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Summary

Functional biogeography focuses on understanding the causes and consequences of
the spatial distribution of functional traits. One of the functions that plants fulfill in
ecosystems is to regulate the exchange of energy and matter through photosynthesis
(i.e., Gross Primary Production, GPP). In this direction, previous studies define the
maximum photosynthetic capacity (GPPmax) as an Ecosystem Functional Property
(EFP). It is expected that EFPs will help to better understand how ecosystems are
affected by climate change and global warming. In this dissertation, I present how to
understand an ecosystem function such as GPP and an EFP as GPPmax through
three main axes: Magnitude, Time and Space. Specifically, in the first axis, I focus on
understanding how environmental variables limit GPPmax at a global scale. In the
second axis, time, I evaluate how climatic variables affect the timing (i.e. Day of the
year, DOY) when GPPmax is reached (DOYGPPmax). Finally, on the last axis, I
explore how new satellite missions can help improve GPP prediction. In the first
axis, my approach using an optimal ecosystem process as GPPmax and its limiting
factors allow us to generate a new functional map that relate optimum ecosystem
processes with climate information. This new map can be used as input for future
global-scale modeling studies. On the second axis, Time, I find that for most of the
ecosystems across the globe, an increase in short-wave incoming radiation, temperat-
ure, and vapor pressure deficit will produce an earlier DOYGPPmax (when compared
with the mean DOYGPPmax) during the growing season. In the last axis, Space,
I find that red-edge vegetation indices (estimated from Sentinel-2 images) improve
the performance of the prediction of GPP. The exploration of the axes proposed in
this dissertation contribute to frame our understanding of vegetation functional
biogeography, by combining concepts and techniques from biometeorology, ecosys-
tem physio-phenology, and satellite earth observations.
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Zusammenfassung

Die funktionelle Biogeographie konzentriert sich darauf die Ursachen und Folgen der
räumlichen Verteilung funktioneller Merkmale zu verstehen. Eine dieser Funktionen,
die Pflanzen in Ökosystemen erfüllen, ist die Regulierung des Energie- und Stof-
faustauschs durch Photosynthese (d.h. die Bruttoprimärproduktion, GPP). Dies-
bezüglich definieren frühere Studien die maximale Photosynthesekapazität (GPPmax)
als eine funktionelle Eigenschaft des Ökosystems (EFP). Die EFPs sollen dazu
beitragen, den Einfluss von Klimawandel und globaler Erwärmung auf Ökosysteme
besser zu verstehen. In dieser Dissertation präsentiere ich, wie man eine Ökosys-
temfunktion wie GPP und eine EFP wie GPPmax entlang dreier Hauptachsen ver-
stehen kann: Stärke, Zeit und Raum. Für die erste Achse konzentriere ich mich ins-
besondere auf das Verständnis, wie Umweltvariablen GPPmax auf globaler Ebene
begrenzen. Für die zweite Achse, der Zeit, untersuche ich, wie klimatische Vari-
ablen den Zeitpunkt (d.h. den Tag des Jahres, DOY) an dem GPPmax erreicht
wird (DOYGPPmax) beeinflussen. Für die letzte Achse untersuche ich schlieSS-
lich, wie neue Satellitenmissionen zur Verbesserung der GPP-Vorhersage beitra-
gen können. Für die erste Achse ermöglicht mein Ansatz eine neuen funktionalen
Karte zu erstellen, die, unter Verwendung eines optimalen Ökosystemprozesses als
GPPmax und seiner begrenzenden Faktoren, optimale Ökosystemprozesse mit Kli-
mainformationen verbindet. Diese neue Karte kann als Input für zukünftige globale
Modellierungsstudien verwendet werden. Für die zweite Achse, die Zeit, stelle ich
fest, dass weltweit für die meisten Ökosysteme ein Anstieg der kurzwelligen ein-
fallenden Strahlung, der Temperatur und des Sättigungsdefizits zu einem früheren
DOYGPPmax (im Vergleich zum mit-tleren DOYGPPmax) während der Wachstum-
speriode führt. Für die letzte Achse, der räumlichen Verteilung, stelle ich fest,
dass die (aus Sentinel-2-Bildern geschätzten) Vegetationsindizes am roten Rand die
Vorhersage von GPP verbessern. Die Erforschung entlang der in dieser Dissertation
vorgeschlagenen Achsen trägt dazu bei, unser Verständnis der funktionalen Biogeo-
graphie der Vegetation zu erweitern, indem Konzepte und Techniken aus der Biomet-
eorologie, der Ökosystemphysiologie und der satellitengestützten Erdbeobachtung
kombiniert werden.
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CHAPTER 1

Introduction

Since 1790, when the industrial revolution began, the concentration of carbon diox-
ide (CO2) in the atmosphere has been increasing (Andres et al., 2012; Eyring et al.,
2021). Humans learned to burn fossil fuels to increase the number of goods and
create new services, a practice that remains until now (Friedlingstein et al., 2019). A
negative effect of fuel combustion is that large amounts of CO2 are released into the
atmosphere. Since CO2 is one of the main greenhouse gases, its increase in the
atmosphere has led to an increase in global air temperature in the last decades (i.e.,
global warming). The increase in temperature and deforestation caused by the
industrial revolution has changed the climate regimes across the globe (i.e., climate
change Gulev et al., 2021). Circularly, climate change has drastically impacted the
ecosystem’s dynamics and composition, affecting ecosystem processes such as
carbon uptake, water regulation, and cloud formation (Canadell et al., 2021).

The transformation of energy and matter in terrestrial ecosystems is mainly
constrained by the capacity of plants to absorb and transform CO2 and water into
carbohydrates, lipids, proteins, and oxygen (O2) (i.e., photosynthesis, Chen and
Blankenship, 2021). Photosynthesis products are used by other organisms through
the trophic network (Chapin et al., 2011b) and constitute the main building blocks of
other forms of life in the biosphere. To understand how different ecosystems are
being affected by climate change and global warming, it is necessary to measure the
exchange of energy and matter between the ecosystems and the atmosphere (Bal-
docchi, 2008). Having reliable knowledge of the photosynthetic activity of plants
(Gross Primary Production, GPP) can give us a better understanding of how eco-
systems respond in terms of energy and matter fluxes to the increase in atmospheric
CO2 and temperature (Campbell et al., 2017).

1.1 Terrestrial Gross Primary Production

Terrestrial GPP is the measurement of CO2 uptake by ecosystems through plant
photosynthesis (Dokulil, 2019; Chapin et al., 2011a). In the late 1940s and early
1950s, Montgomery (1948), and Swinbank (1951) developed the theoretical basis of
the eddy covariance method (EC). The EC method estimates the exchange of
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matter and energy between the atmosphere and biosphere using the covariance of
vertical wind velocity fluctuations and the chemical component fluctuation to be
measured (e.g., CO2, H2O) (Aubinet et al., 2012). Nevertheless, it was not until the
1980s that scientists started registering the continuous exchange of CO2 between
the atmosphere and plant’s canopy (Verma et al., 1986). The continuous registers
were possible thanks to the technological development of gas analyzers and sonic
anemometers (Ohtaki and Matsui, 1982; Ohtaki, 1984). Later, in the 1990s, several
regional networks of EC towers started (Aubinet et al., 2012). At the beginning of
the 2000s, the FLUXNET initiative (Baldocchi et al., 2001), a meta-network of
numerous regional networks with EC data, was created (For a complete review of
the history of the eddy covariance method, see: Baldocchi, 2003). FLUXNET
aimed to create a single data repository of standardized EC information accessible to
any scientist. Today, the latest FLUXNET dataset holds 206 EC-towers (1532 site-
years) around the world, covering several vegetation types and climate classes
(Pastorello et al., 2020). Thanks to FLUXNET, it has been possible to understand
how ecosystems respond to climate change and global warming in terms of energy
and matter fluxes (Yu et al., 2019). Understanding the relationship between the
biotic and abiotic components of the Earth is more relevant than ever; as CO2 levels
continue to rise, climate change and global warming have an increasing impact on
human societies around the world (Pörtner et al., 2022).

The EC technique has, however, some constraints. On the one hand, fluxes es-
timation is only possible under stable atmospheric conditions on flat terrain and
where the canopy is homogeneous (Schmid and Lloyd, 1999); on the other hand,
the spatial scale of fluxes’ footprint ranges from hundreds of meters to a few kilo-
meters (Schmid, 1994). These limits represent a challenge for regional and global
estimations of GPP. Furthermore, to estimate the state of vegetation on a global
scale. Fortunately, the eddy covariance technique has not been the only tool scient-
ists have developed to study vegetation productivity. The space race prompted the
development of satellite missions and sensors to study and track changes on the land
surface (Belward and Skøien, 2015). The information provided by satellite missions
combined with the knowledge of the optical properties of plants (Tucker, 1979) has
made it possible to monitor vegetation dynamics at regional (Goward et al., 1985,
1991), and global scale (Ryu et al., 2019). Later, the combination of remote sensing
information and model-based process understanding led to the development of the
first continuous GPP global product (Running et al., 2004). In the last decades,
with the development of new mathematical algorithms as machine learning tech-
niques (Breiman, 2001), new estimates of GPP at a global scale were possible by
combining satellite images and estimates of GPP from EC towers (Jung et al., 2009,
2020, 2019; Tramontana et al., 2016). As technology improves, new sensors have
made it possible to increase the temporal, spatial, and spectral resolution at which
we monitor vegetation (Thépaut et al., 2018). Examples of these new sensors are
the Sentinel satellites from the European Space Agency. Nevertheless, evaluating
whether the new Sentinel satellites allow us to better predict the fluxes between
ecosystems and the atmosphere is a question that remains open.
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1.2 Functional Biogeography

Functional Biogeography combines ecology, geography, and environmental sciences
to understand what organisms and ecosystems do, rather than the elements and
interactions that constitute organisms and ecosystems (Violle et al., 2014; Malaterre
et al., 2019). From an epistemic perspective, classic ecology focus on the interaction of
the species with the environment. In functional biogeography, the species concept is
not seen as a unit of evolution (Duckworth et al., 2000). Instead, it focuses on the
understanding of the functions of the organisms (For a complete discussion between
classic ecology and functional biogeography, see: Violle et al., 2014). For example,
plants absorb CO2 and water to synthesize sugars, lipids, and proteins and release
oxygen and water vapor during the same process. The synthesized compounds
then work as support for other organisms (Chase et al., 2000; Warne et al., 2010,
e.g.). In this sense, the definition of a function can be delimited in a series of
metabolic processes where the Earth’s biotic elements transform energy and matter
from different sources to produce compounds with higher chemical potential energy.
Following this idea, Reichstein et al. (2014) proposed that ecosystem functional
properties (EFPs) are measures of optimal biogeochemical processes that can be
quantified at the ecosystem level, for example, using the eddy covariance technique. It
is expected that EFPs help to characterize and understand ecosystem dynamics and
how ecosystem properties change into the current climate change and global
warming scenario (Reichstein et al., 2014).

Timing as a Plant Trait and an Ecosystem Functional Prop-
erty

The original formulation of EFPs was developed to link plant traits with ecosystem
fluxes reducing the confounding effect of climate regimes (Figure 1.1). Nevertheless,
an essential element in this formulation was not considered: the timing of optimal
ecosystem processes. In the last decades, the consequences of plant phenology shifts
on the global carbon cycle have been observed (Richardson et al., 2013, 2010; Buiten-
werf et al., 2015). For this reason, Wolkovich et al. (2014) notes that while several
studies in the last decade have focused on understanding plant phenology as a func-
tional trait, a multidisciplinary approach that includes ecology, biometeorology, and
phylogenetics is still necessary. In this dissertation, I argue that EFPs can also be
interpreted as optimum ecosystem states derived from fluxes without removing the
climate effect (For a complete comparison between GPPmax and GPPsat see the Ap-
pendix A). Then, the timing of optimal ecosystem processes as the maximum Gross
Primary Production (GPPmax) should also be included as part of the functional
biogeography in general.
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Figure 1.1: Major relationships between plant structural and chemicalphysiological
traits and ecosystem functional properties related to carbon and water fluxes, em-
bedded in an upscaling framework considering spatial covariates. Tradeoffs related to
water-use (WUE), nitrogen-use (NUE), radiation-use (RUE), and carbon-use
(CUE) efficiencies at plant (p) and ecosystem scale are printed in italics in red.
Note that soil C and nutrient turnover processes are also important ecosystem prop-
erties, affecting carbon fluxes directly via heterotrophic soil respiration and indirectly
via effects of nutrient availability on plant functional traits and ecosystem structure.
A, photosynthetic capacity; δ13C, stable carbon isotope ratio; ET, evapotranspira-
tion; GPPsat, gross primary productivity at saturating light; gs, maximum stomatal
conductance; LAI, leaf area index; LDMC, leaf dry matter content; LMA, leaf mass
per area; N, tissue nitrogen concentration; NEE, net ecosystem exchange of CO2; P,
tissue phosphorus concentration; R0, ecosystem respiration at reference temperature;
Ra, plant respiration; SRL, specific root length. Figure and legend reproduced from
Reichstein et al. (2014).

1.3 An approach to Functional Biogeography us-
ing Gross Primary Production

Although plant functions are regulated by different metabolic processes (Figure 1.1).
In this dissertation, I will focus on one function: the terrestrial gross primary pro-
duction, and one EFP: the optimum photosynthetic capacity (GPPsat or GPPmax) of
plants per unit area per second. To have a complete understanding of GPP, and
GPPmax in the context of biogeography, it is necessary to develop three axes: (1)
Magnitude (here it refers to the value per-se), Timing, and Space (Figure 1.2). These
reference axes are present throughout the entire dissertation at different levels.

