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The important thing is not to stop questioning. Curiosity has its own reason for
existing. One cannot help but be in awe when he contemplates the mysteries of eternity,

of life, of the marvelous structure of reality. It is enough if one tries merely to
comprehend a little of this mystery every day.

Albert Einstein
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Abstract

The 1980s were very prolific years not only for music, but also for molecular
biology and genetics, with the first publications on the microbiome and ancient
DNA. Several technical revolutions later, the field of ancient metagenomics is now
progressing full steam ahead, at a never seen before pace.

While generating sequencing data is becoming cheaper every year, the bioinfor-
matics methods and the compute power needed to analyze them are struggling to
catch up. In this thesis, I propose new methods to reduce the sequencing to analysis
gap, by introducing scalable and parallelized softwares for ancient DNA metage-
nomics analysis.

In manuscript A, I first introduce a method for estimating the mixtures of dif-
ferent sources in a sequencing sample, a problem known as source tracking. I then
apply this method to predict the original sources of paleofeces in manuscript B.

In manuscript C, I propose a new method to scale the lowest common ancestor
calling from sequence alignment files, which brings a solution for the computa-
tional intractability of fitting ever growing metagenomic reference database indices
in memory.

In manuscript D, I present a method to statistically estimate in parallel the an-
cient DNA deamination damage, and test it in the context of de novo assembly.

Finally, in manuscript E, I apply some of the methods developed in this thesis
to the analyis of ancient wine fermentation samples, and present the first ancient
genomes of ancient fermentation bacteria.

Taken together, the tools developed in this thesis will help the researchers work-
ing in the field of ancient DNA metagenomics to scale their analysis to the massive
amount of sequencing data routinely produced nowadays.
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Zusammenfassung

Die 1980er Jahre waren nicht nur für die Musikindustrie, sondern auch für
Molekularbiologie und Genetik sehr fruchtbare Jahre, in denen die ersten Veröf-
fentlichungen über das Mikrobiom und alte DNA erschienen. Mehrere technische
Revolutionen später schreitet das Gebiet der Metagenomics mit Hochdruck voran,
und zwar in einem noch nie dagewesenen Tempo.

Während die Erzeugung von Sequenzierdaten jedes Jahr billiger wird, haben
die Bioinformatikmethoden und die für ihre Analyse erforderliche Rechenleistung
Mühe, mit dieser Entwicklung Schritt zu halten. In dieser Arbeit schlage ich neue
Methoden vor, um die Kluft zwischen Sequenzierung und Analyse zu verringern,
indem ich skalierbare und parallelisierte Software für die Analyse alter DNA Metage-
nomics einführe.

In Manuskript A stelle ich zunächst eine Methode zur Schätzung der Mischun-
gen verschiedener Quellen in einer Sequenzierprobe vor, ein Problem, das als "source
tracking" bekannt ist. In Manuskript B wende ich diese Methode dann an, um die
ursprünglichen Quellen von Paläofäkalien vorherzusagen.

In Manuskript C schlage ich eine neue Methode zur Skalierung des Aufrufs des
"lowest common ancestor" aus Sequenzabgleichsdateien vor. Diese Methode bietet
eine Lösung für die rechnerische Schwierigkeit der Anpassung immer größer wer-
dender metagenomischer Referenzdatenbankindizes und deren Arbeitsspeicher.

In Manuskript D präsentiere ich eine Methode zur parallelen statistischen Schätzung
alter DNA-Desaminationsschäden und teste sie im Kontext der Textitde novo-Assemblierung.

In Manuskript E schließlich wende ich einige der in dieser Arbeit entwickelten
Methoden auf die Analyse alter Weinfermentationsproben an und präsentiere die
ersten Genome alter Fermentationsbakterien.

Insgesamt werden die in dieser Arbeit entwickelten Werkzeuge den Forschern,
die auf dem Gebiet der Metagenomics alter DNA arbeiten, helfen, ihre Analysen auf
die riesige Menge an Sequenzierdaten zu skalieren, die heutzutage routinemäßig
produziert werden.



Introduction

The rise of the microbiome

The origin of the microbiome concept
In 2001, the Physiology or Medicine Nobel prize laureate Joshua Lederberg is said to
have coined the term microbiome and gave it the following definition:

"The ecological community of commensal, symbiotic, and pathogenic mi-
croorganisms that literally share our body space and have been all but ig-
nored as determinants of health and disease." Lederberg and McCray (2001).

But did we really have to wait until 2001 for the appearance of the microbiome?
When digging a bit deeper, one quickly realizes that the origin of the word predates
the turn of the century (Prescott, 2017), and that the concept of microbiome had already
been formulated in 1988.

"A convenient ecological framework in which to examine biocontrol systems
is that of the microbiome. This may be defined as a characteristic microbial
community occupying a reasonably well defined habitat which has distinct
physio-chemical properties. The term thus not only refers to the microorgan-
isms involved but also encompasses their theatre of activity." Whipps et al.
(1988)

In these 35 years of microbiome research, the field has immensely evolved, several tech-
nological revolutions have been brought to the world of molecular biology, and the scale
of the research questions grew by several orders of magnitude.
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The amplicon based era
The first revolution came with the advent of the Polymerase Chain Reaction (PCR) tech-
nique by Mullis et al. (1986) (Fig 0.1).

Figure 0.1: Excerpt of the original figure describing the PCR by of Mullis et al. (1986).
A double stranded DNA molecule (top) is denaturated, after which primers anneal to
their target sequence (middle), followed by elongation where a DNA polymerase syn-
thesizes for each strand a new complementary one (bottom). This operation is repeated
throughout multiple cycles to obtain an exponential amplification.

Thanks to the PCR, it became possible to easily generate numerous DNA copies,
the amplicons, of target regions of interest, a step necessary for further cloning and se-
quencing analysis. Coincidentally, the sequence of interest for bacteria were identified
concomitantly: the 16S ribosomal RNA (rRNA) markers (Woese, 1987). The combina-
tion of 16S rRNA primers and PCR allowed for a rapid expansion of our knowledge on
bacterial phylogenetics (Pace, 1997). Primers for other markers were also developed for
other clades such as rbcL for plants, or cytB for vertebrates for example. However, for
bacterial community ecology, the impact remained relatively limited: for each 16S rRNA
PCR amplification, the PCR products needed to be separated by cloning into compe-
tent bacteria, and each clone individually sequenced with Sanger sequencing technique
(Sanger et al., 1977). This was both time and cost ineffective, as well as relatively low
throughput.

That all changed at the turn of the century with the next technological revolution
which became known as high throughput sequencing (Heather and Chain, 2016). It was
now possible to directly sequence the DNA after extraction, completely discarding the
cloning step (Tringe and Hugenholtz, 2008). And with a constantly decreasing sequenc-
ing cost of DNA sequencing (Fig 0.2), the door was thus open to generating data at an
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unprecedented pace. The NGS sequencing of 16S rRNA gene amplicons became known
as metataxonomics (Marchesi and Ravel, 2015). While metataxonomics contributed on
its own to revealing a large part of the earth biodiversity, from the deep sea (Huber et al.,
2007; Sogin et al., 2006), to ocean thermal vents (McCliment et al., 2006), antarctic soil
(Soo et al., 2009), and human gut microbiome (Human Microbiome Project Consortium,
2012; Yatsunenko et al., 2012), it also suffered from some limitations, mainly the 16S
rRNA gene’s lack of fine scale taxonomic resolution.

Figure 0.2: Evolution of the DNA sequencing cost per Megabase. Adapted from NIH
(2022)

From amplicons to shotgun metagenomics
With the sheer drop in DNA sequencing prices, and the limitations of metataxonomics,
a new approach was envisioned, the whole genome shotgun (WGS) sequencing of en-
vironmental DNA, known as metagenomics. With this method, there is no need to PCR
pre-amplify target DNA regions, as all environmental DNA, the so-called metagenome,
is turned into sequencing libraries. Metagenomics not only allowed the exploration
of the unsampled taxonomic diversity of previously unknown organisms, what would
later be given the name of microbial dark-matter (Jiao et al., 2021), but also enriched our
knowledge in the functional capacities of metagenomes with the sequencing of all its
genes (Tringe and Rubin, 2005).

This drastic cost and time to sequencing reduction allowed for a substantial shift
in the scale of microbiome studies, which led to major publications, such as human
microbiome project, looking at the diversity of healthy human microbiomes (Human
Microbiome Project Consortium, 2012), with a followup a few years later (Proctor et al.,
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2019) including individuals with specific diseases. These massive scale studies allowed
to study at a population scale the link between microbiomes, diet, lifestyle, and diseases,
but also the diversity of the different human microbiomes. Among these different micro-
biomes, the human gut was identified as the habitat with the most microbial diversity
between and within human populations, either living a westernized lifestyle, with easy
access to processed foods and medicine, or a non-westernized more traditional lifestyle
(Obregon-Tito et al., 2015; Schnorr et al., 2014).

Together with the ever decreasing cost of computational resources, and new algo-
rithms such as metagenomics de novo assemblies, the affordable sequencing of an ever
increasing number of sample per study paved the way for the reference-free reconstruc-
tion of entirely unknown microbial species, such as from the cow rumen (Stewart et al.,
2019), or more recently from the human gut microbiome (Pasolli et al., 2019). These
studies demonstrated the importance of the microbial dark matter (Fig 0.3), and help
to shed a light on these previously unknown and uncharacterized micro-organisms, by
reconstructing new genomes from scratch.
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Figure 0.3: Read mappability of metagenomes. The proportions of reads mapped to a
database containing only known reference genomes are in blue, while the proportions of
reads mapped to a database containing known reference genomes, and genomes recon-
structed from the dark matter are in gray. With the addition of genomes reconstructed
from the microbial dark matter, the proportion of mapped reads increases. This applies
for samples coming from both westernized, and non-westernized individuals, even for
samples not used to reconstruct the genome of dark matter microbes. Adapted from
Pasolli et al. (2019).
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Methods for metagenomics data analysis
With the development of shotgun metagenomics arose the necessity of developing new
computational methods to process the massive amount of sequencing data (Breitwieser
et al., 2017; Sharpton, 2014). These tools mainly help to answer two different questions:
"Who is there ?", and "What are they doing ?" While an introduction to the core-principles
behind these different tools follows in the subsequent sections, a benchmark of the per-
formance of many of these methods has been made available with the results of the
CAMI challenges (Meyer et al., 2022; Sczyrba et al., 2017).

