}� 0•P.

The expression kx� vk in the estimate can be bounded further by taking the
supremum over x, v 2 convvert P. The resulting quantity is called the diameter of
the set convvert P. This gives an upper bound on dH (P \ Br(x),C \ Br(x)) that does
not depend on the point p⇤ at which theHausdorff distance is attained. However, we
need the stronger bound from Proposition 4.9 for the proof of Theorem 4.12 below.
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Lemma 4.10. Let C ✓ Rn be a closed pointed convex set and {vk}k2N, {dk}k2N be se-
quences such that limk!• d (vk,C) = 0, limk!• d (dk, 0•C) = 0 and {vk + dk}k2N is
bounded. Then {vk}k2N is bounded.

Proof. Assume that {vk}k2N is unbounded. Then {dk}k2N is unbounded as well
since {vk + dk}k2N is bounded. Hence, 0•C 6= {0} because limk!• d (dk, 0•C) = 0.
Without loss of generality we can assume that dk 6= 0 for all k 2 N by retreating to
a suitable subsequence. Then the sequence {rk}k2N given by rk = dk/kdkk is well-
defined and has a convergent subsequence because it is bounded. Without loss of
generality, again, we can assume that {rk}k2N is itself convergent to some r 2 0•C,
where we take limk!• d (dk, 0•C) = 0 into account. We will show that �r 2 0•C.
Therefore, let c 2 C and µ > 0. Since {vk + dk}k2N is bounded, there exists some
k > 0 such that kvk + dkk 6 k for every k 2 N. Hence,

kc� dk � pC (vk)k = kc+ vk � pC (vk)� vk � dkk 6 kck+ d (vk,C) + k 6 k̄ (4.11)

holds for some k̄ 2 R. The last inequality is valid because limk!• d (vk,C) = 0.
Define

yk =
µ

kdkk
pC (vk) +

✓
1�

µ

kdkk

◆
c 2 C.

This yields
d (c� µrk,C) 6 k(c� µrk)� ykk

=

����
µ

kdkk
c� µrk �

µ

kdkk
pC (vk)

����

=
µ

kdkk
kc� dk � pC (vk)k

6 µ

kdkk
k̄

for every k 2 N. We apply (4.11) to get the inequality in the last line. By passing to
the limit we see that limk!• d (c� µrk,C) = 0 as {dk}k2N is unbounded. Utilizing
the convergence of {rk}k2N and the fact that C is closed we obtain c� µr 2 C for all
µ > 0. Now, closedness ofC also implies�r 2 0•C. This contradicts the pointedness
of C and we conclude that {vk}k2N is bounded.

The lemma can be interpreted as follows. For a closed pointed convex set C and
a point c 2 C the set ({c}� 0•C) \ C is compact. In particular, c can be written as
c = v+ d for suitable v 2 C and d 2 0•C. This decomposition need not be unique,
but the set {v 2 C | 9 d 2 0•C : c = v+ d} is compact. Lemma 4.10 shows that this
is also true in an approximate sense, i.e. if the point c is not fixed, but c, v and d are
regarded as sequences converging to C and 0•C, respectively.

Lemma 4.11. Let C ✓ Rn be a closed pointed convex set and {Pk}k2N be a sequence of
(#k, dk)-approximations of C. If limk!• (#k, dk) = (0, 0), then for every c 2 extC there
exists a sequence {vk}k2N such that limk!• vk = c and vk 2 convvert Pk.

Proof. The set extC is nonempty according to Corollary 1.17. Fix a point c 2 extC.
Assume that every sequence {vk}k2N satisfying the property vk 2 convvert Pk does
not converge to c. Then, for every such sequence, there exist k > 0 and N 2 N #

•
such that kvk � ck > k for every k 2 N. Moreover, since C ✓ Pk, there exist
vk 2 convvert Pk and dk 2 0•Pk such that c = vk + dk for every k 2 N. Therefore, we
can fix a sequence {v̄k}k2N with v̄k 2 convvert Pk and kv̄k � ck > k > 0 and a cor-
responding sequence

�
d̄k
 
k2N such that c = v̄k + d̄k for every k 2 N. It is true that
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limk!• d (v̄k,C) = limk!• d
�
d̄k, 0•C

�
= 0 because Pk is an (#k, dk)-approximation

of C and limk!• (#k, dk) = (0, 0). Now, according to Lemma 4.10 the sequences
{v̄k}k2N and

�
d̄k
 
k2N are bounded. Hence, they have convergent subsequences.

Without loss of generality we assume that limk!• v̄k = v̄ and limk!• d̄k = d̄. It
holds v̄ 2 C and d̄ 2 0•C because C is closed. Note that d̄ 6= 0. This is evident from
the fact that

��d̄k
�� = kv̄k � ck > k > 0 for all k 2 N. Finally, we conclude

c = v̄+ d̄ =
1
2
�
v̄+ 2d̄

�
+

1
2
v̄.

This contradicts c 2 extC.

From a geometric perspective the statement of Lemma 4.11 is intuitive. Given
an (#, d)-approximation P of C, every extreme point of C will eventually be approxi-
mated well by points from the set convvert P if # and d are sufficiently small.
We now have all the tools needed to prove the main result of this section.

Theorem 4.12. Let C ✓ Rn be a closed pointed convex set and {Pk}k2N be a sequence of
(#k, dk)-approximations of C. If limk!• (#k, dk) = (0, 0), then Pk ! C.

Proof. We can apply Proposition 4.8 and show that there exist r̄ > 0 and c 2 Rn such
that for all r > r̄ it holds

lim
k!•

dH (Pk \ Br(c),C \ Br(c)) = 0. (4.12)

Choose r > max {#k | k 2 N} and c 2 extC. Such a point exists due to Corollary 1.17.
According to Lemma 4.11 there exists a sequence {xk}k2N such that limk!• xk = c
and xk 2 convvert Pk. Using the triangle inequality and Proposition 4.9 yields

dH (Pk \ Br(c),C \ Br(c)) 6 dH (Pk \ Br(c), Pk \ Br(xk)) +
dH (Pk \ Br(xk),C \ Br(xk)) +

dH (C \ Br(xk),C \ Br(c))
6 dH (Pk \ Br(c), Pk \ Br(xk)) +

2 (#k + dk (r+ kxk � vkk)) +
dH (C \ Br(xk),C \ Br(c)) ,

(4.13)

for some vk 2 convvert Pk. The first and third term in the last sum tend to zero as
{xk}k2N converges to c. Thus, it suffices to show that kxk � vkk is bounded from
above. According to Proposition 4.9 there exists dk 2 0•Pk such that pk = vk + dk
where pk 2 Pk \ Br(xk) is the point at which dH (Pk \ Br(xk),C \ Br(xk)) is attained.
We compute

kvk + dk � ck = kpk � ck 6 kpk � xkk+ kxk � ck
6 r+max {kxk � ck | k 2 N}

< •.

The last inequality is valid because {xk}k2N converges to c. Hence, {vk + dk}k2N is
bounded. Since Pk is an (#k, dk)-approximation of C and limk!• (#k, dk) = (0, 0), it
holds limk!• d (vk,C) = limk!• d (dk, 0•C) = 0. Now, we can apply Lemma 4.10
and deduce that {vk}k2N is bounded. Therefore, {xk � vk}k2N is also bounded and
Estimate (4.13) implies that Equation (4.12) holds for all r > max {#k | k 2 N} and
c 2 extC.
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4.2 Polyhedral approximation of recession cones

Before we present an algorithm for the computation of (#, d)-approximations of spec-
trahedral shadows in Section 4.3, we focus on the second condition in Definition 4.2.
We have seen how one can represent the closure of the recession cone of a spectra-
hedral shadow S in Theorem 2.44. Given that 0•S has nonempty interior, we could
apply Algorithms 3.2 and 3.3 to a suitable subset of 0•S to extract polyhedral outer
and inner approximations of the recession cone in theory. However, the representa-
tion of cl 0•S is too complicated to be used efficiently in practice. In view of (#, d)-
approximations we are also only interested in a polyhedral outer approximation of
cl 0•S. In this section we present an algorithm for computing such an approxima-
tion that does not rely on cl 0•S but uses the spectrahedral shadow S directly to infer
information about its recession cone. Unlike Algorithms 3.2 and 3.3, which compute
either an outer or an inner approximation of a given set S, Algorithm 4.1 below com-
putes an outer and inner approximation simultaneously. More precisely, it computes
polyhedral cones KO and KI such that for a given spectrahedral shadow S and error
tolerance d it holds KI ✓ 0•S ✓ KO, dtH (KO, 0•S) 6 d and dtH (KI, 0•S) 6 d. A
similar algorithm has recently and independently been developed in [Wag+22] but
in the framework of convex vector optimization problems.
Throughout this section we make the following assumptions about the spectrahe-
dral shadow S ✓ Rn that is given according to Definition 2.10:

(A1) S is closed,

(A2) a point p 2 Rn is known for which there exist yp 2 Rm and Zp 2 S k
++ such

that A0 +A(p) +A(yp) +A(Zp) � 0 and Bp+ Byp + BT(Zp) = b,

(A3) a direction d̄ 2 int 0•S is known.

