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Summary

Functional biogeography focuses on understanding the causes and consequences of
the spatial distribution of functional traits. One of the functions that plants fulfill in
ecosystems is to regulate the exchange of energy and matter through photosynthesis
(i.e., Gross Primary Production, GPP). In this direction, previous studies define the
maximum photosynthetic capacity (GPPnax) as an Ecosystem Functional Property
(EFP). It is expected that EFPs will help to better understand how ecosystems are
affected by climate change and global warming. In this dissertation, I present how to
understand an ecosystem function such as GPP and an EFP as GPP,.x through
three main axes: Magnitude, Time and Space. Specifically, in the first axis, I focus on
understanding how environmental variables limit GPPy,.x at a global scale. In the
second axis, time, I evaluate how climatic variables affect the timing (i.e. Day of the
year, DOY) when GPPy,.x is reached (DOYGPP;,ax). Finally, on the last axis, |
explore how new satellite missions can help improve GPP prediction. In the first
axis, my approach using an optimal ecosystem process as GPPy.x and its limiting
factors allow us to generate a new functional map that relate optimum ecosystem
processes with climate information. This new map can be used as input for future
global-scale modeling studies. On the second axis, Time, I find that for most of the
ecosystems across the globe, an increase in short-wave incoming radiation, temperat-
ure, and vapor pressure deficit will produce an earlier DOY GPPax (When compared
with the mean DOYGPP,ax) during the growing season. In the last axis, Space,
I find that red-edge vegetation indices (estimated from Sentinel-2 images) improve
the performance of the prediction of GPP. The exploration of the axes proposed in
this dissertation contribute to frame our understanding of vegetation functional
biogeography, by combining concepts and techniques from biometeorology, ecosys-
tem physio-phenology, and satellite earth observations.






Zusammenfassung

Die funktionelle Biogeographie konzentriert sich darauf die Ursachen und Folgen der
rdumlichen Verteilung funktioneller Merkmale zu verstehen. Eine dieser Funktionen,
die Pflanzen in Okosystemen erfiillen, ist die Regulierung des Energie- und Stof-
faustauschs durch Photosynthese (d.h. die Bruttopriméirproduktion, GPP). Dies-
beziiglich definieren frithere Studien die maximale Photosynthesekapazitit (GPPyax)
als eine funktionelle Eigenschaft des Okosystems (EFP). Die EFPs sollen dazu
beitragen, den Einfluss von Klimawandel und globaler Erwidrmung auf Okosysteme
besser zu verstehen. In dieser Dissertation prisentiere ich, wie man eine Okosys-
temfunktion wie GPP und eine EFP wie GPP,,.x entlang dreier Hauptachsen ver-
stehen kann: Stdrke, Zeit und Raum. Fiir die erste Achse konzentriere ich mich ins-
besondere auf das Verstdndnis, wie Umweltvariablen GPPmax auf globaler Ebene
begrenzen. Fiir die zweite Achse, der Zeit, untersuche ich, wie klimatische Vari-
ablen den Zeitpunkt (d.h. den Tag des Jahres, DOY) an dem GPP,x erreicht
wird (DOYGPPpax) beeinflussen. Fiir die letzte Achse untersuche ich schlieSS-
lich, wie neue Satellitenmissionen zur Verbesserung der GPP-Vorhersage beitra-
gen konnen. Fiir die erste Achse ermdglicht mein Ansatz eine neuen funktionalen
Karte zu erstellen, die, unter Verwendung eines optimalen Okosystemprozesses als
GPP...x und seiner begrenzenden Faktoren, optimale Okosystemprozesse mit Kli-
mainformationen verbindet. Diese neue Karte kann als Input fiir zukiinftige globale
Modellierungsstudien verwendet werden. Fiir die zweite Achse, die Zeit, stelle ich
fest, dass weltweit fiir die meisten Okosysteme ein Anstieg der kurzwelligen ein-
fallenden Strahlung, der Temperatur und des Sattigungsdefizits zu einem fritheren
DOYGPPax (im Vergleich zum mit-tleren DOYGPP,ax) wiahrend der Wachstum-
speriode fiihrt. Fiir die letzte Achse, der rdumlichen Verteilung, stelle ich fest,
dass die (aus Sentinel-2-Bildern geschitzten) Vegetationsindizes am roten Rand die
Vorhersage von GPP verbessern. Die Erforschung entlang der in dieser Dissertation
vorgeschlagenen Achsen tragt dazu bei, unser Verstdndnis der funktionalen Biogeo-
graphie der Vegetation zu erweitern, indem Konzepte und Techniken aus der Biomet-
eorologie, der Okosystemphysiologie und der satellitengestiitzten Erdbeobachtung
kombiniert werden.






CHAPTER 1

Introduction

Since 1790, when the industrial revolution began, the concentration of carbon diox-
ide (CO») in the atmosphere has been increasing (Andres et al., 2012; Eyring et al.,
2021). Humans learned to burn fossil fuels to increase the number of goods and
create new services, a practice that remains until now (Friedlingstein et al., 2019). A
negative effect of fuel combustion is that large amounts of CO; are released into the
atmosphere. Since CO; is one of the main greenhouse gases, its increase in the
atmosphere has led to an increase in global air temperature in the last decades (i.e.,
global warming). The increase in temperature and deforestation caused by the
industrial revolution has changed the climate regimes across the globe (i.e., climate
change Gulev et al., 2021). Circularly, climate change has drastically impacted the
ecosystem’s dynamics and composition, affecting ecosystem processes such as
carbon uptake, water regulation, and cloud formation (Canadell et al., 2021).

The transformation of energy and matter in terrestrial ecosystems is mainly
constrained by the capacity of plants to absorb and transform CO, and water into
carbohydrates, lipids, proteins, and oxygen (O;) (i.e., photosynthesis, Chen and
Blankenship, 2021). Photosynthesis products are used by other organisms through
the trophic network (Chapin et al., 2011b) and constitute the main building blocks of
other forms of life in the biosphere. To understand how different ecosystems are
being affected by climate change and global warming, it is necessary to measure the
exchange of energy and matter between the ecosystems and the atmosphere (Bal-
docchi, 2008). Having reliable knowledge of the photosynthetic activity of plants
(Gross Primary Production, GPP) can give us a better understanding of how eco-
systems respond in terms of energy and matter fluxes to the increase in atmospheric
CO; and temperature (Campbell et al., 2017).

1.1 Terrestrial Gross Primary Production

Terrestrial GPP is the measurement of CO, uptake by ecosystems through plant
photosynthesis (Dokulil, 2019; Chapin et al., 2011a). In the late 1940s and early
1950s, Montgomery (1948), and Swinbank (1951) developed the theoretical basis of
the eddy covariance method (EC). The EC method estimates the exchange of
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matter and energy between the atmosphere and biosphere using the covariance of
vertical wind velocity fluctuations and the chemical component fluctuation to be
measured (e.g., CO,, H,O) (Aubinet et al., 2012). Nevertheless, it was not until the
1980s that scientists started registering the continuous exchange of CO, between
the atmosphere and plant’s canopy (Verma et al., 1986). The continuous registers
were possible thanks to the technological development of gas analyzers and sonic
anemometers (Ohtaki and Matsui, 1982; Ohtaki, 1984). Later, in the 1990s, several
regional networks of EC towers started (Aubinet et al., 2012). At the beginning of
the 2000s, the FLUXNET initiative (Baldocchi et al., 2001), a meta-network of
numerous regional networks with EC data, was created (For a complete review of
the history of the eddy covariance method, see: Baldocchi, 2003). FLUXNET
aimed to create a single data repository of standardized EC information accessible to
any scientist. Today, the latest FLUXNET dataset holds 206 EC-towers (1532 site-
years) around the world, covering several vegetation types and climate classes
(Pastorello et al., 2020). Thanks to FLUXNET, it has been possible to understand
how ecosystems respond to climate change and global warming in terms of energy
and matter fluxes (Yu et al., 2019). Understanding the relationship between the
biotic and abiotic components of the Earth is more relevant than ever; as CO; levels
continue to rise, climate change and global warming have an increasing impact on
human societies around the world (Portner et al., 2022).

The EC technique has, however, some constraints. On the one hand, fluxes es-
timation is only possible under stable atmospheric conditions on flat terrain and
where the canopy is homogeneous (Schmid and Lloyd, 1999); on the other hand,
the spatial scale of fluxes’ footprint ranges from hundreds of meters to a few kilo-
meters (Schmid, 1994). These limits represent a challenge for regional and global
estimations of GPP. Furthermore, to estimate the state of vegetation on a global
scale. Fortunately, the eddy covariance technique has not been the only tool scient-
ists have developed to study vegetation productivity. The space race prompted the
development of satellite missions and sensors to study and track changes on the land
surface (Belward and Skeien, 2015). The information provided by satellite missions
combined with the knowledge of the optical properties of plants (Tucker, 1979) has
made it possible to monitor vegetation dynamics at regional (Goward et al., 1985,
1991), and global scale (Ryu et al., 2019). Later, the combination of remote sensing
information and model-based process understanding led to the development of the
first continuous GPP global product (Running et al., 2004). In the last decades,
with the development of new mathematical algorithms as machine learning tech-
niques (Breiman, 2001), new estimates of GPP at a global scale were possible by
combining satellite images and estimates of GPP from EC towers (Jung et al., 2009,
2020, 2019; Tramontana et al., 2016). As technology improves, new sensors have
made it possible to increase the temporal, spatial, and spectral resolution at which
we monitor vegetation (Thépaut et al., 2018). Examples of these new sensors are
the Sentinel satellites from the European Space Agency. Nevertheless, evaluating
whether the new Sentinel satellites allow us to better predict the fluxes between
ecosystems and the atmosphere is a question that remains open.
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1.2. Functional Biogeography

1.2 Functional Biogeography

Functional Biogeography combines ecology, geography, and environmental sciences
to understand what organisms and ecosystems do, rather than the elements and
interactions that constitute organisms and ecosystems (Violle et al., 2014; Malaterre
et al., 2019). From an epistemic perspective, classic ecology focus on the interaction of
the species with the environment. In functional biogeography, the species concept is
not seen as a unit of evolution (Duckworth et al., 2000). Instead, it focuses on the
understanding of the functions of the organisms (For a complete discussion between
classic ecology and functional biogeography, see: Violle et al., 2014). For example,
plants absorb CO, and water to synthesize sugars, lipids, and proteins and release
oxygen and water vapor during the same process. The synthesized compounds
then work as support for other organisms (Chase et al., 2000; Warne et al., 2010,
e.g.). In this sense, the definition of a function can be delimited in a series of
metabolic processes where the Earth’s biotic elements transform energy and matter
from different sources to produce compounds with higher chemical potential energy.
Following this idea, Reichstein et al. (2014) proposed that ecosystem functional
properties (EFPs) are measures of optimal biogeochemical processes that can be
quantified at the ecosystem level, for example, using the eddy covariance technique. It
is expected that EFPs help to characterize and understand ecosystem dynamics and
how ecosystem properties change into the current climate change and global
warming scenario (Reichstein et al., 2014).

Timing as a Plant Trait and an Ecosystem Functional Prop-
erty

The original formulation of EFPs was developed to link plant traits with ecosystem
fluxes reducing the confounding effect of climate regimes (Figure 1.1). Nevertheless,
an essential element in this formulation was not considered: the timing of optimal
ecosystem processes. In the last decades, the consequences of plant phenology shifts
on the global carbon cycle have been observed (Richardson et al., 2013, 2010; Buiten-
werf et al., 2015). For this reason, Wolkovich et al. (2014) notes that while several
studies in the last decade have focused on understanding plant phenology as a func-
tional trait, a multidisciplinary approach that includes ecology, biometeorology, and
phylogenetics is still necessary. In this dissertation, I argue that EFPs can also be
interpreted as optimum ecosystem states derived from fluxes without removing the
climate effect (For a complete comparison between GPP,,x and GPPg, see the Ap-
pendix A). Then, the timing of optimal ecosystem processes as the maximum Gross
Primary Production (GPPpnax) should also be included as part of the functional
biogeography in general.

11
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Figure 1.1: Major relationships between plant structural and chemicalphysiological
traits and ecosystem functional properties related to carbon and water fluxes, em-
bedded in an upscaling framework considering spatial covariates. Tradeoffs related to
water-use (WUE), nitrogen-use (NUE), radiation-use (RUE), and carbon-use
(CUE) efficiencies at plant (p) and ecosystem scale are printed in italics in red.
Note that soil C and nutrient turnover processes are also important ecosystem prop-
erties, affecting carbon fluxes directly via heterotrophic soil respiration and indirectly
via effects of nutrient availability on plant functional traits and ecosystem structure.
A, photosynthetic capacity; 6'*C, stable carbon isotope ratio; ET, evapotranspira-
tion;, GPPgy, gross primary productivity at saturating light;, gs, maximum stomatal
conductance; LAI, leaf area index; LDMC, leaf dry matter content; LMA, leaf mass
per area; N, tissue nitrogen concentration;, NEE, net ecosystem exchange of CO;, P,
tissue phosphorus concentration; Ry, ecosystem respiration at reference temperature;
Ra, plant respiration; SRL, specific root length. Figure and legend reproduced from
Reichstein et al. (2014).

1.3 An approach to Functional Biogeography us-
ing Gross Primary Production

Although plant functions are regulated by different metabolic processes (Figure 1.1).
In this dissertation, I will focus on one function: the terrestrial gross primary pro-
duction, and one EFP: the optimum photosynthetic capacity (GPPg, or GPPpax) of
plants per unit area per second. To have a complete understanding of GPP, and
GPPnax in the context of biogeography, it is necessary to develop three axes: (1)
Magnitude (here it refers to the value per-se), Timing, and Space (Figure 1.2). These
reference axes are present throughout the entire dissertation at different levels.

12



1.4. Research questions and summary of the manuscripts

(Manuscript 1) | (Manuscript 3)
Is the Maximum Gross | |- ) How to improve the
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by water or temperature at z / \ Production  using  new
global scale? = f N\ Q‘bc,‘:‘ satellite missions?

- <
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Figure 1.2: Conceptual representation of the three axes of study on this dissertation.
The gray line represents the gross primary production variation during the growing
season. The first axis Magnitude refers to the value of gross primary production
(GPP) and GPP.x per-se. The second axis Time is the timing when GPP .y is
reached. The third axis, Space, represents the prediction/upscaling of GPP using
new remote sensing information. The arrow represents the increase in spatial

resolution. From local eddy covariance Towers to regional and global predictions of
GPP

1.4 Research questions and summary of the ma-
nuscripts

Research Question 1.

Is the Maximum Gross Primary Production limited by water or tem-
perature at a global scale?

In Chapter 2 / Manuscript 1 I investigate in what ecosystems GPP . is lim-
ited either by temperature or precipitation. Based on these results, I proposed new
functional classes and analyzed how these classes are related to previous vegetation
classification systems. This study allows us to better understand the relationship
between climate variables and GPP. The resulting categories, from the relationship
between GPP limitation by water or temperature, may be useful for future exercises to
predict the impact of climate change on ecosystems.

Research Question 2.

What are the controlling factors of the timing of the Maximum Gross
Primary Production?

In Chapter 3 / Manuscript 2, I explore the potential of circular-linear regres-
sions (circular statistics) as a method to correlate changes in the timing of GPPpax
with the cumulative effect of climate variables (ecosystem memory). These results
allow a better understanding of ecosystems’ response to climate change not only from a
phenological perspective but from a more holistic ecosystem physio-phenology per-
spective.

13
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Research Question 3.

How to improve the prediction of Gross Primary Production using
new satellite missions?

In Chapter 4 / Manuscript 3, [ present how new satellite missions (i.e.
Sentinel-2) from the European Space Agency (ESA) improve the prediction/upscaling
of GPP using red-edge vegetation indices that could not be computed previously.
I also explore the bias produced by the imbalanced representation of observations
by vegetation type (different number of observations) and whether balancing tech-
niques can help to better represent vegetation types and low-frequency observations
(rare observations). This work provides a base for future global estimates of GPP
and GPPp,.« based on the new satellite missions from ESA.

14



CHAPTER 2

A Functional Classification System based on maximum Gross
Primary Production

Manuscript Nr. 1

Title of the Manuscript: A Functional Classification System based on maximum
Gross Primary Production

Authors: Pabon-Moreno, Daniel E., Migliavacca, Mirco., Reichstein, Markus.,
Jung, Martin., Weber, Ulrich., Mahecha, Miguel D.

The candidate is: First author

Status: in preparation

Authors’ contribution in percentage

Author Conceptual Data analysis Experimental (Numerical) Writing the manuscript Provision of material
Daniel E. Pabon-Moreno 40 79 89 83 0
Dr. Mirco Migliavacca 15 8 3 10 0
Prof. Dr. Markus Reichstein 5 5 5 2 0
Prof. Dr. Miguel D. Mahecha 40 8 3 5 1]
Dr. Martin Jung 0 0 0 0 50
Ulrich Weber 0 0 0 0 50
Total: 100 100 100 100 100
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A Functional Classification System based on maximum Gross
Primary Production
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Correspondence: Daniel E. Pabon-Moreno (dpabon@bgc-jena.mpg.de)

Abstract.

The classification of ecosystems by their eco-physiological characteristics or response to climate conditions has proven to
be of high utility of multiple applications. Evaluating climate change effects on ecosystems, for instance, often is performed
by vegetation class. The most widely used classical classification system is based on climate data. Satellite remote sensing
observations are used to classify land cover, and modeled species distribution maps lead to accurate ecosystem classifications.
However, none of the existing classification products so far considers ecosystem processes as a key dimension of interest in
the classification. One of the ecosystem processes that is highly relevant is the gross primary productivity (GPP) i.e. the total
amount of CO- that is absorbed by plants through photosynthesis. Today. it is possible to monitor GPP dynamics at global scale
thanks to the combination of remote sensing and machine learning techniques. In this study, we explore how the maximum
annual GPP (GPPmax). a key feature of ecosystem functioning, can be used to classify the vegetated Earth surface, and
how this new classification system compares to previous vegetation classification systems as Koppen-Geiger climate classes
and the biomes proposed by Olsen. We find that most of the land surface correspond to the class where GPPmax is mainly
limited by temperature and precipitation. While the second class in geographical extension is when GPPmax is only limited by
temperature. Our classification system shows a low percentage of agreement with Koppen-geiger classes and Olson biomes.
Nevertheless, we found that many transitions on koppen-geiger classes and Olson biomes are also presented in our classification
system. Considering optimum ecosystem processes and its temporal and climatic component opens new ways to classify the

vegetated surface, and integrate the dynamics between biotic and abiotic components of ecosystems at global scale.

1 Introduction

1. What is functional classification /classification of the land surface (concept definition, history and utility, for internal use

only)

16
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Functional classification systems are based on what organisms do instead of what organisms are composed (Malaterre
et al., 2019). The idea behind of functional classification is that independently of the taxonomic relationship, different
organisms can share the same function into the ecosystem (e.g. different plant species share the same role in terms of
primary productivity). Examples of functional classification systems can be tracked in time through different centuries
until Aristotles who classified animals based on their diet (e.g. carnivorous, herbivorous) (Malaterre et al., 2019); later
in the XIX Century, Humboldt (1806) proposed a classification system based on plant characteristics as the growth form
settling the bases for the modern functional classification systems of plants. Functional classifications had been, not only
applied to living organisms, in the last decades of the XIX Century, Wladdimir Koppen developed a climate classification
system based on data from several weather stations around the world and the distribution of the vegetation (Képpen,
1884) generating one of the first world climate classification systems. Even if Képpen-Geiger system is considered as a
climate classification, Képpen built his model based on the relationship between plants and the climate conditions. In this
sense, we can consider Koppen-Geiger classes as the first prototype of a functional classification of the vegetated land
surface. Nevertheless, modern functional classification systems started in the 80th, when the concept of plant functional
types (PFT) was developed (Gillison, 1981; Box, 1981) at the same time as the International Geosphere Biosphere
Program was starting. PFTs were defined based on structural, and physiological characteristics of the vegetation and its
interaction with climatic conditions (Box, 1995). These works were the based for later, when satellite products where
available, to build land cover maps at global scale. The PFTs not only allow the scientist and modelers to represent
the enormous diversity of plants at global scale in a lower number of classes that interact with the environment in
similar ways, but also to understand the geographical distribution of vegetation in previous geological times, and to try

to understand how vegetation is responding to climate change (Lavorel et al., 2007).

. New Information, new techniques, new frontiers.

Today, the development of satellite missions opened new opportunities to understand the dynamics between biotic and
abiotic components of the land surface. Thanks to this, we were able to have a record of the changes and processes
occurring on the Earth’s surface during the last decades (Belward and Skegien, 2015). This is illustrated by the images
captured by Landsat and MODIS missions (Friedl et al., 2002; Markham and Helder, 2012), and more recently the
first world land cover map at 10 meters resolution, developed using radar and optical information from Sentinel-1 and
Sentinel-2 satellites (Zanaga et al., 2021). But we have not only seen progress in the area of land/functional classification.
Today several global products of biophysical variables as leaf area index (Fang et al., 2019), fraction of the Absorbed
photosynthetic active radiation (FAPAR), and global products of ecosystem processes as Gross Primary production
(Tramontana et al., 2016; Bodesheim et al.. 2018: Jung et al., 2020) among others are available thanks to the combination
of earth observations from satellite missions, process-based model and machine learning techniques. In this sense, as
new data-analytic tools have been widely became available, classical classification schemes have been challenged. For

instance, Netzel and Stepinski (2016); Zscheischler et al. (2012) used clustering methods to generated and evaluated
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Chapter 2. A Functional Classification System based on maximum Gross Primary
Production

new climate classes, opening new ways to interpret the different climatic regions and the relationship between vegetation

distribution and climate conditions.

3. From plant functional types to optimality principles (Background, current status, and aims of our study).

Waullschleger et al. (2014) proposed that a radical approach to overcome PFTs is to abandon the concept, and focus in
plant/ecosystem optimality principles as shown by Pavlick et al. (2013) in the JeDi global dynamic vegetation model. In
their approach, PFTs are replaced by a series of ecophysiological traits parameters. as carbon allocation, turnover, and
senescence among others, allowing to better represent the functional diversity of plants at global scale. In this direction
and from a data-driven perspective, Reichstein et al. (2014) proposed the ecosystem functional properties’ concept, that
are quantities that allow to correlate ecosystem processes and functions in an integrated manner with plant functional
traits. An example of this approach is shown by Musavi et al. (2016) linking the potential photosynthetic capacity with
leaves nitrogen content and Leaf Area Index. More recently, Migliavacca et al. (2021) showed that leaf optimality can be
extrapolated to ecosystems in a three-dimensional space, where the first dimension is mainly governed by the maximum
COy uptake. Now that new global products, techniques and theories have been developed to understand the interaction of
biotic and abiotic components of ecosystems at global scale, we can revisit plant functional types from a new perspective
that integrate ecosystem processes. climate conditions and optimality principles to generate new classification units.
Here, we explore the generation of discrete classes using the climate space when terrestrial Gross Primary Production
(i.e. photosynthetic capacity) is maximum (GPPmax). This allows us to represent an optimal ecosystem process and its

relationship with climate conditions at global scale.