Figure 0.4: Common analysis procedures for metagenomics data. Adapted from Bre-
itwieser et al. (2017)

Taxonomic classi�ers
One of the first questions to answer when faced with a metagenomic sequencing library,
is "Who is there?" or formulated differently, "What are the different taxa present in the li-
brary?". The answer to this question is given by taxonomic classifiers, tools that assign
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a taxon to each of the sequencing read present in a sequencing library. These tools can
broadly be divided into two different categories: tools using alignment free methods,
and tools using alignments. Regardless of the category, all these tools possess an al-
gorithm in common: the lowest common ancestor (LCA). This algorithm is needed to
perform a disambiguation when a query read weakly aligns to one or more distantly
related reference organisms, or when analyzing short DNA sequences, a query DNA
read can match equally well to more than one reference organism, posing a challenge
for its taxonomic assignation. The LCA algorithm solves this ambiguity by assigning
the query higher in a taxonomic tree, at a less precise taxonomic level (Fig 0.5), an idea
first implemented for metagenomics by MEGAN (Huson et al., 2007).

Figure 0.5: Illustration of the LCA algorithm. Taxa and their LCA are displayed in the
same color. The lineage for each taxon is shown with a one letter code for the rank,
and the corresponding taxonomic IDs (TAXID). The LCA of s:562 (E. coli species) and
s:622 (S. dysenteriae species) is f:543 (Enterobacteriaceae family). The LCA of s:82981 (L.
grimontii species) and s:158841 (L. richardii species) is g:82980 (Leminorella genus). The
LCA of s:2562891 (E. alba species), s:623 (S. flexneri species) and s:2498113 (J. zhutongyuii
species) is o:91347 (Enterobacterales order). Adapted from Borry et al. (2022)

The alignment free methods typically rely on (near) exact matches of shorter DNA
fragments of a fixed size k, the k-mers. Typical tools in this category include Kraken
(Wood and Salzberg, 2014), KrakenUniq (Breitwieser et al., 2018), Kraken2 (Wood et al.,
2019), Clark-S (Ounit and Lonardi, 2016). While these tools usually offer a good com-
promise between speed and accuracy, some of them by design tend to have an elevated
rate of false alignments to favor classification speed.
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The alignment based methods can be further subdivided into tools using DNA ref-
erence databases, or protein reference databases. While BLAST (Altschul et al., 1990)
was originally used to query DNA reference databases, it very quickly became inade-
quate for the size of metagenomics datasets. To remedy to this, MALT/MEGAN (Herbig
et al., 2016; Huson et al., 2007) relies on slightly different algorithmic choices to perform
searches of metagenomic libraries against reference dababases containing the genome
of all sequenced organisms. Nevertheless, with the ever increasing size of reference
databases, even cleverer algorithmic choices aren’t enough, and these too soon also be-
came computationally intractable. An alternative approach chosen by the metaphlan
family of tools (Blanco-Miguez et al., 2022; Segata et al., 2012; Truong et al., 2015) is to
rely on a curated set of clade specific marker genes, which keeps the database size in
check. This is also the approach taken by GTDB-TK (Chaumeil et al., 2020), a tool re-
lying on a different taxonomic system, the genome taxonomy database (GTDB) (Parks
et al., 2022), while all previously mentioned tools rely on the NCBI taxonomy.

Regarding alignment based taxonomic classifiers relying on protein databases, they
benefit from the 3 fold reduction of the length of reference sequences due to the trans-
lation of DNA sequences in protein sequences, and the higher conservation of protein
sequences due to the redundancy of the genetic code, and evolutionary pressure on pro-
teins. Tools in this category include DIAMOND (Buchfink et al., 2015), Kaiju (Menzel
et al., 2016), and MMseqs2 (Steinegger and Söding, 2017). In combination with modern
indexing algorithm, these tools still manage to classify metagenomics query sequences
using databases of all known protein sequences in a timely manner.

Source tracking
A question often related to "Who is there?", is "Where are these taxons coming from?".
Even in an ideal situation, contamination of a metagenomic sample by external taxons
is a possibility. To check for this contamination, the concept of source tracking was
developed. Akin to the genetic concept of admixture, it aims to identify the mixture
proportions of different sources in the test sample, also known as the sink. The most
established software to perform source tracking, SourceTracker (Knights et al., 2011) re-
lies on a markov chain monte carlo (MCMC) approach to determine the mixing propor-
tions. However, because the convergence of the MCMC can take a long time, alternative
approaches have been developed relying on expectation-maximization such as FEAST
(Shenhav et al., 2019), or the recently published DECOM (González et al., 2023), using
k-mer counts matrix operations.
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De novo short read assembly
While previously mentioned strategies all relied on a comparison with an already ex-
isting reference database, the de novo assembly allows the exploration of metagenomics
data in a reference free manner. The basic idea of de novo assembly is to re-assemble the
sequencing reads, short DNA fragments ranging from 30 to 400 bp, into longer ones,
called contigs, by using the overlaps between reads. While there are different algo-
rithms available to perform assembly, the main strategy for metagenomics assembly
relies on de Bruijn graphs. De Bruijn graphs model the overlap between reads by first
dividing them into shorter sequences of length k, known as k-mer. The unique k-mers
are then represented in a graph as edges, connecting nodes made up of all unique k-mer
prefixes and suffixes. After the graph has been built, an Eulerian path is then computed
to reconstruct the original DNA sequence (Fig 0.6).

While the choice of k originally played an important role, with smaller k values lead-
ing to more assemblies, and larger k allowing for a better handling of the repeated re-
gions, modern metagenomics de Bruijn de novo assemblers, like IDBA-UD (Peng et al.,
2012), metaSPADES (Nurk et al., 2017), or MEGAHIT (Li et al., 2015) use an iterative
approach with increasing k, replacing the reads with assembled contigs at each iteration
(Breitwieser et al., 2017). In theory, bacterial genomes could be directly assembled in
a single contig, however in practice, due to repeated sequences and sequencing errors,
multiple contigs will be created, when there are more than one Eulerian cycles (Com-
peau et al., 2011). The assembly graph will therefore have more than one connected
component, each representing a single contig. Trying to overlap these contigs is the so-
called scaffolding step, which relies on the paired-end information of sequencing reads.
When a read from a read pair is found on a contig, and the other member of the pair
on another contig, then two contigs can be gathered in scaffold. Another scaffolding
strategy relies on adding additional information, with the use of long read sequencing
technologies to bridge gaps between contigs.
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Figure 0.6: Illustration of de Bruijn graph based de novo assembly. Sequencing reads
are first divided in all possible k-mers (here k = 3). A node is then formed for each
unique k-mer prefix and suffix (k� 1-mer), and nodes are connected with directed edges
if a k-mer contains both prefix and suffix. The next step is to find an Eulerian cycle,
meaning a path that visits all edges of the graph exactly once. The Eulerian cycle is the
reconstructed contig. Adapted from Compeau et al. (2011)
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Contig binning
Whether the scaffolding step was successful or not, there are still numerous cases where
multiple shorter contigs or scaffolds were assembled from a sequencing library. Fur-
thermore, in a metagenomic context, these assemblies are potentially coming from mul-
tiple organisms. The next task is then to cluster them into taxon bins, or so called
metagenome assembled genomes (MAGs). While one possibility is to use taxonomic
classifier to regroup contigs by taxons, this approach is often disfavored because it can
not cluster contigs assembled from previously unknown organisms. Reference-free clus-
tering therefore relies on nucleotide composition, such as tetranucleotide (k-mer with
k = 4) frequencies, and/or coverage information of reads mapped to contigs. Popu-
lar binning approaches include CONCOCT (Alneberg et al., 2014), MaxBin2 (Wu et al.,
2016), or MetaBAT2 (Kang et al., 2019).

Functional annotation
Once the question "Who is there?" has been answered, the question "What are they do-
ing?" still remains.

While it is possible to directly infer the functional capacity from the sequencing reads
by querying them against a protein, or a gene coding sequence (CDS) database, in prac-
tice, it is often more informational to first reconstruct MAGs, and then annotate them
with regional and functional information. Tools to perform such annotations, such as
Prokka (Seemann, 2014) and Bakta (Schwengers et al., 2021), typically rely on a series of
external feature prediction tools, like Prodigal for identifying CDS (Hyatt et al., 2010),
protein alignments with blastp (Camacho et al., 2009) or DIAMOND (Buchfink et al.,
2015), and a variety of hidden markov models (HMM) (Eddy, 2011) and protein do-
main profiles to assign functions to more distantly related proteins.
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Ancient DNA and its challenges for metagenomics

History of ancient DNA metagenomics
The first ever ancient DNA (aDNA) sequence was published in 1984 with a segment
of the quagga mitochondrial genome, retrieved from dried muscle tissues of a museum
speciment of this extinct zebra species (Higuchi et al., 1984). However, it is only 20 years
later, in 2003 that the first ancient metataxonomic study was published, using 16S, rbcL,
and cytB markers to study the flaura, fauna, and microbiota of permafrost and cave sed-
iments (Willerslev et al., 2003). Three years later, in 2006, came the first metagenomics
shotgun sequencing dataset, from a 29 000 years old mammoth mandible retrieved in
Siberia (Poinar et al., 2006). Since then, many metagenomics studies have been con-
ducted including samples from a variety of environments, such as dental pulp (Bos
et al., 2011), dental calculus (Warinner et al., 2014), paleofeces (Tito et al., 2008), ancient
chewing gum (Jensen et al., 2019), and more. While the study of different environments
gives us more information about their respective microbiomes, they are also used to an-
swer different research questions. For example, dental pulp tissues may contain traces
of blood, which can contain blood-borne pathogens such as Yersinia pestis, and is there-
fore used to study ancient epidemics such as the black death (Bos et al., 2011). Other
environments such as paleofeces not only allow us to study the gut microbiome, and
its associated diseases, but also the diet of the individuals. Finally, the study of ancient
microbiomes should not be limited to human samples. Humans have been living in
a symbiotic relationship not only with intra-corporal micro-organisms, but also with
extra-corporal microbes, helping to produce their fermented foods and beverages. The
study of ancient fermentation vessels and artifacts will also bring extremely valuable
insights on past culinary and cultural practices.

The challenges of aDNA
While aDNA metagenomics borrows a lot of wetlab and computational method to its
modern counterparts, the characterics of ancient nucleic acids pose their own set of
challenges due to their post-mortem degradation.