Assumption (A1) is already discussed in the previous chapter as part of the cutting
and augmenting schemes. The second assumption is equivalent to strict feasibility of
a semidefinite programwith S as feasible region. Algorithm 4.1 employs the primal-
dual pair (P2 (p, d, S)) and (D2 (p, d, S)) and Assumption (A2) ensures the existence
of solutions to both problems if the primal is bounded. The last assumption is rem-
iniscent of the assumption that the origin is an interior point in Algorithms 3.2 and
3.3. It is substantial in proving convergence of the algorithm. In order to find a point
d̄ 2 int 0•S one can apply Algorithm 3.1 to 0•S \ B1(0) using the representation
from Theorem 2.44. This requires solving 2n problems of type (P1 (w, 0•S \ B1(0))).
It remains open whether Assumption (A3) can be relaxed. If 0•S has empty interior
and d̄ is a point from its relative interior, then the computations can be reduced to
the affine hull of 0•S, which is also computed by Algorithm 3.1. However, it would
be desiring to investigate if the algorithm still converges if d̄ is merely a direction
of recession of S. We were unable to find an example where this was not the case.
Pseudo code for the method is presented in Algorithm 4.1.

The algorithm begins with a preprocessing step in which problem
�
P2
�
p,�d̄, S

��

is investigated for boundedness. If the problem is unbounded, then �d̄ 2 0•S. To-
gether with the assumption that d̄ 2 int 0•S this implies 0 2 int 0•S, see [Roc70,
Theorem 6.1]. In this case S is the whole space and the algorithm is terminated with
KO = KI = Rn. Otherwise, a solution (V

�d̄, v�d̄,w�d̄) to
�
D2
�
p,�d̄, S

��
gives rise

to a supporting hyperplane of S with normal vector w
�d̄ according to Proposition

3.11. Initial approximations are then defined in lines 7 and 8 as KO = H�(w
�d̄, 0)

and KI = cone
�
d̄
 
, respectively. The outer and inner approximation are iteratively
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ALGORITHM 4.1: Approximation algorithm for recession cones of spectra-
hedral shadows
Input: a closed spectrahedral shadow S ✓ Rn, point p satisfying (A2),

direction d̄ satisfying (A3), error tolerance d > 0
Output: outer and inner polyhedral approximation KO and KI of 0•S with

dtH (KO,KI) 6 d
1 if

�
P2
�
p,�d̄, S

��
is unbounded then

2 KO  Rn

3 KI  Rn

4 return

5 else

6 compute a solution (V
�d̄, v�d̄,w�d̄) to

�
D2
�
p,�d̄, S

��

7 KO  H�(w
�d̄, 0)

8 KI  cone
�
d̄
 

9 end

10 repeat

11 stop  true

12 for r 2 vert {x 2 KO | kxk• 6 1} \ {0} do

13 for k = 1 to
⇠
log2

✓
kr�d̄k

d

◆⇡
do

14 d  
2k�1
2k r+ 1

2k d̄
15 if (P2 (p, d, S)) is unbounded then

16 KI  cone (KI [ {d})
17 else

18 compute a solution (Vd, vd,wd) to (D2 (p, d, S))
19 KO  KO \ H�(wd, 0)
20 stop  false

21 break

22 end

23 end

24 end

25 until stop

improved in the main loop in lines 10–25. The general approach is to compute a di-
rection d 2 Rn and determine whether (P2 (p, d, S)) is bounded. If it is unbounded,
then Proposition 3.11 yields d 2 0•S and the current inner approximation KI is up-
dated by appending d to its V-representation in line 16. This yields the new inner
approximation

cone (KI [ {d}) ,

which is again contained in 0•S. Otherwise, the part wd of a solution to (D2 (p, d, S))
is the normal vector of a supporting halfspace of S. Translating this halfspace such
that the origin is contained on its boundary results in a halfspace supporting 0•S.
In particular, if H�(wd,g) supports S, then H�(wd, 0) supports 0•S. Note that
wT

d d = 1. Hence, the direction d is cut off of the current outer approximation KO

by intersecting it with H�(wd, 0) in line 19.
The search directions d are chosen according to the following rule. First, a V-repre-
sentation of the polytope

KO \ {x 2 Rn
| kxk• 6 1}
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is computed in line 12. This set characterizes KO in the sense that taking its conical
hull yields KO again. In particular, r 2 extdirKO implies that r/krk• is a vertex of
KO \ {x 2 Rn

| kxk• 6 1}. Next, for every nonzero vertex r of this set a bisection is
performed on the line segment connecting r and the direction d̄ to obtain new search
directions d that are increasingly closer to r. The bisection is terminated either if
the outer approximation is updated, in which case r is cut off of it, or if the current
search direction is within a distance less than d of r. Finally, the algorithm terminates
if KO is not updated during one iteration of the loop in lines 10–25. In this case there
exists a direction d 2 KI with kr� dk 6 d for every point r computed in line 12.
This gives an upper bound of d on the truncated Hausdorff distance dtH (KO,KI) and
thus on the truncated Hausdorff distances between 0•S and the approximations.
One iteration of the algorithm is illustrated in Figure 4.2.

Remark 4.13. Instead of investigating (P2 (p, d, S)) for a given search direction d in
line 15 right away it can be beneficial to test whether d 2 KI first. Since KI is known
by a V-representation during execution of the algorithm, membership of d in KI can
be verified by solving the linear feasibility problem

max 0Tµ s.t. Dµ = d
µ > 0,

where D is such that KI = {Dµ | µ > 0}. If this problem is feasible, then the possi-
bly more costly problem (P2 (p, d, S)) does not need to be investigated and the next
search direction can be considered immediately.
Another possibility is to first determine the point

d⇤ = l⇤r+ (1� l⇤)d̄,

where l⇤ = argmax
�

l
�� lr+ (1� l)d̄ 2 KI

 
, on the boundary of KI by solving a

linear program and performing the bisection procedure on the line segment con-
necting r and d⇤. The corresponding search directions are then guaranteed to lead
to an update of one of the approximations in line 16 or 19. This approach requires
solving one additional linear program for every point r computed in line 12 but can
be beneficial if multiple search directions d in line 14 are already contained in the
inner approximation. We have not incorporated these ideas into Algorithm 4.1 in
order to keep it simple but want to mention them as a possibility.

Theorem 4.14. Algorithm 4.1 works correctly, in particular it terminates with a polyhe-
dral outer approximation KO and a polyhedral inner approximation KI of 0•S satisfying
dtH (KO, 0•S) 6 d and dtH (KI, 0•S) 6 d.

Proof. Assume
�
P2
�
p,�d̄, S

��
in line 1 is unbounded. Then �d̄ 2 0•S according to

Proposition 3.11. Since d̄ 2 int 0•S by Assumption (A3), this implies 0 2 int 0•S, see
[Roc70, Theorem 6.1]. Thus, 0•S = S = Rn and Algorithm 4.1 terminates in line 4
with KO = KI = Rn. Now, assume that

�
P2
�
p,�d̄, S

��
is bounded. Due to Assump-

tion (A2), the point (x, y,Z, t) = (p, yp,Zp, 0) is strictly feasible for
�
P2
�
p,�d̄, S

��

and strong duality holds according to Theorem 1.30. In particular, a dual solution
(V

�d̄, v�d̄,w�d̄) in line 6 exists. From Proposition 3.11 it follows that the halfspace
H�(w

�d̄,wT
�d̄ p+ t

�d̄), where t
�d̄ is the optimal value of

�
P2
�
p,�d̄, S

��
, supports S.

Then H�(w
�d̄, 0) supports 0•S and the cone KO initialized in line 7 contains 0•S.

The initial inner approximation KI in line 8 is contained in 0•S by Assumption (A3).
Let r be an element of the set defined in line 12. Such a point exists because KO 6= ∆.
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d̄

d
r

d̄

dr

d̄

d

r

S

p

S

p

S

p

FIGURE 4.2: One iteration of the loop in lines 12–24 of Algorithm
4.1. The top row illustrates how the current outer and inner approx-
imation, which are indicated in red and blue, respectively, are up-
dated during the process and how new search directions d are com-
puted. The spectrahedral shadow S and its interior point p are de-
picted in the bottom row. The dashed arrows indicate the problem
(P2 (p, d, S)). In the leftmost column the direction is chosen as the
midpoint on the line segment connecting r and d̄. The correspond-
ing problem is unbounded as seen from the blue ray originating from
p. Hence, direction d is added to the inner approximation KI and the
new search direction is determined as the midpoint between r and d.
This is shown in the top center. The new search direction is not a di-
rection of recession of S and the red hyperplane in the bottom center
is obtained from a solution to (D2 (p, d, S)). Therefore, KO is updated
and the loop in lines 13–23 is exited. In the right column another point

r 2 KO is chosen and a new bisection begins.