2 Methods
2.1 Data

We use FLUXCOM 8-days GPP global product at 0.5 degrees of spatial resolution from 2001 to 2015 that was produced
using only remote sensing information, specifically the ensemble of several machine learning techniques (Jung et al., 2019). To
filter out pixels where water could be mixed with land, We use the land cover vegetation map generated from MODIS (IGBP,
product: MCD12Q1v006 Friedl, Mark and Sulla-Menashe, Damien, 2019) for the year 2015, We resample the product at 0.5
degrees and the percentage of each land cover type is estimated. Each grid cell is assigned with the highest fraction; finally, we
filter out pixels with the class "water bodies".

‘We consider precipitation and air temperature as climatic drivers of GPP among others because it allows us to represent if
the ecosystems are water or energy limited. Specifically, we use daily ERA-5 global products (Hersbach et al., 2020) at the
same spatial resolution, and for the same time period. We compute the mean seasonal cycle per pixel (MSC) for each variable,

and perform the following analysis on the calculated MSC.
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2.2 Climate space when GPP is maximum

We extract the day of the year (DOY) when GPPmax occurs for each grid cell. Then using DOY, we estimate the average
air temperature, and the cumulative precipitation 30 days before GPPmax occurs. We compare these values with the average
air temperature of the MSC, and the average precipitation of the monthly cumulative precipitation per pixel. We define four
Functional classes (FCs) based on if the air temperature, and precipitation (when GPP is maximum) are higher or lower than
the MSC average. Tair (+) Precip (+) when both climate values are above the average indicating that GPPmax is limited by
both variables, Tair (-) Precip (+), Tair (+) Precip (-) when at least one of the values is higher than the average indicating that
ecosystems are limited by at least one the variables. And Tair (-) Precip (-) when both values are below the average, indicating
that plant-ecosystems are non-limited by any variables. Finally, to estimate the percentage of agreement of DOY GPPmax and
detecting potential anomalies, we estimate the circular standard deviation (Mardia. 1972) using the original time series from
2001 to 2015.

2.3 Comparing Functional classes types with previous classification systems

We compare the four FCs with the current Képpen-Geiger climate classes and the terrestrial biomes proposed by Olson et al.
(2001). We estimate the percentage of agreement between each one of the classification systems through the corrected Rand
index (Hubert and Arabie, 1985) and the Normalized Mutual Information index (Danon et al., 2005). We also count the total

area for each FCs and the co-occurrence with Képpen-Geiger. and ecoregion classes.

3 Results

In this section, we first present the global distribution of the timing (phenology) of GPPmax (Figure 1). Then we present
the optimum climate (Air temperature, and Precipitation) space 30 days before GPP is maximum (Figure 2, a,b), and the
geographical distribution of the optimum climate space compared to the average (delta climate space, Figure 2, c¢.d). In the
last section we present the four FCs based on the sign of the delta climate space (Figure 3, FCs), and finally, we show the
relationship between the FCs, with the Koppen-Geiger climate classification and terrestrial biomes proposed by Olson et al.

(2001) (Figure 4).
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Figure 1. Timing of GPPmax at global scale using the mean seasonal cycle of FLUXCOM GPP (8 daily 2001 - 2015). DOY: Day of the
year. The weighted histogram is shown on the right section, where there 1s a clear prevalence of GPPmax at mid-year because of the highest

land extension in the Northern Hemisphere.

In figure 1 a, we present the geographical distribution of the phenology of GPPmax. In the right section, we present the
weighted histogram of the timing, where five GPPmax peaks can be recognized. (1) The first peak occurs between February and
April and correspond to the Maximum GPP in the Northern section of the Australian territory, South Africa, and Madagascar,
South America, excluding the tropical rain forest, and the patagonia, and the Andean mountain range. (2) The second peak
occurs between May and June and represent the areas of the Mediterranean region, The northern coast of Eupore, Central
Africa, and East, and west coast in the North America. (3) The main peak occurs between June and August and correspond to
the northern temperate zone including most of Europe. Russia, Japan, North America, the northern part of the Andes and the

transition zone between the Colombian and Venezuelan savannas and tropical rain forest, and central Australia. (4) The four
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peak occurs between August and November and included the territories of Central America, North of Africa, India, part of
China, and the South part of Australia. (5) The last peak of the year occurs between November and January and correspond to
regions in the Amazon and African tropical rain forest, Southern temperate region of South America, and New Zealand. The
percentage of agreement of the phenology of GPPmax (Figure 1, b) shows that certain geographic patters are generated by
the high variability of the DOY GPPmax, for instance regions with high standard deviation on North America, partially match
with the change of DOY GPPmax from May to September. The same occurs in other regions of the world, for example in the
Himalayas, the northern andean region, central australia and Indonesia where the high standard deviation partially match the

transition zones on DOY.
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Figure 2. Optimum climate space (30 days before) when GPP is maximum. a) Average air temperature, b) cumulative precipitation (for
visualization purpose, values higher than the quantile 0.99 are encoded as NAs). The differences between the optimum value and the average
climate condition are represented in the bottom section (c. d). For precipitation, the cumulative precipitation is estimated monthly, and then

the mean climatological year is estimated.

In figure 2 we present the optimum climate space 30 days before GPPmax is reached. The air temperature (figure 2, a)
varied between -9 and 39 °C where most of the values are between 0 and 30 °C (Figure Al). The mean seasonal cumulative
precipitation (figure 2, b) varied between 0 (mm) and 1678 (mm) where most of the values vary between 0 mm and 500 mm
A2. When the values 30 days before are compared with average temperature (figure 2, ¢) we find that for ~78.8% (~90.9
millions km?) of the total global surface with terrestrial vegetation cover GPPmax occurs when A air temperature is positive,
while for ~21% (~24.5 millions km?) occurs when A air temperature is negative, figure 2, ¢). The negative A values are
located in southern part of Australia, part of India, the tropical rainforest in Africa, part of Brazil, northern Andean region,

Mediterranean region in Europe, and part of the west and east coast in the United States.
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When the cumulative precipitation 30 days before GPPmax occurs is compared with the average monthly cumulative pre-
cipitation (figure 2, d), we find that for ~85.4% (~98.5 millions kim?) of the total global vegetated area, GPPmax occurs when
A cumulative precipitation is positive. Conversely, for ~14.6% (~16.9 millions km?) of vegetated surface occurs when A
cumulative precipitation is negative (figure 2, d). The negative A values are located in part of the Patagonia (South America),
a spot in the tropical rainforest in South America, part of the west and east coast in North America. The northern coast of
Europe from Spain to Norway. Northern part of Japan, Part of the Korean peninsula, Iceland, Part of Malaysia and Indonesia,

and central Australia.

e

]

recipl+)

Precip|-)

A Predipitation

Tair(-) Tair{+}
ATemperature

Figure 3. Graphical representation of the relationship between A air temperature and A precipitation when Gross Primary Production (GPP)

is maximum. Four functional classes (FCs) are shown based on sign of the A value.

In figure 3 we present four functional classes (FCs) based on the relationship of air temperature and precipitation when
GPPmax occurs with the climatological average (figure 2, c, d). In general, we can interpret the sign of A as a limiting factor in
terms of COzuptake. In this sense, if the sign of the variables is negative, we can say that the variable is not limiting GPPmax.
In other words, GPPmax is not occurring when air temperature or monthly cumulative precipitation are maximum. On the other
hand, if air temperature or precipitation are positive, we can say that the vegetation for a certain region is mainly driven by
temperature or precipitation given that when GPPmax occurs, temperatures or cumulative precipitation for the area are above
the average climate regime limiting GPPmax.

The main FC by geographical extension is "Tair (+) Precip (+)" with a ~68% (~~78.4 millions km?) of the total global
surface with terrestrial vegetation cover. It is distributed across the globe and in all the continents, where most of the vegetation

is currently limited by these two variables. The second FC is "Tair (+) Precip (-)" ~17.4% (~20.1 millions km?). In these
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areas, GPPmax is limited by temperature but not by precipitation. It is distributed through the east and west coast of North
America, where the distribution of temperate conifers forests explains the pattern. North coast of Europe from Spain to Norway.
The Korean peninsula. The northern part of Japan, where there is a transition from humid subtropical climate (cfa) to humid
continental climate (Dfa, Koppen-Geiger class). The east coast of Maylasia. Part of the tropical rainforest in the Amazon and
partially southern Andean mountains.

The third FC is "Tair (-) Precip (+)" ~10.8% (~12.5 millions km?), and correspond to ecosystems that are mainly limited
by precipitation. In this FC, we find the Mediterranean region in Europe that corresponds to Csa (Hot-summer Mediterranean
climate) Koppen-Geiger class. Both zones share the same location and extension. We also find large portions of desert and
grasslands in the Middle East. Sections of the Andes mountain range. the savannas in Venezuela and Colombia, that limit with
the tropical rainforest ("Tair (+) Precip (-)"), part of the Cerrado in Brazil, part of Uruguay that correspond to grassland and
croplands. Also, the African savannas, and the Mediterranean region in South Africa. Part of deserts in India that correspond
to shrublands, and tropical dry broadleaf forest: the southern Mediterranean coast of Australia; most of the Sumatra island in
Indonesia that correspond to palm-oil plantations. The less common FC is "Tair (-) Precip (-)" ~3.8% (~4.4 millions km?).
and occurs mainly in Australia in regions that correspond to desert and shrublands, followed by some small patches in the
Amazonia, northern Andean, United States and Turkey. These regions correspond to a high standard deviation of the DOY
GPPmax estimation (figure 1, b) and can be the result of temporal anomalies in the prediction of GPP.

In figure 4 we present the geographical overlapping between our four Functional Classes, the terrestrial biomes proposed
by (Olson et al., 2001), and the Képpen-Geiger climate classification. The FC Tair (+) Precip (+) appears in all biomes, being
the most common drivers for most of the ecosystems at global scale. The FC Tair (+) Precip (-) is also distributed across all
the biomes, 26.3% of the temperate Conifer forest are in this category, as 23.4% of the Tropical and subtropical dry broadleaf
forest, 15.2% of the temperate broadleaf mixed forest, 14.4% of the mediterranean forest, 13.2% of the mangroves, and 12.4%
of the Tundra. For the rest of biomes, between 9.9% to 0.4% are included in this category. For the third FC Tair (-) Precip
(+) We find that 60.7% of the Mediterranean forests are included in this category as well as 49% of tropical and subtropical,
grasslands, savannas, and shrublands. 30% of the Flooded grasslands and savannas, 23.4% of the tropical and subtropical moist
broadleaf forests, 20.1% of the Desert and Xeric Shrublands, 16.4% of the Tropical and Subptropical Moist broadleaf Forests,
15% of the mangroves, and between 9% and 0.8% for the other biomes excluding the Boreal forest/Taiga, and the Tundra. For
the last category, we find that 13% of the desert and xeric shrublands are in this category, 11.4% of the mediterranean forests,
woodlands and scrub, and between 7% and 0.1% of the other biomes excluding the tundra, Flooded grasslands and savannas,
Boreal forest/taiga, and tropical and subtropical coniferous forest.

Regarding the Koppen-Geiger climate classification, we find that the most common FC is "Tair (+) Precip (+)" present in
all the classes with the exception of Tundra. The second class Tair (+) Precip (-) is the total extension of the ice cap climate
(EF) those are patches on the arctic polar circle with an extension of 3859 km?2, 11.2% of the Tundra climate (ET): 46.4% of
the Tropical rainforest climate (Af), 26% of the Tropical monsoon climate (Am): 27.4% of the Temperate dry summer climate
(Cs), 20.6% of the Temperate no dry season climate (Cf); 20.5% of the Continental dry summer climate (Ds). and between 6 to

1% from the other climate classes. The third category Tair (-) Precip (+) represents 48.1% of the Tropical savanna dry-winter
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Figure 4. Geographical co-occurrences of the four functional classes with the biomes (left) and the Koppen-Geiger climate classification

(right). T+P+ (Tair + Precip +), T+P- (Tair + Precip -). T-P+ (Tair - Precip +). T-P- (Tair - Precip -). Olson biomes: 1: Tropical and Subtropical

Moist Broadleaf Forests; 2: Tropical and Subtropical Dry Broadleaf Forests: 3: Tropical and Subtropical Coniferous Forests: 4: Temperate

Broadleaf and Mixed Forests; 5: Temperate Conifer Forests: 6: Boreal Forests/Taiga: 7: Tropical and Subtropical Grasslands, Savannas

and Shrublands: 8: Temperate Grasslands, Savannas, and Shrublands; 9: Flooded Grasslands and Savannas; 10: Montane Grasslands and

Shrublands; 11: Tundra; 12: Mediterranean Forests, Woodlands, and Scrub; 13: Deserts and Xeric Shrublands; 14: Mangroves, Koppen-

Geiger climate classification: Af: Tropical rainforest climate: Am: Tropical monsoon climate, BS: Arid steppe climate; BW: Arid desert

climate, Cf: Temperate no dry season climate; Cs: Temperate dry summer climate; Cw: Temperate dry winter climate; Df: Continental no

dry season climate; Ds: Continental dry summer climate: Dw: Continental dry winter climate; EF: Ice cap climate; ET: Tundra climate.
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Table 1. Comparison between the different classification schemes based on climate conditions (Koppen-Geiger), biomes (Olson), and func-
tional response to reach GPPmax (FCs). Two metrics are estimated, to adjust Rand Index and the Normalized Mutual Information, for both

metrics vary between 0 and 1 where () means the classification system doesn’t share any similarity and 1 both classification system are

identical.
Comparison Adjust Rand Index  Normalized Mutual Information
Kdppen-Geiger - Olson 0.30 0.42
Koppen-Geiger - FCs 0.11 0.15
Olson - FCs 0.05 0.13

climate (Aw), 46.5% of the Tropical savanna dry-summer climate (As), 13.8% of the Af climate, 34.8% of Temperate dry
summer climate, 26.8% of the Arid steppe climate (BS). and 22.7% of Arid desert climate (BW). For the other climate classes,
between 9% to 0.05% are represented by this category, excluding ice cap climate and Continental dry winter climate (Dw). The
last FC is Tair (-) Precip (-), represents 30% of the BW climate, and between 4.9% to 0.05% of the climate classes excluding
Ice cap, and continental climate classes (D).

When we analyze the percentage of agreement between our Functional classes (FCs), the biomes from Olson et al. (2001)
and the Koppen-Geiger climate classification 1. We find that. as reference value, there is between a 30% to 42% of agreement
between Koppen-Geiger and ecoregion classes, while between our FCs and Képpen-Geiger there is between 11% to 15%
percent of agreement, and between 0.5% and 13% when our classes are compared with biomes depending on the metric

considered.

4 Discussion
4.1 GPPmax phenology

The timing of physiological processes is a relevant metric to understand how ecosystems are changing because of global
warming or local transformations (Korner and Basler, 2010; Buitenwerf et al., 2015). Most phenological studies focus on the
timing of physiological processes of individual species, but we can also use the timing of ecological processes as gross primary
production (GPPmax) to understand the effect of climatic conditions before it reached. Here we present a first approach to
the timing of GPPmax at global scale and show how to use it as based for the study of the climatic space that contribute to
GPPmax. The geographical distribution of the timing of GPPmax is explained by a combination of the latitudinal gradient of
the earth, the local climate regime and the vegetation response. Given that most of the land cover by vegetation is located in
the Northern Hemisphere, it is expected that the maximum photosynthetic capacity for these ecosystems will be reached at the
middle of the year. Nevertheless, it is well-known that in the Mediterranean region GPP is limited by the water availability
during summer, then peaks are expected after the raining seasons (Serrano-Ortiz et al., 2009) as is evident in the Mediterranean

region in Europe and the west coast of North America. The combination of the latitudinal and climate effect is also evidence
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in North Africa where in the African savannas GPPmax is reached before then the African tropical rainforest, and the gradient
continue, being GPPmax reached at the end of the year during the austral summer for the southern part. This gradient can also
be observed through the Andes mountain range from North to South. Although in our study the phenology of the GPPmax was
only used as a proxy to extract the climate space, a question that remains open is how the climate conditions affect the timing
of GPPmax. For example, if temperature increase, the GPPmax is going to occurs earlier or later than expected? Solving this

question can give us an idea of how ecosystems are going to respond in terms of maximum productivity to climate change.
4.2 Delta climate space

The estimation of the delta climate space give us a description of how the optimum conditions when GPPmax relates to the
mean annual values. In this study. we only consider 2 variables. temperature and precipitation, nevertheless, the inclusion of
radiation can give us a better description of the drivers of GPPmax, and can also help us to disentangle areas that in our study

are presented as homogeneous at high latitudes.
4.3 Functional classes

Generating new classification systems that consider optimum ecosystem processes can help us to better understand the complex
dynamics of the earth system. The low percentage of agreement between our functional classes, the ones from the Olson’s
biomes and the Koppen-Geiger classes suggest that our classification encoded a functional relationship between ecosystem
and climate that was considered on previous classification schemes. It is important to point out that GPP from FLUXCOM is a
machine learning product and that the uncertainties from the product are extrapolated to our classification system, in this sense
improve our predictions about ecosystem processes will be a necessary step to generate more robust classification systems.
The new satellite missions from the Copernicus program can give us a more complete picture of the earth system dynamics,
the new red-edge bands available on Sentinel-2 and the radar information from Sentinel-1 can help us to increase the power

prediction of the new generation of GPP products.

5 Conclusions

In this study, we explore how synthetic classifications can be done based on optimum ecosystem processes as maximum GPP.
Although previous classification systems are based on species distributions as Olson et al. (2001) biomes, and the distribution
of different climate regimens as Kdppen-Geiger. Considering optimum plant photosynthesis can give us a new perspective of
how plants respond to the environment and can contribute to simplify global vegetation models. Nevertheless, the robustness
of these classifications systems will be limited by our capacity to up-scale ecosystem processes as net ecosystem exchange or
gross primary production. As optimum ecosystem processes occur in a specific time, strengthen our knowledge of the timing
of optimum ecosystem processes will open new a window to understand ecosystem dynamics not only in magnitude but also

in time.
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Figure Al. Distribution of the mean seasonal cycle of air temperature 30 days before GPPmax 1s reached

Appendix A

Al

27



240

245

250

Chapter 2. A Functional Classification System based on maximum Gross Primary
Production

6e+07
J

Frequency
40407
1 1

20407
L

De+00
L

T T T 1
0 500 1000 1500

Precipitation (mm)
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Abstract. Quantifying how vegetation phenology responds
to climate variability is a key prerequisite to predicting how
ecosystem dynamics will shift with climate change. So far,
many studies have focused on responses of classical pheno-
logical events (e.g., budburst or flowering) to climatic vari-
ability for individual species. Comparatively little is known
on the dynamics of physio-phenological events such as the
timing of maximum gross primary production (DOY Gppmax ).
1.e., quantities that are relevant for understanding terrestrial
carbon cycle responses to climate variability and change. In
this study, we aim to understand how DOY Gppmax depends
on climate drivers across 52 eddy covariance (EC) sites in
the FLUXNET network for different regions of the world.
Most phenological studies rely on linear methods that cannot
be generalized across both hemispheres and therefore do not
allow for deriving general rules that can be applied for future
predictions. One solution could be a new class of circular—
linear (here called circular) regression approaches. Circular
regression allows circular variables (in our case phenologi-
cal events) to be related to linear predictor variables as cli-
mate conditions. As a proof of concept. we compare the per-
formance of linear and circular regression to recover origi-
nal coefficients of a predefined circular model for artificial
data. We then quantify the sensitivity of DOY gpppax across
FLUXNET sites to air temperature, shortwave incoming ra-
diation, precipitation, and vapor pressure deficit. Finally, we
evaluate the predictive power of the circular regression model
for different vegetation types. Our results show that the joint
effects of radiation, temperature, and vapor pressure deficit
are the most relevant controlling factor of DOY gppmax across
sites. Woody savannas are an exception, where the most im-

portant factor is precipitation. Although the sensitivity of the
DOY gppmax to climate drivers is site-specific, it is possible
to generalize the circular regression models across specific
vegetation types. From a methodological point of view, our
results reveal that circular regression is a robust alternative
to conventional phenological analytic frameworks. The anal-
ysis of phenological events at the global scale can benefit
from the use of circular statistics. Such an approach yields
substantially more robust results for analyzing phenological
dynamics in regions characterized by two growing seasons
per year or when the phenological event under scrutiny oc-
curs between 2 years (i.e., DOY gppmax in the Southern Hemi-
sphere).

1 Introduction

Phenology is the study of the timing of biological events
that can be observed at either the organismic level or the
ecosystem scale (Lieth, 1974). For the latter, phenology
is the study of some integral behavior across phenological
states of the integrated canopy reflectance captured by re-
mote sensing (Richardson et al., 2009; Zhang et al., 2003)
or vegetation-driven ecosystem—atmosphere CO; exchange
fluxes (Richardson et al., 2010). Ecosystem-scale physio-
phenological processes of this kind are relevant quantities in
global biogeochemical cycles and integrate both the seasonal
dynamics of biophysical states (e.g., reflected in the canopy
development) and the observed photosynthesis at the stand
level (i.e., gross primary production). Here we are particu-
larly interested in the timing when ecosystems reach their
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maximum CO; uptake within a growing season. Ecosystem
physio-phenology is influenced by climate conditions but si-
multaneously contributes to the regulation of different micro-
and macrometeorological patterns. Physio-phenological cy-
cles determine the temporal dynamics of land-atmosphere
water and energy exchange fluxes. Likewise, the terrestrial
carbon cycle is affected by phenological controls on CO» up-
take and release (Pefuelas et al., 2009).

The eddy covariance (EC) technique allows us to contin-
uously measure the exchange of energy and matter between
ecosystems and the atmosphere (Aubinet et al., 2012). The
FLUXNET network collects EC data for most ecosystems
of the world along with other meteorological variables, 1.e.,
radiation, temperature, precipitation, atmospheric humidity,
and often soil moisture (Baldocchi et al., 2001; Baldocchi,
2020). Particularly relevant to phenological studies is the sea-
sonal trajectory of gross primary production (GPP), which
allows us to derive phenological transition dates such as start
and end of the growing season (e.g.. Luo et al., 2018) as
well as the timing of the maximum gross primary production,
hereafter as referred to as DOY Gppmax (Zhou et al., 2016; Pe-
ichl et al., 2018; Wang and Wu, 2019).

In this study we focus on understanding how climate vari-
ability affects the time when ecosystems reach their maxi-
mum potential for CO> absorption. In order to reach this “op-
timum state”, several preconditions must be met during the
preceding part of the growing season. So far several studies
have focused on studying the variability of maximum GPP
during the growing season (GPPmax). For instance, Zhou
et al. (2017) studied how the variability of annual GPP is in-
fluenced by GPPmax and the start and the end of the growing
season. The authors found that GPPmax is a better explana-
tory parameter for the interannual variability of annual GPP
than the start and end days of the growing season. Bauerle
et al. (2012) studied how photoperiod and temperature in-
fluence plants’ photosynthetic capacity for 23 tree species in
temperate deciduous hardwoods, reporting that the photope-
riod explains the variability of photosynthetic capacity bet-
ter than temperature. So far, to the best of our knowledge.
only one study has focused on understanding the temporal
variability of GPPmax; Wang and Wu (2019) used a combi-
nation of satellite remote-sensing and eddy covariance data
to explore how DOYGppmax 1s controlled by climatic con-
ditions. The authors reported that higher temperatures ad-
vance DOY Gppmax. While the influence of precipitation and
radiation were biome-dependent. This study had a geograph-
ical focus on China; a global approach considering several
ecosystems across the whole latitudinal gradient is still lack-
ing.