One of these challenges is the fragmentation of DNA in very short segments (most
often < 100bp), due a hydrolytic depurination and b-excision (Orlando et al., 2021),
a phenomena naturally occurring several thousand times per day in every living cell
(Lindahl, 1993), but normally repaired through base excision repair (BER) pathway by
DNA polymerases (Fig 0.7).
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Figure 0.7: DNA depurination, followed by b-elimination. Which leads to a "nick", or
break, in the DNA backbone.

The other challenge is the cytosine deamination into uracils, read as thymine by
DNA sequencers, the so called C to T misincorporation (or G to A on reverse strand).
This process is mostly happening at the end of aDNA fragments, because of the above-
mentioned single-stranded DNA breaks, leaving exposed overhanging DNA termini.
While this specific process can lead to an artificial increase of mutations when aligning
the aDNA sequences to a reference genome, it also creates a damage pattern characteris-
tic to aDNA (Fig 0.8), which helps validate the archaeological authenticity of the nucleic
acids (Orlando et al., 2021).

Figure 0.8: Characteristic aDNA damage pattern, colloquially known as the "smiley
plot". The red line represents the C to T misincorporation rate from the 5’ end on the
forward read, while the blue line represents the G to A misincorporation rate from the
3’ end on the reverse read. Adapted from MapDamage plots (Jónsson et al., 2013).

aDNA methods
Because of these characteristics, both molecular and computational methods were de-
veloped to deal with the specificities of aDNA, namely very short DNA sequences, and
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ancient DNA damage patterns. For an extensive review of the molecular biology meth-
ods specific to ancient DNA, see the recent review of Orlando et al. (2021).

Computational methods for aDNA

The short length of aDNA molecules lead to the development, or the adaptation of a
variety of tools. First and foremost, forward and reverse sequencing from paired end
libraries often need to be merged on their overlap, because of the negative inner dis-
tance (Fig 0.9), with programs such as leehom (Renaud et al., 2014), AdapterRemoval
(Schubert et al., 2016), or fastp (Chen et al., 2018). Merging the reads has the added ben-
efit of increasing base calling accuracy on the otherwise more error prone 3’ end of the
sequencing reads.

Figure 0.9: Inner distance difference between modern and ancient DNA. In modern
DNA sequencing libraries (A), the length of the DNA molecule, or the insert size, is
often greater than the cumulated length of both the forward and reverse reads, leaving
an unsequenced segment of DNA in between, the inner distance. For ancient DNA
libraries (B), the length of the DNA molecules is often shorter than the minimal read
length, which leads to a negative inner distance, and an overlap of the forward with the
reverse read.

To align the pre-processed reads to a single reference, general short read aligners are
used, for instance BWA, or Bowtie2, with so-called "ancient DNA parameters". These
parameters imply a higher sensitivity at the seeding step, by allowing mismatches,
which can happen due to C to T misincorporation.
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To visualize and quantify the damage of reads aligned to a single reference, tools
such as mapDamage (Jónsson et al., 2013) and DamageProfiler (Neukamm et al., 2021a)
have been developed, while tools like PMDtools (Skoglund et al., 2014) serve to filter
reads containing aDNA damage.

As the C to T misincorporation pattern is characteristic to ancient DNA, and can only
by observed via a sequence alignment, alignment based approaches are often preferred
to alignment free approaches in aDNA metagenomics. This led to the development of
the MALT metagenomic aligner (Herbig et al., 2016), which in combination with HOPS
(Hübler et al., 2019), enable the visualization of the characteristic aDNA damage pat-
terns of a selection of taxons in a metagenomic community.

More recently, de novo assembly has been successfully applied to aDNA on single
genomes (Seitz and Nieselt, 2017), and metagenomes (Granehäll et al., 2021; Wibowo
et al., 2021) leading to the reconstruction of hundreds of ancient MAGs after binning.
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Introduction

Overview of the manuscripts
The work presented in this thesis can be divided into three different parts.

⌅ Use and develop microbial ecology techniques, including sourcetracking meth-
ods, to identify the host origin of paleofeces from metagenomics shotgun sequenc-
ing data (manuscript A and B, chapter 1).

⌅ Develop new methods to address the specificities of ancient DNA taxonomic clas-
sification and de novo assembly (manuscript C and D, chapter 2).

⌅ Apply these methods to shotgun metagenomics data from wine fermentation mi-
crobiome (manuscript E, chapter 3).

The chapters of this thesis are composed of the following manuscripts

Chapter 1: Microbial ecology to the rescue for identifying the origin
of paleofeces

⌅ Manuscript A: After explaining the limitations of currently available sourcetrack-
ing methods, I present a new source tracking and source prediction method. This
method combines explainability, scalability, and visualization of the metagenomics
samples in a lower dimensional space, and comes with unit and integration tested
code.

⌅ Manuscript B: I use the above mentioned method, in combination with host en-
dogenous content, to predict the host origin of paleofeces shotgun sequencing
samples, and integrate all these steps into a self contained reproducible and scal-
able data analysis pipeline. We apply this pipeline to published and newly se-
quenced data, to tell apart dog from human paleofeces.

Chapter 2: From alignments to assemblies
⌅ Manuscript C: After pointing the limitations of current alignment based metage-

nomics classifiers, I present a more scalable method to apply a LCA algorithm to
the output of any short read aligner producing a SAM alignment format file. This
method comes with unit and integration tested code.
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⌅ Manuscript D: After introducing the need for a aDNA damage estimation soft-
ware for metagenomics data, I present a new scalable method to statistically as-
sess C to T aDNA misincorporation damage of multiple references, in parallel.
This method comes with unit and integration tested code, and we demonstrated
its performances in the context of aDNA de novo assembly.

Chapter 3: Application to the fermentation microbiome
⌅ Manuscript E: I first assessed the conservation of the fermentation microbiome in

ancient wine samples from biblical times. After having identified the remaining
microbes involved in the wine fermentation process, I selectively captured the se-
quencing libraries to enrich these fermentation microbes, and reconstructed their
genomes using de novo assembly. Finally, I conducted a functional and phyloge-
netic analysis of these ancient fermentation MAGs.
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Microbial ecology to the rescue for
identifying the origin of paleofeces

Manuscript A: Sourcepredict: Prediction of metagenomic
sample sources using dimension reduction followed byma-
chine learning classi�cation
Maxime Borry

Published in The Journal of Open Source Software, 2019 June 28; DOI: 10.21105/joss.01540

In Manuscript A, I introduce a new method for predicting the origin of a metage-
nomic sample based on its microbiome composition. The most established method (at
the time of the publication of Sourcepredict), SourceTracker (Knights et al., 2011) was
designed at the beginning of the expansion of metagenomics, with the goal of assigning
source proportions to a test sample, also called sink. While it has been widely adopted
by the field of microbiome research, it suffered from two main drawbacks. First, as it
relies on a MCMC approach, it often suffers from very long convergence time, some-
time days, especially when using a multiplicity of sources. Furthermore, because of the
stochasticity of the MCMC approach, results differ between runs, conferring it a black-
box aspect, with hard to interpret outcomes. To circumvent these issues, I proposed
the Sourcepredict method, which relies on a faster fuzzy clustering source prediction
method, operating on a b-diversity pairwise distance matrix embedded, and visual-
ized, in a lower dimensional space. When benchmarked against SourceTracker, Sour-
cepredict showed similar or better performances for both the tasks of source prediction
(Borry, 2019a) and source tracking (mixture of sources) (Borry, 2019b).
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Summary

SourcePredict is a Python package distributed through Conda, to classify and predict the
origin of metagenomic samples, given a reference dataset of known origins, a problem also
known as source tracking.
DNA shotgun sequencing of human, animal, and environmental samples has opened up new
doors to explore the diversity of life in these different environments, a field known as metage-
nomics (Hugenholtz & Tyson, 2008). One aspect of metagenomics is investigating the com-
munity composition of organisms within a sequencing sample with tools known as taxonomic
classifiers, such as Kraken (Wood & Salzberg, 2014).
In cases where the origin of a metagenomic sample, its source, is unknown, it is often part of the
research question to predict and/or confirm the source. For example, in microbial archaelogy,
it is sometimes necessary to rely on metagenomics to validate the source of paleofaeces.
Using samples of known sources, a reference dataset can be established with the taxonomic
composition of the samples, i.e., the organisms identified in the samples as features, and the
sources of the samples as class labels.
With this reference dataset, a machine learning algorithm can be trained to predict the source
of unknown samples (sinks) from their taxonomic composition.
Other tools used to perform the prediction of a sample source already exist, such as Source-
Tracker (Knights et al., 2011), which employs Gibbs sampling.
However, the Sourcepredict results are more easily interpreted since the samples are embedded
in a human observable low-dimensional space. This embedding is performed by a dimension
reduction algorithm followed by K-Nearest-Neighbours (KNN) classification.

Method

Starting with a numerical organism count matrix (samples as columns, organisms as rows,
obtained by a taxonomic classifier) of merged references and sinks datasets, samples are first
normalized relative to each other, to correct for uneven sequencing depth using the geometric
mean of pairwise ratios (GMPR) method (default) (L. Chen et al., 2018).
After normalization, Sourcepredict performs a two-step prediction algorithm. First, it predicts
the proportion of unknown sources, i.e., which are not represented in the reference dataset.
Second, it predicts the proportion of each known source of the reference dataset in the sink
samples.
Organisms are represented by their taxonomic identifiers (TAXID).

Borry, (2019). Sourcepredict: Prediction of metagenomic sample sources using dimension reduction followed by machine learning classification.
Journal of Open Source Software, 4(41), 1540. https://doi.org/10.21105/joss.01540
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Prediction of the proportion of unknown sources

Let Si 2 {S1, .., Sn} be a sample from the normalized sinks dataset Dsink, o i

j
2 {o i

1 , .., o
i

n i
o
}

an organism in Si, and n i
o

the total number of organisms in Si, with o i

j
2 Z+. Let m be

the mean number of samples per source in the reference dataset, such that m = 1
O
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O

i=1 Si.
For each Si sample, I define ||m|| derivative samples USi
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2 {USi
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reference dataset to account for the unknown source proportion in a test sample. Separately
for each Si, a proportion denoted ↵ 2 [0, 1] (default = 0.1) of each o i
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), 0.01). The ||m|| USi

k
samples are then added to the

reference dataset Dref , and labeled as unknown, to create a new reference dataset denoted
unkDref . To predict the proportion of unknown sources, a Bray-Curtis (Bray & Curtis, 1957)
pairwise dissimilarity matrix of all Si and USi

k
samples is computed using scikit-bio (Rideout

et al., 2018). This distance matrix is then embedded in two dimensions (default) with the
scikit-bio implementation of PCoA. This sample embedding is divided into three subsets:
unkDtrain (64%), unkDtest (20%), and unkDvalidation(16%). The scikit-learn (Pedregosa et
al., 2011) implementation of KNN algorithm is then trained on unkDtrain, and the training
accuracy is computed with unkDtest. This trained KNN model is then corrected for probability
estimation of the unknown proportion using the scikit-learn implementation of Platt’s scaling
method (Platt & others, 1999) with unkDvalidation. The proportion of unknown sources in
Si, pu 2 [0, 1] is then estimated using this trained and corrected KNN model. Ultimately, this
process is repeated independently for each sink sample Si of Dsink.