12
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Figure 1.2: Conceptual representation of the three axes of study on this dissertation.
The gray line represents the gross primary production variation during the growing
season. The first axis Magnitude refers to the value of gross primary production
(GPP) and GPPmax per-se. The second axis Time is the timing when GPPmax is
reached. The third axis, Space, represents the prediction/upscaling of GPP using
new remote sensing information. The arrow represents the increase in spatial
resolution. From local eddy covariance Towers to regional and global predictions of
GPP

1.4 Research questions and summary of the ma-
nuscripts

Research Question 1.
Is the Maximum Gross Primary Production limited by water or tem-

perature at a global scale?
In Chapter 2 /  Manuscript 1 I investigate in what ecosystems GPPmax is lim-

ited either by temperature or precipitation. Based on these results, I proposed new
functional classes and analyzed how these classes are related to previous vegetation
classification systems. This study allows us to better understand the relationship
between climate variables and GPP. The resulting categories, from the relationship
between GPP limitation by water or temperature, may be useful for future exercises to
predict the impact of climate change on ecosystems.

Research Question 2.
What are the controlling factors of the timing of the Maximum Gross

Primary Production?
In Chapter 3 /  Manuscript 2, I explore the potential of circular-linear regres-

sions (circular statistics) as a method to correlate changes in the timing of GPPmax

with the cumulative effect of climate variables (ecosystem memory). These results
allow a better understanding of ecosystems’ response to climate change not only from a
phenological perspective but from a more holistic ecosystem physio-phenology per-
spective.

13



Chapter 1. Introduction

Research Question 3.
How to improve the prediction of Gross Primary Production using

new satellite missions?
In Chapter 4 /  Manuscript 3, I present how new satellite missions (i.e.

Sentinel-2) from the European Space Agency (ESA) improve the prediction/upscaling
of GPP using red-edge vegetation indices that could not be computed previously.
I also explore the bias produced by the imbalanced representation of observations
by vegetation type (different number of observations) and whether balancing tech-
niques can help to better represent vegetation types and low-frequency observations
(rare observations). This work provides a base for future global estimates of GPP
and GPPmax based on the new satellite missions from ESA.
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A Functional Classification System based on maximum Gross
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On the Potential of Sentinel-2 for Estimating
Gross Primary Production

Daniel E. Pabon-Moreno , Mirco Migliavacca, Markus Reichstein, and Miguel D. Mahecha

Abstract—Estimating gross primary production (GPP), the
gross uptake of CO2 by vegetation, is a fundamental prerequisite
for understanding and quantifying the terrestrial carbon cycle.
Over the last decade, multiple approaches have been developed to
derive spatiotemporal dynamics of GPP combining in situ
observations and remote sensing data using machine learning
techniques or semiempirical models. However, no high spatial
resolution GPP product exists so far that is derived entirely
from satellite-based remote sensing data. Sentinel-2 satellites
are expected to open new opportunities to analyze ecosystem
processes with spectral bands chosen to study vegetation between
10- and 20-m spatial resolutions with five-day revisit frequency.
Of particular relevance is the availability of red-edge bands that
are suitable for deriving estimates of canopy chlorophyll content
that are expected to be much better than any previous global
mission. Here, we analyzed whether red-edge-based and near-
infrared-based vegetation indices (VIs) or machine learning tech-
niques that consider VIs, all spectral bands, and their nonlinear
interactions could predict daily GPP derived from 58 eddy covari-
ance sites. Using linear regressions based on classic VIs, including
near-infrared reflectance of vegetation (NIRv), we achieved
prediction powers of R2 =  0.51 and an RMSE10−fold     =
2.95 [µmol CO2 m s ] in a 10-fold cross validation. Chloro-
phyll index red (CIR) and the novel kernel NDVI (kNVDI)
achieved significantly higher prediction powers of around R2

≈  0.61 and RMSE10−fold ≈  2.57 [µmol CO2 m−2 s−1 ].
Using all spectral bands and VIs jointly in a machine learning
prediction framework allowed us to predict GPP with R2 =
0.71 and RMSE10−fold =  2.68 [µmol CO2 m−2s−1 ]. Despite the
high-power prediction when machine learning techniques are
used, under water-stress scenarios or heat waves, optical infor-
mation alone is not enough to predict GPP properly. In general,
our analyses show the potential of nonlinear combinations of
spectral bands and VIs for monitoring GPP across ecosystems at
a level of accuracy comparable to previous works, which,
however, required additional meteorological drivers.

Index Terms—Gross primary production, red edge, Sentinel-2.
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I. INTRODUCTION

ROSS primary production (GPP), the amount of carbon
absorbed by the ecosystem via plant photosynthesis,

is the largest single flux in the global carbon cycle [1].
GPP varies in response to several abiotic (e.g., radiation,
temperature, and precipitation; 2 and 3) and biotic factors
(e.g., metabolic pathway, vegetation type, leaf chemical traits,
and species composition: 4). However, GPP cannot be directly
observed and needs to be derived from in situ measurements of
net CO2 exchanges using the eddy covariance (EC) technique
over canopies [5], [6]. Using different flux partitioning meth-
ods, it is possible to estimate the amount of carbon that is taken
up by the ecosystem (GPP) or released through ecosystem res-
piration (RECO) [7]–[11]. Nevertheless, EC can only measure
the exchange of energy and matter between the ecosystem and
the atmosphere at the scale of the climatology footprint, which
can vary between a few hundred meters to a few kilometers
(e.g., 12). Today, EC data are available globally in multiple
regional networks (Integrated Carbon Observation System:
ICOS, The National Ecological Observatory Network: NEON,
AmeriFlux, AsiaFlux) and the meta-network Fluxnet [13],
[14]. The flux database networks enable studies into local
processes understanding [6], [15]–[17], evaluating biotic and
abiotic relationships on multiple time scales (e.g., 18 and 19),
and evaluating terrestrial biosphere models [20]–[23].

In the last decades, many process-based, semiempirical,
and data-driven models have been developed to upscale GPP
using remote sensing data, and climate information, in order to
understand the spatiotemporal dynamics of the global
carbon cycle [3], [24]–[26]. For instance, the MODIS MOD17
product is based on a semiempirical model that estimates
GPP as the product between the light-use efficiency and the
absorbed photosynthetically active radiation (APAR) [27].
The maximum light-use efficiency is a plant functional-type-
dependent parameter, and it is downregulated by stress factors
that depend on temperature and vapor pressure deficit that need
to be parameterized. The Breathing Earth System Simulator
(BESS) [28] is a process-based approach, which relies on a
radiative-transfer model coupled with several remote sensing
products to predict GPP and evapotranspiration (ET) at a
global scale with a temporal resolution of eight days. Jung
et al. [29] showed that machine learning methods can likewise
efficiently upscale fluxes from in situ data to the globe.
Building on this work, Tramontana et al. [30] used the
FLUXNET dataset and MODIS remote sensing information to
train multiple machine learning techniques to predict monthly
GPP at a global scale. Later, Bodesheim et al. [31] produced
GPP global products at half-hour temporal resolution using
different settings, but of low spatial resolution (0.5◦). The
state-of-the-art machine learning-based upscaling of GPP is
described in [26].
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A more direct approach to predicting GPP is to identify veg-
etation indices that are highly correlated with GPP dynamics.
Badgley et al. [32], for instance, found that the near-infrared
reflectance of vegetation (NIRv) index strongly correlates with
monthly estimates of sun-induced chlorophyll fluorescence
(SIF), rendering it a potential predictor for GPP at the global
scale. Later on, Badgley et al. [33] showed that NIRv can
explain 68% of the monthly GPP variability at the FLUXNET
sites. Recently, Camps-Valls et al. [34] presented a nonlinear
version of the normalized difference vegetation index (NDVI)
based on kernel methods (kNDVI) that correlates better with
GPP and SIF products than NIRv and NDVI. The advantage of
such approaches is that they rely purely on remote sensing data
and circumvent the parameterization of light-use efficiency
models. However, relying on reflectance values alone means
that the detection of physiological regulation of photosynthesis
via meteorological conditions is not detectable unless they last
long enough to affect vegetation pigments and structure.

Today, new satellite missions have increased the information
available to characterize vegetation properties and ecosystem
processes [35], [36]. Specifically, the satellite missions from
the Copernicus program have opened new ways to monitor
ecosystem processes with unprecedented spatial, temporal, and
spectral resolution [37], [38]. For instance, it has been shown
that Copernicus missions allow deriving plant traits such as
chlorophyll and nitrogen content along with other biophysical
parameters [39]–[42]. To the best of our knowledge, only
three studies have evaluated the prediction capacities of
GPP using Sentinel-2: Wolanin et al. [43] used the SCOPE
model and machine learning techniques to predict GPP of
C3 crops. Lin et al. [44] evaluated the potential prediction of
GPP as a function of the vegetation index multiplied by the
incident photosynthetic active radiation (PARin). They
analyzed the performance of five red-edge vegetation indices
and three nonred-edge vegetation indices. They found that
chlorophyll index red (CIR) showed the highest correlation
with GPP from the EC tower for two grassland sites. Finally,
Cai et al. [45] compared GPP predictions using Sentinel-2
and MODIS for several EC-sites in Northern Europe. The
authors did not find any improvement for the prediction of
GPP when using Sentinel-2 compared to MODIS using the
enhanced vegetation index (EVI2). Despite these advances,
there is a lack of systematic comparison between novel
red-edge vegetation indices and vegetation indices based on
the classic red and NIR bands (i.e., NDVI, kNDVI, and
NIRv) in terms of their predictive power regarding GPP.
Likewise, the question of whether a machine learning
approach considering all Sentinel-2 bands could improve the
satellite-based predictions of GPP remains unresolved.

In this study, we aim at understanding the potential of
Sentinel-2 mission for monitoring GPP across European and
North American major biomes at high spatial resolution. First,
we want to understand, which vegetation indices or spectral
bands available from Sentinel-2 are the most relevant for
predicting GPP. Second, we investigate what is the difference
in prediction performance between different approaches based
on state-of-the-art vegetation indices (e.g., NIRv, kNDVI, red-
edge based, and nonred-edge indices) and machine learning
using all spectral bands.

II. METHODS

A. Eddy Covariance Sites
We     used     58     EC     sites     compiled     by     the     ICOS

Drought 2018 Team (49 sites) and the Ameriflux/ONEFLUX
(9 sites) initiatives from 2015 to 2018 (Appendix A). We used
half-hourly GPP data (GPP_NT_VUT_USTAR50) estimated
using the FLUXNET2015 workflow [14]. GPP is calculated in
FLUXNET with the night-time partitioning method [8] using a
variable u* threshold for each year. The annual u* threshold is
derived from the 50th percentile of u* threshold distribution
obtained by bootstrapping the original night-time net
ecosystem exchange data [14]. Daily GPP values are estimated
as the mean of the half-hourly values where net ecosystem
exchange is observed or gap-filled with good quality (e.g.,
NEE_VUT_USTAR50_QC =  0 and 1). In our analysis, days
with less than 70% of good quality half-hourly data were set
to “NA.” Finally, we smoothed the time series using a
moving window mean with a window size of seven days.

The EC sites span across Europe and United States from
a latitude of 34.3◦N to 67.8◦N and include a variety of
vegetation types: croplands (9 sites), deciduous broadleaf
forests (9 sites), evergreen needleleaf forests (18 sites),
grasslands (7 sites), mixed forest (4 sites), open shrublands
(2 sites), savannas (4 sites), and wetlands (5 sites). The sites’
locations represent a variety of climatic regimes, including
Mediterranean, humid subtropical, temperate oceanic, humid
continental, subarctic, and tundra (Appendix A).

B. Sentinel-2 Imagery
We downloaded Sentinel-2 L1C products for the EC sites

from 2015 to 2018 using the Scihub Copernicus portal
(https://scihub.copernicus.eu/, last accessed October 2020).
We performed atmospheric corrections for all products using
Sen2Cor 2.5.5 [46]. All bands were resampled to 20-m
resolution using the nearest neighbor approach for upsam-
pling and median for downsampling. Finally, we computed
several vegetation indices (see Supplementary Material 9) such
as NDVI, kNDVI, NIRv, and multiple red-edge vegetation
indices as the inverted red-edge chlorophyll index (IRECI)
and CIR. Among these indices, kNDVI requires a specific
parameterization of the kernel width σ , which was here set to
the median distance between the near-infrared band (NIR) and
the red band per spatial pixel; for Sentinel-2, σ =
median(0.5 ×  (B8 +  B4)). Postprocessing of the images was
performed using SNAP v7.0 [47] and automatized using the
graph processing framework and the graph processing tool.
The scripts for the postprocessing of the products are available at
a Zenodo repository (see code availability).