The challenge of understanding phenology is generally to
characterize a discrete event that repeats periodically. Classi-
cally, phenological analyses have been performed using lin-
ear regression models (Morente-Lépez et al., 2018:; Zhou
et al., 2016). Most of these studies analyze ecosystems char-
acterized by one growing season (e.g., temperate or boreal
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Distribution of DOY gppmax

@) southern Hemisphere ecosystem

@ northern Hemisphere ecosystem

distribution of GPPmax

Conceptual
(DOYGppmayx) for two hypothetical ecosystems: one in the
Northern (blue) and one in the Southern Hemisphere (red). The dis-
tance between the color line and the circle represents the frequency
of the DOY Gppmayx Observations. The distance between the end
and the beginning of the distribution represents the DOY Gppmax
interannual variability.

Figure 1. timing

forests) and when the summer is centered around the middle
of the calendar year. The existing methods are, however, not
sufficiently generic to describe (i) ecosystems in the Southern
Hemisphere and (ii) ecosystems with multiple growing sea-
sons per year as is often observed in, for example, semiarid
regions.

Figure 1 illustrates the problem of northern vs. southern
hemispheric summers from a conceptual point of view, as-
suming that some discrete event recurs annually, but the tim-
ing varies according to some external drivers. We would then
need to find a predictive model explaining the interannual
variability of phenology, i.e., the probability of this recurrent
event in the course of the annual cycle. Figure 1 shows that
linear regression models would be inappropriate to predict
the day of the year (DOY) of some phenological event in the
Southern Hemisphere as the actual target values to predict
may alternate between %i} and $7.

In recent years, circular statistics have gained some atten-
tion as they offer a solution to problems of this kind (Morel-
lato et al., 2010; Beyene et al., 2018). Unlike classical statis-
tics, the predicted variables are expressed in terms of an-
gular directions (degrees or radians) across a circumference
(Fisher, 1995), allowing us to perform statistical analysis
where the data space is not Euclidean. In this framework,
point events can be described as a von Mises distribution
(Von Mises, 1918), the equivalent to the normal distribution
in circular statistics. The von Mises distribution is described
by two parameters: the mean angular direction () and the
concentration parameter (x). Circular-linear regressions (in
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the following simply named circular regression) allow us to
predict circular responses (e.g., the timing of phenological
events) from other linear variables (Morellato et al., 2010).
Given that any phenological event can be interpreted as an
angular direction and should be modeled as such, we assume
that these circular regressions are well suited in this context.
Despite this evident suitability, circular statistics have not yet
been extensively applied in the study of phenology and will
therefore be presented here as an alternative to conventional
linear techniques.

In this paper. we aim to identify the factors controlling
the timing of the maximal seasonal GPP (DOY Gppmax). The
questions we want to answer are as follows: first, can cir-
cular statistics describe and predict DOY gppmax per vege-
tation type? This aspect requires testing the methodologi-
cal advantages and caveats of circular statistics across hemi-
spheres in comparison with linear methods. Second. can
DOY Gppmax be explained using cumulative climate condi-
tions? This question needs to consider different possibili-
ties for generating temporally integrating features. And third,
how is DOY Gppmax affected by the climatic conditions dur-
ing the growing season? The last question requires a global
cross-site analysis. Based on the findings of these three ques-
tions, we then discuss the potential of circular regressions
beyond this specific application case in related phenological
problems and outline future applications.

2 Methods
2.1 Data

We use 52 EC sites (with at least 7 years of data) located
throughout the latitudinal gradient of the globe from the
FLUXNET2015 database (Table Al: http://fluxnet.fluxdata.
org/, last access: 11 July 2019 Pastorello et al., 2020). Each
FLUXNET site is identified with an abbreviation of the coun-
try and the name of the place, e.g., the EC tower AU-How,
means that it is located in Howard Springs. Australia. From
the dataset we use the GPP data that were derived using the
nighttime partitioning method and considering the threshold
of the variable u™ to discriminate values of insufficient turbu-
lence (Reichstein et al., 2005). In order to identify maximum
daily GPP, we compute the quantile 0.9 for each day based
on the half-hourly flux observations. As potential explana-
tory variables for DOY Gppmax We use the daily air tempera-
ture (Tair), shortwave incoming radiation (SWin), precipita-
tion (Precip), and vapor pressure deficit (VPD).

Given that the past climate conditions affect the CO» ex-
change between the atmosphere and the ecosystems (eco-
logical memory; Liu et al., 2019; Ryan et al., 2015), we
assume that an aggregated form of these climatic variables
needs to be considered in the prediction of the phenological
responses. We aggregate the original time series of the Tair,
SWin, Precip, and VPD for each DOY Gppmax using a half-life
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decay function (Eq. 1),
T - . .
() = 2=t )
Y i—oWi
for estimating an exponentially weighted mean of the obser-
vation vector X; = (X;.X;_1,...,X;—7)] at time step t. The

symbol (...) denotes the weighted average; i indicates the
number of days before r, going back to T =365 days. The
weight decay is represented by

w; =wy exp(ﬂi ln(2)) : (2)
tij2

The decay function gives the instantaneous value a weight
of 1 (wg = 1), and all preceding values receive an exponen-
tially reduced weight as determined by the half-time param-
eter t12. Finally, we make these variables comparable via
centering standardization to unit variance. We perform a sen-
sitivity analysis, evaluating the effect of the half-time param-
eter, and identify the optimum as the value when the variance
explained by the circular regression model is at a maximum.
The results are presented in Supplement 1.

Due to the high colinearity between the exponential
weighted variables of Tair, SWin, and VPD, we perform a
principal component analysis (PCA) on the matrix of vari-
ables and FLUXNET sites and retain the leading principal
component of these variables as well as precipitation as in-
put for the circular statistics model (Hastie et al., 2009). The
results of the PCA are presented in Supplement 2.

2.2 Circular statistics

Since units of the circular response variable must be in radi-
ans or degrees, we transform the days of the year to radians
using Eq. (3). For leap years we remove the last day.
d DOY360 b4
rad = 365 180°
where DOY means day of the year.
A basic circular regression model was proposed by Fisher
and Lee (1992) as follows:

(3)

y=u+ 2 atan (ﬁ;‘l’,‘). 4)

where y is the target variable (i.e., DOY Gppmax) 1n radians,
4 1s the mean angular direction of the target variable, x; rep-
resents the values for the variable i, and g; is the regression
coefficient. The parameters p and 8 are fitted via the max-
imum likelihood method using the reweighted least squares
algorithm as proposed by Green (1984).

Relevant interpretations of fitted circular regression mod-
els are (1) the sign of the 8 coefficients, (2) the statistical
significance of the coefficients, and (3) the accuracy of the
prediction. Regarding the first point, a negative sign of the
coefficient would mean that an increasing value of the pre-
dictor would lead to an earlier DOY gppmax compared to the

Biogeosciences, 17, 3991-4006, 2020
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M B: X1 B, X2
0=0+ 2 atan(-0.3 x 0.6 + 0.3 x 0.6)

-0.413 = 0 + 2 atan(-0.3 x 1.3 + 0.3 x 0.6)
6.697 o

0.413 =0+ 2 atan(-0.3 x 0.6 + 0.3 x 1.3)

Figure 2. Interpretation of the coefficients in the circular regres-
sion considering a reference point (black) generated with a circular—
linear model with mean angular direction (u = 0), two coefficients
(B1., B2) and two variables (x7, x2). where one of the coefficients is
negative (1), and the other one is positive (£2). When the coeffi-
cient is negative and the value of the parameter increases (blue), the
result is an earlier observation compared with the reference point
(the equivalent of —0.413rad is 6.697 rad, as is shown below the
equation). On the other hand, when the coefficient is positive and
the variable increases (yellow), the observation is later.

mean angular direction. The inverse would happen when the
coefficient is positive. Figure 2 conceptually illustrates how
the coefficients affect the predictions. Regarding the second
aspect, we can state that if a coefficient is not significant, then
its contribution would not be relevant to explaining the phe-
nological observation. In our case we define the coefficient
to be significant if the median of the distribution of p val-
ues is less than 0.05. Finally, we can estimate the accuracy
of the prediction using the Jammalamadaka—Sarma (JS) cor-
relation coefficient (Jammalamadaka and Sarma, 1988). As
in any other regression framework, this approach helps us to
quantify the effect of each climate variable on the interannual
variability of DOY Gppmax-

To estimate the relative sensitivity of DOY Gppmax to the
leading principal component representing Tair, SWin, and
VPD as well as to Precip, we use the implementation of
Eq. (4) in the R package “circular” (Agostinelli and Lund.
2017). To increase the robustness of the method we imple-
mented a block bootstrapping per growing season, generat-
ing a model parameter average based on 1000 iterations. In
each analysis, we estimate the accuracy of the model using
the JS correlation coefficient.

Biogeosciences, 17, 3991-4006, 2020
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2.3 Circular vs. linear regression

To assess the performance of linear versus circular regres-
sions we perform an experiment with simulated data in which
we evaluate the accuracy and precision of both approaches to
recover original regression coefficients in a circular setting
(Eq. 4). We add noise generated with a random von Mises
distribution with the parameters n = 100 and ¥ =30 to the
model to ensure that the result follows a normal distribution.
We predefined a range of values for two regression coeffi-
cients (8, = (0.01,....3), B2 =(0.01,...,3}). We simulate
the variables x; and x> as normal distributions with n = 100;
a mean of 10 and 15, respectively; and standard deviations
(SDs) of 1 and 2. We evaluate all possible combinations for
the regression coefficients 100 times, simulating different x;
and x»>. In each iteration we generate y using the setup pre-
viously described, and we recover the original regression co-
efficients using y as a response variable and x| and x2 as
predictors. Finally, we analyze two scenarios: (1) when the
target timing occurs at the beginning of the year (4 = 0) and
(2) when the target timing happens midyear (p¢ = ). The pa-
rameters for the entire setup generate realistic data, where the
standard deviation of y is not higher than 0.3rad. An SD of
0.5 rad would be equivalent to having phenological observa-
tions across half a year, which would not be realistic.

To quantify the accuracy of each model per coefficient we
estimate the mean absolute error per model and coefficient
(Eqg. 5). To compare the accuracy between models by co-
efficient we test the mean absolute errors between models
(Eq. 6). To generate a single measure that allows us to com-
pare both coefficients and models we estimate the mean dif-
ference accuracy (Eq. 7). The results can be understood as
follows: if the difference is higher than 0, the circular model
has a higher mean accuracy compared to the linear model and
vice versa. To quantify which model has higher precision we
estimate the difference between the SD of the mean absolute
errors per model for each coefficient (Eq. 8). Finally, we es-
timate the mean differences of precision between the regres-
sion coefficients (Eq. 9), where again if the value is higher
than 0, the circular model has a higher mean accuracy than
the linear model; the inverse is true if the value is lower than
0.

‘We estimate regression coefficients for the bootstrap sam-
plei e {1.....m} (m = 100) for the regression coefficient 8;,
j €{1.2}, and the model M € {I,c} (denoted as fi“;”; ). The
model accuracy can then be estimated as the mean absolute
error of the estimated regression parameter ,é j—” . J €{1,2} for
the linear model M =1 and the circular model M = ¢:

1 m .
amj=—_ |B% —Bjl. (5)
M=
The difference in accuracy for the coefficient j between the
circular and the linear model is shown in

dqj=aj—acj. (6)
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Finally, the mean difference in accuracy between the linear
and the circular model is given by

aa.] +5a.2

= 5

@)

The difference in precision for the coefficient j between the
linear () and the circular model (c) is shown in

8p.j =SI1j —Sc.j- (8)

The mean difference in precision between the linear and the
circular model is given by

_ 5;)‘] + 6;},2

8p= 3 ; 9

where sy _; is the sample SD of the vector (3;‘; )i.- M e {l,c}.
2.4 Analysis setup

The target variable DOY Gppmax is the day of the year when
GPP reaches its maximum during the growing season. Given
that different ecosystems present more than one growing sea-
son per year (e.g., semiarid ecosystems), it 1s necessary to
identify the number of growing seasons per year. To iden-
tify the number of growing seasons we apply a fast Fourier
transformation (FFT; Cooley and Tukey, 1965) to the mean
seasonal cycle of the GPP time series. The number of grow-
ing seasons is equal to the maximum absolute value of the
first four FFT coefficients (excluding the first one). For each
FLUXNET site, we reconstruct the GPP time series, taking
the real numbers of the inverse FFT. We use these recon-
structed time series to calculate the expected mean timing of
DOY Gppmax and use this value as a template. To recover the
real DOY gppmax from the original time series, we define a
window around the template of length inversely proportional
to the number of cycles (180 d/number of growing seasons).
To increase the robustness of the analysis we identify the
days with the 10 highest GPP values. These days are used
in the block bootstrapping mentioned above. Finally, since
most of the sites are located in the Northern Hemisphere we
expect that, in most cases, DOY Gppmax Will be reached by the
middle of the calendar year.

To quantify the contribution of each climate variable, we
count the number of sites per vegetation type where the re-
gression coefficient is statistically significant. We perform a
leave-one-out cross-validation per vegetation type to eval-
uate the predictive power of the circular regression using
climate conditions. We only consider vegetation types with
more than five sites. In this case the standardization of the
climate variables is not applied. Finally, we use the mean
of the optimum half-time parameter per vegetation type to
weigh the climate conditions.
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3  Results

Here, we first report results from simulated data to describe
the performance of the circular regression approach com-
pared to a linear model. Second, we compare the perfor-
mance of circular and linear regression using empirical data.
Third, we analyze the sensitivity of DOY Gppmax across vege-
tation types and climate classes. Finally, we show the results
of the predictive power of circular regression per vegetation

type.
3.1 Circular vs. linear regression

Figure 3a and ¢ show that for yu = 0 (DOY Gppmax at the be-
ginning of the year), circular regression has a higher accuracy
and precision compared to the linear regression for the entire
space of regression coefficient values, with a maximum dif-
ference of the order of 0.1 in terms of accuracy and of the
order of 1 for precision. For p = (DOY Gppmax midyear)
the linear model has a higher accuracy in most of the evalu-
ated space, with a maximum difference of the order of 0.001
compared with the circular regression, while circular regres-
sion has a higher precision for most of the regression coeffi-
cients of the order of 0.001. These results show that circular
regression has a higher precision in recovering the original
regression coefficients than linear regression no matter the
moment of the year. On the other hand, circular regression
has a higher accuracy than the linear model at the beginning
of the year. While linear is better midyear, the differences are
of the order of 0.001.

To illustrate the method in practice, we compare the cir-
cular and linear models using data from two sites: US-Hal
(Northern Hemisphere, deciduous broadleaf forest) and AU-
How (Southern Hemisphere, woody savanna). We relate the
climate variables with DOY gppmax (see Methods) and recon-
struct the DOY Gppmax using the linear and circular regression
models. We compare observed and predicted DOY gppmax
using JS correlation for the circular model and the Pear-
son product moment for the linear model. For US-Hal both
methods show similar performance in predicting DOY Gppmax
(Fig. 4), while for AU-How, the circular model retrieves the
original data better than the linear model, explaining 30 %
more of the variance. In the event that the DOYGppmax 18
reached at the beginning of the year, linear methods produce
a strong bias that predicts the timing across the entire year
(Fig. 4b).

3.2 Sensitivity of DOY Gppmax to climate variables

From the 52 sites analyzed in this study, only one site (ES-
LJu) shows bimodal growing seasons (see Supplement 1.2).
As expected, in most cases DOY Gppmax 0ccurs in the middle
of the calendar year (Fig. S6 in the Supplement), reflecting
the uneven site distribution in FLUXNET (Schimel et al.,
2015). However, some ecosystems in the Northern Hemi-

Biogeosciences, 17, 3991-4006, 2020
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Figure 3. Accuracy and precision of linear and circular regression models by recovering the original regression coefficients of a circular
regression. (a, ¢) ¢ = 0 (maximum at the beginning of the year). (b, d) ¢ = pi (maximum midyear). Panels (a) and (b) correspond to the
differences in accuracy between the models. Panels (¢) and (d) correspond to the differences in the precision between the models. Blue means
better performance of the circular model compared with the linear model, and red means higher performance of the linear model.

o

cor.circular (JS)= 0.81 cor.circular (JS) = 0.785
corlinear (Pearson) = 0.81 cor.linear (Pearson) = 0.507

Figure 4. Correlation coefficient between the observed and predicted DOY gpppyay using chimatic variables. Two sites are presented: (a)
US-Hal and (b) AU-How. The observed DOY Gppmax (green) is compared with the data retrieved using circular (orange) and linear (purple)
regressions. Two correlation coefficients are used: Jammalamadaka—Sarma (JS) and the Pearson product moment (Pearson). In the circular
plot the months and the day of the year (DOY) are also plotted every 75d. The green arrow indicates the mean angular direction of the
original data distribution.

Biogeosciences, 17, 3991-4006, 2020 https://doi.org/10.5194/bg-17-3991-2020

37



Chapter 3. Ecosystem physio-phenology revealed using circular statistics

D. E. Pabon-Moreno et al.: Circular statistics in phenology

Table 1. Number of FLUXNET sites where each regression coeffi-
cient is statistically significant to explain the physio-phenology of
GPPmax (DOY Gppmax )- The table is divided by the sign of the co-
efficient. The first column is the coefficient for the dimensionality
reduction between air temperature (Tair), shortwave incoming radi-
ation (SWin), and vapor pressure deficit (VPD); the second column
is the coefficient for precipitation (Precip).

Climatic variable

Sign  Tair, SWin, VPD  Precip

(+) 8 2
(=) 38 14

sphere do reach DOYGppmax at the beginning of the year:
these are Mediterranean sites such as US-Var and ES-LJu.
In general terms, most of the sites have an SD between 10d
and 40d. The maximal SD is 46.9d for the AU-Tum site.
A detailed table with the mean angular direction and SD of
DOY Gppmax of each site is presented in Sect. §1.2.

For half of the sites, the JS correlation coefficients are
between 0.70 and 0.97 (Supplement 1, Fig. S5). showing
that the interannual variability of DOY Gppmax 1s mainly ex-
plained by the cumulative effect of the climate variables.
Nineteen sites have a JS coefficient of less than 0.7 (DK-
Sor, FI-Hyy, US-MMS, DK-ZaH. FR-Pue, US-UMB. AU-
Tum, US-Ton, FR-LBr, US-Me2, IT-Lav, AT-Neu, DE-Gr1,
IT-MBo, IT-Ro2, US-Wkg, BR-Sal, FR-Fon, CZ-wet). For
ES-LJu the JS coefficient 1s 0.77 for the first growing season
and 0.78 for the second one (Table S2 in the Supplement).

We find that air temperature, shortwave incoming radi-
ation, and vapor pressure deficit appear as the dominant
drivers worldwide at 43 of the total sites (84 %: Supple-
ment 3). Precipitation is the main driver for five sites (AU-
How US-Ton ZA-Kru US-SRM US-Wkg: Supplement 3).
Interestingly, precipitation was the most important factor for
all the woody savanna sites (Supplement 3). For three sites
(DE-Gri, IT-Ro2, BRSal), any climatic variable is signifi-
cant. In terms of the sign of the coefficients, all the variables
are predominantly negative (Table 1). This means that higher
values of radiation, air temperature, VPD. and precipitation
lead to an earlier DOY gppmax . Individual sensitivities per site
are shown in Supplement 3.

The PCA between shortwave incoming radiation, air tem-
perature, and vapor pressure deficit has the highest frequency
of significant correlation coefficients by number of sites for
all the vegetation types with the exception of woody savan-
nas (WSAs), where precipitation is shown to be more impor-
tant for most sites than the dimensionality reduction between
Tair, SWin, and VPD (Fig. 5). For closed shrublands (CSHs)
and savannas (SAVs), both drivers have the same number of
sites where the coefficients are statistically significant.

A special case for understanding the sensitivity of
DOYGppmax to climate variables is the site “Llano de los
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DOY ppma; driver
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-

| h lli..u

CSH DEF ESF ENF GAA MF OSH SAV WET WSA
Vegetation type

Figure 5. Contribution of each climate variable to explain the inter-
annual variation in DOY gppyax per vegetation type. CSHs: closed
shrublands (n = 1); DBF: deciduous broadleaf forest (n = 10);
EBF: evergreen broadleaf forest (n = 5); ENF: evergreen needleleaf
forest (n = 15); GRA: grassland (n = 8); MF: mixed forest (n = 5);
OSHs: open shrublands (n = 1); SAV: savannas (n = 1); WET: per-
manent wetlands (n = 2); WSAs: woody savannas (n = 3). Each bar
shows the cumulative number of sites where each climate variable
1s statistically significant.

Juanes™ (ES-LJu). an open shrubland ecosystem in Spain. It
1s the only clearly bimodal ecosystem in our study (Fig. 6). In
this case precipitation is not statistically significant, while the
combination of Tair, SWin, and VPD is significant for both
seasons. Furthermore, in both growing seasons Tair, SWin,
and VPD have a negative coefficient.

The leave-one-out cross-validation for several vegetation
types shows that the predictive power of the model for
grassland (GRA) and evergreen broadleaf forest (EBF) is
—0.3 and —0.31, respectively. For deciduous broadleaf forest
(DBF) it is 0.46, and for evergreen needleleaf forest (ENF)
it is 0.4, while for mixed forest (MF) the predictive power of
the model is 0.88 (Fig. 7).

4 Discussion
4.1 Circular vs. linear regression
We explored whether circular regression is a suitable tool for

analyzing phenological events. Our results suggest that cir-
cular regressions can recover predefined coefficients in a set

Biogeosciences, 17, 3991-4006, 2020
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Figure 6. DOY Gppmax sensitivity to different climate drivers in a Mediterranean ecosystem: Llano de los Juanes (ES-LJu), Spain, with two
growing seasons (green and orange). (a) DOY Gppmax distribution across the year. The arrows indicate the mean angular direction of the
growing season. (b) Regression coefficients for each growing season and (c) the significance values for each variable. The red line in panel

(c) represents a p value of 0.05.

of simulations with higher accuracy and precision than linear
regressions. Hence, we would generally suggest that circular
regressions may be advantageous when the aim is analyzing
the effect of climatic variables on phenological events. We
also found cases where the classical linear regression may
be either more robust or equally suitable, e.g.. when pheno-
logical events are reached close to midyear. In the overall
view, however, we consider that circular regressions are to be
preferred over linear regression for their conceptual capacity
to analyze the physio-phenology of ecosystems regardless of
the day of the year when an event of interest occurs. This
allows us to analyze phenological studies at the global scale
regardless of geographic location or the distribution of the
observations during the year.