Prediction of the proportion of known sources

First, only organism TAXIDs corresponding to the species taxonomic level are retained us-
ing the ETE toolkit (Huerta-Cepas, Serra, & Bork, 2016). A weighted Unifrac (default)
(Lozupone, Hamady, Kelley, & Knight, 2007) pairwise distance matrix is then computed on
the merged and normalized training dataset Dref and test dataset Dsink with scikit-bio, using
the NCBI taxonomy as a reference tree. This distance matrix is then embedded in two dimen-
sions (default) using the scikit-learn implementation of t-SNE (Maaten & Hinton, 2008). The
2-dimensional embedding is then split back to training tsneDref and testing dataset tsneDsink.
The KNN algorithm is then trained on the train subset, with a five (default) cross validation
to look for the optimum number of K-neighbors. The training dataset tsneDref is further
divided into three subsets: tsneDtrain (64%), tsneDtest (20%), and tsneDvalidation (16%).
The training accuracy is then computed with tsneDtest. Finally, this second trained KNN
model is also corrected for source proportion estimation using the scikit-learn implementation
of the Platt’s method with tsneDvalidation. The proportion pcs 2 [0, 1] of each of the ns

sources cs 2 {c1, .., cns} in each sample Si is then estimated using this second trained and
corrected KNN model.

Combining unknown and source proportions

For each sample Si of the test dataset Dsink, the predicted unknown proportion pu is then
combined with the predicted proportion pcs for each of the ns sources cs of the training
dataset such that Pns

cs=1 sc + pu = 1 where sc = pcs · pu.
Finally, a summary table gathering the estimated sources proportions is returned as a csv file,
as well as the t-SNE embedding sample coordinates.

Borry, (2019). Sourcepredict: Prediction of metagenomic sample sources using dimension reduction followed by machine learning classification.
Journal of Open Source Software, 4(41), 1540. https://doi.org/10.21105/joss.01540

2

Chapter 1. Microbial ecology to the rescue for identifying the origin of paleofeces

20



Acknowledgements

Thanks to Dr. Christina Warinner, Dr. Alexander Herbig, Dr. AB Rohrlach, and Alexander
Hübner for their valuable comments and for proofreading this manuscript. This work was
funded by the Max Planck Society and the Deutsche Forschungsgemeinschaft, project code:
EXC 2051 #390713860.

References

Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern
Wisconsin. Ecological monographs, 27(4), 325–349. doi:10.2307/1942268
Chen, L., Reeve, J., Zhang, L., Huang, S., Wang, X., & Chen, J. (2018). GMPR: A robust
normalization method for zero-inflated count data with application to microbiome sequencing
data. PeerJ, 6, e4600. doi:10.7717/peerj.4600
Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, analysis, and
visualization of phylogenomic data. Molecular Biology and Evolution, 33(6), 1635–1638.
doi:10.1093/molbev/msw046
Hugenholtz, P., & Tyson, G. W. (2008). Microbiology: Metagenomics. Nature, 455(7212),
481. doi:10.1038/455481a
Knights, D., Kuczynski, J., Charlson, E. S., Zaneveld, J., Mozer, M. C., Collman, R. G.,
Bushman, F. D., et al. (2011). Bayesian community-wide culture-independent microbial
source tracking. Nature methods, 8(9), 761. doi:10.1038/nmeth.1650
Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and quali-
tative beta diversity measures lead to different insights into factors that structure microbial
communities. Appl. Environ. Microbiol., 73(5), 1576–1585. doi:10.1128/AEM.01996-06
Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(Nov), 2579–2605.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12(Oct), 2825–2830.
Platt, J., & others. (1999). Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3), 61–74.
Rideout, J. R., Caporaso, G., Bolyen, E., McDonald, D., Baeza, Y. V., Alastuey, J. C., Pitman,
A., et al. (2018, December). biocore/scikit-bio: scikit-bio 0.5.5: More compositional methods
added. doi:10.5281/zenodo.2254379
Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification
using exact alignments. Genome Biology, 15(3), R46. doi:10.1186/gb-2014-15-3-r46

Borry, (2019). Sourcepredict: Prediction of metagenomic sample sources using dimension reduction followed by machine learning classification.
Journal of Open Source Software, 4(41), 1540. https://doi.org/10.21105/joss.01540

3

Chapter 1. Microbial ecology to the rescue for identifying the origin of paleofeces

21



Chapter 1. Microbial ecology to the rescue for identifying the origin of paleofeces

Manuscript B: CoproID predicts the source of coprolites
andpaleofecesusingmicrobiomecompositionandhostDNA
content
Maxime Borry, Bryan Cordova, Angela Perri, Marsha Wibowo, Tanvi Prasad Honap,
Jada Ko, Jie Yu, Kate Britton, Linus Girdland-Flink, Robert C. Power, Ingelise Stui-
jts, Domingo C. Salazar-García, Courtney Hofman, Richard Hagan, Thérèse Samda-
pawindé Kagoné, Nicolas Meda, Helene Carabin, David Jacobson, Karl Reinhard, Cecil
Lewis, Aleksandar Kostic, Choongwon Jeong, Alexander Herbig, Alexander Hübner,
Christina Warinner

Published in PeerJ, 2020 April 17; DOI: 10.7717/peerj.9001

In manuscript B, I introduce a new method combining the Sourcepredict approach,
and endogenous DNA content to predict the original source host of paleofeces samples.

When the first ancient human gut metagenomics studies were published, there was
a keen interest from the broader scientific community to use these results and compare
them with our current gut microbiomes. However, distinguishing human paleofeces,
from paleofeces of other species had proven to be challenging from a morphological
and microscopical perspective (Tito et al., 2012). Furthermore, the tight relationship be-
tween humans, and their canine companions made it especially complicated to distin-
guish human from canine coprolites (Poinar et al., 2009a). To address this issue, we used
both the amount of host endogenous DNA, and the microbiome community based host
prediction by Sourcepredict, which we both computed from shotgun metagenomics se-
quencing data. We combined all these steps in a self contained scalable and reproducible
data analysis pipeline written with nf-core. (Ewels et al., 2020) and Nextflow (Tommaso
et al., 2017). Our findings confirmed the general ambiguity between human and dog
paleofeces in the archeological records, and allowed us to lift it for some of them.
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ABSTRACT
Shotgun metagenomics applied to archaeological feces (paleofeces) can bring new
insights into the composition and functions of human and animal gut microbiota
from the past. However, paleofeces often undergo physical distortions in
archaeological sediments, making their source species difficult to identify on the basis
of fecal morphology or microscopic features alone. Here we present a reproducible
and scalable pipeline using both host and microbial DNA to infer the host source
of fecal material. We apply this pipeline to newly sequenced archaeological
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specimens and show that we are able to distinguish morphologically similar human
and canine paleofeces, as well as non-fecal sediments, from a range of archaeological
contexts.

Subjects Anthropology, Bioinformatics, Genomics, Microbiology, Data Mining and Machine
Learning
Keywords Coprolite, Paleofeces, Microbiome, Endogenous DNA, Archeology, Machine learning,
Nextflow, Gut, Human, Dog

INTRODUCTION
The gut microbiome, located in the distal colon and primarily studied through the analysis
of feces, is the largest and arguably most influential microbial community within the
body (The Human Microbiome Project Consortium, 2012). Recent investigations of the
human microbiome have revealed that it plays diverse roles in health and disease, and gut
microbiome composition has been linked to a variety of human health states, including
inflammatory bowel diseases, diabetes, and obesity (Kho & Lal, 2018). To investigate
the gut microbiome, metagenomic sequencing is typically used to reveal both the
taxononomic composition (i.e., which bacteria are there) and the functions the microbes
are capable of performing (i.e., their potential metabolic activities) (Sharpton, 2014). Given
the importance of the gut microbiome in human health, there is great interest in
understanding its recent evolutionary and ecological history (Warinner & Lewis, 2015;
Davenport et al., 2017).

Paleofeces, either in an organic or partially mineralized (coprolite) state, present a
unique opportunity to directly investigate changes in the structure and function of the gut
microbiome through time (Warinner et al., 2015). Paleofeces are found in a wide variety of
archaeological contexts around the world and are generally associated with localized
processes of dessication, freezing, or mineralization. Paleofeces can range in size from
whole, intact fecal pieces (Jiménez et al., 2012) to millimeter-sized sediment inclusions
identifiable by their high phosphate and fecal sterol content (Sistiaga et al., 2014).
Although genetic approaches have long been used to investigate dietary DNA found within
human (Gilbert et al., 2008; Poinar et al., 2001) and animal (Poinar et al., 1998; Hofreiter
et al., 2000; Bon et al., 2012; Wood et al., 2016) paleofeces, it is only recently that
improvements in metagenomic sequencing and bioinformatics have enabled detailed
characterization of their microbial communities (Tito et al., 2008, 2012; Warinner et al.,
2017).

However, before evolutionary studies of the gut microbiome can be conducted, it is first
necessary to confirm the host source of the paleofeces under study. Feces can be difficult
to taxonomically assign by morphology alone (Supplemental Text; Reinhard & Bryant,
1992), and human and canine feces can be particularly difficult to distinguish in
archaeological contexts (Poinar et al., 2009). Since their initial domestication more than
12,000 years ago (Frantz et al., 2016), dogs have often lived in close association with
humans, and it is not uncommon for human and dog feces to co-occur at archaeological
sites. Moreover, dogs often consume diets similar to humans because of provisioning or
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refuse scavenging (Guiry, 2012), making their feces difficult to distinguish based on dietary
contents. Even well-preserved fecal material degrades over time, changing in size, shape,
and color (Fig. 1; Reinhard & Bryant, 1992). The combined analysis of host and microbial
ancient DNA (aDNA) within paleofeces presents a potential solution to this problem.