Also, the set is a polytope because {x 2 Rn
| kxk• 6 1} = {x 2 Rn

|�e 6 x 6 e}.
Without loss of generality we can assume that the loop in lines 13-23 is executed at
least once for r. Otherwise,

log2

 ��r� d̄
��

d

!
6 0 (4.14)

holds for all r 2 vert {x 2 KO | kxk• 6 1}. This implies

dtH (KO,KI) = e [KO \ B1(0),KI]

6 e [KO \ {x 2 Rn
| kxk• 6 1},KI]

= max {d (r,KI) | r 2 vert (KO \ {x 2 Rn
| kxk• 6 1})}

6 max
���r� d̄

�� �� r 2 vert (KO \ {x 2 Rn
| kxk• 6 1})

 

6 d.

(4.15)

The first equality holds true because KI ✓ KO and the projection onto a convex cone
is a norm-reducing operation, i.e. kpKI (x)k 6 kxk holds for all x 2 Rn, cf. [Mor62].
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The inequality in the second line simply resembles the fact that B1(0) is contained in
{x 2 Rn

| kxk• 6 1}. Moreover, the excess in the second line is attained at a vertex
of KO \ {x 2 Rn

| kxk• 6 1} according to [Bat86, Theorem 3.3]. Hence, if Inequality
(4.14) is satisfied, the termination criterion is fulfilled.
Next, note that the search direction d defined in line 14 can be the zero vector only
if r = �d̄. By Assumption (A3) the initial outer approximation KO is a halfspace
containing d̄ in its interior and the origin on its boundary. Therefore, �d̄ is not con-
tained in the initial outer approximation or in any subsequent outer approximation
computed in line 19. In particular, d 6= 0 holds throughout the algorithm.
If (P2 (p, d, S)) in line 15 is unbounded, then Proposition 3.11 and the closedness
of S imply d 2 0•S. Thus, the updated inner approximation KI in line 16 satisfies
KI ✓ 0•S. On the other hand, if (P2 (p, d, S)) is bounded, then a solution (Vd, vd,wd)
to the dual exists by the same reasoning as for the problem

�
P2
�
p,�d̄, S

��
above.

According to Proposition 3.11 the halfspace H�(wd,wT
d p+ td) where td is the opti-

mal value of (P2 (p, d, S)) supports S. Therefore, H�(wd, 0) supports 0•S and the
updated outer approximation KO in line 19 remains a superset of 0•S as well as a
cone.
Now, assume the algorithm terminates with outer approximation KO and inner ap-
proximation KI. Termination occurs if and only if lines 18–21 are not executed, i.e.
KO is not updated, during one iteration of the repeat loop in lines 10–25. This is the
case if and only if for every r 2 vert {x 2 KO | kxk• 6 1} the point

dr =
2k � 1
2k

r+
1
2k

d̄

with k =

⇠
log2

✓
kr�d̄k

d

◆⇡
satisfies dr 2 KI. Note that the definition of dr yields

kr� drk 6 d. Using the same derivation as in (4.15) but replacing d̄ with dr in the
penultimate line and using kr� drk 6 d gives

dtH (KO,KI) 6 d.

Since KI ✓ 0•S ✓ KO, this yields dtH (KO, 0•S) 6 d and dtH (KI, 0•S) 6 d.
It remains to show that the algorithm terminates after finitely many iterations. As-
sume that the sets KO and KI have been computed and that the algorithm does
not halt after the next iteration of the main loop in lines 10–25. Then there exist

r 2 vert {x 2 KO | kxk• 6 1} and 1 6 k 6
⇠
log2

✓
kr�d̄k

d

◆⇡
for which lines 18–21 are

executed, i.e. for which KO is modified. Let H(w, 0) be the hyperplane correspond-
ing to the halfspace used to update KO in line 19. Since d̄ 2 int 0•S, there exists # > 0
such that B#(d̄) ✓ 0•S. Moreover, as H�(w, 0) supports 0•S, it holds

d
�
d̄,H(w, 0)

�
=

��wTd̄
��

kwk
= �

wTd̄
kwk

> #.

Taking into account the definition of d in line 14 and the fact that wTd = 1 we can
further conclude

d (r,H(w, 0)) =
��wTr

��
kwk

=
1

kwk

����w
T

✓
2k

2k � 1
d�

1
2k � 1

d̄
◆����

> 2k

(2k � 1) kwk
+

#

2k � 1
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> #

2k � 1

> #

2
���r� d̄

�� /d
�
� 1

>
d#

4
p
n� d

.

The third inequality follows from k 6 log2

✓
kr�d̄k

d

◆
+ 1 and the last inequality holds

because k > 1, i.e. d <
��r� d̄

��, and
��r� d̄

�� < 2
p
n. The latter is evident from

krk• 6 1 and
��d̄
�� = 1. Hence, whenever the outer approximation KO is refined, a

ball of radius at least d#/(4
p
n� d) around the point r is cut off. But since r belongs

to the compact set {x 2 Rn
| kxk• 6 1}, KO can only be updated a finite number of

times.

We have seen in the last chapter that applying Algorithm 3.2 or 3.3 to the spectra-
hedral shadow S also yields a polyhedral inner or outer approximation of its polar
set S�. Similar considerations can be done for the polar cones K⇤

O and K⇤
I of the sets

computed by Algorithm 4.1. According to Proposition 2.40 one has the relation

K⇤
O ✓ cl cone S� ✓ K⇤

I ,

i.e. from an approximation of the recession cone of a spectrahedral shadow S we
obtain an approximation of the closure of the cone generated by S�. It turns out that
we are even able to find bounds on the approximation error of the polar cones. This
is in contrast to the compact case. The following theorem establishes a connections
between the truncated Hausdorff distance between two closed convex cones and the
truncated Hausdorff distance between their polars. It is known as the Walkup-Wets
Isometry Theorem.

Theorem 4.15 ([WW67, Theorem 1]). Let K1,K2 ✓ Rn be closed convex cones. Then

dtH (K1,K2) = dtH (K⇤

1 ,K
⇤
2) .

Therefore, if Algorithm 4.1 returns the sets KO and KI, it holds

dtH (K⇤
O, cl cone S

�) 6 d and dtH (K⇤
I , cl cone S

�) 6 d.

Example 4.16. Consider the set S = S1 + S2 where S1 =
�
x 2 R4

+

�� x1x2x3x4 > 1
 

and S2 =
�
x 2 R4

�� 2x1x2 > x23 + x24, x1, x2 > 0
 
. Set S is the Minkowski sum of a

4-dimensional hyperboloid and a rotated Lorentz cone. It holds that S1 is the spec-
trahedral shadow defined by the LMIs

✓
x1 y1
y1 x2

◆
< 0,

✓
x3 y2
y2 x4

◆
< 0 and

✓
y1 1
1 y2

◆
< 0

for some y 2 R2, cf. [BPT13, Section 6.3]. Furthermore, S2 is the image of the spec-
trahedron 8

>><

>>:
y 2 R4

��������

0

BB@

y1 y2
y1 y3

y1 y4
y2 y3 y4 y1

1

CCA < 0

9
>>=

>>;
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FIGURE 4.3: Bases KO \ H(w,�1) and KI \ H(w,�1) of an outer
and inner polyhedral approximation of the recession cone of the set S
from Example 4.16. The approximations KO and KI are obtained from

Algorithm 4.1 with tolerance d = 0.01.

under the rotation

x 7!
1
2

0

BB@

p
2

p
2

p
2 �

p
2

2
2

1

CCA x,

which is a spectrahedral shadow by Proposition 2.19. Thus, S is a spectrahedral
shadow as the Minkowski sum of spectrahedral shadows according to Proposition
2.16. We apply Algorithm 4.1 with p ⇡ (1.6540, 1.6540, 0.8098, 0.8098)T and d̄ = 1/2e
to S. The point p is determined from Algorithm 3.1. Numerical data including the
number of solved instances of (P2 (p, d, S)), the number of extreme directions of KO

and KI, as well as the computation time relative to the case d = 0.1 are displayed in
the table below for different values of d. The lack of a linear relationship between
the computation time and the number of solved semidefinite programs is due to the
influence of the vertex enumeration. Consecutive iterations take increasingly more
time because the number of extreme directions and facets of the current approxima-
tions, and thus the effort to perform vertex enumerations, increase.
Since the resulting approximations for d = 0.01 are pointed cones, they admit com-
pact bases, see [Kle57, Proposition 3.2]. Figure 4.3 shows the bases KO \ H(w,�1)
and KI \ H(w,�1) for w ⇡ �(0.5616, 0.5604, 0.4388, 0.4219)T 2 intK⇤

O. Note that a
suitable w can be found by applying Algorithm 3.1 to K⇤

O. Since we have the relation
K⇤
O ✓ (0•S)�, an interior point of K⇤

O also yields a base of 0•S. A representation of
the former set is available via Theorem 2.32.