We defined a buffer area of 100 m radius around the EC
towers to ensure that the flux footprint climatology lies within
this area (Supplementary Material 1). We used the scene
classification generated by Sen2Cor to filter out images with:
“no data,” “saturated or defective pixels,” “dark areas,” “cloud
shadows,” “water,” “cloud,” “thin cirrus,” and “snow.” To
reduce the effect of shadows or saturated pixels that are
not correctly classified by Sen2Cor, we implemented an
outlier detection approach that consists of three steps. First,
we computed z-scores (data centered and scaled to unit
variance) per image and removed pixels of the buffer area
with an absolute residual value higher than quantile
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0.99 [48]. Second, to detect potential images with clouds,
we used the time series of the spectral bands per site. We then
estimated the average of the buffer area for each image/band
and decomposed the time series of each band into a seasonal
and a trend component using locally estimated scatterplot
smoothing [LOESS 49]. Next, we applied an inner quantile
range technique over the residual of the time series decom-
position [50]. Residuals with values higher or lower value
than three times the quantiles 0.25 and 0.75, respectively, were
also classified as outliers. This analysis was performed using
the “anomalize” R package [50]. Third, we defined a bigger
buffer area of 900 m, where we estimated the percentage of
clouds. We removed observations where the percentage of
clouds was above 70%. We also identified 16 additional images
with clouds by visual inspection (Supplementary Material 3).
We present the complete description of the time series decom-
position and the outlier detection in Supplementary Material 2
(the R scripts are available in the Zenodo repository, see code
availability). The minimum number of images per site detected
as an outlier is 1, the maximum is 20, and the mean across
sites is 6 images. Finally, we selected the daily GPP values
for the days when we also have valid images from Sentinel-2.

C. Dataset Balancing
The imbalanced representation of different categories in a

dataset can influence the weighting of the observations during
the training process and consequently in the quality of the
prediction [51]. In the last decades, several methods have
been developed to solve this issue, mainly for classifications
problems, but recently also for regression analysis [52], [53].
To address this problem for the prediction of GPP through
different vegetation types that are not all equally represented
(Fig. 1), we implemented three methods to balance the dataset
given the differences in the number of observations per
vegetation type.

1) Undersampling Balancing: All observations are grouped
by vegetation type and are resampled without replace-
ment, to the number of observations of the vegetation
type with the least observations.

2) Oversampling Balancing: All observations are again
grouped by vegetation type. Each category is com-
pleted until reaching the number of observations of the
maximum category (sampling with replacement). The
replacement technique is only applied when the total
observations of the category are less than the difference
between the number of observations of the category
with the maximum number of observations and the total
number of observations of the current vegetation type.

3) Synthetic Minority Oversampling TEchnique for Regres-
sion (SMOTER) Balancing: It is a balancing technique
proposed by Torgo et al. [52], where the idea behind
the method is to undersample observations with high
frequency. In contrast, values with a low frequency (rare
observations) are oversampled. In this form, rare obser-
vations will have a higher weight during the training. All
the following analyzes were applied considering all three
balancing techniques as well as to the imbalanced case.

D. Linear Regression-Based GPP Prediction
We evaluated the performance of red-edge vegetation

indices to predict GPP using linear regression using the

Fig. 1. Number of Sentinel-2 images used for the prediction of GPP
(2015–2018) per vegetation type. Each observation corresponds to a Sentinel-2
image at a 100 m radius around the EC tower. Red color indicates the images
with no data, saturated or defective pixels, dark areas, cloud shadows, water,
clouds, thin cirrus, or snow effects that were removed. Blue color represents
the number of valid images. Evergreen needleleaf forests (ENF), croplands
(CRO), deciduous broadleaf forests (DBF), grasslands (GRA), wetlands
(WET), mixed forest (MF), savannas (SAV), and open shrublands (OSH).

balanced and imbalanced datasets. We compared the perfor-
mance of NDVI, NIRv, and kNDVI [34], as well as red-edge
vegetation indices such as IRECI and CIR (for an overview,
see Supplementary Material 9). All evaluations were based
on leave-location-and-time-out tenfold cross validation as pro-
posed by Meyer et al. [54] and implemented in the “CAST” R
package [55]. To increase the robustness of the analysis, the
generation of tenfolds was repeated 50 times. In this approach,
the partitions for the cross validation are semirandomly
generated to minimize spatial and temporal autocorrelation.
We evaluated the performances of the different models using
the coefficient of determination (R2) of the linear regression
between observed and predicted GPP, the root-mean-square
error (RMSE), and the mean absolute error (MAE). Finally,
we compared the distributions of the model evaluation metrics
between the vegetation indices using the Wilcoxon test [56].

E. Machine Learning-Based GPP Prediction
We used random forests [57] as prediction approach for GPP

for each balanced and imbalanced dataset. A detailed descrip-
tion of how to use RF for upscaling land surface fluxes can be
found in [31]. We explored what variables are the most rele-
vant for predicting GPP. For this, we evaluated the radiometric
indices presented in Supplementary Material 9, additionally to
the spectral bands B1, B2, B3, B4, B5, B6, B7, B8, B8A,
B9, B11, and B12 (Supplementary Material 8) resulting in a
total of 35 predictor variables. kNDVI was not included here
since it is a nonlinear transformation of the NDVI using kernel
methods, and its inclusion would have added no information
when applying machine learning techniques. We performed a
forward feature selection as suggested by Meyer et al. [58],
where the models are generated based on the pairs’ combi-
nation of predictors, allowing us here to compare nonlinear
combinations of spectral bands and vegetation indices, as we
may expect that they could reduce model complexity. The
power prediction of each model was estimated using a tenfold
leave-location-and-time-out cross validation [54], where the
tenfolds were generated 50 times to increase the robustness
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of the analysis. The idea is that the model with highest R2 is
selected first, and then, new variables are iteratively added to
this initial model. The process finishes when none of the
remaining variables increases model performance.

III. RESULTS AND DISCUSSION

In the following, we first report the results of the GPP
prediction using different vegetation indices in linear regres-
sions, where we specifically discuss the performance of GPP
estimates based on red-edge vegetation indices compared with
the ones based on NIRv, NDVI, and kNDVI. We also discuss
the effect of the balancing techniques on the performance of
the prediction. Second, we present the results of the GPP
prediction using Sentinel-2 spectral bands and vegetation
indices using random forests, where we present examples of
the prediction for different EC sites and an entire Sentinel-2
tile. Finally, we discuss the possibilities and limitations of
predicting GPP using remote sensing information only and
how such prediction can be improved in the future and provide
globally continuous flux estimates.

A. GPP Prediction Using Linear Regressions
In Fig. 2, we compare the performance of linear GPP predic-

tions using red-edge-based vegetation indices (CIR and IRECI,
see Supplementary Material 9), NIRv, NDVI, and kNDVI.
Red-edge vegetation indices perform better than NDVI and
NIRv in all considered metrics (Fig. 2), while kNDVI performs
as well as IRECI. According to the Wilcoxon test, the differ-
ences in the performance distribution of each index are statisti-
cally significant. In general, CIR explains on average 3% more
of the GPP variance than kNDVI, 4% more than IRECI, 10%
more than NIRv, and 11% more variance than NDVI. kNDVI
explains an average 1% more than IRECI, 7% more than NIRv,
and 8% more than NDVI. The prediction of GPP using IRECI
shows that 6% more variance in GPP is explained compared
to NIRv and 7% more than NDVI. NIRv only explains 1%
more of the GPP variance than NDVI. The RMSE shows
smaller errors in GPP estimated with CIR, kNDVI, and IRECI
compared to the estimates based on NIRv and NDVI (Fig. 2).
As expected, when balanced datasets are used, the explained
variance increases 2% for CIR, from 2% to 4% for IRECI,
from 2% to 5% for NIRv, from 1% to 3% for kNDVI, and from
2% to 3% for NDVI (Table I and Supplementary Material 4).

Badgley et al. [32] introduced the NIRv as an alternative to
SIF for the estimation of monthly GPP. Compared to machine
learning products or radiative-transfer models, the advantage
of this approach is that it could be used to estimate global GPP
easily using global and long-term time series products such
as MODIS. However, our results suggest that the red-edge
vegetation index CIR yields significantly higher prediction
powers of GPP compared to NIRv. This finding could be
interpreted as an important argument for relying on the novel
Sentinel-2 data for GPP prediction.

Red edge is the region around 710 nm, which marks the
sharp transition between the red region (700 nm), where the
absorption of chlorophyll occurs, and the near-infrared region
(730 nm), where the reflectance is produced by the internal
structures of the leaf [59, p. 180]. This region is highly
sensitive to the leaf chlorophyll content [60], [61]. At the
same time, chlorophyll content is a controlling factor of the
fraction of photosynthetically active radiation absorbed by

Fig. 2.     Prediction of GPP using linear regression and different vegetation
indices (CIR: chlorophyll index red, IRECI: inverted red-edge chlorophyll
index, NIRv: near-infrared vegetation, and NDVI: normalized difference veg-
etation index) as predictors. Results are shown for the imbalanced (original)
dataset only. The vertical lines correspond to the results of the Wilcoxon test in
pairs, where ns is the nonsignificant differences, *: p ≤  0.05, **: p ≤  0.01, and
***: p ≤  0.001.

plants (APAR). This is one possible explanation why CIR is
strongly correlated with GPP [62], even if it cannot reflect the
fast variations of the photosynthesis itself. For these reasons,
VIs based on red-edge bands might generally have advantages
for estimating GPP over VIs that do not rely on the red edge.
Lin et al. [44] found that CIR multiplied by PAR can explain
slightly more variability of GPP than NIRv multiplied by PAR
for two grasslands sites. However, we would argue that the
PAR effect could be dominant in their study, while our aim
here was to focus on the spectral information only.

We also tested the predictive performance of kNDVI [34],
which was reported to predict monthly GPP better than NIRv.
The idea behind kNDVI is to solve the saturation problem of
NDVI at high values by exploring the nonlinear relations of
the two bands of the NDVI. Even though no red-edge
information is used, we found that kNDVI performed at the
level of IRECI in our study. One interpretation of this finding is
that most of the information contained in the red-edge bands
can be captured by an appropriate transformation of the distance
between near-infrared and red bands. However, there is no
direct mechanistic argument, and it is unclear to what extent
this observation is general and further research will be
necessary. However, our results may imply that kernel versions
of classical vegetation indices could derive relevant informa-
tion from satellite missions that do not have red-edge indices.

B. GPP Prediction Using Random Forest
Another question of this study was whether machine learn-

ing could outperform even the new generation of vegetation
indices. In Table II, we present the results of the variable
selection analysis where a different number of predictors are
selected depending on the balancing technique. From 35 pre-
dictors that included Sentinel-2 spectral bands (Supplementary
Material 8) and derived vegetation indices (Supplementary
Material 9), CIR, S2REP, and B1 are selected for all datasets,
while GNDVI, PSSRA B3, and B4 are selected at least in
three cases. ARVI, MTCI, MCARI, B2, and B5 are selected
at least in two datasets. IRECI, NDI45, RVI, TNDVI, TSAVI,
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TABLE I

AVERAGE PERFORMANCE OF THE GPP PREDICTION USING LINEAR REGRESSION (TENFOLD TEMPORAL–SPATIAL CROSS VALIDATION) WITH

RED-EDGE AND NONRED-EDGE VEGETATION INDICES. THE COLUMN DATASET REFERS TO THE BALANCING TECHNIQUE USED TO

BALANCE THE REPRESENTATION OF DIFFERENT VEGETATION TYPES

TABLE II

VARIABLES SELECTED FOR THE PREDICTION OF GPP USING THE FORWARD FEATURE SELECTION PRESENTED BY MEYER et al. [58]. THE DATASET

COLUMN REPRESENTS THE BALANCING TECHNIQUE USED TO BALANCE THE DIFFERENT VEGETATION TYPES IN THE ORIGINAL (IMBALANCED)
DATASET. A TENFOLD CROSS VALIDATION IS PERFORMED TO ESTIMATE: R2 , RMSE, AND MAE. THE OPTIMUM NUMBER OF VARIABLES RANDOMLY

SAMPLED AS CANDIDATES FOR EACH SPLIT (MTRY) IS ALSO SHOWN. THE INCREASE OF R2 AND THE DECREASE IN THE STANDARD

ERROR WHEN EACH VARIABLE IS ADDED TO THE INITIAL MODEL ARE SHOWN, WHERE THE FIRST VALUE CORRESPONDS TO THE MODEL

USING THE FIRST TWO PREDICTORS IN THE COLUMN VARIABLES SELECTED AND THE LAST VALUE CORRESPONDS

TO THE VALUE OF THE FINAL MODEL. RED-EDGE CHLOROPHYLL INDEX (CIR), SENTINEL-2 RED-EDGE

POSITION INDEX (S2REP), ATMOSPHERICALLY RESISTANT VEGETATION INDEX (ARVI), MERIS TERRESTRIAL

CHLOROPHYLL INDEX (MTCI), GREEN NORMALIZED DIFFERENCE VEGETATION INDEX (GNDVI), TRANSFORMED

NORMALIZED DIFFERENCE VEGETATION INDEX (TNDVI), NORMALIZED DIFFERENCE INDEX 45
(NDI45), INFRARED PERCENTAGE VEGETATION INDEX (IPVI), PIGMENT SPECIFIC SIMPLE RATIO

(PSSRA), TRANSFORMED SOIL ADJUSTED VEGETATION INDEX (TSAVI), MODIFIED CHLOROPHYLL

ABSORPTION RATIO INDEX (MCARI), AND GREEN CHLOROPHYLL INDEX (CIG)

CIG, and B12 are selected at least once (Table II). The
variable selection analysis shows that even when nonlinear
combinations of spectral bands are possible, vegetation indices
are still selected as they probably would simplify the machine
learning model. Yet, not all information required for predict-
ing GPP seems to be encoded in vegetation indices alone.
Bands B1, B2, B3, B4, B5, and B12 also appear to provide

information that is useful for the predictions. A surprising
result is the selection of band B1. This band is typically used
for aerosol detection and correction purposes. We speculate
that B1 is a proxy for radiation dynamics (e.g., direct and
diffuse radiation) that are important for GPP. However, we note
that Penuelas et al. [63] had considered this spectral region
earlier in their structure insensitive pigment index (SIPI)
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Fig. 4. Observed and predicted GPP values at selected EC sites representing
different vegetation types: evergreen needleleaf forests (ENF), croplands
(CRO), deciduous broadleaf forests (DBF), grasslands (GRA), wetlands
(WET), mixed forest (MF), savannas (SAV), and open shrublands (OSH).
Models were trained using a leave-one-site-out cross-validation strategy.