Previously, paleofeces host source has been genetically inferred on the basis of
PCR-amplified mitochondrial DNA sequences alone (Hofreiter et al., 2000); however,
this is problematic in the case of dogs, which, in addition to being pets and working
animals, were also eaten by many ancient cultures (Clutton-Brock & Hammond, 1994;
Rosenswig, 2007; Kirch & O’Day, 2003; Podberscek, 2009), and thus trace amounts of dog
DNA may be expected to be present in the feces of humans consuming dogs. Additionally,
dogs often scavenge on human refuse, including human excrement (Butler & Du Toit,
2002), and thus ancient dog feces could also contain trace amounts of human DNA, which
could be further inflated by PCR-based methods.

A metagenomics approach overcomes these issues by allowing a quantitative assessment
of eukaryotic DNA at a genome-wide scale, including the identification and removal of
modern human contaminant DNA that could potentially arise during excavation or
subsequent curation or storage. It also allows for the microbial composition of the feces to
be taken into account. Gut microbiome composition differs among mammal species
(Ley et al., 2008), and thus paleofeces microbial composition could be used to confirm and
authenticate host assignment. Available microbial tools, such as SourceTracker (Knights
et al., 2011) and FEAST (Shenhav et al., 2019), can be used to perform the source
prediction of microbiome samples from uncertain sources (sinks) using a reference dataset
of source-labeled microbiome samples and, respectively, Gibbs sampling or an
Expectation-Maximization algorithm. However, although SourceTracker has been widely
used for modern microbiome studies and has even been applied to ancient gut microbiome
data (Tito et al., 2012; Hagan et al., 2020), it was not designed to be a host species
identification tool for ancient microbiomes.

In this work we present a bioinformatics method to infer and authenticate the host
source of paleofeces from shotgun metagenomic DNA sequencing data: coproID (coprolite
IDentification). coproID combines the analysis of putative host ancient DNA with a
machine learning prediction of the feces source based on microbiome taxonomic
composition. Ultimately, coproID predicts the host source of a paleofeces specimen from
the shotgun metagenomic data derived from it. We apply coproID to previously
published modern fecal datasets and show that it can be used to reliably predict their host.
We then apply coproID to a set of newly sequenced paleofeces specimens and non-fecal
archaeological sediments and show that it can discriminate between feces of human
and canine origin, as well as between fecal and non-fecal samples.

MATERIALS AND METHODS
Gut microbiome reference datasets
Previously published modern reference microbiomes were chosen to represent the
diversity of potential paleofeces sources and their possible contaminants, namely human
fecal microbiomes from Non-Westernized Human/Rural (NWHR) and Westernized
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Human/Urban (WHU) communities, dog fecal microbiomes, and soil samples (Table 1).
Because the human datasets had been filtered to remove human genetic sequences prior to
database deposition, we additionally generated new sequencing data from 118 fecal
specimens from both NWHR and WHU populations (Table S5) in order to determine the
average proportion and variance of host DNA in human feces. The Joslin Diabetes Center
granted Ethical approval (CHS# 2017-25) to sample the WHU individuals. The Centre
MURAZ Research Institute granted Ethical approval (No. 31/2016/CE-CM) to sample the
NWHR individuals.

Figure 1 Examples of archaeological paleofeces analyzed in this study. (A) H29-3, from Anhui
Province, China, Neolithic period; (B) Zape 2, from Durango, Mexico, ca. 1300 BP; (C) Zape 28, from
Durango, Mexico, ca. 1300 BP. Paleofeces ranged from slightly mineralized intact pieces (A) to more
fragmentary organic states (B and C), and color ranged from pale gray (A) to dark brown (C).

Full-size DOI: 10.7717/peerj.9001/fig-1

Table 1 Modern reference microbiome datasets.

Metagenome source Food
production

N Analysis Source

Homo sapiens, USA WHU 36 microbiome The Human Microbiome Project Consortium (2012)

Homo sapiens, India (Bhopal and
Kerala)

WHU and
NWHR

19 microbiome Dhakan et al. (2019)

Homo sapiens, Fiji (agrarian villages) NWHR 20 microbiome Brito et al. (2019)

Homo sapiens, Madagascar NWHR 110 microbiome Pasolli et al. (2019)

Homo sapiens, Brazil (Yanomami) NWHR 3 microbiome Pasolli et al. (2019)

Homo sapiens, Peru (Tunapuco) NWHR 12 microbiome Obregon-Tito et al. (2015)

Homo sapiens, Tanzania (Hadza) NWHR 38 microbiome Rampelli et al. (2015)

Homo sapiens, Peru (Matses) NWHR 24 microbiome Obregon-Tito et al. (2015)

Homo sapiens, USA (Boston) WHU 49 host DNA This study

Homo sapiens, Burkina Faso NWHR 69 host DNA This study

Canis familiaris – 150 microbiome and host
DNA

Coelho et al. (2018)

Soil – 16 microbiome Fierer et al. (2012)

Soil – 2 microbiome CSIR-Central Institute of Medicinal & Aromatic Plants
(2016)

Soil – 2 microbiome Orellana et al. (2018)
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Archaeological samples
A total of 20 archaeological samples, originating from 10 sites (Fig. S3) and spanning
periods from 7200 BP to the medieval era, were selected for this study. Among these 20
samples, of which 17 are newly sequenced, 13 are paleofeces, 4 are midden sediments, and
3 are sediments obtained from human pelvic bone surfaces (Table 2).

Table 2 Archaeological samples.

Archeological
ID

Laboratory
ID

Site Name Region Period Sample type Archaeologically
suspected species

Plot
ID

Zape 2* ZSM002 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 01

Zape 5* ZSM005 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 02

Zape 23 ZSM023 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN or
CANID

03

Zape 25 ZSM025 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 04

Zape 27 ZSM027 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 05

Zape 28* ZSM028 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 06

Zape 29 ZSM029 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 07

Zape 31 ZSM031 Cueva de los Muertos
Chiquitos

Mexico 1300 BP Paleofeces HUMAN 08

H29-1 AHP001 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

09

H35-1 AHP002 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

10

H29-2 AHP003 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

11

H29-3 AHP004 Xiaosungang China Neolithic 7200–6800
BP

Paleofeces CANID or
CERVID

12

LG 4560.69 YRK001 Surrey UK Post-Medieval Paleofeces HUMAN 13

AP3-C197S163 DRL001.A Derragh Ireland Mesolithic Midden
Sediment

– 14

AP4-A6-2860 CBA001.A CabeÃ§o das Amoreiras Portugal Mesolithic Midden
Sediment

– 15

AP5-798-162 BRF001.A Binchester Roman Fort England Roman Midden
Sediment

– 16

AP6-LPZ702 LEI010.A Leipzig Germany 10th–11th century AD Midden
Sediment

– 17

AP7-6-28353 ECO004.D El Collado Spain Mesolithic Pelvic Sediment – 18

AP8-CMN-M1 CMN001.D Cingle del Mas Nou Spain Mesolithic Pelvic Sediment – 19

AP9-17590 MLP001.A Molpir Slovakia 7th century BC Pelvic Sediment – 20
Note:

* Metagenomic data were previously published in Hagan et al. (2020).
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Sampling
Paleofeces specimens from Mexico were sampled in a dedicated aDNA cleanroom in the
Laboratories for Molecular Anthropology and Microbiome Research (LMAMR) at the
University of Oklahoma, USA. Specimens from China were sampled in a dedicated aDNA
cleanroom at the Max Planck Institute for the Science of Human History (MPI-SHH) in
Jena, Germany. All other specimens were first sampled at the Max Planck Institute for
Evolutionary Anthropology (MPI-EVA) in Leipzig, Germany before being transferred to
the MPI-SHH for further processing. Sampling was performed using a sterile stainless
steel spatula or scalpel, followed by homogenization in a mortar and pestle, if necessary.
Because the specimens from Xiaosungang, China were very hard and dense, a rotary drill
was used to section the coprolite prior to sampling. Where possible, fecal material was
sampled from the interior of the specimen rather than the surface. Specimens from
Molphir and Leipzig were received suspended in a buffer of trisodium phosphate, glycerol,
and formyl following screening for parasite eggs using optical microscopy. For each
paleofeces specimen, a total of 50–200 mg was analyzed.

Modern feces were obtained under written informed consent from Boston, USA
(WHU) from a long-term (>50 years) type 1 diabetes cohort, and from villages in Burkina
Faso (NWHR) as part of broader studies on human gut microbiome biodiversity and
health-associated microbial communities. Feces were collected fresh and stored frozen
until analysis. A total of 250 mg was analyzed for each fecal specimen.

DNA extraction
For paleofeces and sediment samples, DNA extractions were performed using a silica spin
column protocol (Dabney et al., 2013) with minor modifications in dedicated aDNA
cleanrooms located at LMAMR (Mexican paleofeces) and the MPI-SHH (all other
paleofeces). At LMAMR, the modifications followed those of method D described in
Hagan et al. (2020). DNA extractions at the MPI-SHH were similar, but omitted the initial
bead-beating step, and a single silica column was used per sample instead of two.
Additionally, to reduce centrifugation errors, DNA extractions performed at the MPI-SHH
substituted the column apparatus from the High Pure Viral Nucleic Acid Large Volume
Kit (Roche, Switzerland) in place of the custom assembled Zymo-reservoirs coupled to
MinElute (Qiagen, Hilden, Germany) columns described in Dabney et al. (2013). Samples
processed at the MPI-SHH were also partially treated with uracil-DNA-glycosylase (UDG)
enzyme to confine DNA damage to the ends of the DNA molecules (Rohland et al., 2015).

For modern feces, DNA was extracted from Burkina Faso fecal samples using the
AllPrep PowerViral DNA/RNA Qiagen kit at Centre MURAZ Research Institute in
Burkina Faso. DNA was extracted from the Boston fecal material using the
ZymoBIOMICS DNA Miniprep Kit (D4303) at the Joslin Diabetes Center.

Library preparation and sequencing
For paleofeces and sediment samples, double-stranded, dual-indexed shotgun Illumina
libraries were constructed following (Meyer & Kircher, 2010) using either the NEBNext
DNA Library Prep Master Set (E6070) kit (Hagan et al., 2020; Mann et al., 2018) for the
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Mexican paleofeces or individually purchased reagents (Mann et al., 2018) for all other
samples. Following library amplification using Phusion HotStart II (ZSM023, ZSM025,
ZSM027, ZSM029), KAPA HiFi Uracil+ (ZSM002, ZSM005, ZSM028), or Agilent Pfu
Turbo Cx Hotstart (all other paleofeces) polymerase, the libraries were purified using a
Qiagen MinElute PCR Purification kit and quantified using either a BioAnalyzer 2100 with
High Sensitivity DNA reagents or an Agilent Tape Station D1000 Screen Tape kit.
The Mexican libraries were pooled in equimolar amounts and sequenced on an Illumina
HiSeq 2000 using 2 × 100 bp paired-end sequencing. All other libraries were pooled in
equimolar amounts and sequenced on an Illumina HiSeq 4000 using 2 × 75 bp paired-end
sequencing.