TABLE 4.1: Numerical results from Example 4.16.

d 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

solved SDPs 1181 1205 1305 1251 2166 2864 3462 3931 5159 13231
rel. time 1.00 1.04 1.44 1.29 2.19 7.82 10.17 12.50 19.75 86.80
|extdirKO| 74 74 91 74 91 133 173 194 261 534
|extdirKI| 118 118 132 120 132 188 238 263 374 684

Example 4.17. A real polynomial p in n variables of degree at most 2d is called a
sum of squares of polynomials or sos-polynomial if there exist polynomials q1, . . . , qm
of degree less than or equal to d such that p = Âm

i=1 q2i . The set of all such sos-
polynomials is denoted by Sn,2d. It is a closed pointed convex cone with nonempty
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FIGURE 4.4: Projections of the base KO \ H(w,�1) of an outer ap-
proximation of the cone S1,4 from Example 4.17 with error tolerance
d = 0.1 and w ⇡ �(0.7003, 0.0753, 0.2281, 0.0734, 0.6681)T. KO is a
5-dimensional pointed cone generated by 2358 directions. Shown
are the projections onto (x1, x2, x3)T, (x1, x2, x4)T, (x1, x3, x4)T and

(x2, x3, x4)T from left to right and top to bottom, respectively.

interior in the space of real polynomials, see [BPT13, Theorem 3.26]. If p 2 Sn,2d,
then p(x) > 0 at every x 2 Rn, i.e. being a sum of squares is sufficient for a poly-
nomial to be nonnegative. This insight is important because the condition p 2 Sn,2d
can be modeled using semidefinite programming, whereas deciding nonnegativity
of a polynomial in general is NP-hard, cf. [BPT13, Chapter 3]. This allows to ap-
proach certain difficult polynomial optimization problems via tractable SDP relax-
ations. Various applications in which Sn,2d arises are also discussed in [BPT13]. By
identifying a polynomial with its coefficients we can regard Sn,2d as a subset of RN

for N = (n+2d
2d ).

We approximate the cone S1,4 ✓ R5 with d = 0.1 and p = d̄ = 1/
p
3(1, 0, 1, 0, 1)T. It

can be described as the set of points x 2 R5 that admit the existence of some y 2 R

such that 0

@
x1 1

2x2
1
3x3 � y

1
2x2

1
3x3 + 2y 1

2x4
1
3x3 � y 1

2x4 x5

1

A < 0

is satisfied, see [BPT13, Chapter 6]. Algorithm 4.1 solves 7730 problems of type
(P2 (p, d, S)) to find approximations KO and KI. An illustration of KO is shown in
Figure 4.4.
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4.3 Computing (#, d)-approximations

We have developed all the tools necessary to formulate an algorithm for the compu-
tation of an (#, d)-approximation of a given spectrahedral shadow S in this section.
The procedure is a combination of Algorithms 3.1, 3.2 and 4.1. Therefore, we assume
that Assumptions (A1)–(A3) from the previous section hold. In addition, we assume
S to be pointed as (#, d)-approximations are defined for pointed sets. The algorithm
consists of two phases and is presented as Algorithm 4.2 below. In the first phase a
pointed outer approximation KO of 0•S is computed using Algorithm 4.1 and in the
second phase Algorithm 3.2 is applied to a certain compact subset of S determined
from KO and S. Finally, the results are combined to obtain an (#, d)-approximation
of S. We describe both phases in more detail now.

ALGORITHM 4.2: (#, d)-approximation algorithm for pointed spectrahedral
shadows
Input: a closed pointed spectrahedral shadow S ✓ Rn, point p satisfying

(A2), direction d̄ satisfying (A3), error tolerances #, d > 0, control
parameter g 2 (0, 1)

Output: an (#, d)-approximation P of S
1 d̄  (1� g)d
2 repeat

3 compute an outer approximation KO of 0•S with error tolerance d̄ using
Algorithm 4.1

4 d̄  (1� g)d̄
5 compute a direction w 2 relintK⇤

O and affK⇤
O using Algorithm 3.1

6 until (affK⇤
O)

? = {0} // i.e. KO is pointed

7 KO  cone [(KO \ H(w,�1� gd)) + {x 2 Rn
| kxk1 6 gd}]

8 S  S \ H+
�
w,min

�
wTx

�� x 2 conv ext (S+ KO)
 
� 1
�

9 compute an outer #-H-approximation P of S using Algorithm 3.2
10 P  P+ KO

The algorithm starts by computing an outer approximation KO of 0•S with Al-
gorithm 4.1 and error tolerance (1� g)d for preset parameters d > 0 and g 2 (0, 1).
If KO is not pointed, the tolerance is decreased by a factor of 1� g and a new outer
approximation is computed. This process is repeated until KO is pointed which is
eventually the case because 0•S is pointed and the truncated Hausdorff distance
constitutes a metric on the space of closed convex cones. The pointedness of KO can
be verified by determining its lineality space KO \ (�KO). For that, one can use the
relationship

KO \ (�KO) = (affK⇤
O)

? ,

see [Roc70, Theorem 14.6]. The set on the right side of the equation is computed by
Algorithm 3.1 along with a direction w 2 relintK⇤

O if applied to K⇤
O. After a pointed

outer approximation is found, KO is enlarged such that the pointedness is preserved
and 0•S \ {0} ✓ intKO holds. To achieve this, the direction w computed in line 5
is used to obtain the base KO \ H(w,�1 � gd) of KO. That is possible because if
KO is pointed, then w actually belongs to the interior of K⇤

O. The base is enlarged
by adding a 1-norm ball of radius gd to it and the new outer approximation KO is
set as the conical hull of this larger set. Due to this construction, it is ensured that
dtH (KO, 0•S) 6 d is satisfied. Thus, the control parameter g steers how fine 0•S is
approximated with Algorithm 4.1. In particular, a smaller value of g means more
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weight is put towards the approximation with Algorithm 4.1, while a larger value
means the approximation is coarser and the result is enlarged to a greater extent.
The second phase of the algorithm is carried out in lines 8–10. A compact subset S
of S is determined in line 8 that contains the set of extreme points of S+ KO. More
precisely, S is intersected with the halfspace

H+
⇣

w,min
n

wTx
��� x 2 conv ext (S+ KO)

o
� 1
⌘
,

for the direction w computed in line 5. Then S+ KO can be decomposed as

S+ KO = S+ KO.

Algorithm 3.2 is applied to S in line 9 yielding a polyhedral outer approximation
P. Finally, the approximation KO of 0•S and P are combined to receive an (#, d)-
approximation P+ KO of S.
In order to prove that Algorithm 4.2 works correctly and is finite, we need two pre-
liminary results. The following one is well-known in the literature.

Proposition 4.18 (cf. [Roc70, Corollary 14.6.1]). Let K ✓ Rn be a closed convex cone.
Then K is pointed if and only if intK⇤ 6= ∆.

The second result is universal enough to be presented on its own.

Proposition 4.19. Let C ✓ Rn be a closed convex set and K ✓ Rn be a closed convex cone
such that 0•C \ {0} ✓ intK. Then ext (C+ K) is bounded.

Proof. We may assume that C + K is pointed. Otherwise, ext (C+ K) = ∆ and the
statement is vacuous. Note that ext (C+ K) ✓ extC because for every x 2 C and
d 2 K \ {0} it is true that

x+ d =
1
2
x+

1
2
(x+ 2d) ,

i.e. x + d is not an extreme point of C + K. Now, assume that ext (C+ K) is un-
bounded. Then extC is unbounded as well. Let {xk}k2N be an unbounded sequence
of extreme points of C+ K. Without loss of generality we assume that {kxkk}k2N is
strictly monotonically increasing. If this condition is not satisfied, we can pass to a
suitable subsequence. Define the sequence of radial projections of xk � x1 as

{dk}k>2 =

⇢
xk � x1

kxk � x1k

�

k>2
.

Since dk 2 B1(0) for all k > 2, it has a convergent subsequence. Again, without
loss of generality, assume {dk}k>2 is itself convergent with limit d̄. According to
[Roc70, Theorem 8.2] it holds d̄ 2 0•(C� {x1}) = 0•C. Since 0•C \ {0} ✓ intK
and

��d̄
�� = 1, there exists some k0 2 N such that dk 2 K for all k > k0. This implies

xk � x1 2 K for all k > k0 as K is a cone. Therefore, xk 2 {x1} + K for all k > k0.
However, this contradicts the assumption that xk 2 ext (C+ K) for all k 2 N.

Theorem 4.20. Algorithm 4.2 works correctly, in particular it terminates with an (#, d)-
approximation P of S.