Fig. 3. Prediction of GPP using different data balancing techniques. In each
case, the observed values are shown on the y-axis, and the predicted values are
shown on the x-axis. The red line represents the 1:1 line. Imbalanced makes
reference to the original dataset. Undersampling, oversampling, and SMOTER
make reference to each technique used to balance the dataset (see Section II for
further details).

that has, however, not been developed further for vegetation
monitoring. The additional selection of bands B2 (blue), B3
(green), B4 (red), and B5 (vegetation red-edge) suggests that
there is space for the development of new vegetation indices
that can capture the GPP variability beyond the existing
indices.

In Fig. 3, we present the prediction of GPP using ran-
dom forest regression, where GPP can be predicted with

Fig. 5. GPP product for a Sentinel-2 tile, over the Ballons des Vosges
Regional Nature Park (France, June 23, 2020). The land cover classification
generated by Sen2cor was applied before the prediction, where pixels
considered as nonvegetation are encoded as NAs.

R10−fold =  0.66 and RMSE10−fold =  2.34 [µmol CO2 m−2s−1 ]
for     the     imbalanced dataset.     There     are     improvements
in the variance explained using the balanced dataset.
R10−fold =  0.68 and RMSE10−fold =  2.20 [µmol CO2 m−2s−1 ]
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using undersampling, R10−fold =  0.67 and RMSE10−fold =
2.28 [µmol CO2 m     s ] using oversampling technique, and
R10−fold =  0.71 and RMSE10−fold =  2.68 [µmol CO2 m−2 s−1 ]
using the SMOTER technique (Table II). The comparison
between the distribution of the metrics shows that there are
significant differences between the imbalanced and balanced
datasets (Supplementary Material 10). The results of the cross
validation for each fold and balancing technique are presented
in Supplementary Material 7. Tramontana et al. [30] reported
that spectral information with machine learning techniques can
explain around 78% of the GPP variability across sites. One of
the advantages of our approach is that it does not require a
previous vegetation-type classification [64]. In comparison
with the estimation of GPP using biophysical parameters as,
e.g., in [44], we show that it GPP can be estimated more
directly with high accuracy.

In Fig. 4, we present the examples of predicted and observed
GPP representing different vegetation types. The prediction for
each site is presented in Supplementary Material 5. Despite
the overall high variances explained by random forests, there
are indeed cases when GPP cannot be predicted correctly.
For instance, the maximum GPP is underestimated in savan-
nas and evergreen needleleaf forest ecosystems. Our study
period covers the 2018 heat wave, an extreme event where
northwestern Europe vegetation was highly affected [65]–[67].
We find, however, that the reduction in CO2 uptake during
this event was not well captured for mixed forest and decid-
uous broadleaf forest (Fig. 4). This can also be seen when
comparing the time series of 2016 and 2017 to 2018 (see
Fig. 4). This means that the prediction of ecosystem fluxes
during extreme events remains an open issue that needs to be
addressed with high priority as discussed in [68]. How-ever,
our finding that GPP dynamics during drought events cannot
be well represented is in-line with earlier findings. For
instance, Bodesheim et al. [31] showed that GPP was not
properly predicted during dry summers for several EC sites and
attributed this to the poor representation of water availability in
their dataset. Different from our study, their study also used
climate information, which, in theory, increases the model
performance for water-stress scenarios. One general problem
could be the time lag between the change of photosynthesis
rates and the decline in the concentration of the pigments,
including chlorophyll content, in the leaves. However, given
that the data generated here are based on vegetation reflectance
properties only, it is expected that they can only pick up
changes in GPP that are primarily driven by changes in APAR
and pigment concentrations but are not apt to capture the fast
response of photosynthesis mediated, e.g., by stomatal closure.
This limitation is inherent to all reflectance-based methods and
the reason why, in some sites, we are not able to reproduce
GPP dynamics under stress.

Nevertheless, the overall seasonal dynamics are represented
very well in our GPP estimates across sites and vegetation
types. Future studies should investigate whether the inclusion
of thermal information from Sentinel-3 or radar information
from Sentinel-1 can help to indirectly address the water deficit
in the ecosystems during drought periods [69] and lead to the
next generation of operational GPP products based on

remote sensing data only. In addition, the unique combination
of red-edge vegetation indices in Sentinel-2, radar information
from Sentinel-1, or multispectral and thermal information from
the bands available in Sentinel-3 may open unprecedented
possibilities for vegetation monitoring in the near future [35].

Previous studies used plant functional classes as a spatial
feature to upscale GPP [30], [70]. To use vegetation types as a
predictor of GPP, a necessary step will be to improve the land
cover maps to match the resolution of Sentinel-2. The ESA
WorldCover consortium gave the first steps, producing the
first global land cover map at 10-m resolution for 2020 using
radar information from Sentinel-1 and optical information
from Sentinel-2 [71]. Future research will have to test the
added value of these upcoming products for predicting carbon
fluxes at high spatial resolution.

To give a taste of what the mapping of carbon fluxes
might look like in the future, in Fig. 5, we present an
example of the upscaling of GPP for a Sentinel-2 tile over the
Ballons des Vosges Regional Nature Park (France, June 23,
2020; Supplementary Material 6). The area contains different
types of deciduous broadleaf forest, weatlands, grasslands, and
croplands. Even though our model does not use vegetation
type as a predictor, it does clearly differentiate GPP dynamics
of crops, weatlands, and forests. The high spatial resolution of
Sentinel-2 could be a nice avenue to monitor forests with a
high degree of fragmentation [72] or even green areas in
cities [73]. A tutorial of how to use the final models
produced in our study to upscale GPP using any Sentinel-2
L2A product provided by Copernicus-ESA is presented in the
code repository.

IV. CONCLUSION

In this study, we explore how remote sensing information
provided by Sentinel-2 can be used to predict GPP across a
variety of vegetation types. We find that the CIR explains an
average 10% more of the variability of GPP at daily scale than
NIRv and 11% more than NDVI using linear regressions. The
high correspondence between kNDVI and IRECI is unan-
ticipated and requires further physical exploration. The predic-
tion power of vegetation indices can be slightly outperformed
using machine learning: using random forests, the spectral
information provided by Sentinel-2 alone can predict an aver-
age 68% of GPP variability (cross-validated). However, under
extreme climate conditions such as the 2018 drought/heat
wave, meteorological data or thermal information might be
necessary to improve the prediction of short-term reduction of
GPP that is not associated with changes in APAR or the
decline of chlorophyll content. From a methodological point
of view, we also explored whether balancing techniques can
help to represent vegetation types and rare observations.
Furthermore, we found that improvements in the prediction
accuracy of GPP are associated with the use of balanced
datasets for training. Overall, our study presents a first attempt
to assess the capability of Sentinel-2 data alone to predict
GPP. Despite the discussed limitations, Sentinel-2 generally
offers a highly relevant perspective to map fluxes at high
spatial resolution, opening new ways to understand ecosystem
processes and responses from local to global scale.

56



.

4409412 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

APPENDIX A: EDDY COVARIANCE SITES

SITES FROM THE ICOS DROUGHT 2018 TEAM AND ONEFLUX INITIATIVES USED IN THIS STUDY THE NUMBER OF OBSERVATIONS CORRESPONDS TO

THE NUMBER OF VALID SENTINEL-2 IMAGES RECOVERED FOR THE SITE DURING THE TIME PERIOD. THE VEGETATION TYPE FOR EACH SITE IS

PRESENTED: MF =  MIXED FORESTS, CRO =  CROPLANDS, GRA =  GRASSLANDS, ENF =  EVERGREEN NEEDLELEAF FORESTS, DBF
=  DECIDUOUS BROADLEAF FORESTS, WET =  WETLANDS, SAV =  SAVANNAS, AND OSH =  OPEN SHRUBLANDS
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(Continued.) SITES FROM THE ICOS DROUGHT 2018 TEAM AND ONEFLUX INITIATIVES USED IN THIS STUDY THE NUMBER OF OBSERVATIONS

CORRESPONDS TO THE NUMBER OF VALID SENTINEL-2 IMAGES RECOVERED FOR THE SITE DURING THE TIME PERIOD. THE VEGETATION

TYPE FOR EACH SITE IS PRESENTED: MF =  MIXED FORESTS, CRO =  CROPLANDS, GRA =  GRASSLANDS, ENF =  EVERGREEN

NEEDLELEAF FORESTS, DBF =  DECIDUOUS BROADLEAF FORESTS, WET =  WETLANDS, SAV =  SAVANNAS,

AND OSH =  OPEN SHRUBLANDS

CODE AVAILABILITY

Code is available under GPL-3 license at: https://github.
com/dpabon/Sentinel-2_GPP.
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CHAPTER 5

Concluding Discussion

The current scenario of climate change and global warming has been better under-

stood thanks to estimating energy and matter fluxes between the atmosphere and

the biosphere (Baldocchi, 2020). In this direction, the development of concepts that

try to reconcile ecosystem processes at different spatial and temporal scales, such

as the functional properties of ecosystems, has also been fundamental (Reichstein

et al., 2014; Migliavacca et al., 2021).

In this dissertation, I frame our understanding of terrestrial vegetation activity,

represented by gross primary production, using three axes: Magnitude, Time, and

Space (Figure 5.1). In the first axis, Magnitude, the maximum gross primary pro-

duction represents the optimal photosynthesis rate at the ecosystem level (GPPmax).

It is expected that understanding the limiting factors of GPPmax can help to under-

stand what are the effects of climatic variability on the entire ecosystem. I find that

for ~68% (~78.4 millions km2) of the total global surface with terrestrial vegetation

cover, air temperature and precipitation are equally limiting GPPmax. For ~17.4%

(~20.1 millions km2) of the land surface with terrestrial vegetation cover GPPmax is

mainly limited by temperature. I also find that for many regions of the world the
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Figure 5.1: Conceptual representation of the three axes of study on this dissertation.
The gray line represents the gross primary production (GPP) variation during the
growing season. The first axis Magnitude refers to the value of GPP and the max-
imum GPP (GPPmax) per-se. The second axis Time is the timing when GPPmax is
reached. The third axis, Space, represents the prediction/upscaling of GPP using
new remote sensing information. The arrow represents the increase in spatial resol-
ution. From local Eddy Covariance Towers (EC) to regional and global predictions of
GPP

classification system built based on the GPPmax controlling factors matches previ-

ous ecological classifications systems such as Koppen-Geiger (Although, this is now

considered a climate classification system). Evaluating the relationship between an

optimum ecosystem state as GPPmax and climate variables allows us to generate a

functional classification system that represents vegetation’s response regarding eco-

system fluxes to climate variations. Nevertheless, a complete comparison year by

year for the last decades evaluating this relationship can give us more information on

how ecosystems respond each year to multiple pressure factors (e.g., climate change,

land-use change, heatwaves).

In the second axis, Time, I evaluate the effect of climate variables on the timing

of GPPmax (DOYGPPmax). I find that for most ecosystems, an increase in short-

wave incoming radiation, temperature, and vapor pressure deficit will produce that

DOYGPPmax will be reached earlier (when compared with the mean DOYGPPmax)
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(Pabon-Moreno et al., 2020). I also find that although the sensitivity of DOYGPPmax

is site-specific, it is possible to formulate models for the same vegetation type at

similar latitudes. In scenarios where temperature and precipitation increase for the

same region, we expect to find no changes in the timing of GPPmax. Otherwise, if

one of the variables increases, we expect a change following the coefficient sign in

the circular-linear regression model. From a methodological perspective, I show that

circular statistics increase the robustness of the timing analysis compared to linear

statistics. Even more circular statistics show to be more versatile in analyzing data

sets across the globe regardless of whether the observations are from the Northern

or Southern Hemisphere (Pabon-Moreno et al., 2020).

On the third axis, Space, I show how the new information from Sentinel-2 im-

proves the prediction of gross primary production. When vegetation indices based

on the red-edge spectral region (700 nm - 730 nm) as chlorophyll index red (CIR)

and the inverted red-edge chlorophyll index (IRECI) are used, the accuracy on the

prediction of GPP increases by ~10% more of variance explained. This improvement

represents a step forward when compared with previous vegetation indices as Nor-

malized vegetation index (NDVI) or novel ones as the kernelized version of NDVI

(kNDVI Camps-Valls et al., 2021). From a methodological perspective, I assess the

bias produced by the imbalanced representation of observations by vegetation type

and seasons on the prediction of GPP. I use different statistical techniques to bal-

ance the number of observations per vegetation type, the frequency of observations

per season, and even the presence of rare observations (observations with a low fre-

quency) that are difficult to predict (Torgo et al., 2013). Here I demonstrate than

when these techniques are applied, the predictions’ robustness improves, allowing

the formulation of more generalized models (Pabon-Moreno et al., 2022).

The exploration of the axes proposed in this dissertation allows us to have a

more holistic view of the effects of climate change and global warming on ecosystem

functions and the ecosystem functional properties. The analysis presented ranges

from local observation (a few hundred meters around the EC towers) and daily
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frequency to regional analysis thanks to new satellite missions such as Sentinel-2,

and global analysis at the 15-day temporal resolution using previous GPP products.