For modern NWHR feces, double-stranded, dual-indexed shotgun Illumina libraries
were constructed in a dedicated modern DNA facility at LMAMR. Briefly, after DNA
quantification using a Qubit dsDNA Broad Range Assay Kit, DNA was sheared using a
QSonica Q800R in 1.5 mL 4 !C cold water at 50% amplitude for 12 min to aim for a
fragment size between 400 and 600 bp. Fragments shorter than 150 bp were removed using
Sera-Mag SpeedBeads and a Alpaqua 96S Super Magnet Plate. End-repair and A-tailing
was performed using the Kapa HyperPrep EndRepair and A-Tailing Kit, and Illumina
sequencing adapters were added. After library quantification, libraries were dual-indexed
in an indexing PCR over four replicates, pooled, and purified using the SpeedBeads.
Libraries were quantified using the Agilent Fragment Analyzer, pooled in equimolar ratios,
and size-selected using the Pippin Prep to a target size range of 400–600 bp. Libraries were
sequenced on an Illumina NovaSeq S1 using 2 × 150 bp paired-end sequencing at the
Oklahoma Medical Research Foundation Next-Generation Sequencing Core facility.
Modern WHU libraries were generated using the NEBNext DNA library preparation kit
following manufacturer’s recommendations, after fragmentation by shearing for a target
fragment size of 350 bp. The libraries were then pooled and sequenced by Novogene on a
NovaSeq S4 using 2 × 150 bp paired-end sequencing.

Proportion of host DNA in gut microbiome
Because it is standard practice to remove human DNA sequences from metagenomics
DNA sequence files before data deposition into public repositories, we were unable to infer
the proportion of human DNA in human feces from publicly available data. To overcome
this problem, we measured the proportion of human DNA in two newly generated fecal
metagenomics datasets from Burkina Faso (NWHR) and Boston, U.S.A. (WHU)
(Table S5). To measure the proportion of human DNA in each fecal dataset, we used the
Anonymap pipeline (Borry, 2019a) to perform a mapping with Bowtie 2 (Langmead &
Salzberg, 2012) with the parameters -- very-sensitive -N 1 after adapter cleaning and
reads trimming for ambiguous and low-quality bases with a QScore below 20 by
AdapterRemoval v2 (Schubert, Lindgreen & Orlando, 2016). To preserve the anonymity of
the donors, the sequences of mapped reads were then replaced by Ns thus anonymizing the
alignment files. We obtained the proportion of host DNA per sample by dividing the
number of mapped reads by the total number of reads in the sample. The proportion of
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host DNA in dog feces was determined from the published dataset Coelho et al. (2018) as
described above, but without the anonymization step.

Visualization and statistical analysis
The statistical analyses were performed in Python v3.7.6 using Scipy v1.4.1, and the figures
were generated using Plotnine v0.6.0.

coproID pipeline
Data were processed using the coproID pipeline v1.0 (Fig. 2) (DOI 10.5281/zenodo.2653757)
written using Nextflow (Di Tommaso et al., 2017) andmade available through nf-core (Ewels
et al., 2019). Nextflow is a Domain Specific Language designed to ensure reproducibility
and scalability for scientific pipelines, and nf-core is a community-developed set of
guidelines and tools to promote standardization and maximum usability of Nextflow
pipelines. CoproID consists of 5 different steps:

Preprocessing
Fastq sequencing files are given as an input. After quality control analysis with FastQC
(Andrews, 2010), raw sequencing reads are cleaned from sequencing adapters and trimmed
from ambiguous and low-quality bases with a QScore below 20, while reads shorter than 30
base pairs are discarded using AdapterRemoval v2. By default, paired-end reads are
merged on overlapping base pairs.

Mapping
The preprocessed reads are then aligned to each of the target species genomes (source
species) by Bowtie2 with the -- very-sensitive preset while allowing for a mismatch in
the seed search (-N 1). When running coproID with the ancient DNA mode (--adna),
alignments are filtered by PMDtools (Skoglund et al., 2014) to only retain reads showing
post-mortem damages (PMD). PMDtools default settings are used, with specified library
type, and only reads with a PMDScore greater than three are kept.

Computing host DNA content
Next, filtered alignments are processed in Python using the Pysam library (Pysam
Developers, 2018). Reads matching above the identity threshold of 0.95 to multiple host
genomes are flagged as common reads readscommons whereas reads mapping above the
identity threshold to a single host genome are flagged as genome-specific host reads
readsspec g to each genome g. Each source species host DNA is normalized by genome size
and gut microbiome host DNA content such as:

NormalizedHostDNAðsource speciesÞ ¼
!lengthðreadsspec gÞ
genomeg length % endog

(1)

where for each species of genome g, ∑length(readsspec g) is the total length of all readsspec g,
genomeg length is the size of the genome, and endog is the host DNA proportion in the
species gut microbiome.
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Afterwards, an host DNA ratio is computed for each source species such as:

NormalizedRatioðsource speciesÞ ¼ NormalizedHostDNAðsource speciesÞ
!NormalizedHost DNAðsource speciesÞ

(2)

where ∑NormalizedHost DNA(source species) is the sum of all source species Normalized
Host DNA.

Metagenomic profiling
Adapter clipped and trimmed reads are given as an input to Kraken 2 (Wood & Salzberg,
2014). Using the MiniKraken2_v2_8GB database (2019/04/23 version), Kraken 2 performs
the taxonomic classification to output a taxon count per sample report file. All samples’
taxon counts are pooled together in a taxon counts matrix with samples in columns, and
taxons in rows. Next, Sourcepredict (Borry, 2019b) is used to predict the source based on
each microbiome sample taxon composition. Using dimension reduction and K-Nearest

Figure 2 Workflow schematic of the coproID pipeline. CoproID consists of five steps: Preprocessing
(orange), Mapping (blue), Computing host DNA content for each metagenome (red), Metagenomic pro-
filing (green), and Reporting (violet). Individual programs (squared boxes) are colored by category
(rounded boxes). Full-size DOI: 10.7717/peerj.9001/fig-2
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Neighbors (KNN) machine learning trained with reference modern gut microbiomes
samples (Table 1), Sourcepredict estimates a proportion propmicrobiome(source species) of
each potential source species, here Human or Dog, for each sample.

Reporting
For each filtered alignment file, the DNA damage patterns are estimated with
DamageProfiler (Peltzer & Neukamm, 2019). The information from the host DNA content
and the metagenomic profiling are gathered for each source in each sample such as:

proportionðsource speciesÞ ¼ NormalizedRatioðsource speciesÞ%
propmicrobiomeðsource speciesÞ

Finally, a summary report is generated including the damage plots, a summary table of
the coproID metrics, and the embedding of the samples in two dimensions by
Sourcepredict. coproID is available on GitHub at the following address: github.com/nf-
core/coproid.

RESULTS
We analyzed 20 archaeological samples with coproID v1.0 to estimate their source using
both host DNA and microbiome composition.

Host DNA in reference gut microbiomes
Before analyzing the archaeological samples, we first tested whether there is a per-species
difference in host DNA content in modern reference human and dog feces. With
Anonymap, we computed the amount of host DNA in each reference gut microbiome
(Table S1). We found that the median percentages of host DNA in NWHR, WHU, and
Dog (Fig. 3) are significantly different at alpha = 0.05 (Kruskal–Wallis H-test = 117.40,
p value < 0.0001). We confirmed that there is a significant difference of median percentages
of host DNA between dogs and NWHR, as well as dogs andWHU, with Mann–WhitneyU
tests (Table 3) and therefore corrected each sample by the mean percentage of gut host
DNA found in each species, 1.24% for humans (mNWHR = 0.85, σNWHR = 2.33,
mWHU = 1.67, σWHU0.81), and 0.11% for dogs (σdog = 0.16) (Eq. (1); Table S1). This
information was used to correct for the amount of host DNA found in paleofeces.

The effect of PMD filtering on host species prediction
Because aDNA accumulates damage over time (Briggs et al., 2007), we could use this
characteristic to filter for reads carrying these specific damage patterns using PMDtools,
and therefore reduce modern contamination in the dataset. We applied PMD filtering to
our archaeological datasets, and for each, compared the predicted host source before and
afterwards. The predicted host sources did not change after the DNA damage read
filtering, but some became less certain (Fig. 4). Most samples are confidently assigned to
one of the two target species, however some samples previously categorized as humans
now lie in the uncertainty zone. This suggests that PMDtools filtering lowered the modern
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human contamination which might have originated from sample excavation and
manipulation.

The trade-off of PMDtools filtering is that it reduces the assignment power by lowering
the number of reads available for host DNA-based source prediction by only keeping
PMD-bearing reads. This loss is greater for well-preserved samples, which may have
relatively few damaged reads (<15% of total). Ultimately, applying damage filtering can
make it more difficult to categorize samples on the sole basis of host DNA content, but it
also makes source assignments more reliable by removing modern contamination.

Source microbiome prediction of reference samples by Sourcepredict
To help resolve ambiguities related to the host aDNA present within a sample, we also
investigated gut microbiome composition as an additional line of evidence to better predict
paleofeces source. After performing taxonomic classification using Kraken2, we computed
a sample pairwise distance matrix from the species counts. With the t-SNE dimension
reduction method, we embedded this distance matrix in two dimensions to visualize the

Figure 3 Gut microbiome host DNA content. The median percentage of host DNA in the gut
microbiome and the number of samples in each group are displayed besides each boxplot.

Full-size DOI: 10.7717/peerj.9001/fig-3

Table 3 Statistical comparison of reference gut host DNA content. Mann–Whitney U test for inde-
pendent observations. H0: the distributions of both populations are equal.

Comparison Mann-Whitney U test p Value

Dog vs NWHR 3327.0 <0.0001

Dog vs WHU 41.0 <0.0001

NWHR vs WHU 370.0 <0.0001

Dog vs Human 3368.0 <0.0001
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sample positions and sources (Fig. 5A). We then used a KNN machine learning classifier
on this low dimension embedding to predict the source of gut microbiome samples. This
trained KNN model reached a test accuracy of 0.94 on previously unseen data (Fig. 5B).