Proof. Since S is closed and pointed, so is 0•S. The truncated Hausdorff distance de-
fines a metric on the space of closed convex cones in Rn, see [IS10, Proposition 2.1].
Therefore, the sequence of cones KO computed in line 3 PK-converges to 0•S if and
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only if d̄ ! 0. This also follows from [RW98, Theorem 4.36]. Hence, KO is pointed
for all d̄ that are sufficiently small. According to [Roc70, Theorem 14.6] the condition
that KO is pointed is equivalent to (affK⇤

O)
? = {0}. A representation of K⇤

O is avail-
able from Theorem 2.32. This implies that the loop in lines 2–6 terminates and the
polyhedral cone KO computed in the last iteration is pointed. Moreover, the direction
w determined in line 5 belongs to the interior of K⇤

O according to Proposition 4.18.
Denote by B the set KO \ H(w,�1� gd) and by B the set B+ {x 2 Rn

| kxk1 6 gd},
i.e. cone B is the cone determined after the loop in lines 2–6, which we denote KO

from here onwards, and cone B is its redefinition in line 7. It follows from [Gob+13,
Theorem 12] that B is compact. Hence, B is compact as well. In addition to that, B is
a polyhedron as the Minkowski sum of polyhedra, see e.g. [Roc70, Corollary 19.3.2].
Now, KO as defined in line 7 is a polyhedral cone. This is evident from [Roc70, The-
orem 19.7] and the fact that KO = cone B is closed because B is compact. Next, we
show that 0•S \ {0} ✓ intKO, KO is pointed and dtH (KO, 0•S) 6 d. The first as-
sertion is immediate from the inclusions 0•S ✓ cone B, B ✓ int B and the equality
KO = cone B. Note that the first inclusion is ensured by Theorem 4.14 and the fact
that B is a base of the outer approximation KO computed by Algorithm 4.1 in line 3.
To see that KO is pointed observe that x 2 B implies kxk > 1+ gd because w is a
direction, i.e. kwk = 1. Consequently, kxk > 1 for all x 2 B. In particular, 0 /2 B.
Therefore, KO is pointed. Otherwise, the existence of ±d 2 KO \ {0} would imply
±µd 2 B for some µ > 0 and 0 2 B by convexity. In order to show the third claim,
note that

dtH (KO, 0•S) 6 dtH
�
KO,KO

�
+ dtH

�
KO, 0•S

�
6 dtH

�
KO,KO

�
+ (1� g) d (4.16)

holds because dtH is a metric for closed convex cones and dtH
�
KO, 0•S

�
6 d̄ for

d̄ 6 (1� g) d. Moreover, it is true that

dtH
�
KO,KO

�
= e

⇥
KO \ B1(0),KO \ B1(0)

⇤

= e
⇥
KO \ B1(0),KO

⇤

6 e
⇥
B,KO

⇤

6 e
⇥
B, B

⇤

= dH
�
B, B

�

6 gd.

(4.17)

The first and last equality hold because KO ✓ KO and B ✓ B, respectively. The
second equation resembles the fact that the projection mapping is nonexpansive,
that is ���pKO

(x)
��� 6 kxk

holds for all x 2 Rn, see [HL01, Proposition 3.1.3]. Taking into account kxk > 1
whenever x 2 B and µd

�
x,KO

�
= d

�
µx,KO

�
for all µ > 0 as KO is a cone, jus-

tifies the inequality in line 3. Finally, combining Estimates (4.16) and (4.17) yields
dtH (KO, 0•S) 6 d.
Since 0•S \ {0} ✓ intKO, ext (S+ KO) is bounded according to Proposition 4.19.
Therefore, its convex hull is bounded as well. Moreover, it is nonempty because
S + KO is closed according to [Roc70, Corollary 9.1.1] and pointed due to KO be-
ing pointed. Thus, Corollary 1.17 guarantees the existence of an extreme point and
Theorem 1.16 the closedness of the set conv ext (S+ KO). Together this implies that
inf
�

wTx
�� x 2 conv ext (S+ KO)

 
is finite and attained, i.e. line 8 of the algorithm is
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well-defined. The additional shift of �1 on the right hand side of the halfspace en-
sures that the intersection with S has nonempty interior. Furthermore, S is compact,
see [Gob+13, Theorem 12]. Hence, it is a valid input to Algorithm 3.2 in line 9 and
an #-H-approximation P of S is computed correctly.
Now, we show that P = P+KO is an (#, d)-approximation of S. Since P is compact, it
holds 0•P = KO and P is pointed. We have already demonstrated dtH (KO, 0•S) 6 d.
As vert P ✓ vert P, it holds

e [vert P, S] 6 e
⇥
vert P, S

⇤
6 e

⇥
vert P, S

⇤
6 #.

It remains to show S ✓ P. From the fact that conv ext (S+ KO) ✓ S one obtains the
decomposition

S+ KO =
�
(S+ KO) \ H+�+ KO,

where H+ denotes the halfspace utilized in line 8, see [Gob+13, Corollary 2]. More-
over, it is easy to verify that

�
(S+ KO) \ H+�+ KO = S+ KO

is true because the normal vector w of H+ satisfies w 2 K⇤
O. We conclude

S ✓ S+ KO = S+ KO ✓ P+ KO = P.

This completes the proof of correctness. Finally, the finiteness of Algorithm 4.2 is
evident from the respective property of Algorithms 3.1, 3.2 and 4.1.

The difficulty of Algorithm 4.2 is the determination of the halfspace

H+
⇣

w,min
n

wTx
��� x 2 conv ext (S+ KO)

o
� 1
⌘

(4.18)

in line 8. The reason is that, although min
�

wTx
�� x 2 conv ext (S+ KO)

 
is a con-

vex program, a representation of conv ext (S+ KO) as a spectrahedral shadow or a
more general description in terms of convex functions is not readily available. In
fact, it is an open question whether conv ext (S+ KO) is a spectrahedral shadow in
the first place. Even if this turns out to be the case, it might still be difficult to give
a representation of the set depending on how S + KO is represented. Consider for
instance the special case of S+KO being a polyhedron in H-representation. Then the
obvious way of computing conv ext (S+ KO) is to determine a V-representation via
vertex enumeration and obtain the set as the convex hull of its finitely many vertices.
However, knowledge of the extreme points of S + KO may not be necessary if one
only wants to represent their convex hull. Thus, it would be interesting to investi-
gate whether this set can be described directly using the data describing S+ KO in
the manner done in Chapter 2 with other operations. In particular, if it is possible
without performing some algorithmic procedure first.
So far, the only knowledge we have about conv ext (S+ KO) is acquired from Propo-
sition 4.19, which implies its compactness and the existence of the halfspace (4.18).
In order to deal with this limitation from a computational perspective, we suggest
a modification of Algorithm 4.2. Note that in line 8 of the algorithm it suffices to
intersect S with a halfspace H+ such that their intersection is bounded and the con-
tainment

conv ext (S+ KO) ✓ H+
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is satisfied, cf. [Gob+13, Corollary 2]. The following variant of Algorithm 4.2 com-
putes such a halfspace iteratively. It replaces lines 8–10 of the original algorithm.

ALGORITHM 4.3: Variant of lines 8–10 of Algorithm 4.2
1 for w 2 extdirK⇤

O do

2 compute a solution (xw, yw,Zw) to (P1 (w, S))
3 end

4 a  min
��

wTxw
��w 2 extdirK⇤

O

 
[ {0}

�
� 1

5 repeat

6 S  S \ H+(w, a)
7 compute an outer #-H-approximation P of S using Algorithm 3.2
8 a  2a

9 P  P+ KO

10 until S ✓ P

First, problem (P1 (w, S)) is solved for every w 2 extdirK⇤
O yielding solutions

(xw, yw,Zw)which give rise to an initial halfspace H+(w, a), where w is the direction
computed in line 5 of Algorithm 4.2 and

a = min
⇣n

wTxw
���w 2 extdirK⇤

O

o
[ {0}

⌘
� 1.

A compact subset S of S is obtained as the intersection of S and H+(w, a). It has
nonempty interior because xw 2 intH+(w, a) and int S 6= ∆. Moreover, a < 0. Now,
Algorithm 3.2 is used to compute a polyhedral outer approximation P of S with tol-
erance # and it is checked whether P = P + KO is an (#, d)-approximation of S by
verifying the containment S ✓ P. If the containment holds, the algorithm is termi-
nated and P is returned as a solution. Otherwise, a new compact subset is obtained
by doubling the value of a in the definition of H+(w, a), which corresponds to a shift
of H+(w, a) in the direction �w, and the approximation is repeated.
The containment S ✓ P can easily be verified using semidefinite programming. Sup-
pose (A, b) is an H-representation of P for A 2 Rm⇥n and b 2 Rm. Let ai 2 Rn denote
the i-th row of A. Then S ✓ P if and only if sS(ai) 6 bi for every i = 1, . . . ,m. This
follows from Proposition 3.7 because H(ai, sS(ai)) is a supporting hyperplane of S
whenever ai 6= 0 and sS(ai) < •. Thus, if sS(ai) 6 bi, then S ✓ H�(ai, bi). Re-
member that an evaluation of the support function of S at the point ai corresponds
to solving problem

�
P1
�
ai, S

��
. Hence, the containment in line 10 can be verified by

computing an H-representation of P and solving m semidefinite programs.

Theorem 4.21. Algorithm 4.2 with Variant 4.3 works correctly, in particular it terminates
with an (#, d)-approximation P of S.