In the first axis, Magnitude, understanding the limiting factors of GPPmax give us

a better idea of how climate change may translate into changes in optimum ecosys-

tem processes. Furtheremore, my approach allows to generate a functional map that

consider optimum ecosystem states (Reichstein et al., 2007; Mahecha et al., 2007).

Current plant functional types were generated by combining plant traits, species

distributions maps, and vegetation activity from satellite imagery (Box, 1995, 1996;

Diaz and Cabido, 1997). Using an optimal ecosystem process as GPPmax and its

limiting factors, my approach allow us to generate new functional classes that relate

optimum ecosystem processes with climate information. These new classes can be

used as input for future global-scale modeling studies. Specifically, ecosystem func-

tional properties can describe the interaction of the environment with the vegetation

in a smaller number of parameters.

Equally relevant to understand the effect of climate change on ecosystems is

the timing of optimum ecosystem processes, such as DOYGPPmax. Most of the

studies evaluated the timing of a biological process as periodic oscillations that can

be decomposed into different signals. In this dissertation, I show that time can

also be interpreted as the relationship between abiotic components and the day of

the year when optimum ecosystem processes are reached. It is well known that

climate change has affected plant phenology on a global scale (Richardson et al.,

2013); however, there is still no clear consensus regarding how climate change affects

the beginning, end, and peak of productivity in ecosystems on a global scale. My

study (Pabon-Moreno et al., 2020) is a first step to understand the effect of climate

variables in the timing of GPPmax. Circular statistics may represent the first step in

analyzing these phenomena. Even if I only focused on the peak of the growing season

(i.e., DOYGPPmax), the same analysis can be performed for the beginning and the

end of the growing season. Another important analysis is to assess the correlation

between the times of the beginning, the end, and the peak of the growing season
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using circular-circular regressions. These new analyses may provide more clarity

and could generate consensus on the response of vegetation to climate change in

terms of timing.

In the last axis, Space, improving the GPP predictions is necessary to improve

our knowledge of the ecosystem processes and the changes produced by global warm-

ing and climate change. The Normalized Difference Vegetation Index (NDVI) was

developed in the 70s as part of the first satellite missions focused on tracking changes

on the Earth’s surface (Rouse et al., 1974). Since then, several vegetation indices

have been developed to correlate the photosynthetic activity of plants and their

spectral characteristics (Bannari et al., 1995). Many recent approaches rely on the

classic NDVI proposed in the 70s (e.g., Badgley et al., 2017, 2019; Camps-Valls

et al., 2021). The basic premise of vegetation indices, is that the amount of plant

biomass is proportional to the ratio between absorption in the red region of the elec-

tromagnetic spectrum, and reflection in the infrared region of the spectrum. The

absorption in the red region is caused by chlorophyll, and reflection in the infrared

region is caused by the cell’s structure of plants (Myneni et al., 1995). The Sentinel-

2 satellite mission included two red-edge bands that were not included in previous

satellite missions (Martimort et al., 2007). Previous studies found that vegetation

indices based on the red-edge spectral region would produce more accurate estima-

tions of plant photosynthesis (Delegido et al., 2011). Nevertheless, a robust-empirical

comparison between the different vegetation indices and estimations of GPP from

EC towers was missing before my study (Pabon-Moreno et al., 2022). While my

study has shown to improve the prediction of GPP, some questions remain open:

for example, what is the performance of red-edge-based vegetation indices when

kernel methods are applied? What is the performance of GPP prediction based

on Sentinel-2 and new red-edge vegetation indices compared to previous satellite

missions such as MODIS and Landsat? Answering these questions will be relevant

before performing global-scale prediction exercises using Sentinel-2 imagery.

In recent decades, understanding the functional biogeography of plants has be-
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come increasingly relevant to the role of plants in climate change and global warming

(Friend, 2010; Mahmood et al., 2014). Mainly, the research has focused on plant

trait variability (Violle et al., 2014), and most of it on the fluxes of energy and matter

between the biosphere and the atmosphere (Musavi et al., 2015, 2016; Migliavacca

et al., 2021). While defining the function of an organism as a serie of processes

that can be imputed to them not only ends up being ambiguous, but also useful

for framing research. Nevertheless, what is the limit in the definition of functions?

For example, I could define the shadow cast by trees as a function of trees. In

other words, could someone refute that the function of trees is not to give shade

to humans? In this sense, the defined function can be used and abused depending

on my interests. Whether those interests are relevant or not is a more sociological

question than a purely natural science one. Defining functions in nature inevitably

goes hand in hand with trying to represent our interpretation of economy, necessity,

and relationship with nature (Lockwood, 1999). When we move from physical and

biochemical phenomena to biological and ecological ones, the mechanism and caus-

ality schemes presented in physics and chemistry tend not to work completely on

biological/ecological problems (Ross, 2021). The explanation for this is the evolu-

tionary mechanism inherent to any living being. As a biologist, a key element not

considered in functional biogeography and the proposed three axes is the role of

evolution.

Outlook

Although, evolution and its mechanism are beyond this dissertation, evolution can

help to solve important questions for functional biogeography. For example, Do

ecosystems always tend to have a degree of homeostasis in terms of matter and

energy fluxes? Do species change represent changes in energy and matter flows,

or are these flows used as an arm for competition? Do the leaf economy of plants

and the ecosystem functional properties concepts go in the same direction that

evolution fitness concepts? While evolution acts at different scales, assessing and
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understanding its role in functional biogeography is an ongoing task. In the last

decades, several studies proposed models and evidence about some of the previous

questions (Ernest and Brown, 2001; Zakharov and Trofimov, 2014; Kikuchi et al.,

2018; Dyke and Weaver, 2013). For example, Ernest and Brown (2001) present

evidence that despite environmental changes, species diversity tend to homeosteat-

ically regulate ecosystem energy and matter fluctuations. Furthermore, the authors

state that total population estimates, biomass, and vegetation cover do not provide

precise measures of energy and matter resources usage by the ecosystems. In this

direction, bio-meteorological techniques such as eddy covariance towers and remote

sensing information can help to reconciliate the evolution mechanism of species and

ecosystem dynamics. Currently, most of the eddy covariance sites on FLUXNET

initiative are located on managed ecosystems in Europe and North-America. During

the development of western civilization and industrialization, most of the forests in

Europe were intervened by humans. Therefore, the effects of natural selection in the

long term and evolution itself are more difficult to evidence on Europe. Nevertheless,

forest plots that are currently monitored in Europe and North America are a good

tool to evaluate and try to predict the outcome of evolution processes in the fol-

lowing decades and centuries. To bring eddy covariance towers and remote sensing

technology to current monitored forest plots is a top-priority task to develop. Some

first steps in this direction are the studies of Ma et al. (2019) and Pacheco-Labrador

et al. (2022), where the authors evaluated the relation between spectral diversity

and functional diversity. Another important step will be to generate and apply a

unified protocol for systematic forest inventories, including the collection of diversity

metrics for the current eddy covariance towers that are part of FLUXNET initiat-

ive. A further step will be to establish the systematic and periodic genetic sampling

of the species in the eddy covariance sites that can help to link genetic expression

and metabolic regulation pathways with ecosystem fluxes and functional diversity.

Combining the knowledge and data from biometeorology, phylogenetic, ecology, and

systematic biology will help us to develop new models and theories to reconciliate
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evolution mechanism and explain changes on ecosystem at all organization-levels

from genes to ecosystem fluxes at different temporal scales. A central key in the

puzzle of reconciliating functional biology and classic biogeography will be to in-

crease the investment of human resources and technological transaction to deploy

new eddy covariance towers, as well genome, and gene expression technologies in the

tropics. Such approaches will also help to understand the effect of climate change

and global warming in ecosystems. It is not a coincidence that naturalists from

last centuries developed their ideas after visiting and collecting information in the

tropics (Schiebinger and Swan, 2007; Wilke, 2010; Baber, 2016). A way to com-

pensate the colonialism and bio-piracy (for which European and North American

countries still do not pay royalties, Schiebinger and Swan, 2007; Baber, 2016) is to

help research groups located in the tropics to develop their own ideas and deploy

their research infrastructure (i.e. transferring patents and industrial knowledge ne-

cessary to develop the research equipment). Reconciliating evolution theories and

functional biogeography including the ideas and data from tropical research groups

will not only contribute to the progress on both disciplines, but also to advance our

understanding of the effect of climate change and global warming on the terrestrial

ecosystems around the globe.

70



Bibliography

Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S., Erickson, D., Gregg,

J. S., Jacobson, A., Marland, G., Miller, J., Oda, T., Olivier, J. G. J., Raupach,

M. R., Rayner, P., and Treanton, K. (2012). A synthesis of carbon dioxide emis-

sions from fossil-fuel combustion. Biogeosciences, 9(5):1845–1871.

Aubinet, M., Vesala, T., and Papale, D., editors (2012). Eddy Covariance: A Prac-

tical Guide to Measurement and Data Analysis. Springer Atmospheric Sciences.

Springer Netherlands.

Baber, Z. (2016). The Plants of Empire: Botanic Gardens, Colonial Power and

Botanical Knowledge. Journal of Contemporary Asia, 46(4):659–679.

Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B. (2019). Terrestrial

gross primary production: Using NIRV to scale from site to globe. Global Change

Biology, 25(11):3731–3740.

Badgley, G., Field, C. B., and Berry, J. A. (2017). Canopy near-infrared reflectance

and terrestrial photosynthesis. Science Advances, 3(3):e1602244.

Baldocchi, D. (2008). ‘Breathing’ of the terrestrial biosphere: Lessons learned from

71



Bibliography

a global network of carbon dioxide flux measurement systems. Australian Journal

of Botany, 56(1):1–26.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni,

P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G.,

Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T.,

Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and

Wofsy, S. (2001). FLUXNET: A New Tool to Study the Temporal and Spatial

Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux

Densities. Bulletin of the American Meteorological Society, 82(11):2415–2434.

Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating

carbon dioxide exchange rates of ecosystems: Past, present and future. Global

Change Biology, 9(4):479–492.

Baldocchi, D. D. (2020). How eddy covariance flux measurements have contrib-

uted to our understanding of Global Change Biology. Global Change Biology,

26(1):242–260.

Bannari, A., Morin, D., Bonn, F., and Huete, A. R. (1995). A review of vegetation

indices. Remote Sensing Reviews, 13(1-2):95–120.

Belward, A. S. and Skøien, J. O. (2015). Who launched what, when and why; trends

in global land-cover observation capacity from civilian earth observation satellites.

ISPRS Journal of Photogrammetry and Remote Sensing, 103:115–128.

Box, E. O. (1995). Factors determining distributions of tree species and plant func-

tional types. Vegetatio, 121(1):101–116.

Box, E. O. (1996). Plant functional types and climate at the global scale. Journal

of Vegetation Science, 7(3):309–320.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

72



Bibliography

Buitenwerf, R., Rose, L., and Higgins, S. I. (2015). Three decades of multi-

dimensional change in global leaf phenology. Nature Climate Change, 5(4):364–

368.

Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A., Launois, T.,

Belviso, S., Bopp, L., and Laine, M. (2017). Large historical growth in global

terrestrial gross primary production. Nature, 544(7648):84–87.

Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Du-

veiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J.,

Guanter, L., Jung, M., Gamon, J. A., Reichstein, M., and Running, S. W. (2021).

A unified vegetation index for quantifying the terrestrial biosphere. Science Ad-

vances, 7(9):eabc7447.

Canadell, J. G., Monteiro, P. M., Costa, M. H., Cunha, L. C. D., Cox, P. M., Eliseev,

A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao,

S., Syampungani, S., Zaehle, S., Zickfeld, K., Alexandrov, G. A., Bala, G., Bopp,

L., Boysen, L., Cao, L., Chandra, N., Ciais, P., Denisov, S. N., Dentener, F. J.,

Douville, H., Fay, A., Forster, P., Fox-Kemper, B., Friedlingstein, P., Fu, W.,

Fuss, S., Garçon, V., Gier, B., Gillett, N. P., Gregor, L., Haustein, K., Haverd,

V., He, J., Hewitt, H. T., Hoffman, F. M., Ilyina, T., Jackson, R., Jones, C.,

Keller, D. P., Kwiatkowski, L., Lamboll, R. D., Lan, X., Laufkötter, C., Quéré,

C. L., Lenton, A., Lewis, J., Liddicoat, S., Lorenzoni, L., Lovenduski, N., Mac-

dougall, A. H., Mathesius, S., Matthews, D. H., Meinshausen, M., Mokhov, I. I.,

Naik, V., Nicholls, Z. R. J., Nurhati, I. S., O’sullivan, M., Peters, G., Pongratz, J.,

Poulter, B., Sallée, J.-B., Saunois, M., Schuur, E. A., I.Seneviratne, S., Stavert,

A., Suntharalingam, P., Tachiiri, K., Terhaar, J., Thompson, R., Tian, H., Turn-

bull, J., Vicente-Serrano, S. M., Wang, X., Wanninkhof, R. H., Williamson, P.,

Brovkin, V., Feely, R. A., and Lebehot, A. D. (2021). Global Carbon and other

Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical

Science Basis. Contribution of Working Group I to the Sixth Assessment Report

73



Bibliography

of the Intergovernmental Panel on Climate Change, pages 673–816. Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA.

Chapin, F. S., Matson, P. A., and Vitousek, P. M. (2011a). Carbon Inputs to

Ecosystems. In Chapin, F. S., Matson, P. A., and Vitousek, P. M., editors,

Principles of Terrestrial Ecosystem Ecology, pages 123–156. Springer, New York,

NY.

Chapin, F. S., Matson, P. A., and Vitousek, P. M. (2011b). Trophic Dynamics.