Different phenological models have been developed, rang-
ing from empirical approaches (Richardson et al., 2013) to
process models (Asse et al., 2020) over the last decades. As
we demonstrate here, circular statistics open new opportuni-
ties to increase the robustness of phenological models, allow-
ing us to analyze ecosystems across hemispheres within the
same consistent framework. In fact, the results of the phe-
nological sensitivity of DOY gppmax indicate the complex-
ity of ecosystem responses to climate variability. Our ap-
proach provides motivation to integrate circular regressions
into more complex statistical techniques like regression trees,
Gaussian processes, or artificial neural networks, targeting a
circular response variable.

Biogeosciences, 17, 3991-4006, 2020

4.2  Sensitivity of DOY gppmax to climate variables

The geographical location of the FLUXNET2015 sites rep-
resents an advantage when capturing the DOY Gppmax vari-
ability at the global scale (Supplement 1, Fig. S6). Most of
the analyzed sites (47) are located in the Northern Hemi-
sphere. Two sites (GF-Guy and BR-Sal) are located in the
tropical region. and three sites (ZA-Kru, AU-How, AU-Tum)
are in the Southern Hemisphere. However, because of the
low number of sites reported in the tropical and southern re-
gion with more than 7 years of data, our understanding of
the DOY Gppmax variability in these regions is still limited.
Increasing the number of tropical and Southern Hemisphere
sites should be considered a high priority in the near future
to complement our knowledge about the physio-phenological
ecosystem state.

The high values of the JS correlation coefficients for most
of the sites demonstrate that the interannual variability of
DOY Gppmax can be explained as the cumulative effect of the
climate variables during the growing season. Sites where it
was not possible to explain the variations in DOY gppy,, with
enough confidence (JS correlation < 0.7) might require the
incorporation of biotic variables (e.g., species composition;
Peichl et al., 2018) or soil property information that can im-
prove the predictive power of the model.

Our results suggest that there is no pattern between the
DOY Gppmax Sensitivity across vegetation types and climate
classes (Sect. Fig. §1.7). In other words, the DOY Gppmax
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Figure 7. Cross-validation of the circular regression model to predict DOY Gppmay for different vegetation types using air temperature,
shortwave incoming radiation, precipitation and vapor pressure deficit (see Methods). Deciduous broadleaf forest (DBF), evergreen broadleaf
forest (EBF), grassland (GRA). mixed forest (MF), and evergreen needleleaf forest (ENF). For each vegetation type the Jammalamadaka—
Sarma (JS) correlation coefficient is shown in the title of each plot. The red line represents the perfect fit.

sensitivity is site-specific, probably produced by the unique
combination of biotic (e.g., species composition, species
phenology, species interaction, and phenotypic plasticity)
factors that are not evaluated in our study. Several studies
that focused on ecosystem phenology suggest that species
composition plays a fundamental role in ecosystem physio-
phenology of the CO; uptake (Gonsamo et al., 2017; Peichl
et al., 2018).

While there is no clear relationship between the
DOYGPpmax sensitivity and the vegetation type, we find a
predominant role of the combined effects of shortwave in-
coming radiation (SWin), air temperature (Tair), and vapor

https://doi.org/10.5194/bg-17-3991-2020
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pressure deficit (VPD) at the global scale on the DOY Gppmax
interannual variability, where for most of the sites these vari-
ables have a negative regression coefficient. This means that
if the SWin, Tair, and VPD increase during the growing sea-
son, the DOY gppmax Will be reached earlier. This effect can
be a consequence of DOY Gppmax being reached when SWin
and Tair are at a maximum.

On a global scale, our analysis shows that the combina-
tion of air temperature, shortwave incoming radiation, and
vapor pressure deficit as well as precipitation has a negative
sign. This means that if these variables increase during the
growing season, the GPPmax will be reached earlier. Our re-

Biogeosciences, 17, 3991-4006, 2020
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sults are similar to those obtained by Wang and Wu (2019).
who were the authors to conclude that an increase in the tem-
perature produces an earlier DOY Gppmax- This phenomenon
is likely explained by the leaf-out advancing during spring.
Nevertheless, there is still no consensus on whether the in-
crease in temperature will produce an earlier end of the grow-
ing season. Several studies have demonstrated for different
vegetation types that when temperature increases, spring on-
set i1s earlier, and autumn senescence 1s later (Stocker et al.,
2013; Linkosalo et al., 2009; Migliavacca et al., 2012: Morin
et al., 2010; Post and Forchhammer, 2008), increasing the
length of the growing season and the amount of CO» that is
taken up by ecosystems (Richardson et al., 2013).

Ecosystems with two growing seasons per year represent
a very interesting case of the effect of climate drivers on
DOYGppmax across different growing seasons. In Llano de
los Juanes, Spain (ES-LJu; Fig. 6). DOY Gppmax is reached in
the first growing season, when the rainy season is finishing,
while in the second growing season DOY Gppmax is reached in
the middle of the rainy season (data not shown). The effect of
shortwave incoming radiation, temperature, and vapor pres-
sure deficit for both growing seasons is negative, suggesting
that if we increase these variables during the period before,
the DOY Gppmax will happen earlier.

Phenology in Mediterranean ecosystems is mainly con-
trolled by water availability (Kramer et al.. 2000; Luo et al..
2018: Pefiuelas et al., 2009). However, our results suggest
that DOY Gppmax 18 mainly sensitive to SWin, Tair, and VPD.
These results agree with the analysis performed by Gordo
and Sanz (2005), who were the authors to evaluate the phe-
nological sensitivity of Mediterranean ecosystems to temper-
ature and precipitation. They concluded that temperature was
the most important driver. Although water is a limiting factor
in Mediterranean ecosystems, its influence on plant physi-
ology and plant phenology can be completely different. In
terms of physiology, the GPPmax value can decrease, but in
terms of phenology, DOY Gppmax can still be the same.

Complex interactions between climate variables and phe-
nological response and the interspecificity of the sensitivity
at the site level explain in part the poor predictive power of
the model for grasslands, evergreen broadleaf forest, ever-
green needleleaf forest, and deciduous broadleaf forests in
the cross-validation analysis (Fig. 7). However, the predic-
tive power for mixed forest is high, even when the distri-
bution of the latitudinal gradient is not the same for all the
sites. These results reflect the fact that the circular regres-
sion model can be extrapolated from different sites to pre-
dict the DOY gpppay interannual variability. This advantage
could be a way to solve the common criticism that phenolog-
ical models cannot be extrapolated by only generating ad hoc
hypotheses (Richardson et al., 2013).

Biogeosciences, 17, 3991-4006, 2020
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5 Conclusions

In this study we explored the potential of “circular regres-
sions” to explain the physio-phenology of maximal CO; up-
take rates. We conclude that (1) shortwave incoming radi-
ation, temperature, and vapor pressure deficit are the main
drivers of the timing of maximal CO uptake at the global
scale (precipitation only plays a secondary role, with the ex-
ception of woody savannas, where the most important vari-
able is precipitation), and (2) although the sensitivity of the
DOY Gppmax to the climate drivers is site-specific, it is possi-
ble to extrapolate the circular regression model for different
sites with the same vegetation type and similar latitudes. Fi-
nally, we used simulated and empirical data to demonstrate
that circular regression produces more accurate results than
linear regression, in particular in cases when data need to be
explored across hemispheres.
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Appendix A: FLUXNET sites

Table Al. FLUXNET sites used in our study. We report the name of the sites, the time period used for the analysis, and the climate class
of each site following Koppen—Geiger classification: tropical monsoon climate (Am), tropical savanna climate (Aw), cold semiarid climate
(BSk), humid subtropical climate (Cfa), oceanic climate (Cfb), hot summer Mediterranean climate (Csa), warm summer Mediterranean
climate (Csb), humid subtropical climate (Cwa), humid continental climate (Dfb), subarctic climate (Dfc, Dsc), and tundra climate (ET).
We also report the vegetation type of the sites: closed shrubland (CSH). deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF),
evergreen needleleaf forest (ENF), grassland (GRA), mixed forest (MF), open shrubland (OSH), savanna (SAV), permanent wetland (WET),

and woody savanna (WSA).

Site name  Koppen—  Vegeta-  Period No. years  Citation Data DOI
Geiger tion analyzed
class type

AT-Neu Dfc GRA 2002:2012 11 Wohlfahrt et al. (2008) https://doi.org/10.18 140/FLX/1440121
AU-How  Aw WSA 2002:2014 13 Beringer et al. (2007) htips://doi.org/10.18 140/FLX/1440125
AU-Tum  Cfb EBF 2001:2014 14 Leuning et al. (2005) https://doi.org/10.18 140/FLX/1440126
BE-Bra Cib MF 1699:2002, 2004:2014 15 Carrara et al. (2004) htips://doi.org/10.18 140/FLX/1440128
BE-Vie Cib MF 1997:2014 18 Aubinet et al. (2001) htips://doi.org/10.18 140/FLX/1440130
BR-Sal Am EBF 2002:2005, 2009:2011 7 Saleska et al. (2003) https://doi.org/10.18 140/FLX/1440032
CA-Man  Dfc ENF 1994:1996, 1998:2003 12 Brooks et al. (1997) https://doi.org/10.18 140/FLX/1440035
CH-Cha Cib GRA 2005:2014 10 Merbold et al. (2014) https://doi.org/10.18 140/FLX/1440131
CH-Dav ET ENF 1997:2014 18 Zielis et al. (2014) htips://doi.org/10.18 140/FLX/1440178
CH-Fru Cib GRA 2005:2014 10 Imer et al. (2013) https://doi.org/10.18 140/FLX/1440133
CH-Lae Cib MF 2004:2014 11 Etzold et al. (2011) htips://doi.org/10.18 140/FLX/1440134
CZ-wet Cib WET 2006:2014 9 Dusek et al. (2012) https://doi.org/10.18 140/FLX/1440145
DE-Gri Cib GRA 2004:2014 11 Prescher et al. (2010) https://doi.org/10.18 140/FLX/1440147
DE-Hai Cib DBF 2000:2012 13 Knohl et al. (2003) https://doi.org/10.18 140/FLX/1440148
DE-Tha Cib ENF 1996:2014 19 Griinwald and Bernhofer (2007)  https://doi.org/10.18140/FLX/1440152
DK-Sor Cib DBF 1996:2014 19 Pilegaard et al. (2011) htips://doi.org/10.18 140/FLX/1440155
DK-ZaH  ET GRA 2000:2010, 2012:2014 14 Lund et al. (2012) htips://doi.org/10.18 140/FLX/1440224
ES-Llu Csa OSH 2005:2013 9 Serrano-Ortiz et al. (2009) htips://doi.org/10.18 140/FLX/1440226
Fl-Hyy Dfe ENF 1996:2014 19 Suni et al. (2003) https://doi.org/10. 18 140/FLX/1440158
Fl-Sod Dfc ENF 2001:2014 14 Thum et al. (2007) https://doi.org/10.18 140/FLX/1440160
FR-Fon Cib DBF 2005:2014 10 Delpierre et al. (2016) https://doi.org/10.18 140/FLX/1440161
FR-LBr Cib ENF 1996:2008 13 Berbigier et al. (2001) htips://doi.org/10.18 140/FLX/1440163
FR-Pue Csa EBF 2000:2015 15 Rambal et al. (2004) htips://doi.org/10.18 140/FLX/1440164
GF-Guy Am EBF 2004:2014 11 Bonal et al. (2008) https://doi.org/10.18 140/FLX/1440165
IT-Col Csa DBF 1996:2014 19 Valentini et al. (1996) https://doi.org/10.18 140/FLX/1440167
IT-Cpz Csa EBF 2000:2008 9 Garbulsky et al. (2008) https://doi.org/10.18 140/FLX/1440168
IT-Lav Cib ENF 2003:2014 12 Marcolla et al. (2003) https://doi.org/10.18 140/FLX/1440169
IT-MBo Dib GRA 2003:2013 11 Marcolla et al. (2011) https://doi.org/10.18 140/FLX/1440170
IT-Noe Csa CSH 2004:2014 11 Marras et al. (2011) https://doi.org/10.18 140/FLX/1440171
IT-Ren Dfc ENF 1999, 2002:2003, 2005:2013 12 Montagnani et al. (2009) htips://doi.org/10.18 140/FLX/1440173
IT-Rol Csa DBF 2001:2008 8 Rey et al. (2002) https://doi.org/10.18 140/FLX/1440174
IT-Ro2 Csa DBF 2002:2008, 2010:2012 10 Tedeschi et al. (2006) https://doi.org/10.18 140/FLX/1440175
IT-SRo Csa ENF 1999:2012 14 Chiesi et al. (2005) https://doi.org/10. 18 140/FLX/1440176
NL-Loo Cib ENF 1996:2014 18 Moors (2012) https://doi.org/10.18 140/FLX/1440178
RU-Cok Dsc OSH 2003:2013 11 van der Molen et al. (2007) hrtpsz//doi.org/10.18 140/FLX/1440182
RU-Fyo Dib ENF 1998:2014 17 Kurbatova et al. (2008) htips://doi.org/10.18 140/FLX/1440183
US-Blo Csa ENF 1997:2007 11 Baker et al. (1999) htips://doi.org/10.18 140/FLX/1440068
US-GLE  Dfc ENF 2005:2014 10 McDowell et al. (2000) https://doi.org/10.18 140/FLX/1440069
US-Hal Dib DBF 1992:2012 21 Urbanski et al. (2007) https://doi.org/10.18 140/FLX/144007 1
US-Los Dib WET 2001:2008, 2010, 2014 10 Davis et al. (2003) https://doi.org/10.18 140/FLX/1440076
US-Me2  Csh ENF 2002:2014 13 Treuhaft et al. (2004) https://doi.org/10.18 140/FLX/1440079
US-MMS Cfa DBF 1999:2014 16 Schmid et al. (2000) htips://doi.org/10.18 140/FLX/1440083
US-NR1 Dfc ENF 1999:2014 16 Monson et al. (2002) htips://doi.org/10.18 140/FLX/1440087
US-PFa Dib MF 1996:2014 19 Berger et al. (2001) htips://doi.org/10.18 140/FLX/1440089
US-SRM  BSk WSA 2004:2014 11 Scott et al. (2008) https://doi.org/10.18 140/FLX/1440090
US-Syv Dib MF 2001:2007, 2012:2014 10 Desai et al. (2005) https://doi.org/10.18 140/FLX/1440091
US-Ton Csa WSA 2001:2014 14 Xu and Baldocchi (2003) https://doi.org/10.18 140/FLX/1440092
US-UMB Dib DBF 2000:2014 15 Curtis et al. (2002) https://doi.org/10.18 140/FLX/1440093
US-Var Csa GRA 2001:2014 14 Xu and Baldocchi (2004) https://doi.org/10.18 140/FLX/1440094
US-WCr  Dib DBF 1699:2006, 2011:2014 12 Curtis et al. (2002) htips://doi.org/10.18 140/FLX/1440095
US-Wkg  BSk GRA 2004:2014 11 Emmerich (2003) htips://doi.org/10.18 140/FLX/1440096
ZA-Kru Cwa SAV 2000:2005, 2007:2013 13 Archibald et al. (2009) https://doi.org/10.18 140/FLX/1440188
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On the Potential of Sentinel-2 for Estimating
Gross Primary Production

Daniel E. Pabon-Moreno ', Mirco Migliavacca, Markus Reichstein, and Miguel D. Mahecha

Abstract— Estimating gross primary production (GPP), the
gross uptake of CO, by vegetation, is a fundamental prerequisite
for understanding and quantifying the terrestrial carbon cycle.
Over the last decade, multiple approaches have been developed to
derive spatiotemporal dynamics of GPP combining in situ
observations and remote sensing data using machine learning
techniques or semiempirical models. However, no high spatial
resolution GPP product exists so far that is derived entirely
from satellite-based remote sensing data. Sentinel-2 satellites
are expected to open new opportunities to analyze ecosystem
processes with spectral bands chosen to study vegetation between
10- and 20-m spatial resolutions with five-day revisit frequency.
Of particular relevance is the availability of red-edge bands that
are suitable for deriving estimates of canopy chlorophyll content
that are expected to be much better than any previous global
mission. Here, we analyzed whether red-edge-based and near-
infrared-based vegetation indices (VIs) or machine learning tech-
niques that consider VIs, all spectral bands, and their nonlinear
interactions could predict daily GPP derived from 58 eddy covari-
ance sites. Using linear regressions based on classic VIs, including
near-infrared reflectance of vegetation (NIRv), we achieved
prediction powers of R? = 0.51 and an RMSE ¢-foa =
2.95 [umol CO; m-2s1]"%"% 10-fold cross validation. Chloro-
phyll index red (CIR) and the novel kernel NDVI (kKNVDI)
achieved significantly higher prediction powers of around R?

= 0.61 and RMSEyfoa = 2.57 [umol CO, m2s7!].
Ué?ﬁféldall spectral bands and VIs jointly in a machine learning
prediction framework allowed us to predict GPP with R? =
0.71 and RMSEooq = 2.68 [pmol CO; m~2s"']. Despite the
high-power prediction when machine learning techniques are
used, under water-stress scenarios or heat waves, optical infor-
mation alone is not enough to predict GPP properly. In general,
our analyses show the potential of nonlinear combinations of
spectral bands and VIs for monitoring GPP across ecosystems at
a level of accuracy comparable to previous works, which,
however, required additional meteorological drivers.

Index Terms— Gross primary production, red edge, Sentinel-2.
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I. INTRODUCTION

G ROSS primary production (GPP), the amount of carbon
absorbed by the ecosystem via plant photosynthesis,
is the largest single flux in the global carbon cycle [1].
GPP varies in response to several abiotic (e.g., radiation,
temperature, and precipitation; 2 and 3) and biotic factors
(e.g., metabolic pathway, vegetation type, leaf chemical traits,
and species composition: 4). However, GPP cannot be directly
observed and needs to be derived from in situ measurements of
net CO, exchanges using the eddy covariance (EC) technique
over canopies [5], [6]. Using different flux partitioning meth-
ods, it is possible to estimate the amount of carbon that is taken
up by the ecosystem (GPP) or released through ecosystem res-
piration (RECO) [7]-[11]. Nevertheless, EC can only measure
the exchange of energy and matter between the ecosystem and
the atmosphere at the scale of the climatology footprint, which
can vary between a few hundred meters to a few kilometers
(e.g., 12). Today, EC data are available globally in multiple
regional networks (Integrated Carbon Observation System:
ICOS, The National Ecological Observatory Network: NEON,
AmeriFlux, AsiaFlux) and the meta-network Fluxnet [13],
[14]. The flux database networks enable studies into local
processes understanding [6], [15]-[17], evaluating biotic and
abiotic relationships on multiple time scales (e.g., 18 and 19),
and evaluating terrestrial biosphere models [20]-[23].

In the last decades, many process-based, semiempirical,
and data-driven models have been developed to upscale GPP
using remote sensing data, and climate information, in order to
understand the spatiotemporal dynamics of the global
carbon cycle [3], [24]-[26]. For instance, the MODIS MOD17
product is based on a semiempirical model that estimates
GPP as the product between the light-use efficiency and the
absorbed photosynthetically active radiation (APAR) [27].
The maximum light-use efficiency is a plant functional-type-
dependent parameter, and it is downregulated by stress factors
that depend on temperature and vapor pressure deficit that need
to be parameterized. The Breathing Earth System Simulator
(BESS) [28] is a process-based approach, which relies on a
radiative-transfer model coupled with several remote sensing
products to predict GPP and evapotranspiration (ET) ata
global scale with a temporal resolution of eight days. Jung
et al. [29] showed that machine learning methods can likewise
efficiently upscale fluxes from in situ data to the globe.
Building on this work, Tramontana et al. [30] used the
FLUXNET dataset and MODIS remote sensing information to
train multiple machine learning techniques to predict monthly
GPP at a global scale. Later, Bodesheim et al. [31] produced
GPP global products at half-hour temporal resolution using
different settings, but of low spatial resolution (0.5°). The
state-of-the-art machine learning-based upscaling of GPP is
described in [26].

For more information, see https://creativecommons.org/licenses/by/4.0/
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A more direct approach to predicting GPP is to identify veg-
etation indices that are highly correlated with GPP dynamics.
Badgley et al. [32], for instance, found that the near-infrared
reflectance of vegetation (NIRv) index strongly correlates with
monthly estimates of sun-induced chlorophyll fluorescence
(SIF), rendering it a potential predictor for GPP at the global
scale. Later on, Badgley et al. [33] showed that NIRv can
explain 68% of the monthly GPP variability at the FLUXNET
sites. Recently, Camps-Valls et al. [34] presented a nonlinear
version of the normalized difference vegetation index (NDVI)
based on kernel methods (kKNDVI) that correlates better with
GPP and SIF products than NIRv and NDVI. The advantage of
such approaches is that they rely purely on remote sensing data
and circumvent the parameterization of light-use efficiency
models. However, relying on reflectance values alone means
that the detection of physiological regulation of photosynthesis
via meteorological conditions is not detectable unless they last
long enough to affect vegetation pigments and structure.

Today, new satellite missions have increased the information
available to characterize vegetation properties and ecosystem
processes [35], [36]. Specifically, the satellite missions from
the Copernicus program have opened new ways to monitor
ecosystem processes with unprecedented spatial, temporal, and
spectral resolution [37], [38]. For instance, it has been shown
that Copernicus missions allow deriving plant traits such as
chlorophyll and nitrogen content along with other biophysical
parameters [39]-[42]. To the best of our knowledge, only
three studies have evaluated the prediction capacities of
GPP using Sentinel-2: Wolanin et al. [43] used the SCOPE
model and machine learning techniques to predict GPP of
C3 crops. Lin et al. [44] evaluated the potential prediction of
GPP as a function of the vegetation index multiplied by the
incident photosynthetic active radiation (PARin). They
analyzed the performance of five red-edge vegetation indices
and three nonred-edge vegetation indices. They found that
chlorophyll index red (CIR) showed the highest correlation
with GPP from the EC tower for two grassland sites. Finally,
Cai et al. [45] compared GPP predictions using Sentinel-2
and MODIS for several EC-sites in Northern Europe. The
authors did not find any improvement for the prediction of
GPP when using Sentinel-2 compared to MODIS using the
enhanced vegetation index (EVI2). Despite these advances,
there is a lack of systematic comparison between novel
red-edge vegetation indices and vegetation indices based on
the classic red and NIR bands (i.e., NDVI, kNDVI, and
NIRv) in terms of their predictive power regarding GPP.
Likewise, the question of whether a machine learning
approach considering all Sentinel-2 bands could improve the
satellite-based predictions of GPP remains unresolved.

In this study, we aim at understanding the potential of
Sentinel-2 mission for monitoring GPP across European and
North American major biomes at high spatial resolution. First,
we want to understand, which vegetation indices or spectral
bands available from Sentinel-2 are the most relevant for
predicting GPP. Second, we investigate what is the difference
in prediction performance between different approaches based
on state-of-the-art vegetation indices (e.g., NIRv, kKNDVI, red-
edge based, and nonred-edge indices) and machine learning
using all spectral bands.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

II. METHODS

A. Eddy Covariance Sites

We wused 58 EC sites compiled by the ICOS
Drought 2018 Team (49 sites) and the Ameriflux/ ONEFLUX
(9 sites) initiatives from 2015 to 2018 (Appendix A). We used
half-hourly GPP data (GPP_NT_VUT_USTARS0) estimated
using the FLUXNET2015 workflow [14]. GPP is calculated in
FLUXNET with the night-time partitioning method [8] using a
variable u* threshold for each year. The annual u* threshold is
derived from the 50" percentile of u* threshold distribution
obtained by bootstrapping the original night-time net
ecosystem exchange data [14]. Daily GPP values are estimated
as the mean of the half-hourly values where net ecosystem
exchange is observed or gap-filled with good quality (e.g.,
NEE VUT USTARS50 QC = 0 and 1). In our analysis, days
with less than 70% of good quality half-hourly data were set
to “NA.” Finally, we smoothed the time series using a
moving window mean with a window size of seven days.