Proof. According to [Gob+13, Corollary 2] it holds

S+ KO =
�
(S+ KO) \ H+�+ KO

for every halfspace H+ satisfying that (S+ KO)\ H+ is nonempty and compact and
ext (S+ KO) ✓ H+. It suffices to show that these conditions are eventually fulfilled
for the halfspace H+(w, a) utilized in line 6. With the observation that

�
(S+ KO) \ H+(w, a)

�
+ KO =

�
S \ H+(w, a)

�
+ KO
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holds as w 2 K⇤
O, the arguments demonstrating that polyhedron P in line 9 is an

(#, d)-approximation of S are then identical to the corresponding part of the proof of
Theorem 4.20.
Since 0•S \ {0} ✓ intKO, it holds K⇤

O \ {0} ✓ int (0•S)�, cf. [GT56, Lemma 2].
Therefore, solutions to (P1 (w, S)) exist for every w 2 extdirK⇤

O according to Propo-
sition 3.7. This implies that the initial assignment of S in line 6 is nonempty because
xw 2 S for every w 2 extdirK⇤

O. Observe that if a decreases, S can only become
larger. In line 4 the value of a is initialized as at most �1 and whenever line 8 is ex-
ecuted a decreases. Hence, S is nonempty in subsequent iterations as well. Trivially,
this also applies to (S+ KO)\H+(w, a). Furthermore, sets (S+ KO)\H+(w, a) and
S are compact since w 2 intK⇤

O ✓ int (0•S)�, see [Gob+13, Theorem 12].
By Proposition 4.19 ext (S+ KO) is bounded because 0•S \ {0} ✓ intKO. Thus,
ext (S+ KO) ✓ H+(w, a) for small enough a.
To complete the proof, note that int S 6= ∆ holds in every iteration. This is evident
from xw 2 intH+(w, a) for every w 2 extdirK⇤

O, Assumption (A3), which implies
int S 6= ∆, and [Roc70, Theorem 6.1]. Hence, S is a valid input to Algorithm 3.2 in
line 7. Finally, the containment in line 10 can be verified as discussed in the para-
graph before Theorem 4.21.

Remark 4.22. It has to be noted that, although Variant 4.3 leads to a finite algorithm,
the performance might be poor from a computational perspective. Since it is not
known a priori which value of a yields S ✓ P, it is possible that many unusable
approximations are computed in line 7. In fact, one can construct examples such
that the loop in lines 5–10 runs an arbitrary number of times. For instance, let

S = conv

0

@(B1(0)⇥ {0}) [

8
<

:

0

@
1
1
2k

1

A

9
=

;

1

A+ cone

8
<

:

0

@
0
0
1

1

A

9
=

; ,

where B1(0) ✓ R2 and k 2 N, and KO = cone
��

x 2 R2
�� kxk• 6 #

 
⇥ {1}

�
. If

w = (0, 0,�1)T, then the points xw in line 2 are of the form
0

@
±1
0
0

1

A or

0

@
0
±1
0

1

A

and the initial value of a is �1. In order for the point
�
1, 1, 2k

�T to be contained
in S \ H+(w, a), we need a 6 �2k. Hence, if # is sufficiently small such that the
containment S ✓ P is not fulfilled in an earlier iteration, the loop in lines 5–10 needs
to be executed k+ 1 times.

Example 4.23. We close this section with an illustration of Algorithm 4.2 using Vari-
ant 4.3. Consider the spectrahedral shadow

S =
n
x 2 R3

��� 9 Z 2 S
2 : I +A(Z) < 0, x = B

T(Z),Z < 0
o
,

where

A(Z) =
✓

z11 z11 + 2z12 + z22
z11 + 2z12 + z22 z22

◆
and B

T(Z) =

0

@
z11
z22
2z12

1

A .
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FIGURE 4.5: An (#, d)-approximation of the spectrahedral shadow
from Example 4.23 for # = 0.01 and d = 0.05.

For parameters # = 0.01, d = 0.05 and g = 0.1 as well as

d̄ =
1
p
3

0

@
1
1
�1

1

A and p ⇡

0

@
0.5088
0.5678
�0.2098

1

A

Algorithm 4.2 solves 35 problems of type (P1 (w, S)), 286 of type (P2 (p, d, S)) and
6166 of type (P3 (p, S)) in total. A visualization of the resulting approximation is
shown in Figure 4.5.

4.4 Approximation via homogenization

In the last section of this thesis we present another notion of approximation for pos-
sibly unbounded convex sets that is weaker than the notion of (#, d)-approximation
but addresses two of its shortcomings. The first one being that it constitutes a con-
cept of outer approximation only and that there is no obvious extension to inner
approximations as discussed in Section 4.1. The second is the lack of a polarity
correspondence, which is closely tied to the first. In particular, if P is an (#, d)-
approximation of a set C, it is unclear whether or how P� is related to C�. Certainly,
P� is not an (#, d)-approximation of C� merely from the inclusion P� ✓ C�.
Remember that the main reason for the insufficiency of the Hausdorff distance as
an error measure for the approximation of unbounded closed convex sets is that it is
not a metric on the collection of these sets, cf. Section 3.3. However, we have another
metric at our disposal that allows us to work with unbounded sets to a limited de-
gree, namely the truncated Hausdorff distance, which defines a metric on the space
of closed convex cones. This property is the motivation for the approach we take in
this section.
We need the concept of homogenization, which assigns a closed convex cone from
Rn+1 to a convex set from Rn, before we can utilize the truncated Hausdorff distance
for our purpose.

Definition 4.24 (cf. [Bri20]). Let C ✓ Rn be a convex set. The homogenization or
conification of C, denoted by homogC, is the cone

cl cone (C⇥ {1}) .
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We can identify every closed convex set C ✓ Rn with its homogenization because
C can be recovered from homogC. In particular,

C =

⇢
x 2 Rn

����

✓
x
1

◆
2 homogC

�
,

i.e. intersecting homogC with the hyperplane H(en+1, 1) =
�
x 2 Rn+1

�� xn+1 = 1
 

and projecting the result onto the first n variables yields the original set C. Using this
correspondence, one can work with convex cones entirely. This is a standard tool in
convex analysis in order to reduce problems to a conic setting, see e.g. [Roc70; RW98;
Bri20]. Here, we use it to reduce the problem of approximating convex sets to the
problem of approximating convex cones.

Definition 4.25. For a convex set C ✓ Rn and d > 0 a polyhedron P ✓ Rn is called a
homogeneous d-approximation of C if

dtH (homog P, homogC) 6 d.

Remark 4.26. The notion of homogeneous d-approximation can be understood as a
relative error measure between the involved sets. Consider a convex set C ✓ Rn

and a polyhedron P ✓ Rn. If x 2 P with d (x,C) 6 #, then the distance of the
corresponding direction of homog P to homogC obeys the relation

d
✓

1
p
xTx+ 1

✓
x
1

◆
, homogC

◆
6 #

p
xTx+ 1

.

In particular, the distance depends inversely on kxk. Hence, if P is a homogeneous
d-approximation of C, then points of one set that are far from the origin are allowed
a larger distance to the other set than points closer to the origin.
This observation is explained from the fact that the distinction between points and
directions of a closed convex set C collapses when transitioning to its homogeniza-
tion. One has the identity

homogC = cone (C⇥ {1}) [ (0•C⇥ {0}) , (4.19)

see [Roc70, Theorem 8.2], i.e. points as well as directions of C correspond to di-
rections of homogC. Thus, a convergent sequence

�
(xk, µk)T

 
k2N of directions of

homogC does not necessarily yield a convergent sequence in C itself. For instance,
if
�
(xk, µk)T

 
k2N converges to a direction (x̄, 0)T and provided all µk are positive,

then the sequence
n
µ�1
k xTk

o

k2N
✓ C is unbounded. This means that closeness of

homogenizations with respect to the truncated Hausdorff distance does not imply
closeness of the sets themselves with respect to the Hausdorff distance. It turns
out, this is merely a restatement of the fact that H-convergence is weaker than PK-
convergence as seen from Proposition 4.27 below. In order to formally describe any
such unboundedness behavior exhibited by C, the concept of cosmic closure of Rn is
introduced and studied in [RW98].

Homogeneous d-approximations define a suitable notion of approximation for
closed convex sets because PK-convergence can be characterized in terms of ho-
mogenizations and the truncated Hausdorff distance. The following result about
homogeneous d-approximations is the counterpart to Theorem 4.12 about (#, d)-ap-
proximations.
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Proposition 4.27 (cf. [RW98, Corollary 4.47]). Let {Ck}k2N be a sequence of closed
convex subsets of Rn and C ✓ Rn be a closed convex set. Then the following are equivalent:

(i) Ck ! C,

(ii) dtH (homogCk, homogC) ! 0.

Unlike for (#, d)-approximations no inclusion between P and C is required by
Definition 4.25 and it is not limited to pointed sets. In these regards it is in harmony
with the definition of #-H-approximations. Moreover, homogeneous d-approxima-
tions exhibit an elegant behavior under polarity which we discuss after pointing out
another relation to (#, d)-approximations.

Proposition 4.28. Let C ✓ Rn be a closed pointed convex set. If P is an (#, d)-approxima-
tion of C, then P is a homogeneous d̄-approximation of C where

d̄ = # +max
np

vTv+ 1
��� v 2 vert P

o
d.

Proof. It holds homogC ✓ homog P because C ✓ P. Thus, the truncated Hausdorff
distance between homog P and homogC is attained as

dtH (homog P, homogC) = e [homog (P) \ B1(0), homog (C) \ B1(0)] .