In Chapin, F. S., Matson, P. A., and Vitousek, P. M., editors, Principles of

Terrestrial Ecosystem Ecology, pages 297–320. Springer, New York, NY.

Chase, J. M., Leibold, M. A., Downing, A. L., and Shurin, J. B. (2000). The Effects

of Productivity, Herbivory, and Plant Species Turnover in Grassland Food Webs.

Ecology, 81(9):2485–2497.

Chen, M. and Blankenship, R. E. (2021). Photosynthesis | Photosynthesis. In Jez, J.,

editor, Encyclopedia of Biological Chemistry III (Third Edition), pages 150–156.

Elsevier, Oxford.

Delegido, J., Verrelst, J., Alonso, L., and Moreno, J. (2011). Evaluation of Sentinel-2

Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content.

Sensors, 11(7):7063–7081.

Diaz, S. and Cabido, M. (1997). Plant functional types and ecosystem function in

relation to global change. Journal of Vegetation Science, 8(4):463–474.

Dokulil, M. T. (2019). Gross and Net Production in Different Environments. In Fath,

B., editor, Encyclopedia of Ecology (Second Edition), pages 334–345. Elsevier,

Oxford.

Duckworth, J. C., Kent, M., and Ramsay, P. M. (2000). Plant functional types: An

alternative to taxonomic plant community description in biogeography? Progress

in Physical Geography: Earth and Environment, 24(4):515–542.

74



Bibliography

Dyke, J. G. and Weaver, I. S. (2013). The Emergence of Environmental Homeostasis

in Complex Ecosystems. PLOS Computational Biology, 9(5):e1003050.

Ernest, S. K. M. and Brown, J. H. (2001). Homeostasis and Compensation: The

Role of Species and Resources in Ecosystem Stability. Ecology, 82(8):2118–2132.

Eyring, V., Gillet, N. P., Achuta Rao, K. M., Barimalala, R., Barreiro Parrillo, M.,

Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., Min, S.-K.,

Morgenstern, O., and Sun, Y. (2021). Human Influence on the Climate System.

In Climate Change 2021: The Physical Science Basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate

Change, pages 423–552. Cambridge University Press, Cambridge, United Kingdom

and New York, NY, USA.

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters,

G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell,

J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov,

V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P.,

Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S.,

Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G.,

Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk,

K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A.,

Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl,

N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono,

T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson,

E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H.,

Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle,

S. (2019). Global Carbon Budget 2019. Earth System Science Data, 11(4):1783–

1838.

Friend, A. D. (2010). Terrestrial plant production and climate change. Journal of

Experimental Botany, 61(5):1293–1309.

75



Bibliography

Goward, S. N., Markham, B., Dye, D. G., Dulaney, W., and Yang, J. (1991). Nor-

malized difference vegetation index measurements from the advanced very high

resolution radiometer. Remote Sensing of Environment, 35(2):257–277.

Goward, S. N., Tucker, C. J., and Dye, D. G. (1985). North American vegetation

patterns observed with the NOAA-7 advanced very high resolution radiometer.

Vegetatio, 64(1):3–14.

Gulev, S., Thorne, P., Ahn, J., Dentener, F., Domingues, C., Gerland, S., and Vose,

R. (2021). Changing state of the climate system. In Climate Change 2021: The

Physical Science Basis. Contribution of Working Group I to the Sixth Assessment

Report of the Intergovernmental Panel on Climate Change, pages 287–422. Cam-

bridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale,

D., Schwalm, C., Tramontana, G., and Reichstein, M. (2019). The FLUXCOM

ensemble of global land-atmosphere energy fluxes. Scientific Data, 6(1):1–14.

Jung, M., Reichstein, M., and Bondeau, A. (2009). Towards global empirical up-

scaling of FLUXNET eddy covariance observations: Validation of a model tree

ensemble approach using a biosphere model. Biogeosciences, 6(10):2001–2013.

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S.,

Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F.,

Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D.,

Nabel, J. E. M. S., Nelson, J. A., O’Sullivan, M., Pallandt, M., Papale, D., Peters,

W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber,

U., and Reichstein, M. (2020). Scaling carbon fluxes from eddy covariance sites

to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences,

17(5):1343–1365.

Kikuchi, J., Ito, K., and Date, Y. (2018). Environmental metabolomics with data

76



Bibliography

science for investigating ecosystem homeostasis. Progress in Nuclear Magnetic

Resonance Spectroscopy, 104:56–88.

Lockwood, M. (1999). Humans Valuing Nature: Synthesising Insights from Philo-

sophy, Psychology and Economics. Environmental Values, 8(3):381–401.

Ma, X., Mahecha, M. D., Migliavacca, M., van der Plas, F., Benavides, R., Ratcliffe,

S., Kattge, J., Richter, R., Musavi, T., Baeten, L., Barnoaiea, I., Bohn, F. J.,

Bouriaud, O., Bussotti, F., Coppi, A., Domisch, T., Huth, A., Jaroszewicz, B.,

Joswig, J., Pabon-Moreno, D. E., Papale, D., Selvi, F., Laurin, G. V., Valladares,

F., Reichstein, M., and Wirth, C. (2019). Inferring plant functional diversity from

space: The potential of Sentinel-2. Remote Sensing of Environment, 233:111368.

Mahecha, M. D., Reichstein, M., Lange, H., Carvalhais, N., Bernhofer, C.,

Grünwald, T., Papale, D., and Seufert, G. (2007). Characterizing ecosystem-

atmosphere interactions from short to interannual time scales. Biogeosciences,

4(5):743–758.

Mahmood, R., Pielke Sr., R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A.,

McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltrán-Przekurat, A.,

Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P. D.,

Frauenfeld, O. W., Nair, U., and Fall, S. (2014). Land cover changes and their

biogeophysical effects on climate. International Journal of Climatology, 34(4):929–

953.

Malaterre, C., Dussault, A. C., Mermans, E., Barker, G., Beisner, B. E., Bouchard,

F., Desjardins, E., Handa, I. T., Kembel, S. W., Lajoie, G., Maris, V., Mun-

son, A. D., Odenbaugh, J., Poisot, T., Shapiro, B. J., and Suttle, C. A. (2019).

Functional Diversity: An Epistemic Roadmap. BioScience, 69(10):800–811.

Martimort, P., Arino, O., Berger, M., Biasutti, R., Carnicero, B., Bello, U. D.,

Fernandez, V., Gascon, F., Greco, B., Silvestrin, P., Spoto, F., and Sy, O. (2007).

Sentinel-2 optical high resolution mission for GMES operational services. In 2007

77



Bibliography

IEEE International Geoscience and Remote Sensing Symposium, pages 2677–

2680.

Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T., Matteucci,

G., Manca, G., and Seufert, G. (2009). Modeling Gross Primary Production of

Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a

Process-Based Model. Sensors, 9(2):922–942.

Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Baldocchi,

D. D., Perez-Priego, O., Christiansen, R., Peters, J., Anderson, K., Bahn, M.,

Black, T. A., Blanken, P. D., Bonal, D., Buchmann, N., Caldararu, S., Carrara,

A., Carvalhais, N., Cescatti, A., Chen, J., Cleverly, J., Cremonese, E., Desai,

A. R., El-Madany, T. S., Farella, M. M., Fernández-Martínez, M., Filippa, G.,

Forkel, M., Galvagno, M., Gomarasca, U., Gough, C. M., Göckede, M., Ibrom,

A., Ikawa, H., Janssens, I. A., Jung, M., Kattge, J., Keenan, T. F., Knohl, A.,

Kobayashi, H., Kraemer, G., Law, B. E., Liddell, M. J., Ma, X., Mammarella,

I., Martini, D., Macfarlane, C., Matteucci, G., Montagnani, L., Pabon-Moreno,

D. E., Panigada, C., Papale, D., Pendall, E., Penuelas, J., Phillips, R. P., Reich,

P. B., Rossini, M., Rotenberg, E., Scott, R. L., Stahl, C., Weber, U., Wohlfahrt,

G., Wolf, S., Wright, I. J., Yakir, D., Zaehle, S., and Reichstein, M. (2021). The

three major axes of terrestrial ecosystem function. Nature, 598(7881):468–472.

Montgomery, R. B. (1948). VERTICAL EDDY FLUX OF HEAT IN THE ATMO-

SPHERE. Journal of the Atmospheric Sciences, 5(6):265–274.

Musavi, T., Mahecha, M. D., Migliavacca, M., Reichstein, M., van de Weg, M. J., van

Bodegom, P. M., Bahn, M., Wirth, C., Reich, P. B., Schrodt, F., and Kattge, J.

(2015). The imprint of plants on ecosystem functioning: A data-driven approach.

International Journal of Applied Earth Observation and Geoinformation, 43:119–

131.

Musavi, T., Migliavacca, M., van de Weg, M. J., Kattge, J., Wohlfahrt, G., van Bo-

degom, P. M., Reichstein, M., Bahn, M., Carrara, A., Domingues, T. F., Gavazzi,

78



Bibliography

M., Gianelle, D., Gimeno, C., Granier, A., Gruening, C., Havránková, K., Herbst,

M., Hrynkiw, C., Kalhori, A., Kaminski, T., Klumpp, K., Kolari, P., Longdoz, B.,

Minerbi, S., Montagnani, L., Moors, E., Oechel, W. C., Reich, P. B., Rohatyn, S.,

Rossi, A., Rotenberg, E., Varlagin, A., Wilkinson, M., Wirth, C., and Mahecha,

M. D. (2016). Potential and limitations of inferring ecosystem photosynthetic

capacity from leaf functional traits. Ecology and Evolution, 6(20):7352–7366.

Myneni, R. B., Hall, F. G., Sellers, P. J., and Marshak, A. L. (1995). The inter-

pretation of spectral vegetation indexes. IEEE Transactions on Geoscience and

Remote Sensing, 33(2):481–486.

Ohtaki, E. (1984). Application of an infrared carbon dioxide and humidity instru-

ment to studies of turbulent transport. Boundary-Layer Meteorology, 29(1):85–

107.

Ohtaki, E. and Matsui, T. (1982). Infrared device for simultaneous measurement

of fluctuations of atmospheric carbon dioxide and water vapor. Boundary-Layer

Meteorology, 24(1):109–119.

Pabon-Moreno, D. E., Migliavacca, M., Reichstein, M., and Mahecha, M. D. (2022).

On the Potential of Sentinel-2 for Estimating Gross Primary Production. IEEE

Transactions on Geoscience and Remote Sensing, 60:1–12.

Pabon-Moreno, D. E., Musavi, T., Migliavacca, M., Reichstein, M., Römermann, C.,

and Mahecha, M. D. (2020). Ecosystem physio-phenology revealed using circular

statistics. Biogeosciences, 17(15):3991–4006.

Pacheco-Labrador, J., Migliavacca, M., Ma, X., Mahecha, M. D., Carvalhais, N.,

Weber, U., Benavides, R., Bouriaud, O., Barnoaiea, I., Coomes, D. A., Bohn,

F. J., Kraemer, G., Heiden, U., Huth, A., and Wirth, C. (2022). Challenging the

link between functional and spectral diversity with radiative transfer modeling

and data. Remote Sensing of Environment, 280:113170.

79



Bibliography

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W.,

Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D.,

Ribeca, A., van Ingen, C., Zhang, L., Amiro, B., Ammann, C., Arain, M. A.,

Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Bal-

docchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer,

J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bo-

hrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R.,

Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P.,

Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I., Christensen,

T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle,

C., Cremonese, E., Curtis, P. S., D’Andrea, E., da Rocha, H., Dai, X., Davis,

K. J., De Cinti, B., de Grandcourt, A., De Ligne, A., De Oliveira, R. C., Delpi-

erre, N., Desai, A. R., Di Bella, C. M., di Tommasi, P., Dolman, H., Domingo,

F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., Eamus, D.,

Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Fam-

ulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer,

M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gi-

telson, A., Goded, I., Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden,

M. L., Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han,

S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch,

B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H., Jackowicz-

Korczynski, M., Janouš, D., Jans, W., Jassal, R., Jiang, S., Kato, T., Khomik,

M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O., Kosugi,

Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch, W. L., Kwon, H.,

Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin,

J.-M., Lion, M., Liska, A. J., Lohila, A., López-Ballesteros, A., López-Blanco,

E., Loubet, B., Loustau, D., Lucas-Moffat, A., Lüers, J., Ma, S., Macfarlane,

C., Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis,

H. A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H.,

80



Bibliography

Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L.,

Meyer, W., Meyers, T., Miller, S. D., Minerbi, S., Moderow, U., Monson, R. K.,

Montagnani, L., Moore, C. E., Moors, E., Moreaux, V., Moureaux, C., Munger,

J. W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A., Northwood,

M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J. E., Ourcival,

J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E., Pavelka, M., Peichl,

M., Pendall, E., Phillips, R. P., Pilegaard, K., Pirk, N., Posse, G., Powell, T.,

Prasse, H., Prober, S. M., Rambal, S., Rannik, Ü., Raz-Yaseef, N., Reed, D.,

de Dios, V. R., Restrepo-Coupe, N., Reverter, B. R., Roland, M., Sabbatini, S.,

Sachs, T., Saleska, S. R., Sánchez-Cañete, E. P., Sanchez-Mejia, Z. M., Schmid,

H. P., Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R. L., Sedlák,

P., Serrano-Ortíz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Šigut, L., Sil-

berstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M., Sturtevant,

C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper, N., Thom, J.,

Tiedemann, F., Tomassucci, M., Tuovinen, J.-P., Urbanski, S., Valentini, R., van

der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A., Verfaillie, J.,

Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker, J. P., Walter-Shea,

E., Wang, H., Weber, R., Westermann, S., Wille, C., Wofsy, S., Wohlfahrt, G.,

Wolf, S., Woodgate, W., Li, Y., Zampedri, R., Zhang, J., Zhou, G., Zona, D.,

Agarwal, D., Biraud, S., Torn, M., and Papale, D. (2020). The FLUXNET2015

dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific

Data, 7(1):225.

Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum,

R. A., Betts, R., Kerr, R. B., Biesbroek, R., et al. (2022). Climate Change 2022:

Impacts, Adaptation and Vulnerability. Cambridge University Press. In Press.

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D. (2014).

Linking plant and ecosystem functional biogeography. Proceedings of the National

Academy of Sciences, 111(38):13697–13702.

81



Bibliography

Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., Cramer,

W., Granier, A., Ogée, J., Allard, V., Aubinet, M., Bernhofer, C., Buchmann, N.,

Carrara, A., Grünwald, T., Heimann, M., Heinesch, B., Knohl, A., Kutsch, W.,

Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Pilegaard,

K., Pumpanen, J., Rambal, S., Schaphoff, S., Seufert, G., Soussana, J.-F., Sanz,

M.-J., Vesala, T., and Zhao, M. (2007). Reduction of ecosystem productivity

and respiration during the European summer 2003 climate anomaly: A joint flux

tower, remote sensing and modelling analysis. Global Change Biology, 13(3):634–

651.

Richardson, A. D., Andy Black, T., Ciais, P., Delbart, N., Friedl, M. A., Gobron,

N., Hollinger, D. Y., Kutsch, W. L., Longdoz, B., Luyssaert, S., Migliavacca,

M., Montagnani, L., William Munger, J., Moors, E., Piao, S., Rebmann, C.,

Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R., and Varlagin, A. (2010).

Influence of spring and autumn phenological transitions on forest ecosystem pro-

ductivity. Philosophical Transactions of the Royal Society B: Biological Sciences,

365(1555):3227–3246.

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and

Toomey, M. (2013). Climate change, phenology, and phenological control of ve-

getation feedbacks to the climate system. Agricultural and Forest Meteorology,

169:156–173.

Ross, L. N. (2021). Causal Concepts in Biology: How Pathways Differ from Mech-

anisms and Why It Matters. The British Journal for the Philosophy of Science,

72(1):131–158.

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring

vegetation systems in the Great Plains with ERTS.

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and

Hashimoto, H. (2004). A Continuous Satellite-Derived Measure of Global Ter-

restrial Primary Production. BioScience, 54(6):547–560.

82



Bibliography

Ryu, Y., Berry, J. A., and Baldocchi, D. D. (2019). What is global photosynthesis?

History, uncertainties and opportunities. Remote Sensing of Environment, 223:95–

114.

Schiebinger, L. and Swan, C. (2007). Colonial Botany: Science, Commerce, and

Politics in the Early Modern World. University of Pennsylvania Press.

Schmid, H. P. (1994). Source areas for scalars and scalar fluxes. Boundary-Layer

Meteorology, 67(3):293–318.

Schmid, H. P. and Lloyd, C. R. (1999). Spatial representativeness and the loca-

tion bias of flux footprints over inhomogeneous areas. Agricultural and Forest

Meteorology, 93(3):195–209.

Swinbank, W. C. (1951). THE MEASUREMENT OF VERTICAL TRANSFER OF

HEAT AND WATER VAPOR BY EDDIES IN THE LOWER ATMOSPHERE.

Journal of the Atmospheric Sciences, 8(3):135–145.

Thépaut, J.-N., Dee, D., Engelen, R., and Pinty, B. (2018). The Copernicus Pro-

gramme and its Climate Change Service. In IGARSS 2018 - 2018 IEEE Interna-

tional Geoscience and Remote Sensing Symposium, pages 1591–1593.

Torgo, L., Ribeiro, R. P., Pfahringer, B., and Branco, P. (2013). SMOTE for regres-

sion. In Correia, L., Reis, L. P., and Cascalho, J., editors, Progress in Artificial

Intelligence, pages 378–389, Berlin, Heidelberg. Springer Berlin Heidelberg.

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly,

B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-

Ortiz, P., Sickert, S., Wolf, S., and Papale, D. (2016). Predicting carbon diox-

ide and energy fluxes across global FLUXNET sites with regression algorithms.

Biogeosciences, 13(14):4291–4313.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for mon-

itoring vegetation. Remote Sensing of Environment, 8(2):127–150.

83



Bibliography

Verma, S. B., Baldocchi, D. D., Anderson, D. E., Matt, D. R., and Clement, R. J.

(1986). Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous

forest. Boundary-Layer Meteorology, 36(1):71–91.

Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., and Kattge, J. (2014). The

emergence and promise of functional biogeography. Proceedings of the National

Academy of Sciences, 111(38):13690–13696.

Warne, R. W., Pershall, A. D., and Wolf, B. O. (2010). Linking precipitation and

C3–C4 plant production to resource dynamics in higher-trophic-level consumers.

Ecology, 91(6):1628–1638.

Wilke, S. (2010). Performing Tropics Alexander von Humbolt’s Ansichten Der Natur

and the Colonial Roots of Nature Writing. Univ Press Virginia, Charlottesville.

Wolkovich, E. M., Cook, B. I., and Davies, T. J. (2014). Progress towards an

interdisciplinary science of plant phenology: Building predictions across space,

time and species diversity. New Phytologist, 201(4):1156–1162.

Yu, R., Ruddell, B. L., Kang, M., Kim, J., and Childers, D. (2019). Anticipat-

ing global terrestrial ecosystem state change using FLUXNET. Global Change

Biology, 25(7):2352–2367.

Zakharov, V. M. and Trofimov, I. E. (2014). Homeostatic mechanisms of biological

systems: Development homeostasis. Russian Journal of Developmental Biology,

45(3):105–116.

84



APPENDIX A

Complementary results: Empirical comparison between

GPPmax and GPPsat

Theoretically, ecosystem functional properties are conceptualized to link plant traits

with ecosystem biogeochemical processes (Reichstein et al., 2014). Nevertheless, I

consider that its definition on the framework of functional biogeography can also

include the empirical optimum ecosystem processes and not only the theoretical

ones; as the functionality concept is to delimit what organisms do instead of what

organisms are composed (Violle et al., 2014). In this section I made a empirical com-

parison between GPPsat and GPPmax. GPPsat is an ecosystem functional property,

where GPP estimation is derived assuming optimal conditions of photosynthetic act-

ive radiation (PAR) and absorbed photosynthetic radiation (APAR) (Musavi et al.,

2016). GPPmax is the maximum observed GPP during the growing season of an

ecosystem. I hypothesize that the empirical values of GPPmax will be highly similar

to estimations of GPPsat and then can be used as an ecosystem functional property

to describe an ecosystem optimum state.

To compare GPPsat and GPPmax I used the GPPsat values reported by Miglia-

vacca et al. (2021) for 46 eddy covariance sites from FLUXNET 2015 dataset
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GPPsat

(Pastorello et al., 2020). I estimated the GPPmax values following the methodo-

logy proposed by Pabon-Moreno et al. (2020) for the same sites, and the same time

period of Migliavacca et al. (2021) study. It is important to clarify that Migliavacca

et al. (2021) report one GPPsat value per site (90th percentile), while Pabon-Moreno

et al. (2020) track 10 maximum days/GPP per growing season. Then it is expected

a higher variability from Pabon-Moreno et al. (2020), for this reason, the mean of

the GPPmax values were estimated per site. A detailed comparison between the

values per side EC site is presented below. Finally, I compared the mean GPPmax

values (across years) with the GPPsat values using linear regression and estimating

the Person-correlation coefficient.

40 R2 = 0.97

30

20

10

CSH
DBF
EBF
ENF
GRA
MF
OSH
SAV
WET

10 20 30 40

GPPmax [mmolCO2m 2s 1]

Figure A.1: Comparison of GPPmax (Pabon-Moreno et al., 2020), and GPPsat

(Migliavacca et al., 2021) Colors represent the vegetation type of each Eddy Co-
variance site. CSH: Closed Shrublands; DBF: Deciduous Broadleaf Forests; EBF:
Evergreen Broadleaf Forests; ENF: Evergreen Needleleaf Forests; GRA: Grasslands;
MF: Mixed Forests; OSH: Open Shrublands; SAV: Savannas; WET: Permanent
Wetlands. The black line represents a perfect fit. The blue line represents the fit of
the observations.

When the mean GPPmax is compared with GPPsat values, I found a high cor-

relation between both metrics as evidenced in Figure A.1 and a Person correlation

result of 0.987. When the comparison is performed per vegetation types, I found
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that in Mixed Forest, Open Shrublands, and Wetlands, the GPPsat distribution

is slightly higher than the GPPmax distribution (Figure A.3). While, for Decidu-

ous Broadleaf Forests, Evergreen Broadleaf Forests, Evergreen Needleleaf Forests,

Grasslands, and Savanas, both GPPmax and GPPsat have similar distributions. For

Closed Shrublands, where only one site is reported, the differences are in the 0.01

µmol CO2 m−2 s−1 order. When the values are aggregated by climatic classes, I

found that for tropical monsoon, humid subtropical, and subarctic climate GPPmax

is lower than GPPsat. In contrast, for tropical savanna, humid subtropical, and

Mediterranean climate GPPmax is higher than GPPsat. For Mediterranean, humid

continental, subarctic, and tundra climate the distributions of GPPmax and GPPsat

share similar quantile ranges.

Despite the expected higher variability of GPPmax produced by the influence of

climatic conditions. The high correlation between GPPmax and GPPsat and the sim-

ilarities of its distributions validate the hypothesis that GPPmax values can be used

to represent an optimum ecosystem state, even if these are not derived from optimal

conditions (i.e., optimal light conditions in the case of GPPsat). Nevertheless, it is

important to clarify that each is designed to answer and evaluate different hypo-

theses. Based on estimations of GPPsat, it is possible to reduce the effect of climate

regimens in estimating the value. Then, GPPsat allows us to explore the effect of

vegetation structure on the magnitude of GPP. While GPPmax estimates allow us

to explore the effect of climatic variations on an optimum ecosystem process in time

and space.
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Figure A.2: Comparison of GPPmax (Pabon-Moreno et al., 2020), and GPPsat

(Migliavacca et al., 2009) per eddy covariance site. For GPPmax (Pabon-Moreno et
al., 2020) 10 values are reported by growing season while for GPPsat (Migliavacca et
al., 2021) a single value is reported by site.
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Figure A.3: Comparison of GPPmax (Pabon-Moreno et al., 2020), and GPPsat

(Migliavacca et al., 2009) per vegetation type. CSH: Closed Shrublands; DBF:
Deciduous Broadleaf Forests; EBF: Evergreen Broadleaf Forests; ENF: Evergreen
Needleleaf Forests; GRA: Grasslands; MF: Mixed Forests; OSH: Open Shrublands;
SAV: Savannas; WET: Permanent Wetlands.
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Figure A.4: Comparison of GPPmax (Pabon-Moreno et al., 2020), and GPPsat

(Migliavacca et al., 2009) per climate class. Tropical monsoon climate (Am), trop-
ical savanna climate (Aw), cold semiarid climate (BSk), humid subtropical climate
(Cfa), oceanic climate (Cfb), hot summer Mediterranean climate (Csa), warm sum-
mer Mediterranean climate (Csb), humid subtropical climate (Cwa), humid contin-
ental climate (Dfb), subarctic climate (Dfc, Dsc), and tundra climate (ET).
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Appendix C. Supplementary information: On the Potential of Sentinel-2 for
Estimating Gross Primary Production

Description: The supplementary files are provided in seven parts. Supplementary
material 1 provides the buffer areas for the eddy covariance sites.
Supplementary material 2 provides outliers detection using the time series.
Supplementary material 3 provides images filtered manually. Supplementary material 4
provides the prediction of GPP using linear regressions and balanced datasets.
Supplementary material 5 provides GPP prediction using random forest and 10-folds
spatio-temporal cross validation. Supplement material 6 provides an example of the
upscaling of GPP for an entire Sentinel-2 tile. Supplementary material 7 includes
raw results of the variable importance analysis for the imbalanced and
balanced datasets.

Size: 97.4 MB

Packing List: tgrs-3152272-mm.zip

Player Information: any PDF reader; any .csv reader; any .png reader

Contact Information:

Mr. Daniel E. Pabon-Moreno

Max Planck Institute for Biogeochemistry, Biogeochemical Integration Department

Jena, Germany

Email: dpabon@bgc-jena.mpg.de
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Supplement Material 10

FIG. E1: Comparison of the GPP prediction using different imbalanced and balanced datasets. The y-axis
corresponds to the value of each metric. The vertical lines correspond to the results of the Wilcoxon test in
pairs, where ns is the nonsignificative differences, *: p <= 0.05, and **: p <= 0.01.

216



APPENDIX D

Declaration Forms

217



Appendix D. Declaration Forms

FORM 24

Manuscript No. 1

Short reference Pabon-Moreno et al. (2022), In prep.

Contribution of the doctoral candidate

Contribution of the doctoral candidate to figures reflecting experimental data (only for
original articles):

Figure(s) # 1:4 ☒ 100% (the data presented in this figure come entirely from
experimental work carried out by the candidate)

□ 0% (the data presented in this figure are based exclusively on the
work of other co-authors)

□ Approximate contribution of the doctoral candidate to the
figure: _____%
Brief description of the contribution:
(e.g. "Figure parts a, d and f" or "Evaluation of the data" etc.)