The EC sites span across Europe and United States from
a latitude of 34.3°N to 67.8°N and include a variety of
vegetation types: croplands (9 sites), deciduous broadleaf
forests (9 sites), evergreen needleleaf forests (18 sites),
grasslands (7 sites), mixed forest (4 sites), open shrublands
(2 sites), savannas (4 sites), and wetlands (5 sites). The sites’
locations represent a variety of climatic regimes, including
Mediterranean, humid subtropical, temperate oceanic, humid
continental, subarctic, and tundra (Appendix A).

B. Sentinel-2 Imagery

We downloaded Sentinel-2 L1C products for the EC sites
from 2015 to 2018 using the Scihub Copernicus portal
(https://scihub.copernicus.eu/, last accessed October 2020).
We performed atmospheric corrections for all products using
Sen2Cor 2.5.5 [46]. All bands were resampled to 20-m
resolution using the nearest neighbor approach for upsam-
pling and median for downsampling. Finally, we computed
several vegetation indices (see Supplementary Material 9) such
as NDVI, kNDVI, NIRv, and multiple red-edge vegetation
indices as the inverted red-edge chlorophyll index (IRECI)
and CIR. Among these indices, kKNDVI requires a specific
parameterization of the kernel width o, which was here set to
the median distance between the near-infrared band (NIR) and
the red band per spatial pixel; for Sentinel-2, o =
median(0.5 x (B8 + B4)). Postprocessing of the images was
performed using SNAP v7.0 [47] and automatized using the
graph processing framework and the graph processing tool.
The scripts for the postprocessing of the products are available at
a Zenodo repository (see code availability).

We defined a buffer area of 100 m radius around the EC
towers to ensure that the flux footprint climatology lies within
this area (Supplementary Material 1). We used the scene
classification generated by Sen2Cor to filter out images with:
“no data,” “saturated or defective pixels,” “dark areas,” “cloud
shadows,” “water,” “cloud,” “thin cirrus,” and “snow.” To
reduce the effect of shadows or saturated pixels that are
not correctly classified by Sen2Cor, we implemented an
outlier detection approach that consists of three steps. First,
we computed z-scores (data centered and scaled to unit
variance) per image and removed pixels of the buffer area
with an absolute residual value higher than quantile

25 <
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0.99 [48]. Second, to detect potential images with clouds,
we used the time series of the spectral bands per site. We then
estimated the average of the buffer area for each image/band
and decomposed the time series of each band into a seasonal
and a trend component using locally estimated scatterplot
smoothing [LOESS 49]. Next, we applied an inner quantile
range technique over the residual of the time series decom-
position [50]. Residuals with values higher or lower value
than three times the quantiles 0.25 and 0.75, respectively, were
also classified as outliers. This analysis was performed using
the “anomalize” R package [50]. Third, we defined a bigger
buffer area of 900 m, where we estimated the percentage of
clouds. We removed observations where the percentage of
clouds was above 70%. We also identified 16 additional images
with clouds by visual inspection (Supplementary Material 3).
We present the complete description of the time series decom-
position and the outlier detection in Supplementary Material 2
(the R scripts are available in the Zenodo repository, see code
availability). The minimum number of images per site detected
as an outlier is 1, the maximum is 20, and the mean across
sites is 6 images. Finally, we selected the daily GPP values
for the days when we also have valid images from Sentinel-2.

C. Dataset Balancing

The imbalanced representation of different categories in a
dataset can influence the weighting of the observations during
the training process and consequently in the quality of the
prediction [51]. In the last decades, several methods have
been developed to solve this issue, mainly for classifications
problems, but recently also for regression analysis [52], [53].
To address this problem for the prediction of GPP through
different vegetation types that are not all equally represented
(Fig. 1), we implemented three methods to balance the dataset
given the differences in the number of observations per
vegetation type.

1) Undersampling Balancing: All observations are grouped
by vegetation type and are resampled without replace-
ment, to the number of observations of the vegetation
type with the least observations.

2) Oversampling Balancing: All observations are again
grouped by vegetation type. Each category is com-
pleted until reaching the number of observations of the
maximum category (sampling with replacement). The
replacement technique is only applied when the total
observations of the category are less than the difference
between the number of observations of the category
with the maximum number of observations and the total
number of observations of the current vegetation type.

3) Synthetic Minority Oversampling TEchnique for Regres-
sion (SMOTER) Balancing: 1t is a balancing technique
proposed by Torgo et al. [52], where the idea behind
the method is to undersample observations with high
frequency. In contrast, values with a low frequency (rare
observations) are oversampled. In this form, rare obser-
vations will have a higher weight during the training. All
the following analyzes were applied considering all three
balancing techniques as well as to the imbalanced case.

D. Linear Regression-Based GPP Prediction
We evaluated the performance of red-edge vegetation
indices to predict GPP using linear regression using the
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Fig. 1. Number of Sentinel-2 images used for the prediction of GPP

(2015-2018) per vegetation type. Each observation corresponds to a Sentinel-2
image at a 100 m radius around the EC tower. Red color indicates the images
with no data, saturated or defective pixels, dark areas, cloud shadows, water,
clouds, thin cirrus, or snow effects that were removed. Blue color represents
the number of valid images. Evergreen needleleaf forests (ENF), croplands
(CRO), deciduous broadleaf forests (DBF), grasslands (GRA), wetlands
(WET), mixed forest (MF), savannas (SAV), and open shrublands (OSH).

balanced and imbalanced datasets. We compared the perfor-
mance of NDVI, NIRv, and kNDVI [34], as well as red-edge
vegetation indices such as IRECI and CIR (for an overview,
see Supplementary Material 9). All evaluations were based
on leave-location-and-time-out tenfold cross validation as pro-
posed by Meyer ef al. [54] and implemented in the “CAST” R
package [55]. To increase the robustness of the analysis, the
generation of tenfolds was repeated 50 times. In this approach,
the partitions for the cross validation are semirandomly
generated to minimize spatial and temporal autocorrelation.
We evaluated the performances of the different models using
the coefficient of determination (R?) of the linear regression
between observed and predicted GPP, the root-mean-square
error (RMSE), and the mean absolute error (MAE). Finally,
we compared the distributions of the model evaluation metrics
between the vegetation indices using the Wilcoxon test [56].

E. Machine Learning-Based GPP Prediction

We used random forests [57] as prediction approach for GPP
for each balanced and imbalanced dataset. A detailed descrip-
tion of how to use RF for upscaling land surface fluxes can be
found in [31]. We explored what variables are the most rele-
vant for predicting GPP. For this, we evaluated the radiometric
indices presented in Supplementary Material 9, additionally to
the spectral bands Bl, B2, B3, B4, B5, B6, B7, B8, B8A,
B9, B11, and B12 (Supplementary Material 8) resulting in a
total of 35 predictor variables. kKNDVI was not included here
since it is a nonlinear transformation of the NDVI using kernel
methods, and its inclusion would have added no information
when applying machine learning techniques. We performed a
forward feature selection as suggested by Meyer et al. [58],
where the models are generated based on the pairs’ combi-
nation of predictors, allowing us here to compare nonlinear
combinations of spectral bands and vegetation indices, as we
may expect that they could reduce model complexity. The
power prediction of each model was estimated using a tenfold
leave-location-and-time-out cross validation [54], where the
tenfolds were generated 50 times to increase the robustness



4409412

of the analysis. The idea is that the model with highest R?is
selected first, and then, new variables are iteratively added to
this initial model. The process finishes when none of the
remaining variables increases model performance.

ITI. RESULTS AND DISCUSSION

In the following, we first report the results of the GPP
prediction using different vegetation indices in linear regres-
sions, where we specifically discuss the performance of GPP
estimates based on red-edge vegetation indices compared with
the ones based on NIRv, NDVI, and kKNDVI. We also discuss
the effect of the balancing techniques on the performance of
the prediction. Second, we present the results of the GPP
prediction using Sentinel-2 spectral bands and vegetation
indices using random forests, where we present examples of
the prediction for different EC sites and an entire Sentinel-2
tile. Finally, we discuss the possibilities and limitations of
predicting GPP using remote sensing information only and
how such prediction can be improved in the future and provide
globally continuous flux estimates.

A. GPP Prediction Using Linear Regressions

In Fig. 2, we compare the performance of linear GPP predic-
tions using red-edge-based vegetation indices (CIR and IRECI,
see Supplementary Material 9), NIRv, NDVI, and kNDVI.
Red-edge vegetation indices perform better than NDVI and
NIRv in all considered metrics (Fig. 2), while KNDVI performs
as well as IRECI. According to the Wilcoxon test, the differ-
ences in the performance distribution of each index are statisti-
cally significant. In general, CIR explains on average 3% more
of the GPP variance than kNDVI, 4% more than IRECI, 10%
more than NIRv, and 11% more variance than NDVI. kKNDVI
explains an average 1% more than IRECI, 7% more than NIRv,
and 8% more than NDVI. The prediction of GPP using IRECI
shows that 6% more variance in GPP is explained compared
to NIRv and 7% more than NDVI. NIRv only explains 1%
more of the GPP variance than NDVI. The RMSE shows
smaller errors in GPP estimated with CIR, kNDVI, and IRECI
compared to the estimates based on NIRv and NDVI (Fig. 2).
As expected, when balanced datasets are used, the explained
variance increases 2% for CIR, from 2% to 4% for IRECI,
from 2% to 5% for NIRv, from 1% to 3% for kKNDVI, and from
2% to 3% for NDVI (Table I and Supplementary Material 4).

Badgley et al. [32] introduced the NIRv as an alternative to
SIF for the estimation of monthly GPP. Compared to machine
learning products or radiative-transfer models, the advantage
of this approach is that it could be used to estimate global GPP
easily using global and long-term time series products such
as MODIS. However, our results suggest that the red-edge
vegetation index CIR yields significantly higher prediction
powers of GPP compared to NIRv. This finding could be
interpreted as an important argument for relying on the novel
Sentinel-2 data for GPP prediction.

Red edge is the region around 710 nm, which marks the
sharp transition between the red region (700 nm), where the
absorption of chlorophyll occurs, and the near-infrared region
(730 nm), where the reflectance is produced by the internal
structures of the leaf [59, p. 180]. This region is highly
sensitive to the leaf chlorophyll content [60], [61]. At the
same time, chlorophyll content is a controlling factor of the
fraction of photosynthetically active radiation absorbed by
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Fig. 2. Prediction of GPP using linear regression and different vegetation
indices (CIR: chlorophyll index red, IRECI: inverted red-edge chlorophyll
index, NIRv: near-infrared vegetation, and NDVI: normalized difference veg-
etation index) as predictors. Results are shown for the imbalanced (original)
dataset only. The vertical lines correspond to the results of the Wilcoxon test in
pairs, where ns is the nonsignificant differences, *: p < 0.05, **: p < 0.01, and
**k: p < 0.001.

plants (APAR). This is one possible explanation why CIR is
strongly correlated with GPP [62], even if it cannot reflect the
fast variations of the photosynthesis itself. For these reasons,
VIs based on red-edge bands might generally have advantages
for estimating GPP over VIs that do not rely on the red edge.
Lin et al. [44] found that CIR multiplied by PAR can explain
slightly more variability of GPP than NIRv multiplied by PAR
for two grasslands sites. However, we would argue that the
PAR effect could be dominant in their study, while our aim
here was to focus on the spectral information only.

We also tested the predictive performance of kNDVI [34],
which was reported to predict monthly GPP better than NIRv.
The idea behind kNDVI is to solve the saturation problem of
NDVI at high values by exploring the nonlinear relations of
the two bands of the NDVI. Even though no red-edge
information is used, we found that kKNDVI performed at the
level of IRECI in our study. One interpretation of this finding is
that most of the information contained in the red-edge bands
can be captured by an appropriate transformation of the distance
between near-infrared and red bands. However, there is no
direct mechanistic argument, and it is unclear to what extent
this observation is general and further research will be
necessary. However, our results may imply that kernel versions
of classical vegetation indices could derive relevant informa-
tion from satellite missions that do not have red-edge indices.

B. GPP Prediction Using Random Forest

Another question of this study was whether machine learn-
ing could outperform even the new generation of vegetation
indices. In Table II, we present the results of the variable
selection analysis where a different number of predictors are
selected depending on the balancing technique. From 35 pre-
dictors that included Sentinel-2 spectral bands (Supplementary
Material 8) and derived vegetation indices (Supplementary
Material 9), CIR, S2REP, and B1 are selected for all datasets,
while GNDVI, PSSRA B3, and B4 are selected at least in
three cases. ARVI, MTCI, MCARI, B2, and B5 are selected
at least in two datasets. IRECI, NDI45, RVI, TNDVI, TSAVI,
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TABLE I
AVERAGE PERFORMANCE OF THE GPP PREDICTION USING LINEAR REGRESSION (TENFOLD TEMPORAL—SPATIAL CROSS VALIDATION) WITH

RED-EDGE AND NONRED-EDGE VEGETATION INDICES. THE COLUMN DATASET REFERS TO THE BALANCING TECHNIQUE USED TO
BALANCE THE REPRESENTATION OF DIFFERENT VEGETATION TYPES
Red-edge Vegelation indices Non Red-edge vegelation indices
IRECI CIR NIRv NDVI kNDVI
Dataset 12 RMSE MAE | R* RMSE MAE | g*° RMSE MAE | R? RMSE MAE | #* RMSE MAE
Imbalanced 0.57 277 223 0.61 2.57 1.98 0.51 295 2.36 0.50 2.98 2.34 0.58  2.65 1.97
Undersampling | 0.61  2.51 2.05 0.62 243 1.91 0.56 2.70 2.15 0.53 2.84 231 0.61 248 1.91
Oversampling 0.59 2.63 2.09 0.61 2.51 1.93 0.53 2.80 2.20 0.50 2.95 2.36 0.59 259 1.94
SMOTER 0.60 3.29 2.75 0.62 3.19 2.64 0.55 345 2.84 0.52 3.74 3.07 0.54 3.53 2.83
TABLE II

VARIABLES SELECTED FOR THE PREDICTION OF GPP USING THE FORWARD FEATURE SELECTION PRESENTED BY MEYER et al. [58]. THE DATASET
COLUMN REPRESENTS THE BALANCING TECHNIQUE USED TO BALANCE THE DIFFERENT VEGETATION TYPES IN THE ORIGINAL (IMBALANCED)

DATASET. A TENFOLD CROSS VALIDATION IS PERFORMED TO ESTIMATE: R?, RMSE, AND MAE. THE OPTIMUM NUMBER OF VARIABLES
SAMPLED AS CANDIDATES FOR EACH SPLIT (MTRY) IS ALSO SHOWN. THE INCREASE OF R? AND THE DECREASE IN
ERROR WHEN EACH VARIABLE IS ADDED TO THE INITIAL MODEL ARE SHOWN, WHERE THE FIRST VALUE
USING THE FIRST TWO PREDICTORS IN THE COLUMN VARIABLES SELECTED AND

TO THE VALUE OF THE FINAL MODEL. RED-EDGE CHLOROPHYLL INDEX

PoSITION INDEX (S2REP), ATMOSPHERICALLY RESISTANT VEGETATION
CHLOROPHYLL INDEX (MTCI), GREEN NORMALIZED DIFFERENCE
NORMALIZED DIFFERENCE VEGETATION INDEX
(NDI45), INFRARED PERCENTAGE VEGETATION
(PSSRA), TRANSFORMED SOIL ADJUSTED
ABSORPTION RATIO INDEX

RANDOMLY
THE STANDARD
CORRESPONDS TO THE MODEL
THE LAST VALUE CORRESPONDS
(CIR), SENTINEL-2 RED-EDGE
INDEX (ARVI), MERIS TERRESTRIAL
VEGETATION INDEX (GNDVTI), TRANSFORMED
(TNDVI), NORMALIZED DIFFERENCE INDEX 45
INDEX (IPVI), PIGMENT SPECIFIC SIMPLE RATIO
VEGETATION INDEX (TSAVI), MODIFIED CHLOROPHYLL
(MCARI), AND GREEN CHLOROPHYLL INDEX (CIG)

. Number of Number of 12, i RMSE\6_ rold MAE G foid ) Variables " .
Dataset observations  variables selected ﬁnlaH nj:oili‘l final medel final nlOdE?fr Y selected 30— gorq  Standard Error

CIR, B1 0.593 0.008

B3 0.632 0.008

B4 0.649 0.008

B2 0.653 0.008

Imbalanced 2636 9 0.66 2.34 1.76 2 BS 0.655 0.008

PSSRA 0.655 0.008

S2REP 0.657 0.008

GNDVI 0.659 0.007

CIR, B1 0.620 .010

B5 0.652 0.009

TNDVI 0.664 0.009

PSSRA 0.669 0.009

NDVI45 0.671 0.009

Undersampling 1264 12 0.68 2.20 1.68 2 GNDVI 0.671 0.009

IRECI 0.671 0.009

MTCI 0.673 0.009

RVI 0.674 0.009

S2REP 0.674 0.009

ARVI 0.675 0.009

CIR, B1 0.582 3.008

B3 0.632 0.008

B4 0.656 0.007

GNDVI 0.661 0.007

Oversampling 4288 9 0.67 2.28 1.70 2 PSSRA 0.665 0.007

S2REP 0.668 0.007

MCARI 0.669 0.007

ARVI 0.670 0.007

CIR, B4, 0.633 0.009

B3 0.664 0.009

B2 0.685 0.008

MTCI 0.690 0.008

S2REP 0.697 0.008

SMOTER 2635 11 0.71 2.68 2.10 2 B12 0.700 0.008

Bl 0.702 0.008

TSAVI 0.703 0.008

MCARI 0.705 0.008

CIG 0.706 0.008

CIG, and BI12 are selected at least once (Table II). The
variable selection analysis shows that even when nonlinear
combinations of spectral bands are possible, vegetation indices
are still selected as they probably would simplify the machine
learning model. Yet, not all information required for predict-
ing GPP seems to be encoded in vegetation indices alone.
Bands B1, B2, B3, B4, BS5, and B12 also appear to provide
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information that is useful for the predictions. A surprising
result is the selection of band B1. This band is typically used
for aerosol detection and correction purposes. We speculate
that Bl is a proxy for radiation dynamics (e.g., direct and
diffuse radiation) that are important for GPP. However, we note
that Penuelas et al. [63] had considered this spectral region
earlier in their structure insensitive pigment index (SIPI)
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Fig. 3. Prediction of GPP using different data balancing techniques. In each
case, the observed values are shown on the y-axis, and the predicted values are
shown on the x-axis. The red line represents the 1:1 line. Imbalanced makes
reference to the original dataset. Undersampling, oversampling, and SMOTER
make reference to each technique used to balance the dataset (see Section II for
further details).

that has, however, not been developed further for vegetation
monitoring. The additional selection of bands B2 (blue), B3
(green), B4 (red), and B5 (vegetation red-edge) suggests that
there is space for the development of new vegetation indices
that can capture the GPP variability beyond the existing
indices.

In Fig. 3, we present the prediction of GPP using ran-
dom forest regression, where GPP can be predicted with
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Fig. 5. GPP product for a Sentinel-2 tile, over the Ballons des Vosges

Regional Nature Park (France, June 23, 2020). The land cover classification
generated by Sen2cor was applied before the prediction, where pixels
considered as nonvegetation are encoded as NAs.

R210—fcld = 0.66 and RMSE g-fold = 2.34 [pmol CO, m_QS_l]
for the imbalanced dataset. There are improvements
in the variance explained using the balanced dataset.
Rzl()—fold = 0.68 and RMSE p-foilq = 2.20 [umol CO, m‘zs‘l]
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using undersampling, R}j_qq = 0.67 and RMSEio_fola =
2.28 [umol CO; m-2 s! ] using oversampling technique, and
R_to1a = 0.71 and RMSE o-fo1a = 2.68 [umol CO, m~2s7!]
using the SMOTER technique (Table II). The comparison
between the distribution of the metrics shows that there are
significant differences between the imbalanced and balanced
datasets (Supplementary Material 10). The results of the cross
validation for each fold and balancing technique are presented
in Supplementary Material 7. Tramontana et al. [30] reported
that spectral information with machine learning techniques can
explain around 78% of the GPP variability across sites. One of
the advantages of our approach is that it does not require a
previous vegetation-type classification [64]. In comparison
with the estimation of GPP using biophysical parameters as,
e.g., in [44], we show that it GPP can be estimated more
directly with high accuracy.

In Fig. 4, we present the examples of predicted and observed
GPP representing different vegetation types. The prediction for
each site is presented in Supplementary Material 5. Despite
the overall high variances explained by random forests, there
are indeed cases when GPP cannot be predicted correctly.
For instance, the maximum GPP is underestimated in savan-
nas and evergreen needleleaf forest ecosystems. Our study
period covers the 2018 heat wave, an extreme event where
northwestern Europe vegetation was highly affected [65]-[67].
We find, however, that the reduction in CO, uptake during
this event was not well captured for mixed forest and decid-
uous broadleaf forest (Fig. 4). This can also be seen when
comparing the time series of 2016 and 2017 to 2018 (see
Fig. 4). This means that the prediction of ecosystem fluxes
during extreme events remains an open issue that needs to be
addressed with high priority as discussed in [68]. How-ever,
our finding that GPP dynamics during drought events cannot
be well represented is in-line with earlier findings. For
instance, Bodesheim et al. [31] showed that GPP was not
properly predicted during dry summers for several EC sites and
attributed this to the poor representation of water availability in
their dataset. Different from our study, their study also used
climate information, which, in theory, increases the model
performance for water-stress scenarios. One general problem
could be the time lag between the change of photosynthesis
rates and the decline in the concentration of the pigments,
including chlorophyll content, in the leaves. However, given
that the data generated here are based on vegetation reflectance
properties only, it is expected that they can only pick up
changes in GPP that are primarily driven by changes in APAR
and pigment concentrations but are not apt to capture the fast
response of photosynthesis mediated, e.g., by stomatal closure.
This limitation is inherent to all reflectance-based methods and
the reason why, in some sites, we are not able to reproduce
GPP dynamics under stress.

Nevertheless, the overall seasonal dynamics are represented
very well in our GPP estimates across sites and vegetation
types. Future studies should investigate whether the inclusion
of thermal information from Sentinel-3 or radar information
from Sentinel-1 can help to indirectly address the water deficit
in the ecosystems during drought periods [69] and lead to the
next generation of operational GPP products based on
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remote sensing data only. In addition, the unique combination
of red-edge vegetation indices in Sentinel-2, radar information
from Sentinel-1, or multispectral and thermal information from
the bands available in Sentinel-3 may open unprecedented
possibilities for vegetation monitoring in the near future [35].