The right hand side is identical to e [homog (P) \ B1(0), homogC] because the pro-
jection mapping onto homogC is nonexpansive, see [HL01, Proposition 3.1.3]. In
particular, if (x, µ)T 2 homog (P) \ B1(0), then

��phomogC
�
(x, µ)T

��� 6 1. According
to [Roc70, Theorem 8.2] homog P admits the decomposition

homog P = cone (P⇥ {1}) [ (0•P⇥ {0}) . (4.20)

Therefore, the excess simplifies to

max
✓⇢

d
✓

1
p
xTx+ 1

✓
x
1

◆
, homogC

◆ ���� x 2 P
�
[

⇢
d
✓✓

d
0

◆
, homogC

◆ ���� d 2 0•P \ B1(0)
�◆

.

If x 2 P, then there exist v 2 convvert P, µ > 0 and d 2 0•P \ B1(0) such that
x = v+ µd. Now, one has

d
✓

1
p
xTx+ 1

✓
x
1

◆
, homogC

◆
=

1
p
xTx+ 1

d
✓✓

x
1

◆
, homogC

◆

6 1
p
xTx+ 1

d
✓✓

x
1

◆
, homog (C) \ H(en+1, 1)

◆

=
1

p
xTx+ 1

d (x,C)

=
1p

(v+ µd)T(v+ µd) + 1
d (v+ µd,C)

6 # + µdp
(v+ µd)T(v+ µd) + 1

.

(4.21)
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The first line is valid because homogC is a cone and the last inequality follows from
the fact that P is an (#, d)-approximation of C. Using

p
(v+ µd)T(v+ µd) + 1 > 1

and maximizing the coefficient of d with respect to µ yields

d
✓

1
p
xTx+ 1

✓
x
1

◆
, homogC

◆
6 # +

1r
1� (vTd)2

1+vTv

d

6 # +
p

vTv+ 1d,

(4.22)

with the second inequality being obtained by an application of the Cauchy-Schwarz
inequality. A similar derivation as in (4.21) shows

d
✓✓

d
0

◆
, homogC

◆
6 d

✓✓
d
0

◆
, homog (C) \ H(en+1, 0)

◆

= d (d, 0•C)
6 d

(4.23)

for d 2 0•P \ B1(0). The equality follows by evoking an analogous description of
homogC as in Equation (4.20). Finally, combining (4.22) and (4.23) and taking into
account that the maximum of

p
vTv+ 1 for v 2 convvert P is attained at a vertex of

P yields the result.

Clearly, a reverse statement can not be expected because homogeneous d-approx-
imations apply to a broader class of sets than (#, d)-approximations. Another reason,
through which their more general nature comes to light, is that they do not contain
direct information about the relation between the recession cones of the involved
sets. In fact, a homogeneous d-approximation may be compact for any d > 0 al-
though the set to be approximated is unbounded.

Example 4.29. Let C = [0,•) and define Pd =
h
0,
p
1� d2/d

i
for d 2 (0, 1]. Then,

0•C = C and Pd is compact for every d 2 (0, 1], but one has

dtH (homog Pd, homogC) =
����

✓
1
0

◆
� phomog Pd

✓✓
1
0

◆◆����

=

�����

✓
1
0

◆
� d
p

1� d2

 p
1�d2
d
1

!�����

= d.

The second equality is evident by taking into account that the projection of (1, 0)T

onto homog Pd is attained on the ray generated by
⇣p

1� d2/d, 1
⌘T

. Hence, Pd is a
homogeneous d-approximation of C with dtH (0•Pd, 0•C) = 1. Note that fixing d
and interchanging the roles of C and Pd yields a homogeneous d-approximation that
is a (0, 1)-approximation in the sense of Definition 4.2.

Surprisingly, the polar set of a homogeneous d-approximation of C is a homoge-
neous d-approximation of C� provided the origin is contained in the sets. This is dif-
ferent from the compact case discussed in Chapter 3, where the quantity dH (P�,C�)
for an #-H-approximation P of C does not only depend on # but also on constants
related to the geometry of C. In order to establish the result, we need the following
connection between the polar cone of homogC and C�.
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Proposition 4.30. Let C ✓ Rn be a convex set containing the origin. Then

homog (C)⇤ = cl cone (C�
⇥ {�1}) = � homog (�C�).

Proof. The first equality is proved in [BBW22, Theorem 3.1] for C being closed and
convex. It also holds for arbitrary convex sets C because homogC = homog clC.
The inclusion homogC ✓ homog clC is immediate from C ✓ clC. For the other
direction consider a point

µ

✓
x
1

◆
2 cone (clC⇥ {1}) ,

that means we fix µ > 0 and x 2 clC. Thus, there exists a sequence {xk}k2N ✓ C
converging to x. For every k 2 N it holds µ

�
xTk , 1

�T
2 cone (C⇥ {1}). Therefore,

µ
�
xT, 1

�T
2 cl cone (C⇥ {1}). This implies

cone (clC⇥ {1}) ✓ cl cone (C⇥ {1})

and by taking closures
homog clC ✓ homogC.

To show the second equation in the original statement we compute

cl cone (C�
⇥ {�1}) = cl

⇢
µ

✓
x
�1

◆
2 Rn+1

���� µ > 0, x 2 C�

�

= cl�
⇢
µ

✓
x
1

◆
2 Rn+1

���� µ > 0, x 2 �C�

�

= � cl
⇢
µ

✓
x
1

◆
2 Rn+1

���� µ > 0, x 2 �C�

�

= � homog (�C�).

The penultimate line follows from [Roc70, Theorem 9.1].

Theorem 4.31. Let C ✓ Rn be a convex set containing the origin. If P is a homogeneous d-
approximation of C containing the origin, then P� is a homogeneous d-approximation of C�.

Proof. Let M : Rn+1 ! Rn+1 denote the isometry defined by

M
✓
x
µ

◆
=

✓
x
�µ

◆
.

Now, we compute

dtH (homog (P�), homog (C�)) = dtH (M [homog (P�)],M [homog (C�)])

= dtH (� homog (�P�),� homog (�C�))

= dtH
�
homog (P)⇤, homog (C)⇤

�

= dtH (homog P, homogC)
6 d.

The first equation is true by [IS10, Proposition 2.1]. The second and third follow
from Proposition 4.30 using the fact that 0 2 P\ C. Theorem 4.15 yields the equality
in line 4. Finally, the inequality holds because P is a homogeneous d-approximation
of C. Thus, P� is a homogeneous d-approximation of C�.
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For the remainder of this section we turn to the problem of computing homo-
geneous d-approximations of a given spectrahedral shadow S. The fact that every
convex cone is its own recession cone suggests that we can use the tools developed
in Section 4.2 to solve this problem. In particular, we could apply Algorithm 4.1 to
homog S and obtain a homogeneous d-approximation of S by undoing the homoge-
nization. This approach presupposes that S satisfies suitable assumptions such that
the requirements of Algorithm 4.1 are fulfilled for homog S and, more importantly,
that homog S is a spectrahedral shadow for which a representation is available or
can be computed from a representation of S. The following proposition shows that
the latter is possible.

Proposition 4.32 (homogenization). Let S ✓ Rn be a spectrahedral shadow represented
by (A0,A,A,A, B, B,BT, b). Then the homogenization homog S is the closure of the spec-
trahedral shadow represented by

✓
0,
✓

A A0
M1 M2

◆
,A�

✓
I ⌦

✓
0 0
0 1

◆◆
,
✓
A
0

◆
,
�
B �b

�
,
�
B 0

�
,BT, 0

◆

with

M1 =

✓
E11 ⌦

✓
0 1
1 0

◆
· · · Enn ⌦

✓
0 1
1 0

◆ ◆
and M2 = I ⌦

✓
1 0
0 0

◆
.

In particular, homog S is itself a spectrahedral shadow.

Proof. The singleton {1} can be regarded as a spectrahedral shadowwith representa-
tion (?,?,?,?, 1,?,?, 1). Applying Proposition 2.14 to S and {1} and Proposition
2.41 to the resulting set yields that cone (S⇥ {1}) is a spectrahedral shadow repre-
sented by
0

@0,
✓

A 0
M1 T1

◆
,

0

@
A A0 0

0 M2 I ⌦
✓
0 0
0 1

◆
1

A ,
✓
A
0

◆
, B� 1, T2,

�
B 0

�T , 0

1

A ,

where M1 and M2 are as defined above and T1 and T2 are

E(n+1)(n+1) ⌦

✓
0 1
1 0

◆
and

✓
B �b 0
0 �1 0

◆
,

respectively. Therefore, cone (S⇥ {1}) can be written as
8
>>>>>>>><

>>>>>>>>:

✓
x

xn+1

◆
2 Rn+1

��������������

9

y 2 Rm

µ 2 R

t 2 R

Z 2 S
k

:

A(x) +A(y) + A0µ+A(Z) < 0
✓
µ xi
xi t

◆
< 0 i = 1, . . . , n+ 1

Bx+ By� bµ+ B
T(Z) = 0

xn+1 � µ = 0
Z < 0

9
>>>>>>>>=

>>>>>>>>;

.