_____________________
Signature candidate

_______________________________________
Signature supervisor (member of the Faculty)

4 The signatures must be original only in the completed form to be submitted separately to the Dean's Office.
The signatures and signature fields are not necessarily required in the version included in the dissertation.

218



FORM 25

Manuscript No. 2

Short reference Pabon-Moreno et al. (2020), Biogeosciences.

Contribution of the doctoral candidate

Contribution of the doctoral candidate to figures reflecting experimental data (only for
original articles):

Figure(s) # 1:7 ☒ 100% (the data presented in this figure come entirely from
experimental work carried out by the candidate)

□ 0% (the data presented in this figure are based exclusively on the
work of other co-authors)

□ Approximate contribution of the doctoral candidate to the
figure: _____%
Brief description of the contribution:
(e.g. "Figure parts a, d and f" or "Evaluation of the data" etc.)

_____________________
Signature candidate

_______________________________________
Signature supervisor (member of the Faculty)

5 The signatures must be original only in the completed form to be submitted separately to the Dean's Office.
The signatures and signature fields are not necessarily required in the version included in the dissertation.

219



Appendix D. Declaration Forms

FORM 26

Manuscript No. 3

Short reference Pabon-Moreno et al (2022), IEEE Trans Geosci Remote Sens.

Contribution of the doctoral candidate

Contribution of the doctoral candidate to figures reflecting experimental data (only for
original articles):

Figure(s) # 1:5 ☒ 100% (the data presented in this figure come entirely from
experimental work carried out by the candidate)

□ 0% (the data presented in this figure are based exclusively on the
work of other co-authors)

□ Approximate contribution of the doctoral candidate to the
figure: _____%
Brief description of the contribution:
(e.g. "Figure parts a, d and f" or "Evaluation of the data" etc.)

_____________________
Signature candidate

_______________________________________
Signature supervisor (member of the Faculty)

6 The signatures must be original only in the completed form to be submitted separately to the Dean's Office.
The signatures and signature fields are not necessarily required in the version included in the dissertation.

220



APPENDIX E

Curriculum Vitae

221



Appendix E. Curriculum Vitae

Daniel E. Pabon-Moreno

Personal Information

Name: Daniel Ernesto

Surname: Pabon Moreno

Year of birth: 1993

Nationality: Colombian

Institutional Email: dpabon@bgc-jena.mpg.de

Personal Email: daniel.pabon@protonmail.com

Github: dpabon

Education

2017 - PhD Student. Max Planck Institute For Biogeochemistry /  Friedrich-

Schiller-Universität Jena.

Department Biogeochemical Integration.

Research group: Empirical Inference of the Earth System.

Supervisors: Prof. Dr. Miguel Mahecha, Dr. Mirco Migliavacca, Prof. Dr.

Christine Römermann, Prof. Dr. Markus Reichstein.

Early Stage Researcher. Training on Remote Sensing for Ecosystem Modelling.

H2020-MSCA-ITN-2016. TRUSTEE Network.

2011 - 2017 Biologist. Industrial University of Santander. Bucaramanga, Colom-

bia. (Official duration: 5 years).

Thesis: “Vulnerability of the Colombian vascular plant flora to elevational

upslope shifts in a warming world”.

222

mailto:dpabon@bgc-jena.mpg.de
mailto:daniel.pabon@protonmail.com
https://github.com/dpabon/
http://www.trusteenetwork.eu/


2005 - 2010 High School Graduate with Emphasis on Education. Escuela Normal

Superior Francisco de Paula Santander. Málaga, Colombia.

Publications

2022 Pabon-Moreno, D. E., Migliavacca, M., Reichstein, M., & Mahecha, M.

D. (2022). On the Potential of Sentinel-2 for Estimating Gross Primary Pro-

duction. IEEE Transactions on Geoscience and Remote Sensing, 60, 112.

https://doi.org/10.1109/TGRS.2022.3152272

2021 Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J.,

Baldocchi, D. D., ..., Pabon-Moreno, D. E., ..., Reichstein, M. (2021). The

three major axes of terrestrial ecosystem function. Nature, 598(7881), 468472.

https://doi.org/10.1038/s41586-021-03939-9

2021 Estupinan-Suarez, L. M., Gans, F., Brenning, A., Gutierrez-Velez, V. H., Lon-

dono, M. C., Pabon-Moreno, D. E., Poveda, G., Reichstein, M., Reu, B.,

Sierra, C. A., Weber, U., & Mahecha, M. D. (2021). A Regional Earth System

Data Lab for Understanding Ecosystem Dynamics: An Example from Tropical

South America. Frontiers in Earth Science, 9. h t tps : / /www.front iers in .

org/articles/10.3389/feart.2021.613395

2020 Pabon-Moreno, D. E., Musavi, T., Migliavacca, M., Reichstein, M., Römer-

mann, C., & Mahecha, M. D. (2020). Ecosystem physio-phenology revealed

using circular statistics. Biogeosciences, 17(15), 39914006. h t t p s : / / d o i .

org/10.5194/bg-17-3991-2020

2019 Ma, X., Mahecha, M. D., Migliavacca, M., van der Plas, F., Benavides, R.,

Ratcliffe, S., ..., Pabon-Moreno, D. E., ..., Wirth, C. (2019). Inferring plant

functional diversity from space: The potential of Sentinel-2. Remote Sensing of

Environment, 233, 111368. ht tps: / /doi .org/10.1016/j . rse.2019.111368

223

https://doi.org/10.1109/TGRS.2022.3152272
https://doi.org/10.1038/s41586-021-03939-9
https://www.frontiersin.org/articles/10.3389/feart.2021.613395
https://www.frontiersin.org/articles/10.3389/feart.2021.613395
https://doi.org/10.5194/bg-17-3991-2020
https://doi.org/10.5194/bg-17-3991-2020
https://doi.org/10.1016/j.rse.2019.111368


Appendix E. Curriculum Vitae

Complementary training

IMPRS-gBGC: International Max-Planck Research School for Global Biogeo-

chemical Cycles.

TRUSTEE: Training on Remote Sensing for Ecosystem Modelling. H2020-MSCA-

ITN-2016.

MPI-BGC: Max-Planck Institute for Biogeochemistry.

2021, January 15-22. Atmosphere, ocean and land. IMPRS-gBGC. Jena, Ger-

many.

2020, January 23-24. Course on Transferable Skills. TRUSTEE Training School.

Fondazione Edmund Mach. San Michele allAdige (Trento), Italy.

2019, October 1 - November 30. Research stay at the University of Twente,

Department of Water resources under the supervision of Dr. Christiaan van

der Tol. Enschede, The Netherlands.

2019, Wintersemester. Statistical analysis of biological data. Friedrich-Schiller-

Universität Jena. Jena, Germany.

2019, May 6-9. How to write a competitive proposal. TRUSTEE Training School.

KU Leuven and VITO. Leuven, Belgium.

2019, May 2-3. Remote sensing for traits mapping in agriculture. TRUSTEE

Training School. Forschungszentrum Jülich. Jülich, Germany

2019, March 27-28. Academic Writing. IMPRS-gBGC. Jena, Germany.

2019, February 21-22. How to use GPU. IMPRS-gBGC. Jena, Germany.

2019, January 25. Rules for good scientific practice. IMPRS-gBGC. Jena, Ger-

many.

2019, January 16-18. The Julia Programming Language. IMPRS-gBGC. Jena,

Germany.
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2018, Wintersemester. Integration of Remote Sensing, ecosystem observation

and biogeochemical modelling. Friedrich-Schiller-Universität Jena. Jena, Ger-

many.

2018, September 21. Web Design for Landscape data dissemination and exploit-

ation.

2018, September 12-20. Training Course on Sentinel-2 for agriculture monitor-

ing activies and remote sensing for plant traits and ecosystem functional prop-

erties. TRUSTEE Training School. University of Milano-Bicocca. Milan,

Italy.

2018, September 3-7. Earth Observation Techniques. IMPRS-gBGC. Jena, Ger-

many.

2018, March 11-18. Summer School on Field Experimental Design and Data Ac-

quisition. MPI-BGC and Remote Sensing and Field Spectroscopy Laboratory,

CSIC. Navalmoral de la Mata- Caceres, Spain.

2018, January 22-26. Advanced statistics & machine learning for data analysis.

IMPRS-gBGC. Jena, Germany.

2017, November 27 - December 6. Biogeochemical Cycles in the Earth System

- an Overview. IMPRS-gBGC. Jena, Germany.

2017, October 30 - November 2. Drone field operations for environmental mon-

itoring. TRUSTEE Training School. DroneLab. University of Exeter. Fal-

mouth, UK.

2017, September 11-13. Applied statistics & data analysis Course (1. Basic Stat-

istics). IMPRS-gBGC. Jena, Germany.

2017, August 21 - September 6. Terrestrial Biosphere Course. IMPRS-gBGC.

Jena, Germany.
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2017, June 19-30. Remote Sensing and Ecosystem Modelling. Open Software for

Data Analysis. TRUSTEE Training School. University of Milano-Bicocca.

Milan, Italy.

2016, September 26-30. Autumn School: Dynamics of natural (eco)systems: the-

ory and applications. Michael Stifel Center Jena for Data-Driven and Simu-

lation Science. Max Planck Institute for Biogeochemistry. Jena, Germany.

2015, June 17-19. Computer Enzymatic Catalysis Course. Theoretical Biochem-

istry Group. Industrial University of Santander. Bucaramanga, Colombia.

2014, November 24-28. Synthesis and Characterization of Antimicrobial Pep-

tides. Biochemistry and Microbiology Research Group. Industrial University

of Santander. Bucaramanga, Colombia.

Academic Events

2019, December 9-13. Fall meeting of the American Geophysical Union 2019.

Poster presentation: "Explaining the timing of maximum GPP using circular

statistics". San Francisco, USA.

2018, September 24-28. 10th International Conference on Ecological Informat-

ics. Oral presentation: "Potential Gross Primary Production: A phenological

approach". Jena, Germany.

2017, November 21-23. BACI Progress and review meeting. Presentation: "Global

estimates and exploration of photosynthetic capacity". Talie Musavi & Daniel

Pabon-Moreno. Jena, Germany.

2017, October 24-26 Potsdam Greenhouse Gas Workshop From Photosystems to

Ecosystems. Assistant. Potsdam, Germany.

2015, March 26 I Symposium on Biotechnology and Nanobiotechnology. Assist-

ant. Bucaramanga, Colombia.
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2014, December 11-12 I International Symposium on Biotechnology and Agroin-

dustry. Co-Organizer. Bucaramanga, Colombia.

2013, July 24-26 IV Symposium Colombian network of evolutionary biology. As-

sistant. Bogota, Colombia.

2012, September 5-7 II Seminar on Biodiversity and Conservation of Endangered

Species. Assistant. Bucaramanga, Colombia.

Past Projects

•  Pabon-Moreno, Daniel., Reu, Björn. (2017). Vulnerability of the Colombian

vascular plant flora to elevational upslope shifts in a warming world. Thesis

repository.

•  Pimiento-Quiroga, Nataly., Pabon-Moreno, Daniel., Reu, Björn. (2016). Use-

ful plants of Colombia: A data-base about the use of the Colombian tree flora.

Manuscript in preparation.

Experience

2020 Lecturer. R course: Advanced modules. International Max Planck Research

School for Global Biogechemical Cycles. September 14-16, 2020.

2016 Web-Admin Socio-Ecological Landscapes Research Group. November 2016.

2014 Digitalization of biological collections database from the school of Biology of

the Industrial University of Santander. August 2014.

Software

•  ecofunr https://github.com/dpabon/ecofunr

An R package to derive Ecosystem Functional Properties.
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Declaration of honor /  Ehrenwörtliche Erklärung

I hereby confirm that I am familiar with the valid doctoral examination regulations;

that I produced this doctoral thesis project myself and I did not use any text passage

from third parties nor their own previous final theses without citing them; that I have

cited the tools, personal communication, and sources that I have used; that I did not

received any assistance from specialised consultants and that any third party did not

receive either direct or indirect financial benefits from me for work connected to the

doctoral thesis submitted; and that I have not submitted this doctoral thesis project

as the final thesis for a state examination or other scientific examination. I declare

that all my supervisors: Prof. Dr. Miguel Mahecha, Dr. Mirco Migliavacca, Prof.

Dr. Markus Reichstein, and Prof. Dr. Christine Römmermann have supported me

in the writing of this document. Other coauthors, stated in the authorship list of

each manuscript, have contributed with the writing of each manuscripts.

Hiermit erkläre ich: dass mir die Promotionsordnung der Fakultät bekannt ist;

dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder Ergebn-

isse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnungübernommen

und alle von mir benutzten Hilfsmittel, persönliche Mitteilungen und Quellen in

meiner Arbeit angegeben habe; dass ich die Hilfe eines Promotionsberaters nicht

in Anspruch genommen habe und dass Dritte weder unmittelbar noch mittelbar

geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang

mit dem Inhalt der vorgelegten Dissertation stehen; und dass ich die Dissertation

noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prü-

fung eingereicht habe. Bei der Auswahl und Auswertung des Materials sowie bei

der Herstellung des Manuskripts hat mich Prof. Dr. Miguel Mahecha, Dr. Mirco

Migliavacca, Prof. Dr. Markus Reichstein, und Prof. Dr. Christine Römmer-

mann. Andere Co-Autoren, die in der Autorenliste jedes Manuskripts angegeben

sind, haben bei der Erstellung des jeweiligen Manuskripts mitgewirkt.

Jena, 14 November 2022 Daniel Ernesto Pabon Moreno
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