Previous studies used plant functional classes as a spatial
feature to upscale GPP [30], [70]. To use vegetation types as a
predictor of GPP, a necessary step will be to improve the land
cover maps to match the resolution of Sentinel-2. The ESA
WorldCover consortium gave the first steps, producing the
first global land cover map at 10-m resolution for 2020 using
radar information from Sentinel-1 and optical information
from Sentinel-2 [71]. Future research will have to test the
added value of these upcoming products for predicting carbon
fluxes at high spatial resolution.

To give a taste of what the mapping of carbon fluxes
might look like in the future, in Fig. 5, we present an
example of the upscaling of GPP for a Sentinel-2 tile over the
Ballons des Vosges Regional Nature Park (France, June 23,
2020; Supplementary Material 6). The area contains different
types of deciduous broadleaf forest, weatlands, grasslands, and
croplands. Even though our model does not use vegetation
type as a predictor, it does clearly differentiate GPP dynamics
of crops, weatlands, and forests. The high spatial resolution of
Sentinel-2 could be a nice avenue to monitor forests with a
high degree of fragmentation [72] or even green areas in
cities [73]. A tutorial of how to use the final models
produced in our study to upscale GPP using any Sentinel-2
L2A product provided by Copernicus-ESA is presented in the
code repository.

IV. CONCLUSION

In this study, we explore how remote sensing information
provided by Sentinel-2 can be used to predict GPP across a
variety of vegetation types. We find that the CIR explains an
average 10% more of the variability of GPP at daily scale than
NIRv and 11% more than NDVI using linear regressions. The
high correspondence between kNDVI and IRECI is unan-
ticipated and requires further physical exploration. The predic-
tion power of vegetation indices can be slightly outperformed
using machine learning: using random forests, the spectral
information provided by Sentinel-2 alone can predict an aver-
age 68% of GPP variability (cross-validated). However, under
extreme climate conditions such as the 2018 drought/heat
wave, meteorological data or thermal information might be
necessary to improve the prediction of short-term reduction of
GPP that is not associated with changes in APAR or the
decline of chlorophyll content. From a methodological point
of view, we also explored whether balancing techniques can
help to represent vegetation types and rare observations.
Furthermore, we found that improvements in the prediction
accuracy of GPP are associated with the use of balanced
datasets for training. Overall, our study presents a first attempt
to assess the capability of Sentinel-2 data alone to predict
GPP. Despite the discussed limitations, Sentinel-2 generally
offers a highly relevant perspective to map fluxes at high
spatial resolution, opening new ways to understand ecosystem
processes and responses from local to global scale.



4409412

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

APPENDIX A: EDDY COVARIANCE SITES

SI1TES FROM THE ICOS DROUGHT 2018 TEAM AND ONEFLUX INITIATIVES USED IN THIS STUDY. THE NUMBER OF OBSERVATIONS CORRESPONDS TO
THE NUMBER OF VALID SENTINEL-2 IMAGES RECOVERED FOR THE SITE DURING THE TIME PERIOD. THE VEGETATION TYPE FOR EACH SITE IS
PRESENTED: MF = MIXED FORESTS, CRO = CROPLANDS, GRA = GRASSLANDS, ENF = EVERGREEN NEEDLELEAF FORESTS,

= DECIDUOUS BROADLEAF FORESTS, WET = WETLANDS, SAV = SAVANNAS, AND OSH = OPEN SHRUBLANDS

Site name  Vegeta- Number Years DOI Reference
tion of obser-
type vations

BE-Bra MF 56 2015-2018  https://doi.org/10. 18160/F738-634R [74]
BE-Lon CRO 21 2015-2018  https://doi.org/10.18160/6SM0-NFES [75]
BE-Vie MF 12 2016-2018  hteps://doi.org/10.18 160/ MK3Q-BBEK [76]
CH-Aws GRA 31 2016-2018  https://doi.org/10.18160/3YQE-7BRS NA
CH-Cha GRA 58 2015-2018  https://doi.org/10.18160/GMMW-5E2D [77]
CH-Dav ENF 13 2015-2018  https://doi.org/10.18160/RE6M-HIHX [78]
CH-Fm GRA 79 2015-2018  hteps://doi.org/10.18160/J938-0MKS [79]
CH-Lac MF 80 2015-2018  https://deoi.org/10.18160/FABD-SV]] [80]
CH-0Oc2 CRO 44 2015-2018  https://doi.org/10.18160/NO1Y-R7DF [81]
CZ-BK1 ENF 22 2015-2018  https://doi.org/10.18160/7QXR-AYEE [82]
CZ-Lnz MF 84 2015-2018  hteps://doi.org/10.18160/84SN-YBSD NA
CZ-RAJ ENF 50 2015-2018  https://doi.org/10.18160/HFS9-IBTG NA
CZ-Stn DBF 22 2015-2018  https://doi.org/10.18160/V2IN-DQPJ NA
CZ-wct WET 68 2015-2018  hteps://doiorg/10. 18 160/W4Y S-463W [83]
DE-Akm WET 39 2015-2018  https://dororg/10.18160/24B5-144F NA
DE-Geb CRO 60 2015-2018  https://doi.org/10.18160/ZK18-3Y W3 [84]
DE-Gri GRA 73 20152018  https://doi.org/10.18160/EN60O-T3FG [85]
DE-Hai DBF 48 20152018 https:/#/doi.org/10.18160/DAET-BFPS [86]
DE-HoH DBF 37 20152018 https://dol.org/10.18160/J1YB-YEHC NA
DE-Hte WET 44 20152018  httpsi//doi.org/10.18160/JL1YB-YEHC NA
DE-Hzd DBF 28 20152018 htps:i#dol.org/10.18160/PJEC-43XB NA
DE-Kli CRO 56 2015-2018  hteps:i#dol.org/10.18160/STT9-TBIZ [85]
DE-Obe ENF 6 20152018 https://dei.org/10.18160/FSM3-RC5F NA
DE-RuR GRA 39 20152018  https://doi.org/10.18160/HPVI-K8R 1 [87]
DE-RuS CRO 28 20152018 hrtps://doi.org/10.18160/A2TK-QDSU [88]
DE-RuwW ENF 20 20152018 hups://doi.org/10.18160/H7Y6-2R1H NA
DE-Tha ENF 45 20152018 https://doi.org/10.18160/BSE6-EMV] [89]
DK-Sor DBF 53 20152018  https://doi.org/10.18160/BFDT-7THYE [90]
ES-Abr SAV 171 20152018  https://doi.org/10.18160/1 1 TP-MX4F [91]
ES-LMI1 SAV 80 20152018 https://doi.org/10.18160/FDSD-GVRS [92]
ES-LM2 SAV 62 20152018 https://doi.org/10.18160/38VI-XSB7 [92]
FI-Hyy ENF 22 20152018 https://doi.org/10.18160/0THQ-BZMU

FI-Let ENF 17 2017-2018  https://doi.org/10.18160/0JHQ-BZMU [93]
FI-Sii WET 23 2016-2018  https://doi.org/10.18160/0RE3-DTWD NA
FI-Var ENF 38 2016-2018  htrps://doi.org/10.18160/NYH7-5JEB NA
FR-EM?2 CRO 59 20172018 https://doi.org/10.18160/HC1V-8VKIJ NA
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(Continued.) SITES FROM THE ICOS DROUGHT 2018 TEAM AND ONEFLUX INITIATIVES USED IN THIS STUDY THE NUMBER OF OBSERVATIONS
CORRESPONDS TO THE NUMBER OF VALID SENTINEL-2 IMAGES RECOVERED FOR THE SITE DURING THE TIME PERIOD. THE VEGETATION

TYPE FOR EACH SITE IS PRESENTED: MF = MIXED FORESTS, CRO = CROPLANDS, GRA = GRASSLANDS, ENF = EVERGREEN

NEEDLELEAF FORESTS, DBF = DECIDUOUS BROADLEAF FORESTS, WET = WETLANDS, SAV = SAVANNAS,

AND OSH = OPEN SHRUBLANDS

FR-Hes DBF 76 20152018 hitps://doi.org/10, 18160/ WTY C-IVQY NA
IT-BCi CRO 38 2015-2018  https://doi.org/10.18160/T25N-PD1H [94]
IT-Lsn OSH 13 2016-2018  https://doi.org/1018160/RTKZ-VTDJ NA
IT-Tor GRA 68 20152018  https://doi.org/10. 18 160/ERMH-PSVW [95]
NL-Loo ENF 43 20152018 https://doi.org/10. 18 160/MV3IK-WMOY [96]
RU-Fy2 ENF 44 20152018 https:i//doi.org/10, 18160/ WEV2Z-WQXY [97]
RU-Fyo ENF 46 20152018 hteps://doi.org/10.18160/412N-DY 7S [98]
SE-Deg WET 46 20152018 hups:/#doi.org/10.18160/0T47-MEEU NA
SE-Htm ENF 35 20152018 https://doi.org/10.18160/17FF-96RT NA
SE-Lnn CRO 45 20152018 hteps://doi.org/10.18160/5GZQ-S67.0 NA
SE-Nor ENF 37 20152018 https://dei.org/10.18160/K57M- TVGE NA
SE-Ros ENF 58 20152018 hteps://doi.org/10.18160/ZF2F- 8207 NA
SE-Svb ENF 38 2015-2018  https://doi.org/10 18160/ X57W-HWTE NA
US-ARM CRO 53 2016-2018  https://doi.org/10.17190/AMF/1246027 [99]
US-Bar DBF 4 2016-2018  https://doi.org/10.17190/AMF/1246030 [100]
US-Hol ENF 14 20152018 hups://doi.org/10.17190/AMF/1246061 [101]
US-MMS DBF 8 2015-2018  hups://doi.orgf10.17190/AMF/ 1246080 [102]
US-Seg GRA 45 2015-2018  hteps://doi.org/10.17190/AMF/1246124 [103]
US-Ses OSH 45 2016-2017  https://doi.org/10.17190/AMF/1246125 [104]
UsS-UMB  DBF 14 2015-2017  https://doi.org/10.17190/AMFE/ 1246107 [105]
US-Vem ENF 10 2016-2017  https://doi.org/10.17190/AMFE/1246121 [106]
US-Wijs SAV 20 2015-2017  https://doi.org/10.17190/AMF/1246120 [107]

CODE AVAILABILITY

Code is available under GPL-3 license at: https://github.
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Chapter 4. On the Potential of Sentinel-2 for Estimating Gross Primary
Production

62



CHAPTER 5

Concluding Discussion

The current scenario of climate change and global warming has been better under-
stood thanks to estimating energy and matter fluxes between the atmosphere and
the biosphere (Baldocchi, 2020). In this direction, the development of concepts that
try to reconcile ecosystem processes at different spatial and temporal scales, such
as the functional properties of ecosystems, has also been fundamental (Reichstein
et al., 2014; Migliavacca et al., 2021).

In this dissertation, I frame our understanding of terrestrial vegetation activity,
represented by gross primary production, using three axes: Magnitude, Time, and
Space (Figure 5.1). In the first axis, Magnitude, the maximum gross primary pro-
duction represents the optimal photosynthesis rate at the ecosystem level (GPPpax).
It is expected that understanding the limiting factors of GPPy,ax can help to under-
stand what are the effects of climatic variability on the entire ecosystem. I find that
for ~68% (~78.4 millions km?) of the total global surface with terrestrial vegetation
cover, air temperature and precipitation are equally limiting GPPpax. For ~17.4%
(~20.1 millions km?) of the land surface with terrestrial vegetation cover GPP .y is

mainly limited by temperature. I also find that for many regions of the world the
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Figure 5.1: Conceptual representation of the three axes of study on this dissertation.
The gray line represents the gross primary production (GPP) variation during the
growing season. The first axis Magnitude refers to the value of GPP and the max-
imum GPP (GPPpax) per-se. The second axis Time is the timing when GPPpy,y is
reached. The third axis, Space, represents the prediction/upscaling of GPP using
new remote sensing information. The arrow represents the increase in spatial resol-

ution. From local Eddy Covariance Towers (EC) to regional and global predictions of
GPP

classification system built based on the GPP,.x controlling factors matches previ-
ous ecological classifications systems such as Koppen-Geiger (Although, this is now
considered a climate classification system). Evaluating the relationship between an
optimum ecosystem state as GPPnax and climate variables allows us to generate a
functional classification system that represents vegetation’s response regarding eco-
system fluxes to climate variations. Nevertheless, a complete comparison year by
year for the last decades evaluating this relationship can give us more information on
how ecosystems respond each year to multiple pressure factors (e.g., climate change,
land-use change, heatwaves).

In the second axis, Time, I evaluate the effect of climate variables on the timing
of GPPpax (DOYGPPpyax). I find that for most ecosystems, an increase in short-
wave incoming radiation, temperature, and vapor pressure deficit will produce that

DOYGPPax will be reached earlier (when compared with the mean DOYGPP %)
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(Pabon-Moreno et al., 2020). I also find that although the sensitivity of DOY GPP yax
is site-specific, it is possible to formulate models for the same vegetation type at
similar latitudes. In scenarios where temperature and precipitation increase for the
same region, we expect to find no changes in the timing of GPP.x. Otherwise, if
one of the variables increases, we expect a change following the coefficient sign in
the circular-linear regression model. From a methodological perspective, I show that
circular statistics increase the robustness of the timing analysis compared to linear
statistics. Even more circular statistics show to be more versatile in analyzing data
sets across the globe regardless of whether the observations are from the Northern
or Southern Hemisphere (Pabon-Moreno et al., 2020).

On the third axis, Space, I show how the new information from Sentinel-2 im-
proves the prediction of gross primary production. When vegetation indices based
on the red-edge spectral region (700 nm - 730 nm) as chlorophyll index red (CIR)
and the inverted red-edge chlorophyll index (IRECI) are used, the accuracy on the
prediction of GPP increases by ~10% more of variance explained. This improvement
represents a step forward when compared with previous vegetation indices as Nor-
malized vegetation index (NDVI) or novel ones as the kernelized version of NDVI
(kKNDVI Camps-Valls et al., 2021). From a methodological perspective, I assess the
bias produced by the imbalanced representation of observations by vegetation type
and seasons on the prediction of GPP. I use different statistical techniques to bal-
ance the number of observations per vegetation type, the frequency of observations
per season, and even the presence of rare observations (observations with a low fre-
quency) that are difficult to predict (Torgo et al., 2013). Here I demonstrate than
when these techniques are applied, the predictions’ robustness improves, allowing
the formulation of more generalized models (Pabon-Moreno et al., 2022).

The exploration of the axes proposed in this dissertation allows us to have a
more holistic view of the effects of climate change and global warming on ecosystem
functions and the ecosystem functional properties. The analysis presented ranges

from local observation (a few hundred meters around the EC towers) and daily
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frequency to regional analysis thanks to new satellite missions such as Sentinel-2,
and global analysis at the 15-day temporal resolution using previous GPP products.

In the first axis, Magnitude, understanding the limiting factors of GPPy,.x give us
a better idea of how climate change may translate into changes in optimum ecosys-
tem processes. Furtheremore, my approach allows to generate a functional map that
consider optimum ecosystem states (Reichstein et al., 2007; Mahecha et al., 2007).
Current plant functional types were generated by combining plant traits, species
distributions maps, and vegetation activity from satellite imagery (Box, 1995, 1996;
Diaz and Cabido, 1997). Using an optimal ecosystem process as GPPpax and its
limiting factors, my approach allow us to generate new functional classes that relate
optimum ecosystem processes with climate information. These new classes can be
used as input for future global-scale modeling studies. Specifically, ecosystem func-
tional properties can describe the interaction of the environment with the vegetation
in a smaller number of parameters.

Equally relevant to understand the effect of climate change on ecosystems is
the timing of optimum ecosystem processes, such as DOYGPPp.x. Most of the
studies evaluated the timing of a biological process as periodic oscillations that can
be decomposed into different signals. In this dissertation, I show that time can
also be interpreted as the relationship between abiotic components and the day of
the year when optimum ecosystem processes are reached. It is well known that
climate change has affected plant phenology on a global scale (Richardson et al.,
2013); however, there is still no clear consensus regarding how climate change affects
the beginning, end, and peak of productivity in ecosystems on a global scale. My
study (Pabon-Moreno et al., 2020) is a first step to understand the effect of climate
variables in the timing of GPPy,,x. Circular statistics may represent the first step in
analyzing these phenomena. Even if I only focused on the peak of the growing season
(i.e., DOYGPPnax), the same analysis can be performed for the beginning and the
end of the growing season. Another important analysis is to assess the correlation

between the times of the beginning, the end, and the peak of the growing season
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using circular-circular regressions. These new analyses may provide more clarity
and could generate consensus on the response of vegetation to climate change in
terms of timing.

In the last axis, Space, improving the GPP predictions is necessary to improve
our knowledge of the ecosystem processes and the changes produced by global warm-
ing and climate change. The Normalized Difference Vegetation Index (NDVI) was
developed in the 70s as part of the first satellite missions focused on tracking changes
on the Earth’s surface (Rouse et al., 1974). Since then, several vegetation indices
have been developed to correlate the photosynthetic activity of plants and their
spectral characteristics (Bannari et al., 1995). Many recent approaches rely on the
classic NDVI proposed in the 70s (e.g., Badgley et al., 2017, 2019; Camps-Valls
et al., 2021). The basic premise of vegetation indices, is that the amount of plant
biomass is proportional to the ratio between absorption in the red region of the elec-
tromagnetic spectrum, and reflection in the infrared region of the spectrum. The
absorption in the red region is caused by chlorophyll, and reflection in the infrared
region is caused by the cell’s structure of plants (Myneni et al., 1995). The Sentinel-
2 satellite mission included two red-edge bands that were not included in previous
satellite missions (Martimort et al., 2007). Previous studies found that vegetation
indices based on the red-edge spectral region would produce more accurate estima-
tions of plant photosynthesis (Delegido et al., 2011). Nevertheless, a robust-empirical
comparison between the different vegetation indices and estimations of GPP from
EC towers was missing before my study (Pabon-Moreno et al., 2022). While my
study has shown to improve the prediction of GPP, some questions remain open:
for example, what is the performance of red-edge-based vegetation indices when
kernel methods are applied? What is the performance of GPP prediction based
on Sentinel-2 and new red-edge vegetation indices compared to previous satellite
missions such as MODIS and Landsat? Answering these questions will be relevant
before performing global-scale prediction exercises using Sentinel-2 imagery.

In recent decades, understanding the functional biogeography of plants has be-
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come increasingly relevant to the role of plants in climate change and global warming
(Friend, 2010; Mahmood et al., 2014). Mainly, the research has focused on plant
trait variability (Violle et al., 2014), and most of it on the fluxes of energy and matter
between the biosphere and the atmosphere (Musavi et al., 2015, 2016; Migliavacca
et al., 2021). While defining the function of an organism as a serie of processes
that can be imputed to them not only ends up being ambiguous, but also useful
for framing research. Nevertheless, what is the limit in the definition of functions?
For example, I could define the shadow cast by trees as a function of trees. In
other words, could someone refute that the function of trees is not to give shade
to humans? In this sense, the defined function can be used and abused depending
on my interests. Whether those interests are relevant or not is a more sociological
question than a purely natural science one. Defining functions in nature inevitably
goes hand in hand with trying to represent our interpretation of economy, necessity,
and relationship with nature (Lockwood, 1999). When we move from physical and
biochemical phenomena to biological and ecological ones, the mechanism and caus-
ality schemes presented in physics and chemistry tend not to work completely on
biological/ecological problems (Ross, 2021). The explanation for this is the evolu-
tionary mechanism inherent to any living being. As a biologist, a key element not
considered in functional biogeography and the proposed three axes is the role of

evolution.

Outlook

Although, evolution and its mechanism are beyond this dissertation, evolution can
help to solve important questions for functional biogeography. For example, Do
ecosystems always tend to have a degree of homeostasis in terms of matter and
energy fluxes? Do species change represent changes in energy and matter flows,
or are these flows used as an arm for competition? Do the leaf economy of plants
and the ecosystem functional properties concepts go in the same direction that

evolution fitness concepts? While evolution acts at different scales, assessing and
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understanding its role in functional biogeography is an ongoing task. In the last
decades, several studies proposed models and evidence about some of the previous
questions (Ernest and Brown, 2001; Zakharov and Trofimov, 2014; Kikuchi et al.,
2018; Dyke and Weaver, 2013). For example, Ernest and Brown (2001) present
evidence that despite environmental changes, species diversity tend to homeosteat-
ically regulate ecosystem energy and matter fluctuations. Furthermore, the authors
state that total population estimates, biomass, and vegetation cover do not provide
precise measures of energy and matter resources usage by the ecosystems. In this
direction, bio-meteorological techniques such as eddy covariance towers and remote
sensing information can help to reconciliate the evolution mechanism of species and
ecosystem dynamics. Currently, most of the eddy covariance sites on FLUXNET
initiative are located on managed ecosystems in Europe and North-America. During
the development of western civilization and industrialization, most of the forests in
Europe were intervened by humans. Therefore, the effects of natural selection in the
long term and evolution itself are more difficult to evidence on Europe. Nevertheless,
forest plots that are currently monitored in Europe and North America are a good
tool to evaluate and try to predict the outcome of evolution processes in the fol-
lowing decades and centuries. To bring eddy covariance towers and remote sensing
technology to current monitored forest plots is a top-priority task to develop. Some
first steps in this direction are the studies of Ma et al. (2019) and Pacheco-Labrador
et al. (2022), where the authors evaluated the relation between spectral diversity
and functional diversity. Another important step will be to generate and apply a
unified protocol for systematic forest inventories, including the collection of diversity
metrics for the current eddy covariance towers that are part of FLUXNET initiat-
ive. A further step will be to establish the systematic and periodic genetic sampling
of the species in the eddy covariance sites that can help to link genetic expression
and metabolic regulation pathways with ecosystem fluxes and functional diversity.
Combining the knowledge and data from biometeorology, phylogenetic, ecology, and

systematic biology will help us to develop new models and theories to reconciliate
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evolution mechanism and explain changes on ecosystem at all organization-levels
from genes to ecosystem fluxes at different temporal scales. A central key in the
puzzle of reconciliating functional biology and classic biogeography will be to in-
crease the investment of human resources and technological transaction to deploy
new eddy covariance towers, as well genome, and gene expression technologies in the
tropics. Such approaches will also help to understand the effect of climate change
and global warming in ecosystems. It is not a coincidence that naturalists from
last centuries developed their ideas after visiting and collecting information in the
tropics (Schiebinger and Swan, 2007; Wilke, 2010; Baber, 2016). A way to com-
pensate the colonialism and bio-piracy (for which European and North American
countries still do not pay royalties, Schiebinger and Swan, 2007; Baber, 2016) is to
help research groups located in the tropics to develop their own ideas and deploy
their research infrastructure (i.e. transferring patents and industrial knowledge ne-
cessary to develop the research equipment). Reconciliating evolution theories and
functional biogeography including the ideas and data from tropical research groups
will not only contribute to the progress on both disciplines, but also to advance our
understanding of the effect of climate change and global warming on the terrestrial

ecosystems around the globe.
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APPENDIX A

Complementary results: Empirical comparison between

GPP,.x and GPPgy

Theoretically, ecosystem functional properties are conceptualized to link plant traits
with ecosystem biogeochemical processes (Reichstein et al., 2014). Nevertheless, |
consider that its definition on the framework of functional biogeography can also
include the empirical optimum ecosystem processes and not only the theoretical
ones; as the functionality concept is to delimit what organisms do instead of what
organisms are composed (Violle et al., 2014). In this section I made a empirical com-
parison between GPPg, and GPP,.x. GPPg,, is an ecosystem functional property,
where GPP estimation is derived assuming optimal conditions of photosynthetic act-
ive radiation (PAR) and absorbed photosynthetic radiation (APAR) (Musavi et al.,
2016). GPPpax is the maximum observed GPP during the growing season of an
ecosystem. I hypothesize that the empirical values of GPPpax will be highly similar
to estimations of GPPg, and then can be used as an ecosystem functional property
to describe an ecosystem optimum state.