Using the equality xn+1 = µ we eliminate µ from the description of the set. The
resulting spectrahedral shadow differs from the one defined by the claimed repre-
sentation only through the occurrence of the LMI

✓
xn+1 xn+1
xn+1 t

◆
< 0. (4.24)
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Remember from the proof of Proposition 2.41 that the reason the LMIs
✓
µ xi
xi t

◆
< 0, (4.25)

i = 1, . . . , n, are introduced in the description of the conical hull of a spectrahedral
shadow is to ensure x = 0 whenever µ = 0. Since µ = xn+1, LMI (4.24) can be
omitted. In addition, note that xn+1 > 0 is already implied by the LMIs (4.25).
The second statement now follows from Proposition 2.37 (i) and Theorem 2.35 taking
into account 0 2 cone (S⇥ {1}).

Proposition 4.32 and its preceding paragraph motivate the formulation of the
following algorithm for the computation of homogeneous d-approximations of S.

ALGORITHM 4.4: homogeneous d-approximation algorithm for spectrahe-
dral shadows
Input: a spectrahedral shadow S ✓ Rn, point x̄ 2 int S satisfying (A2), error

tolerance d > 0
Output: outer and inner homogeneous d-approximation PO and PI of S

1 K  cone (S⇥ {1})
2 compute outer and inner approximation KO and KI of K using Algorithm 4.1

with input parameters p =
�
x̄T, 1

�T, d̄ = p/kpk and error tolerance d
3 PO  pRn [KO \ H(en+1, 1)]
4 PI  pRn [KI \ H(en+1, 1)]

The function pRn : Rn+1 ! Rn in lines 3 and 4 denotes the projection given by

pRn

✓✓
x

xn+1

◆◆
= x.

Equation (4.19) implies that K in line 1 is closed if and only if S is compact. Thus, Al-
gorithm 4.1 in line 2 may be executed with a set that is not closed. We have already
discussed in Subsection 3.2.2 that all presented algorithms are not limited to closed
spectrahedral shadows and that the closedness merely guarantees that the optimal
values of the primal semidefinite programs from Section 3.2, if finite, are attained.
For Algorithm 4.4we aremore specific in regard to this argument because the closed-
ness of K may not be assumed. Here, only problems of type (P2 (p, d,K)) and
(D2 (p, d,K)) are relevant, namely in the execution of Algorithm 4.1 in line 2. Ac-
cording to Proposition 3.11 (i) it holds d 2 0•Kwhenever (P2 (p, d,K)) is unbounded
and K is closed. If K is not closed, then unboundedness of (P2 (p, d,K)) implies
d 2 0•clK, cf. [Roc70, Theorem 8.3]. Furthermore, the existence of a solution to
(D2 (p, d,K)) only depends on the boundedness and strict feasibility of the primal
problem but not on the existence of a solution to it. In particular, if p 2 K and t⇤
is the optimal value of (P2 (p, d,K)), then the hyperplane H(w⇤,w⇤Tp + t⇤) gener-
ated from a solution to (D2 (p, d,K)) according to Proposition 3.11 (ii) exists. Since
closedness of K is not used in the proof of Proposition 3.11 (ii) and p+ t⇤d 2 clK,
H(w⇤,w⇤Tp + t⇤) is a supporting hyperplane of clK. It follows that Algorithm 4.1
applied to K returns approximations of 0•clK rather than 0•K but is still finite irre-
spective of whether K is closed or not. Because K is a convex cone, it holds

0•clK = clK = cl 0•K. (4.26)
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Thus, the cones KO and KI computed in line 2 are approximations of clK = homog S.

Remark 4.33. In Equation (4.26) it is crucial that K is a convex cone. As an illustra-
tion, consider the convex set

C =
�
x 2 R2 �� 0 6 x1 < 1, 0 6 x2

 
[

n
(1, 0)T

o
.

Then cl 0•C = 0•C = {0} but 0•clC = cone
�
(0, 1)T

 
. Hence, if Algorithm 4.1 is

applied to a spectrahedral shadow S that is not closed, it returns approximations of
0•cl S but not necessarily of cl 0•S. However, if S is closed, then cl 0•S = 0•S, see
[Roc70, Theorem 8.2].

The above considerations enable the following result.

Theorem 4.34. Algorithm 4.4 works correctly, in particular it terminates with an outer
homogeneous d-approximation PO and an inner homogeneous d-approximation PI of S.

Proof. Since x̄ satisfies Assumption (A2) for S, the point p =
�
x̄T, 1

�T satisfies analo-
gous conditions for K. This is seen from a direct calculation using the representation
of K derived in Proposition 4.32. Similarly, x̄ 2 int S implies

�
x̄T, 1

�T
2 intK. In

particular,

d̄ =
1

p
x̄T x̄+ 1

✓
x̄
1

◆

satisfies Assumption (A3) for K because K = 0•K. From the preceding considera-
tions and Theorem 4.14 it follows that line 2 of Algorithm 4.4 works correctly and
returns polyhedral cones KO and KI satisfying

KI ✓ 0•clK = clK = homog S ✓ KO (4.27)

as well as dtH (KO, homog S) 6 d and dtH (KI, homog S) 6 d. For the sets PO and PI
in lines 3 and 4 it holds

homog PO = KO \ H+(en+1, 0) and homog PI = KI.

The difference arises from the inclusions in (4.27) and the fact that homogenizations
are contained in the halfspace H+(en+1, 0) by definition. However,

dtH
�
KO \ H+(en+1, 0), homog S

�
6 dtH (KO, homog S) 6 d

holds due to the inclusion homog S ✓ KO \ H+(en+1, 0). Therefore, PO and PI are
homogeneous d-approximations of S.
The finiteness of Algorithm 4.4 is evident from the finiteness of Algorithm 4.1.

Remark 4.35. The inner homogeneous d-approximation PI of S computed by Algo-
rithm 4.4 is always compact. Due to the containment of its homogenization KI in the
set cone (S⇥ {1}), one has µ > 0 whenever (x, µ)T 2 KI \ {0}. Thus, every direction
of KI corresponds to a point of PI, in particular

0•PI = pRn [KI \ H(en+1, 0)] = {0}

according to Equation (4.19).

We conclude this section with two examples.
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FIGURE 4.6: The top row depicts the outer and inner homogeneous
d-approximation PO and PI of the set from Example 4.36 computed
by Algorithm 4.4 with d = 0.01 in red and blue, respectively. On the
left is a section around the origin with vertices marked by black dots.
Note that the distance between vertices of PO and PI increases with
their distance to the origin. The right figure shows the scale of PI,
which is compact. An (#, d)-approximation with the same guarantees

in approximation quality as PO is displayed in the bottom row.

Example 4.36. Algorithm 4.4 is applied to the spectrahedral shadow

S =

⇢
x 2 R2

���� 9 y 2 R2 :
✓
x1 � y1 1

1 x2 � y2

◆
< 0,

✓
y2 y1
y1 1

◆
< 0

�
,

which is the Minkowski sum of the epigraphs of the functions x 7! x�1 restricted to
R++ and x 7! x2. As input parameters we set d = 0.01 and x̄ ⇡ (1.8846, 1.8846)T.
For the resulting outer approximation PO it holds

e [vert PO, S] ⇡ 0.1713 and dtH (0•PO, 0•S) ⇡ 0.0520.

For comparison, we use Algorithm 4.2 to compute an (#, d)-approximation P of S
with # and d set to these values. The remaining parameters are p = x̄, d̄ = e/kek
and g = 0.1. Figure 4.6 depicts PO as well as the determined inner homogeneous
d-approximation PI in the top row and P in the bottom row. In total, 534 semidefinite
programs are solved during the execution of Algorithm 4.4 for finding PO and PI,
while 222 are solved to obtain Pwith Algorithm 4.2. We point out that the maximum
norm of vertices of PO and P are around 58.8 and 1052.5, respectively. This difference
is explained by the scale of the compact component S that is approximated as part
of Algorithm 4.2.
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FIGURE 4.7: The top row shows homogeneous d-approximations PO
and PI of the set S from Example 4.37 for d = 0.03 restricted to B7(0)
and B100(0), respectively. Their polar sets, which are homogeneous
d-approximations of S�, are depicted in the bottom row. Both are con-

tained in a ball of radius 1.02.

Example 4.37. Consider the spectrahedral shadow S consisting of points x 2 R3 that
admit the existence of y1, y2 2 R3 and Z 2 S3

+ such that the system

x� y1 � y2 = 0 2z13 + z22 = 0
z11 � 1 = 0 z33 � 1 = 0

0

@
y21 + y22 0 2

�
y21 � y22

�

0 y21 + y22 2
p
2y23

2
�
y21 � y22

�
2
p
2y23 y21 + y22

1

A < 0

0

@
z11 y11 y12
y11 z22 y13
y12 y13 z33

1

A < 0

is satisfied. Algorithm 4.4 with d = 0.03 and x̄ = 0 requires the solutions to 1989
problems of type (P2 (p, d,K)), where K = cone (S⇥ {1}). The resulting outer ap-
proximation PO has 92 vertices and 24 extreme directions, while the compact inner
approximation PI is composed of 177 vertices. According to Theorem 4.31 their polar
sets P�

O and P�
I are an inner and outer homogeneous d-approximation of S�, respec-

tively. They are both compact with 94 and 232 vertices each. Sets PO and PI as well
as their polars are shown in Figure 4.7.
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