Figure 4 The effect of filtering for damaged reads using PMD. The log2 of the human Normal-
izedHostDNA is graphed against the log2 of the dog NormalizedHostDNA. Squares represent samples
before filtering by PMD, whereas crosses represent samples after filtering by PMD. Dotted lines show the
correspondence between samples. The red diagonal line marks the boundary between the two species,
and the grey shaded area indicates a zone of species uncertainty (±1log2FC) due to insufficient genetic
information. Full-size DOI: 10.7717/peerj.9001/fig-4

Figure 5 Embedding of reference modern gut microbiomes. (A) t-SNE embedding of the species
composition based on sample pairwise Weighted Unifrac distances for training modern gut microbiomes
training samples. Samples are colored by their actual source. (B) t-SNE embedding of the species
composition based on sample pairwise Weighted Unifrac distances for source prediction of modern test
samples. The outer circle color is the actual source of a sample, while the inner circle color is the predicted
sample source by Sourcepredict. Full-size DOI: 10.7717/peerj.9001/fig-5
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Embedding of archaeological samples by Sourcepredict
We used this trained KNN model to predict the sources of the 20 paleofeces and
archaeological sediment samples, after embedding them in a two-dimensional space
(Fig. 6). Based on their microbiome composition data, Sourcepredict predicted
2 paleofeces samples as dogs, 8 paleofeces samples as human, 2 paleofeces samples and
4 archaeological sediments as soil, while the rest were predicted as unknown (Table S2).

coproID prediction
Combining both PMD-filtered host DNA information and microbiome composition,
coproID was able to reliably categorize 7 of the 13 paleofeces samples, as 5 human
paleofeces and 2 canine paleofeces, whereas all of the non-fecal archaeological sediments
were flagged as unknown (Fig. 7). This confirms the original archaeological source
hypothesis for five samples (ZSM005, ZSM025, ZSM027, ZSM028, ZSM031) and specifies
or rejects the original archaeological source hypothesis for the two others (YRK001,
AHP004). The 6 paleofeces samples not reliably identified by coproID have a conflicting
source proportion estimation between host DNA and microbiome composition (Fig. 8;
Table S3). Specifically, paleofeces AHP001, AHP002 and AHP003 show little predicted gut
microbiome preservation, and thus have likely been altered by taphonomic
(decomposition) processes. Paleofeces ZSM002, ZSM023 and ZSM029, by contrast, show
good evidence of both host and microbiome preservation, but have conflicting source
predictions based on host and microbiome evidence. Given that subsistence is associated
with gut microbiome composition, this conflict may be related to insufficient gut
microbiome datasets available for non-Westernized dog populations (Hagan et al., 2020).

Figure 6 Prediction of archaeological samples sources and t-SNE embedding by Sourcepredict.
t-SNE embedding of archaeological (crosses) and modern (hexagons) samples. The color of the mod-
ern samples is based on their actual source while the color of the archaeological samples is based on their
predicted source by Sourcepredict. Archaeological sample are labelled with their Plot ID (Table 2).

Full-size DOI: 10.7717/peerj.9001/fig-6
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DISCUSSION
Paleofeces are the preserved remains of human or animal feces, and although they typically
only preserve under highly particular conditions, they are nevertheless widely reported in
the paleontological and archaeological records and include specimens ranging in age from
the Paleozoic era (Dentzien-Dias et al., 2013) to the last few centuries. Paleofeces can
provide unprecedented insights into animal health and diet, parasite biology and
evolution, and the changing ecology and evolution of the gut microbiome. However,

Figure 7 coproID source prediction. Predicted human proportion graphed versus predicted canine
proportion. Samples are colored by their predicted sources proportions. Samples with a low canine and
human proportion are not annotated. Full-size DOI: 10.7717/peerj.9001/fig-7

Figure 8 Host DNA and Sourcepredict source prediction for paleofeces samples. For human (A) and
canine (B). The vertical bar represents the predicted proportion by host DNA (lighter fill) or by Sour-
cepredict (darker fill). The horizontal dashed line represents the confidence threshold to assign a source
to a sample. Full-size DOI: 10.7717/peerj.9001/fig-8

Borry et al. (2020), PeerJ, DOI 10.7717/peerj.9001 14/23

Chapter 1. Microbial ecology to the rescue for identifying the origin of paleofeces

37



because many paleofeces lack distinctive morphological features, determining the host
origin of a paleofeces can be a difficult problem (Poinar et al., 2009). In particular,
distinguishing human and canine paleofeces can be challenging because they are often
similar in size and shape, they tend to co-occur at archaeological sites and in midden
deposits, and humans and domesticated dogs tend to eat similar diets (Guiry, 2012).
We developed coproID to aid in identifying the source organism of archaeological
paleofeces and coprolites by applying a combined approach relying on both ancient host
DNA content and gut microbiome composition.

coproID addresses several shortcomings of previous methods. First, we have included a
DNA damage-filtering step that allows for the removal of potentially contaminating
modern human DNA, which may otherwise skew host species assignment. We have
additionally measured and accounted for significant differences in the mean proportion of
host DNA found in dog and human feces, and we also accounted for differences in host
genome size between humans and dogs when making quantitative comparisons of host
DNA. Then, because animal DNA recovered from paleofeces may contain a mixture of
host and dietary DNA, we also utilize gut microbiome compositional data to estimate host
source. We show that humans and dogs have distinct gut microbiome compositions, and
that their feces can be accurately distinguished from each other and from non-feces using a
machine learning classifier after data dimensionality reduction. Taken together, these
approaches allow a robust determination of paleofeces and coprolite host source, that takes
into account both modern contamination, microbiome composition, and postmortem
degradation.

In applying coproID to a set of 20 archaeological samples of known and/or suspected
origin, all 7 non-fecal sediment samples were accurately classified as “uncertain” and were
grouped with soil by Sourcepredict. For the 13 paleofeces and coprolites under study, 7
exhibited matching host and microbiome source assignments and were confidently
classified as either human (n = 5) or canine (n = 2). Importantly, one of the samples
confidently identified as canine was YRK001, a paleofeces that had been recovered from an
archaeological chamber pot in the United Kingdom, but which showed an unusual
diversity of parasites inconsistent with human feces, and therefore posed issues in host
assignation.

For the remaining six unidentified paleofeces, three exhibited poor microbiome
preservation and were classified as “uncertain”, while the other three were well-preserved
but yielded conflicting host DNA and microbiome assignments. These three samples,
ZSM002, Z023 and ZSM029, all from prehistoric Mexico, all contain high levels of canine
DNA, but have gut microbiome profiles within the range of NWHR humans. Classified as
“uncertain”, there are two possible explanations for these samples. First, these feces could
have originated from a human who consumed a recent meal of canine meat. Dogs were
consumed in ancient Mesoamerica (Clutton-Brock & Hammond, 1994; Santley & Rose,
1979; Rosenswig, 2007; Wing, 1978), but further research on the expected proportion of
dietary DNA in human feces is needed to determine whether this is a plausible explanation
for the very high amounts of canine DNA (and negligible amounts of human DNA)
observed.
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Alternatively, these feces could have originated from a canine whose microbiome
composition is shifted relative to that of the reference metagenomes used in our training
set. It is now well-established that subsistence mode strongly influences gut microbiome
composition in humans (Obregon-Tito et al., 2015), with NWHR and WHU human
populations largely exhibiting distinct gut microbiome structure (Fig. 5A). To date, no gut
microbiome data is available from non-Westernized dogs, and all reference dog
metagenome data included as training data for coproID originated from a single study of
labrador retrievers and beagles (Coelho et al., 2018). Future studies of non-Westernized
rural dogs are needed to establish the full range of gut microbial diversity in dogs and
to more accurately model dog gut microbiome diversity in the past. Given that all
confirmed human paleofeces in this study falls within the NWHR cluster (Fig. 6),
we anticipate that our ability to accurately classify dog paleofeces and coprolites as canine
(as opposed to “uncertain”) will improve with the future addition of non-Westernized
rural dog metagenomic data.

In addition to archaeological applications, coproID may also have useful applications in
the field of forensic genetic sciences, where it may assist with the identification of human or
other feces. As with the investigation of paleofeces, coproID works best when sufficient
comparative reference materials or datasets are available. Until a more exhaustive catalog
of the human and dog gut microbiome composition is established, not all samples
submitted to the coproID analysis will be able to be accurately classified. However, as
microbiome reference datasets expand and methods become more standardized in the
field, gut microbiome analyses will have increasing applications in the fields of archaeology
and forensics (Hampton-Marcell, Lopez & Gilbert, 2017).

CONCLUSIONS
We developed an open-source, documented, tested, scalable, and reproducible method to
perform the identification of archaeological paleofeces and coprolite source. By leveraging
the information from host DNA and microbiome composition, we were able to identify
and/or confirm the source of newly sequenced paleofeces. We demonstrated that coproID
can provide useful assistance to archaeologists in identifying authentic paleofeces and
inferring their host. Future work on dog gut microbiome diversity, especially among rural,
non-Westernized dogs, may help improve the tool’s sensitivity even further.
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In manuscript C, we propose a new method to apply the LCA algorithm on files
in SAM/BAM/CRAM format. While the field of microbiome research has favored align-
ment free methods for taxonomic classification, in aDNA metagenomics, the need for
alignment remained to be able to assess the deamination damage patterns. The main
tool to perform this kind of classification was MALT (Herbig et al., 2016), but with the
ever growing reference database size, it became computationally intractable to fit an
up-to-date index in memory. To circumvent this issue, we propose the sam2lca method.
By integrating sam2lca in the nextflow computational pipeline adnamap (Borry, 2023),
employing an divide and conquer approach, we can map sequencing reads to many
reference indices in parallel, potentially located on different machines of a cluster or
cloud computing service. After all reads have been mapped to all reference indices, all
SAM/BAM/CRAM alignment are gathered and merged thanks to the merge command from
the samtools utility (Li et al., 2009). sam2lca then applies the LCA algorithm on the
merged alignment file. This approach allows for a much easier scaling of the reference
databases, with improved index flexibility: adding a new reference to an index does not
require to rebuilt it entirely, but only to add a new index for this reference index. Finally,
because sam2lca uses the common SAM/BAM/CRAM, it is agnostic to the software used to
generate the alignments.
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Summary
sam2lca is a program performing reference sequence disambiguation for reads mapping to
multiple reference sequences in a shotgun metagenomics sequencing dataset. To do so, it
takes as input the common SAM sequence alignment format and applies the lowest common
ancestor algorithm.