To compare GPPs,; and GPPax I used the GPPg,; values reported by Miglia-
vacca et al. (2021) for 46 eddy covariance sites from FLUXNET 2015 dataset
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Appendix A. Complementary results: Empirical comparison between GPPy.x and
GPPgq

(Pastorello et al., 2020). I estimated the GPPy,.x values following the methodo-
logy proposed by Pabon-Moreno et al. (2020) for the same sites, and the same time
period of Migliavacca et al. (2021) study. It is important to clarify that Migliavacca
et al. (2021) report one GPPg, value per site (90th percentile), while Pabon-Moreno
et al. (2020) track 10 maximum days/GPP per growing season. Then it is expected
a higher variability from Pabon-Moreno et al. (2020), for this reason, the mean of
the GPPnax values were estimated per site. A detailed comparison between the
values per side EC site is presented below. Finally, I compared the mean GPPax
values (across years) with the GPPg,; values using linear regression and estimating

the Person-correlation coefficient.
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Figure A.1: Comparison of GPPpna.x (Pabon-Moreno et al., 2020), and GPPgy
(Migliavacca et al., 2021) Colors represent the vegetation type of each Eddy Co-
variance site. CSH: Closed Shrublands; DBF: Deciduous Broadleaf Forests; EBF:
Evergreen Broadleaf Forests; ENF: Evergreen Needleleaf Forests; GRA: Grasslands;
MF: Mixed Forests; OSH: Open Shrublands; SAV: Savannas; WET: Permanent
Wetlands. The black line represents a perfect fit. The blue line represents the fit of
the observations.

When the mean GPPp.x is compared with GPPg, values, I found a high cor-
relation between both metrics as evidenced in Figure A.1 and a Person correlation

result of 0.987. When the comparison is performed per vegetation types, I found
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that in Mixed Forest, Open Shrublands, and Wetlands, the GPPs,; distribution
is slightly higher than the GPPy,x distribution (Figure A.3). While, for Decidu-
ous Broadleaf Forests, Evergreen Broadleaf Forests, Evergreen Needleleaf Forests,
Grasslands, and Savanas, both GPP.x and GPPs, have similar distributions. For
Closed Shrublands, where only one site is reported, the differences are in the 0.01
umol CO, m2 s! order. When the values are aggregated by climatic classes, 1
found that for tropical monsoon, humid subtropical, and subarctic climate GPPy,x
is lower than GPPg,. In contrast, for tropical savanna, humid subtropical, and
Mediterranean climate GPPp,,x is higher than GPPg,. For Mediterranean, humid
continental, subarctic, and tundra climate the distributions of GPP,.x and GPPgy;
share similar quantile ranges.

Despite the expected higher variability of GPPy,.x produced by the influence of
climatic conditions. The high correlation between GPPy,,x and GPPg,; and the sim-
ilarities of its distributions validate the hypothesis that GPPy,,x values can be used
to represent an optimum ecosystem state, even if these are not derived from optimal
conditions (i.e., optimal light conditions in the case of GPPg,). Nevertheless, it is
important to clarify that each is designed to answer and evaluate different hypo-
theses. Based on estimations of GPPgy, it is possible to reduce the effect of climate
regimens in estimating the value. Then, GPPg, allows us to explore the effect of
vegetation structure on the magnitude of GPP. While GPPy,,«x estimates allow us
to explore the effect of climatic variations on an optimum ecosystem process in time

and space.

87



Appendix A. Complementary results: Empirical comparison between GPPy.x and

GPPya
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Figure A.2: Comparison of GPP.,x (Pabon-Moreno et al., 2020),
(Migliavacca et al., 2009) per eddy covariance site. For GPP,,x (Pabon-Moreno et
al., 2020) 10 values are reported by growing season while for GPPg,; (Migliavacca et
al., 2021) a single value is reported by site.
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Figure A.3: Comparison of GPP.x (Pabon-Moreno et al., 2020), and GPPgy
(Migliavacca et al., 2009) per vegetation type. CSH: Closed Shrublands; DBF:
Deciduous Broadleaf Forests; EBF: Evergreen Broadleaf Forests; ENF: Evergreen
Needleleaf Forests; GRA: Grasslands; MF: Mixed Forests; OSH: Open Shrublands;
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Figure A.4: Comparison of GPPn.x (Pabon-Moreno et al., 2020), and GPPgy
(Migliavacca et al., 2009) per climate class. Tropical monsoon climate (Am), trop-
ical savanna climate (Aw), cold semiarid climate (BSk), humid subtropical climate
(Cfa), oceanic climate (Cfb), hot summer Mediterranean climate (Csa), warm sum-
mer Mediterranean climate (Csb), humid subtropical climate (Cwa), humid contin-
ental climate (Dfb), subarctic climate (Dfc, Dsc), and tundra climate (ET).
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Ecosystem physio-phenology revealed using circular statistics
Supplementary information (I)

Daniel E. Pabon-Moreno', Talie Musavi', Mirco Migliavacca', Markus Reichstein'?,
Christine Rémermann®*, and Miguel D. Mahecha'~

"Max Planck Institute for Biogeochemistry, Hans—Knoell-Str. 10, 07745 Jena, Germany.
2German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz Se, 04103 Leipzig, Germany.
3Friedrich Schiller University, Institute of Ecology and Evolution, Philosophenweg 16, D-07743 Jena, Germany.

1 Half-time sensitivity analysis (System memory to explain DOY gppmax)

The optimum halftime parameter is estimated for each site showing that for most of the unimodal sites JS correlation is
maximum when the halftime parameter takes values between 2 and 100 days. Per vegetation type Deciduous Broadleaf Forest
(DBF), Evergreen Needleleaf Forest (ENF) and Grassland (GRA) have similar values for the optimum half-time parameter
(Figure S3). Per climate classes, the oceanic climate (Cfb) has the highest variation. There are only 2 unimodal sites with an
optimum half-time greater than 180 days: IT-MBo and FR-Fon. On the other hand, for the bimodal site (ES-LJu) the maximum
JS coefficient is obtained with a half-time of 13 for the first growing season and 21 days for the second one (Table S2).
Estimating the halftime of the drivers per site is a prerequisite for optimizing the predictions with the circular regressions in
the next step. For most of the sites, the JS correlation coefficient is maximum between 0.98 and 0.7 (Figure S5).

Our results for the optimum halftime parameter between 2 and 100 days for all sites are similar to the time window length
of 15 to 120 days required to explain the variations on the leaf unfolding for different tree species in Europe (Fu et al., 2015).
Or, the time window length of 45 to 95 days to explain the flowering day of different plant species in Switzerland (Glisewell
et al., 2017). No matter what phenological event is being analyzed all studies agree that phenological events are influenced by
past climatic conditions in a cumulative form.

In our case, the use of a half-life decay function changes the interpretation of the optimum halftime day parameter indicating
that half of the contribution is given before the halftime day in an exponential form and that the contribution of the rest of the
days is low, but not equal to 0. Finally, we find that the optimum half-time is not necessarily related to the vegetation type or
the predominant climate class in each site. We suggest that it could be more related to the species dominance and the spatial

arrangement and the intraspecific climatic variability of each site.
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Figure S1. Half-time sensitivity analysis. The correlation coefficient (JS) between the observed and predicted DOY gppmax using different

half-time values. Each FLUXNET site is represented with a color.
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Figure S2. Half-time sensitivity analysis. Distribution of the half-time when the Jammalamanaka-Sarna (JS) coefficient is maximum for
each FLUXNET site using as classification criterium the Koppen climate classes: Tropical monsoon climate (Am), Tropical savanna climate
(Aw), Cold semi-arid climates (BSk), Humid subtropical climate (Cfa), Oceanic climate (Cfb), Hot-summer mediterranean climate (Csa),
Warm-summer mediterranean climate (Csb), Humid subtropical climate (Cwa), humid continental climate (Dfb), Subarctic climate (Dfc,

Dsc), and Tundra climate (ET)
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Figure S3. Half-time sensitivity analysis. Distribution of the optimum half-time parameter when the Jammalamadaka-Sarna (JS) coefficient
is maximum per vegetation type. Closed Shrublands (CSH), Deciduous Broadleaf Forests (DBF), Evergreen Broadleaf Forests (EBF), Ever-
green Needleleaf Forests (ENF), Grasslands (GRA), Mixed Forests (MF), Open Shrublands (SAV) Savannas, Permanent Wetlands (WET),

Woody Savannas (WSA)
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Figure S4. Half-time sensitivity analysis for ES-LJu the unique FLUXNET site analyzed with two growing seasons.
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Figure S5. Distribution of the maximum correlation coefficient values when the optimum halftime has been used. Most of the sites have the

maximum correlation coefficient when half-time is between 5 and 100 days.
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Table S1: Optimum half-time coefficient and correlation coefficient per FLUXNET site. We report the name of sites, the cli-
mate class of the site following the Koppen-Geiger classification: Tropical monsoon climate (Am), Tropical savanna climate
(Aw), Cold semi-arid climates (BSk), Humid subtropical climate (Cfa). Oceanic climate (Cfb), Hot-summer mediterranean cli-
mate (Csa), Warm-summer mediterranean climate (Csb), Humid subtropical climate (Cwa), humid continental climate (Dfb),
Subarctic climate (Dfc, Dsc), and Tundra climate (ET). We also report the vegetation type where: We also report the Vegetation
type: Closed Shrublands (CSH). Deciduous Broadleaf Forests (DBF). Evergreen Broadleaf Forest (EBF), Evergreen Needle-
leaf Forests (ENF), Grasslands (GRA), Mixed Forests (MF), Open Shrublands (OSH), Savannas (SAV), Permanent Wetlands
(WET), Woody Savannas (WSA).

Site name  Koppen-Geiger class  Vegetation type  Half-time Correlation coefficient (JS)

US-Hal Dfb DBF 63 0.81
US-PFa Dfb MF 66 0.94
BE-Bra Cib MF 74 0.93
BE-Vie Cib MF 69 0.89
DE-Tha Cfb ENF 86 0.86
DK-Sor Cfb DBF 128 0.5
FI-Hyy Dfc ENF 109 0.66
IT-Col Csa DBF 90 0.71
NL-Loo Cfb ENF 79 0.84
CH-Dav ET ENF 118 0.85
RU-Fyo Dfb ENF 100 0.87
US-NR1 Dfc ENF 7 | 0.94
IT-Ren Dfc ENF 82 0.91
US-MMS Cfa DBF 105 0.63
US-WCr Dfb DBF 86 0.87
CA-Man Dfe ENF 119 0.85
DK-ZaH ET GRA 74 0.64
FR-Pue Csa EBF 160 0.58
US-Los Dfb WET 85 0.93
US-UMB Dfb DBF 114 0.67
US-Var Csa GRA 26 0.86
AU-How Aw WSA 76 0.78
AU-Tum Cfb EBF 47 0.68
FI-Sod Dfe ENF 88 0.95
7
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IT-SRo Csa ENF 6 0.82
US-Syv Dfb MF 64 0.95
US-Ton Csa WSA 39 0.59
ZA-Kru Cwa SAV 67 091
DE-Hai Cfb DBF 82 0.88
FR-LBr Cfb ENF 72 0.68
IT-Cpz Csa EBF 2 0.81
US-Me2 Csb ENF 143 0.66
IT-Lav Cib ENF 2 0.68
RU-Cok Dsc OSH 80 0.86
AT-Neu Dfc GRA 87 0.61
CH-Lae Cfb MF 77 0.8
DE-Gri Cfb GRA 74 0.47
GF-Guy Am EBF 5 0.74
IT-MBo Dfb GRA 263 0.48
IT-Noe Csa CSH 8 0.72
IT-Ro2 Csa DBF 86 0.36
US-Blo Csa ENF 153 0.8
US-GLE Dfc ENF 41 0.95
US-SRM BSk WSA 121 0.88
US-Wkg BSk GRA 80 0.67
BR-Sal Am EBF 33 0.66
CH-Cha Cib GRA 61 0.97
CH-Fru Cib GRA 84 0.9
FR-Fon Cfb DBF 193 0.55
CZ-wet Cfb WET 156 0.56
IT-Rol Csa DBF 12 0.8
8
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Table S2. Results of the optimum half-time and the maximum correlation coefficient for " Llano de los Juanes", Spain with Koppen-Geiger

class: Hot-summer Mediterranean climate (Csa) and vegetation type: Open Shrublands (OSH)

DOYGI'Pma.\ (GS l] DOYUI‘Pmux (GS 2)
Site name Koppen-Geiger  Vegetation Optimum Correlation co- Optimum Correlation co-
class type Halftime efficient (JS) Halftime efficient (IS)
ES-Lju Csa OSH 13 0.77 21 0.78
9
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20 2 Phenological summary of the FLUXNET sites (Recovering DOY gppmax)
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Figure $6. DOY gppmay distribution across the latitudinal gradient. Most of the DOY Gppmax is reached at the middle of the year. This pattern

is generated by the geographical trend of the location of the FLUXNET network in the Northern hemisphere.

Table S3: Mean angular direction and the standard deviation of DOY gpp,,., for ecosystems with one growing season per year.

Site name  Mean DOY gppmay (days)  SD DOY gppmay (days)

US-Hal 195.2 195
US-PFa 196.6 21.6
BE-Bra 196.71 2535
BE-Vie 192.28 29.9
DE-Tha 182.91 274
DK-Sor 169.96 13.96
FI-Hyy 199.93 17.74
IT-Col 187.75 23.84
NL-Loo 21027 25.82
CH-Dav 180.99 38.69
RU-Fyo 192.14 23.17
10
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US-NR1 201.98 28.79
IT-Ren 193.55 3234
US-MMS 183.59 221
US-WCr 198.26 20.02
CA-Man 215.87 19.96
DK-ZaH 204.39 10.3
FR-Pue 159.97 34.07
US-Los 194 81 13.46
US-UMB 189.13 20.5
US-Var 95.95 21.82
AU-How 28.77 30.87
AU-Tum 24.29 46.9
FI-Sod 214.35 15.66
IT-SRo 142.6 28.3
US-Syv 194.9 25.65
US-Ton 114.63 20
ZA-Kru 15.35 37.09
DE-Hai 190.26 22.84
FR-LBr 177.35 23.83
IT-Cpz 154.5 46.04
US-Me2 182.5 26.15
IT-Lav 167.19 37
RU-Cok 209.61 11.48
AT-Neu 161.46 33.7%
CH-Lae 185.32 30.71
DE-Gri 178.61 33.51
GF-Guy 214.86 41.17
IT-MBo 169.51 12.22
IT-Noe 120.71 28.96
IT-Ro2 155.48 18.69
US-Blo 199.04 3338
US-GLE 209.55 17.46
US-SRM 227.65 17.66
11
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US-Wkg 22854 11.26

BR-Sal 325.24 38.49
CH-Cha 201.24 38.2
CH-Fru 163.9 3997
FR-Fon 179.49 24.11
CZ-wet 169.88 17.68
IT-Rol 148.23 11.33

Table S4. Mean angular direction and standard deviation of DOY gppmax for ecosystems with two growing seasons

DOY Gppmax (GS 1) DOY gppmax (GS 2)
Site name Koppen Vegetation type Mean (DOY) SD (days) Mean (DOY) SD (days)
ES-Lju Csa OSH 143.62 17.84 302.63 19.18

3 Similarity of regression coefficients per vegetation type and climate classes

12
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Figure S87. Regression coefficient values of the first component of the PCA of air temperature, shortwave incoming radiation, and vapor
pressure deficit, and precipitation. a). Colors per the vegetation: Closed Shrublands (CSH), Deciduous Broadleaf Forests (DBF), Evergreen
Broadleaf Forest (EBF), Evergreen Needleleaf Forests (ENF), Grasslands (GRA), Mixed Forests (MF), Open Shrublands (OSH), Savannas
(SAV), Permanent Wetlands (WET), Woody Savannas (WSA). ¢) Colors per Koppen-Geiger climate classes: Tropical monsoon climate
(Am), Tropical savanna climate (Aw), Cold semi-arid climates (BSk), Humid subtropical climate (Cfa). Oceanic climate (Cfb), Hot-summer
mediterranean climate (Csa), Warm-summer mediterranean climate (Csb), Humid subtropical climate (Cwa). humid continental climate

(Dfb), Subarctic climate (Dfc, Dsc), and Tundra climate (ET)
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1 Principal Component Analysis for Air temperature, Short-wave Incoming Radiation, and Vapor pressure deficit

The principal component analysis shows that for most of the sites the first component explain more than 70 % of the variation
for air temperature, short-wave incoming radiation and vapor pressure deficit (Fig. S1, Tab. S1). For the first component the
contribution of each variable is similar between the sites (Fig. S2, Tab. §2). The results show that to some extent all variables

5 are represented in the first component.
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Figure S1. Contribution of each principal component to explain the variance of air temperature, short-wave incomming radiation and vapor

pressure deficit. Each category represent the distribution for all the FLUXNET sites analyzed in this study.
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Figure S2. Contribution of the climate variables to PC1. Tair = Air temperature, SWin = Short-wave Incomming radiation, VPD = Vapor
pressure deficit. For visualization purposes if the sign of the contribution was negative for all variables of the site, the sign was changed to

positive
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Table S1: Contribution of the principal components to explain the variance of air temperature, short-wave incoming radiation,

and vapor pressure deficit.

Site name PC1 PC2 PC3
US-Hal 0.81 0.14 0.05
US-PFa 0.79 0.17 0.04
BE-Bra 0.89 0.07 0.04
BE-Vie 0.87 011 0.02
DE-Tha 0.87 009 0.04
DK-Sor 0.83 0.12 0.04
FI-Hyy 0.73 0.17 0.1

IT-Col 0.87 0.07 0.06
NL-Loo 0.78 0.15 0.08
CH-Dav  0.82 0.14 0.04
RU-Fyo 0.82 0.13 0.05
US-NR1 094 0.04 0.03
IT-Ren 0.82 0.14 0.03
US-MMS 0.82 0.13 0.05
US-WCr 075 0.18 0.07
CA-Man 064 035 0.01
DK-ZaH 0.7 024 0.06
FR-Pue 0.73 021 0.06
US-Los 071 024 0.04
US-UMB 085 0.13 0.03
US-Var 095 003 0.02
AU-How 062 029 0.09
AU-Tum 09 0.07 0.03
FI-Sod 0.77 021 0.03
IT-SRo 09 008 0.02
US-Syv 091 005 0.04
US-Ton 092 0.07 0.01
ZA-Kru 0.76 0.19 0.05
DE-Hai 0.86 0.1 0.04
FR-LBr 073 015 0.12
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IT-Cpz 0.78 0.15 0.08
US-Me2 086 0.13 0.01
IT-Lav 0.77 0.17 0.06
RU-Cok 0.63 037 0.01
AT-Neu 0.88 0.09 0.03
CH-Lae 092 0.06 0.03
DE-Gri 091 0.05 0.04
GF-Guy 0.84 0.11 0.05
IT-MBo 0.54 033 0.13
IT-Noe 092 0.05 003
IT-Ro2 09 0.07 0.03
US-Blo 0.88 0.12 0.01
US-GLE 092 0.06 0.02
US-SRM 051 026 0.23
US-Wkg 058 029 0.12
BR-Sal 094 005 0.01
CH-Cha 092 0.06 002
CH-Fru 073 02 0.07
ES-LJul 0.82 0.15 0.03
ES-LJu2 073 02 0.07
FR-Fon 0.82 0.14 0.04
CZ-wet 0.88 0.1 0.02
IT-Rol 0.66 032 0.02

Table S2: Contribution of the climate variables to the first component (PC1). Tair = Air Temperature, SWin = Short-wave

Incoming radiation, VPD = Vapor Pressure Deficit

Site name  Tair SWin VPD
US-Hal 0.57 061 0.55
US-PFa 0.62 058 053
BE-Bra 0.57 059 057
BE-Vie 0.58 0.6 0.55
DE-Tha 058 056 059
DK-Sor 057 056 061
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FI-Hyy 054 059 06

IT-Col 058 057 058
NL-Loo 054 06 0.59
CH-Dav 0.61 054 058
RU-Fyo 0.57 0.61 0.56
US-NR1 -0.58 -0.58 -0.58
IT-Ren 0.61 058 053
US-MMS 059 059 054
US-WCr 061 06 0.52
CA-Man 04 0.57 072
DK-ZaH 0.6 047 065
FR-Pue 0.6 0.5 0.62
US-Los 0.65 062 044
US-UMB 059 053 06

US-Var 058 057 058
AU-How 037 0.67 065
AU-Tum -059 -057 -0.57
FI-Sod 048 0.6 0.63
IT-SRo 059 057 056
US-Syv 058 057 058
US-Ton 0.6 0.56  0.57
ZA-Kru 0.6 0.62 051

DE-Hai 059 058 056
FR-LBr 057 057 059
IT-Cpz -0.61 -0.56 -0.56
US-Me2 06 053 06

IT-Lav 0.62 058 054
RU-Cok 0.55 041 0.73
AT-Neu 058 059 056
CH-Lae 0.57 057 059
DE-Gri 058 057 058
GF-Guy 057 057 06

IT-MBo 0.13 07 0.7

6
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IT-Noe 059 058 057
IT-Ro2 059 057 058
US-Blo 0.6 053 059
US-GLE 058 057 058
US-SRM  0.61 056 0.56
US-Wkg 066 037 0.65
BR-Sal 058 057 058
CH-Cha 0.57 058 058
CH-Fru 059 063 051
ES-Llul -061 -052 -06
ES-LJu2 063 051 0.59
FR-Fon 054 0.6 0.59
CZ-wet 056 057 06

IT-Rol 0.69 0.21 0.69
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Figure S1. DOY gppp,; sensitivity to different climate drivers for the Neustift (AT-Neu) FLUXNET site. a) DOY gpppax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S2. DOY gppmax sensitivity to different climate drivers for the Howard Springs (AU-How) FLUXNET site. a) DOY Gppmax distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S3. DOY gppyay sensitivity to different climate drivers for the Tumbarumba (AU-Tum) FLUXNET site. a) DOY gpppay distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. c)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S4. DOY gppmax sensitivity to different climate drivers for the Brasschaat (BE-Bra) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S5. DOY pp,, sensitivity to different climate drivers for the Vielsalm (BE-Vie) FLUXNET site. a) DOY gppmas distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S6. DOY Gppmax sensitivity to different climate drivers for the Santarem-Km67-Primary Forest (BR-Sal) FLUXNET site. a)
DOY Gppmax distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for

each variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S7. DOY gppyyx sensitivity to different climate drivers for the Manitoba - Northern Old Black Spruce (CA-Man) FLUXNET site. a)
DOY ppmay distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for

each variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S8. DOY Gppmax Sensitivity to different climate drivers for the Chamau (CH-Cha) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S§9. DOY gppy. sensitivity to different climate drivers for the Davos (CH-Dav) FLUXNET site. a) DOY gpppax distribution across the
year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure $10. DOY gppmax sensitivity to different climate drivers for the Friiebiiel (CH-Fru) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S11. DOY gppyax sensitivity to different climate drivers for the Laegern (CH-Lae) FLUXNET site. a) DOY gpppax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.

b)
a) CZ-wet 1
0.1 .
c
2 00
= | —
8 | ] [ ]
- =]
Tair, SWin, VPD Precip
c)
05 1

Tair, SWin. VPD Precip

Figure S12. DOY Gppme, sensitivity to different climate drivers for the Trebon (CZECHWET) (CZ-wet) FLUXNET site. a) DOY Gppmax
distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each

variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S13. DOY ppayx sensitivity to different climate drivers for the Grillenburg (DE-Gri) FLUXNET site. a) DOY ¢ppiay distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S§14. DOY Gppma: Sensitivity to different climate drivers for the Hainich (DE-Hai) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S15. DOY pppay sensitivity to different climate drivers for the Tharandt (DE-Tha) FLUXNET site. a) DOY gppyax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S$16. DOY Gppmas sensitivity to different climate drivers for the Soroe (DK-Sor) FLUXNET site. a) DOY gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S17. DOY pppay sensitivity to different climate drivers for the Zackenberg Heath (DK-ZaH) FLUXNET site. a) DOY gpppay distribu-
tion across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S18. DOY Gppmax Sensitivity to different climate drivers for the Hyytiala (FI-Hyy) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S19. DOY gppy,, sensitivity to different climate drivers for the Sodankyla (FI-Sod) FLUXNET site. a) DOY gppmay distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S20. DOY Gppme, sensitivity to different climate drivers for the Fontainebleau-Barbeau (FR-Fon) FLUXNET site. a) DOY Gppmax
distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each

variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S21. DOY i;ppyx sensitivity to different climate drivers for the Le Bray (FR-LBr) FLUXNET site. a) DOY gpppay distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S22. DOY Gppmax Sensitivity to different climate drivers for the Puechabon (FR-Pue) FLUXNET site. a) DOY gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S23. DOY gppyay sensitivity to different climate drivers for the Guyaflux (GF-Guy) FLUXNET site. a) DOY gppay distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure $24. DOY Gppma sensitivity to different climate drivers for the Collelongo (1T-Col) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S25. DOY ppmax sensitivity to different climate drivers for the Castelporziano (IT-Cpz) FLUXNET site. a) DOY ¢pppay distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. c)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure $26. DOY Gppmax sensitivity to different climate drivers for the Lavarone (IT-Lav) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S27. DOY gppya sensitivity to different climate drivers for the Monte Bondone (IT-MBo) FLUXNET site. a) DOY gppuay distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. c)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure $28. DOY Gppmax sensitivity to different climate drivers for the Arca di Noe - Le Prigionette (IT-Noe) FLUXNET site. a) DOY Gppmax
distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each

variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure $29. DOY pppay sensitivity to different climate drivers for the Renon (IT-Ren) FLUXNET site. a) DOY gppp.x distribution across the
year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S30. DOY Gppmax sensitivity to different climate drivers for the Roccarespampani 1 (IT-Rol) FLUXNET site. a) DOY Gppmax distribu-
tion across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S31. DOY pppa, sensitivity to different climate drivers for the Roccarespampani 2 (IT-Ro2) FLUXNET site. a) DOY gppyay distribu-
tion across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S32. DOY Gppmax sensitivity to different climate drivers for the San Rossore (1T-SRo) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S33. DOY i;ppyy. sensitivity to different climate drivers for the Loobos (NL-Loo) FLUXNET site. a) DOY gpppay distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S34. DOY Gpppa, sensitivity to different climate drivers for the Chokurdakh (RU-Cok) FLUXNET site. a) DOY gppmay distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S35. DOY i;ppyy. sensitivity to different climate drivers for the Fyodorovskoye dry spruce (RU-Fyo) FLUXNET site. a) DOY gppmax
distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each

variable. ¢) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure $36. DOY Gppmax sensitivity to different climate drivers for the Blodgett Forest (US-Blo) FLUXNET site. a) DOY gppmayx distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Appendix B. Supplementary information: Ecosystem physio-phenology revealed
using circular statistics
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Figure S37. DOY gpppax sensitivity to different climate drivers for the GLEES (US-GLE) FLUXNET site. a) DOY gppyax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S38. DOY Gppmax Sensitivity to different climate drivers for the Harvard Forest EMS Tower (HFR1) (US-Hal) FLUXNET site. a)
DOY Gppmax distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for

each variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S39. DOY gpppax sensitivity to different climate drivers for the Lost Creek (US-Los) FLUXNET site. a) DOY ¢ppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Figure S40. DOY gppmax sensitivity to different climate drivers for the Metolius mature ponderosa pine (US-Me2) FLUXNET site. a)
DOY Gppmax distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for

each variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S41. DOY ¢ppp,y sensitivity to different climate drivers for the Morgan Monroe State Forest (US-MMS) FLUXNET site. a) DOY gpppax
distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each

variable. ¢) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S42. DOY Gppmax sensitivity to different climate drivers for the Niwot Ridge Forest (LTER NWT1) (US-NR1) FLUXNET site. a)
DOY Gppmax distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for

each variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S43. DOY gppyax sensitivity to different climate drivers for the Park Falls/WLEF (US-PFa) FLUXNET site. a) DOY gppyx distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. c)

Significance values for each variable. The red line represents a p-value of 0.05.

b)
a) US-SRM s
=
8 0054
] I
=
o
8 -0.104
-0.154
Tair, SWin, VPD Precp
c)
05
: |
2044
>
8034
Eoz-
=
011
i O ) S
004
Tair, SWin. VPD Precip

Figure S44. DOY Gppmax sensitivity to different climate drivers for the Santa Rita Mesquite (US-SRM) FLUXNET site. a) DOY gppmay distri-
bution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S45. DOY pppax sensitivity to different climate drivers for the Sylvania Wilderness Area (US-Syv) FLUXNET site. a) DOY gpppax
distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each

variable. ¢) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure $46. DOY Gppna, sensitivity to different climate drivers for the Tonzi Ranch (US-Ton) FLUXNET site. a) DOY gppmay distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S47. DOY gpppax sensitivity to different climate drivers for the Univ. of Mich. Biological Station (US-UMB) FLUXNET site. a)
DOY ppmay distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for

each variable. c) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S48. DOY Gppmax sensitivity to different climate drivers for the Vaira Ranch- lone (US-Var) FLUXNET site. a) DOY Gppmax distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure $49. DOY i;ppy sensitivity to different climate drivers for the Willow Creek (US-WCr) FLUXNET site. a) DOY gppay distribution
across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. c)

Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S50. DOY Gppmax Sensitivity to different climate drivers for the Santa Rita Walnut Gulch Kendall Grasslands (US-Wkg) FLUXNET
site. a) DOY Gppmax distribution across the year. The arrow indicates the mean angular direction of the growing season. b) Regression coeffi-

cients for each variable. ¢) Significance values for each variable. The red line represents a p-value of 0.05.
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Figure S51. DOY gppmax sensitivity to different climate drivers for the Skukuza (ZA-Kru) FLUXNET site. a) DOY Gppmax distribution across
the year. The arrow indicates the mean angular direction of the growing season. b) Regression coefficients for each variable. ¢) Significance

values for each variable. The red line represents a p-value of 0.05.
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Appendix C. Supplementary information: On the Potential of Sentinel-2 for
Estimating Gross Primary Production

Description: The supplementary files are provided in seven parts. Supplementary
material 1 provides the buffer areas for the eddy covariance sites.

Supplementary material 2 provides outliers detection using the time series.
Supplementary material 3 provides images filtered manually. Supplementary material 4
provides the prediction of GPP using linear regressions and balanced datasets.
Supplementary material 5 provides GPP prediction using random forest and 10-folds
spatio-temporal cross validation. Supplement material 6 provides an example of the
upscaling of GPP for an entire Sentinel-2 tile. Supplementary material 7 includes

raw results of the variable importance analysis for the imbalanced and

balanced datasets.

Size: 97.4 MB

Packing List: tgrs-3152272-mm.zip

Player Information: any PDF reader; any .csv reader; any .png reader

Contact Information:

Mr. Daniel E. Pabon-Moreno

Max Planck Institute for Biogeochemistry, Biogeochemical Integration Department
Jena, Germany

Email: dpabon@bgc-jena.mpg.de
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Supplement Material 2

Outlier detection using time series

1 Methods

The following is a description of the algorithm implemented in by the “anoma-
lize” R package to detect outliers in irregular time series.

1.1 Time series decomposition by LOESS

1. Given the irregular time series, a new time series object is generated per
site where the frequency of the new time series is estimated as follows:

(a) The median time difference between the observations is estimated.

(b) The scale of median time difference is estimated based on magnitude
of the value following the first column of the table 1 (e.g. median
time difference of seven days is considered “week”, a median time
difference of 23 days is considered “month™)

(¢) The new periodicity is estimate as the corresponding category in
the frequency column in the table 1, for the scale of the median time
difference estimated in the step before (e.g. if the time scale is month,
the frequency selected is 1 year).

(d) The dataset is aggregate again base on the period selected. And the
frequency is estimated as the median frequency of the observations
per group.

(e) If the total number of observations is less than 3 times the frequency,
a new aggregation period is selected as the one before to the corre-
spondent frequency column in table 1. (e.g. instance of 1 year, 1
quarter is selected as aggregation metric).

(f) The aggregation is performed again with the new period and again
the frequency is estimated as the median frequency of the observa-
tions per group.

(g) If still the number of observations is less than 3 times the frequency
estimated the frequency is defined as 1.

2. The span of the LOESS window for trend extraction (trend) is estimated
as follows:
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(a) The median time difference between the observations is estimated.

(b) The scale of median time difference is estimated based on magnitude
of the value following the first column of the table 1 (e.g. median
time difference of seven days is considered “week”, a median time
difference of 23 days is considered “month™)

(¢) The new periodicity is estimate as the corresponding category in the
trend column in the table 1, for the scale of the median time difference
estimated in the step before (e.g. if the timescale is month, the trend
selected is 1 year).

(d) The dataset is aggregate again base on the period selected. And the
trend is estimated as the median frequency of the observations per
group.

(e) If the total number of observations divided by the trend is less than
2, a new aggregation period is selected as the one before to the cor-
respondent trend column in table 1. (e.g. instance of 5 years, 1 year
is selected as aggregation metric).

(f) The aggregation is performed again with the new period and again
the trend is estimated as the ceiling median frequency of the obser-
vations per group.

(g) If still the number of observations divided by the trend is less than 2
the trend is defined as the number of observations.

3. A ts object is created where the frequency of the object is equal to the
one defined in the step one.

4. The time series decomposition by LOESS is applied to the new dataset
where the seasonal adjustment is the estimated frequency in the step 1,
and the trend window is estimated in step 2. The rest of parameters is
the default parameters for the stl function.

1.2 Innerquartile range for outlier detection

1. The residuals of the time series decomposition estimated in the step 4, are
used as input.

2. The threshold is defined as 3 times the quantile 0.25 and 0.75 of the
distribution of the residuals.

3. The observations with a lower and higher value than 3 times are classified
as outliers, where not more than 20% of the observations can be classified
as outliers.
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Table 1: Equivalences to define the frequency and the trend of a time series
given the median time difference of the observations.
timescale frequency trend

second 1 hour 12 hours
minute 1 day 14 days
hour 1 day 1 month
day 1 week 3 months
week 1 quarter 1 year
month 1 year 5 years
quarter 1 vear 10 years
vear 5 years 30 years

2 Results

2.1 Percent of images filtered out per site

Number of sites

T T T T

0 10 20 30 40
Percent of images detected as outliers

Figure 1: Percent of images detected as outliers per site
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2.2  Qutlier detection per site using time series

For three sites the outlier detection using time series was not possible given the
low number of observations: US-Bar, US-MMS, US-Vem. For the rest of the
sites the plots are presented below.
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Figure 2: Outliers detection in Sentinel-2 images for the Brasschaat (BE-Bra)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5

are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 3: Outliers detection in Sentinel-2 images for the Lonzee (BE-Lon) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 4: Outliers detection in Sentinel-2 images for the Vielsalm (BE-Vie)
ICOS site from 2015 to 2018. Bands B1, B11, B12. B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 5: Qutliers detection in Sentinel-2 images for the Alp Weissenstein (CH-
Aws) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and
B5 are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 6: Outliers detection in Sentinel-2 images for the Chamau (CH-Cha)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 7: Outliers detection in Sentinel-2 images for the Davos (CH-Dav) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 8: Outliers detection in Sentinel-2 images for the Friiebiiel (CH-Fru)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 9: Outliers detection in Sentinel-2 images for the Laegern (CH-Lae)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 10: QOutliers detection in Sentinel-2 images for the Oensingen crop (CH-
0e2) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and
B5 are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 11: QOutliers detection in Sentinel-2 images for the Bily Kriz forest (CZ-
BK1) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and

B5 are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 12: Outliers detection in Sentinel-2 images for the Lanzhot (CZ-Lnz)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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CZ-RAJ
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Figure 13: Outliers detection in Sentinel-2 images for the Rajec (CZ-RAJ) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.

The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 14: Outliers detection in Sentinel-2 images for the Stitna (CZ-Stn) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.

The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 15: Outliers detection in Sentinel-2 images for the Trebon (CZ-wet)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 16: Outliers detection in Sentinel-2 images for the Anklam (DE-Akm)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 17: Outliers detection in Sentinel-2 images for the Gebesee (DE-Geb)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B3
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 18: Outliers detection in Sentinel-2 images for the Grillenburg (DE-Gri)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 19: Outliers detection in Sentinel-2 images for the Hainich (DE-Hai)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5

are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 20: Outliers detection in Sentinel-2 images for the Hohes Holz (DE-HoH)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B3
are shown. The gray ribbon represent the interquantile range used to classify

outliers. Outliers are shown in red.

23

165



Appendix C. Supplementary information: On the Potential of Sentinel-2 for
Estimating Gross Primary Production

DE-Hte
STL + iqr Methods

B ea
0.075 ®

0.16

0.12

0.150
0.125
0.100
0.075
0.050

0.08
0.06
0.04
0.02
0.00

observed

0.08

0.06

0.04

0.02

0.06

0.04

0.02

o
0.09

0.07

0.05

] w1

o

»

date_index

anomaly @ No @ Yes

Figure 21: Outliers detection in Sentinel-2 images for the Huetelmoor (DE-Hte)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 22: Outliers detection in Sentinel-2 images for the Hetzdorf (DE-Hzd)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 23: Outliers detection in Sentinel-2 images for the Klingenberg (DE-KIi)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5

are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 24: Outliers detection in Sentinel-2 images for the Oberbérenburg (DE-
Obe) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and
B5 are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 25: Qutliers detection in Sentinel-2 images for the Rollesbroich (DE-
RuR) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and
B5 are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 26: Outliers detection in Sentinel-2 images for the Selhausen Juelich
(DE-Rus) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4,
and B5 are shown. The gray ribbon represent the interquantile range used to
classify outliers. Outliers are shown in red.
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Figure 27: Outliers detection in Sentinel-2 images for the Wustebach (DE-RuW)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 28: Outliers detection in Sentinel-2 images for the Tharandt (DE-Tha)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 29: Outliers detection in Sentinel-2 images for the Soroe (DK-Sor) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 30: Outliers detection in Sentinel-2 images for the Albuera (ES-Abr)
ICOS site from 2015 to 2018. Bands B1, B11, Bi12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.

33

175



Appendix C. Supplementary information: On the Potential of Sentinel-2 for
Estimating Gross Primary Production

ES-LM1
STL + iqr Methods

0.075
0.050
0.025
0.000

date_index

anomaly @ No @ Yes

Figure 31: Outliers detection in Sentinel-2 images for the Majadas del Tietar
North (ES-LM1) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2,
B3, B4, and B5 are shown. The gray ribbon represent the interquantile range
used to classify outliers. Qutliers are shown in red.

34

176



ES-LM2

observed

1“\5 '19\1 A% A%
date_index

anomaly @ No @ Yes

Figure 32: Outliers detection in Sentinel-2 images for the Majadas del Tietar
South (ES-LM2) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2,

B3, B4, and B5 are shown. The gray ribbon represent the interquantile range
used to classify outliers. Qutliers are shown in red.
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Figure 33: Outliers detection in Sentinel-2 images for the Hyytiala (FI-Hyy)

ICOS

site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5

are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 34: Outliers detection in Sentinel-2 images for the Lettosuo (FI-Let)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 35: Outliers detection in Sentinel-2 images for the Siikaneva (FI-Sii)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 36: Outliers detection in Sentinel-2 images for the Varrio (FI-Var) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 37: Outliers detection in Sentinel-2 images for the Bilos (FR-Bil) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 38: Outliers detection in Sentinel-2 images for the Estrees-Mons A28
(FR-EM2) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4,
and B5 are shown. The gray ribbon represent the interquantile range used to
classify outliers. Outliers are shown in red.
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Figure 39: Outliers detection in Sentinel-2 images for the Hesse (FR-Hes) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 40: Outliers detection in Sentinel-2 images for the Borgo Cioffi (IT-BCi)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B3
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 41: Outliers detection in Sentinel-2 images for the Lison (IT-Lsn) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 42: Outliers detection in Sentinel-2 images for the Lison (IT-Lsn) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 43: Outliers detection in Sentinel-2 images for the San Rossore 2 (IT-
SR2) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and
B5 are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 44: Outliers detection in Sentinel-2 images for the Torgnon (IT-Tor)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 45: Outliers detection in Sentinel-2 images for the Loobos (NL-Loo)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 46: Outliers detection in Sentinel-2 images for the Fyodorovskoye dry
spruce stand (RU-Fy2) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2,
B2, B3, B4, and B5 are shown. The gray ribbon represent the interquantile
range used to classify outliers. Outliers are shown in red.
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Figure 47: Outliers detection in Sentinel-2 images for the Fyodorovskoye (RU-
Fyo) ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5

are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.

50

192



o
m
o

&

0.10

0.05

0.00

0.4

03

0.2

o1

025
0.20
0.15
0.10
0.05

0.06

0.03

observed

0.00

0.16

0.12

0.08

0.04

®

®

&

®

o
date_index

anomaly @ No @ Yes

Figure 48: Outliers detection in Sentinel-2 images for the Degero (SE-Deg)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 49: Outliers detection in Sentinel-2 images for the Hyltemossa (SE-Htm)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 50: Outliers detection in Sentinel-2 images for the Lanna (SE-Lnn) ICOS
site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5 are shown.
The gray ribbon represent the interquantile range used to classify outliers. Out-
liers are shown in red.
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Figure 51: Qutliers detection in Sentinel-2 images for the Norunda (SE-Nor)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5
are shown. The gray ribbon represent the interquantile range used to classify
outliers. Outliers are shown in red.
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Figure 52: Qutliers detection in Sentinel-2 images for the Rosinedal-3 (SE-Ros)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5

are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 53: Outliers detection in Sentinel-2 images for the Svartberget (SE-Svb)
ICOS site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3, B4, and B5

are shown. The gray ribbon represent the interquantile range used to classify
outliers. QOutliers are shown in red.
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Figure 54: Outliers detection in Sentinel-2 images for the ARM Southern Great
Plains site- Lamont (US-ARM) AmeriFlux site from 2015 to 2018. Bands B1,
B11, B12, B2, B2, B3, B4, and B5 are shown. The gray ribbon represent the
interquantile range used to classify outliers. Qutliers are shown in red.
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Figure 55: Qutliers detection in Sentinel-2 images for the Howland Forest (main
tower) (US-Hol) AmeriFlux site from 2015 to 2018. Bands B1, B11, B12, B2,
B2, B3, B4, and B5 are shown. The gray ribbon represent the interquantile
range used to classify outliers. Outliers are shown in red.
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Figure 56: Outliers detection in Sentinel-2 images for the Sevilleta grassland
(US-Seg) AmeriFlux site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3,
B4, and B5 are shown. The gray ribbon represent the interquantile range used
to classify outliers. Outliers are shown in red.
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Figure 57: Outliers detection in Sentinel-2 images for the Sevilleta shrubland
(US-SeS) AmeriFlux site from 2015 to 2018. Bands B1, B11, B12, B2, B2, B3,
B4, and B5 are shown. The gray ribbon represent the interquantile range used
to classify outliers. Outliers are shown in red.
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Figure 58: Outliers detection in Sentinel-2 images for the Univ. of Mich. Biolog-
ical Station (US-UMB) AmeriFlux site from 2015 to 2018. Bands B1, B11, B12,
B2, B2, B3, B4, and B5 are shown. The gray ribbon represent the interquantile
range used to classify outliers. Outliers are shown in red.
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Figure 59: Outliers detection in Sentinel-2 images for the Willard Juniper Sa-
vannah (US-Wjs) AmeriFlux site from 2015 to 2018. Bands B1, B11, B12, B2,
B2, B3, B4, and and B5 are shown. The gray ribbon represent the interquantile
range used to classify outliers. Outliers are shown in red.
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Figure 1: Prediction of GPP using linear regression and different vegetation
indices as predictors. Each row of the plot show a balanced dataset. Each
column correspond to the evaluation metric. The name of each vegetation index
is presented in the X-axis. CIR: Chlorophyll index red. IRECI: Inverted Red-
Edge Chlorophyll Index. NIRv: Near Infrared vegetation. NDVI: Normalized
difference vegetation index. The Y-axis correspond to the value of each metric.
The vertical lines correspond to the results of the Wilcoxon test in pairs, where
ns: Non-significative differences; *: p j= 0.05; **: p j= 0.01; ***: p ;= 0.001.
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Supplement Material 5
GPP prediction using random forest and 10-folds spatio-temporal
cross validation

GPP prediction using random forest and 10-folds spatio-temporal cross val-
idation. The plots are grouped by vegetation type. Evergreen needleleaf forests
(ENF), Croplands (CRO), Deciduous broadleaf forests (DBF), Grasslands (GRA),
Wetlands (WET), Mixed Forest (MF), Savannas (SAV), Open shrublands (OSH).
The site name is presented in the upper part of each plot.
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Supplement Material 8
Sentinel-2 Bands

SENTINEL-2 SPECTRAL BANDS

Resolution

Band  Central Wavelength (pm) (m)

Bl 0.443 60
B2 0.490 10
B3 0.560 10
B4 0.665 10
B5 0.705 20
Bo 0.740 20
B7 0.783 20
B8 0.842 10
BSA 0.865 20
B9 0.945 60
Bll 1.610 20
B12 2.190 20
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Value

FIG. E1: Comparison of the GPP prediction using different imbalanced and balanced datasets. The y-axis
corresponds to the value of each metric. The vertical lines correspond to the results of the Wilcoxon test in
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