Statement of need
The rapidly decreasing cost of massively parallel short-read DNA sequencing technologies has
enabled the genetic characterization of entire ecological communities, a technique known as
shotgun metagenomics.
In a typical shotgun metagenomics approach, after the DNA of an ecological community has
been sequenced, it is compared to a genetic reference database of organisms with known
taxonomy. Even though the number of DNA sequences and genomes in reference databases
is constantly growing, there are still instances where a query sequence will not have a direct
match in a reference database, and it will instead weakly align to one or more distantly
related reference organisms. Furthermore, when analyzing short DNA sequences, a query DNA
sequence will often match equally well to more than one reference organism, posing a challenge
for its taxonomic assignation.
One solution to this problem is to apply a lowest common ancestor algorithm (LCA) (Figure 1)
during taxonomic profiling to place such ambiguous assignments higher in a taxonomic tree,
where they can be more confidently assigned. This idea was first implemented for metagenomics
with the MEGAN program (Huson et al., 2007).
Many programs have since been developed to perform LCA during taxonomic profiling. For
example, MALT (Herbig et al., 2017) and MetaPhlan (Segata et al., 2012) perform LCA and
taxonomic profiling after DNA sequence alignment, while other programs, such as Kraken2
(Wood et al., 2019) and Centrifuge (Kim et al., 2016), are alignment-free methods that apply
LCA after k-mer matching. While combining the steps of database matching and LCA into
one program can be useful, it also limits user choice for the selection of different alignment or
k-mer matching programs.
With sam2lca, we propose to decouple the LCA step from the alignment step to allow the
end-user to freely choose from one of the many DNA sequence aligner programs available,
such as Bowtie2 (Langmead & Salzberg, 2012), bwa (Li & Durbin, 2009), bbmap (Bushnell,
2014), or minimap2 (Li, 2018). Each of these aligners exports the sequence alignments in

Borry et al. (2022). sam2lca: Lowest Common Ancestor for SAM/BAM/CRAM alignment files. Journal of Open Source Software, 7(74), 4360.
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the widely adopted Sequence Alignment Map format (SAM) (Li et al., 2009), or in its binary
(BAM), or compressed representation (CRAM), which sam2lca uses as an input.
The use of the SAM file format enables easier integration of sam2lca in a wide variety of
analysis workflows, which often already contain steps generating or using SAM/BAM/CRAM
files, and allows for an easy subsequent analysis using well-established programs, such as
SAMtools (Li et al., 2009).

Figure 1: Example of the LCA algorithm with NCBI TAXIDs. Taxons and their LCA are displayed
in the same color. The lineage for each taxon is shown with a one letter code for the rank, and the
corresponding TAXID. The LCA of s:562 (E. coli species) and s:622 (S. dysenteriae species) is f:543
(Enterobacteriaceae family). The LCA of s:82981 (L. grimontii species) and s:158841 (L. richardii
species) is g:82980 (Leminorella genus). The LCA of s:2562891 (E. alba species), s:623 (S. flexneri
species) and s:2498113 (J. zhutongyuii species) is o:91347 (Enterobacterales order)

Implementation
sam2lca is a program written in Python, which takes as an input an indexed and sorted
SAM/BAM/CRAM alignment file. Broadly, the program consists of four main steps. First,
reference sequence accessions, present in the BAM file header section, are converted to
taxonomic identifiers (TAXID) using a RocksDB persistent key-value store (Dong et al., 2021).
The alignment section of the BAM file is then parsed with Pysam (pysam-developers, 2022)
and a dictionary is created to match single and multi-mapping query sequences/reads to the
TAXID(s) of their matching reference sequence(s). Next, if a read has been matched to
multiple TAXIDs, the LCA implementation of Taxopy (Camargo, 2022) is used to attribute it
to the lowest common ancestor, using the NCBI taxonomy by default. Finally, each TAXID
is used to retrieve its associated taxon’s scientific name and taxonomic lineage, and results
are saved in a JSON and CSV file. Optionally, a BAM file, similar to the input file, can be
generated. This BAM file contains for each read an additional XT tag added to report the
TAXID of the LCA for each read, an XN tag for the taxon’s scientific name, and finally an XR
tag for the taxon’s rank. sam2lca is distributed through pip and conda, and the documentation
and tutorials are available at sam2lca.readthedocs.io

Borry et al. (2022). sam2lca: Lowest Common Ancestor for SAM/BAM/CRAM alignment files. Journal of Open Source Software, 7(74), 4360.
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In Manuscript D, we introduce a new method to statistically assess the deamination
damages of multiple aDNA sequences in parallel.

Tools to assess the deamination damages of aDNA sequences, originally described
by Briggs et al. (2007), were first implemented in 2011 with mapDamage (Ginolhac et al.,
2011), later refined into mapDamage2 (Jónsson et al., 2013), or the more recent Damage-
Profiler (Neukamm et al., 2021b). While mapDamage2 already integrated a statistical
model of the aDNA deamination patterns, it was designed for single-genome alignment
applications, and its statistical model did not scale well when applied to many different
references. With the adoption of de novo assembly by the aDNA community (Wibowo
et al., 2021), there was a nascent need to be able to assess the aDNA damage patterns
for each assembled contig and/or MAG, resulting in potentially many thousands of
references to check for deamination. To address this new challenge, we extended the
approach of deamination assessment with a likelihood ratio test (LRT) first introduced
in PMDTools (Skoglund et al., 2014). To do so, we first both a null and and a damage
model, then compare them with a LRT to compute a damage test statistic with a for each
reference sequence, in parallel. To validate the performances of pyDamage, we simu-
lated data and built a linear model to assess the accuracy of pyDamage predictions for
varying amount of available sequencing data.
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ABSTRACT
DNA de novo assembly can be used to reconstruct longer stretches of DNA (contigs),
including genes and even genomes, from short DNA sequencing reads. Applying this
technique tometagenomic data derived from archaeological remains, such as paleofeces
and dental calculus, we can investigate past microbiome functional diversity that may
be absent or underrepresented in the modern microbiome gene catalogue. However,
compared to modern samples, ancient samples are often burdened with environmental
contamination, resulting in metagenomic datasets that represent mixtures of ancient
and modern DNA. The ability to rapidly and reliably establish the authenticity and
integrity of ancient samples is essential for ancient DNA studies, and the ability to
distinguish between ancient andmodern sequences is particularly important for ancient
microbiome studies. Characteristic patterns of ancient DNA damage, namely DNA
fragmentation and cytosine deamination (observed as C-to-T transitions) are typically
used to authenticate ancient samples and sequences, but existing tools for inspecting
and filtering aDNA damage either compute it at the read level, which leads to high
data loss and lower quality when used in combination with de novo assembly, or
require manual inspection, which is impractical for ancient assemblies that typically
contain tens to hundreds of thousands of contigs. To address these challenges, we
designed PyDamage, a robust, automated approach for aDNA damage estimation and
authentication of de novo assembled aDNA. PyDamage uses a likelihood ratio based
approach to discriminate between truly ancient contigs and contigs originating from
modern contamination. We test PyDamage on both on simulated aDNA data and
archaeological paleofeces, and we demonstrate its ability to reliably and automatically
identify contigs bearing DNA damage characteristic of aDNA. Coupled with aDNA de
novo assembly, Pydamage opens up new doors to explore functional diversity in ancient
metagenomic datasets.

Subjects Anthropology, Bioinformatics, Computational Biology, Genomics, Paleontology
Keywords metagenomics, aDNA, ancient DNA, assembly, damage, de novo, automated
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INTRODUCTION
Ancient DNA (aDNA) is highly fragmented (Orlando et al., 2021; Warinner et al., 2017).
Although genomic DNA molecules within a living organism can be millions to hundreds
of millions of base pairs (bp) long, postmortem enzymatic and chemical degradation after
death quickly reduces DNA to fragment lengths of less than 150 bp, typically with medians
less than 75 bp and modes less than 50 bp (Mann et al., 2018; Hansen et al., 2017). Within
the field of metagenomics, many approaches require longer stretches of DNA for adequate
analysis, a requirement that particularly applies to functional profiling, which often involves
in silico translation steps (Seemann, 2014). For example, in our experiments we observed
that FragGeneScan (Rho, Tang & Ye, 2010), a tool designed for gene prediction from short
read data, failed to predict open-reading frames in any DNA sequences shorter than 60 bp.
If applied directly to highly fragmented ancient metagenomic datasets, such data filtering
can introduce biases that interfere with functional analyses when preservation is variable
across samples or when comparing ancient samples to modern ones.

Because very short (<100 bp) and ultrashort (<50 bp) DNA molecules pose many
downstream analytical challenges, there is a long-standing interest in leveraging the
approach of de novo assembly to computationally reconstruct longer stretches of DNA
for analysis. With de novo assembly, longer contiguous DNA sequences (contigs), and
sometimes entire genes or gene clusters, can be reconstructed from individual sequencing
reads (Compeau, Pevzner & Tesler, 2011), which can then be optionally binned into
metagenome-assembled genomes (MAGs) (Kang et al., 2015). Such contigs are more
amenable to functional profiling, and applying this technique to microbial metagenomics
datasets derived from archaeological remains, such as paleofeces and dental calculus,
has the potential to reveal ancient genes and functional diversity that may be absent or
underrepresented in modern microbiomes (Tett et al., 2019; Wibowo et al., 2021; Brealey
et al., 2020). However, because ancient samples generally contain a mixture of ancient
bacterial DNA and modern bacterial contaminants, it is essential to distinguish, among the
thousands of contigs generated by assembly, truly ancient contigs from contigs that may
originate from the modern environment, such as the excavation site, storage facility, or
other exogenous sources.

In addition to being highly fragmented, aDNA also contains other forms of characteristic
molecular decay, namely cytosine deamination (observed as C ! T transitions in aDNA
datasets) (Dabney, Meyer & Pääbo, 2013), which can be measured and quantified to
indicate the authenticity of an ancient sample, or even an individual sequence (Hofreiter
et al., 2001; Briggs et al., 2007). However, tools for inspecting and filtering aDNA damage
were primarily designed for genomic and not metagenomic applications, and they are
largely unsuited or impractical for use in combination with de novo assembly. For example,
PMDTools (Skoglund et al., 2014) operates at the read level, and when subsequently
combined with de novo assembly leads to higher data loss and lower overall assembly
quality. MapDamage (Ginolhac et al., 2011) and DamageProfiler (Neukamm, Peltzer &
Nieselt, 2020) are tools that can be applied to assembled contigs, but require manual contig
inspection by the user, which is infeasible for de novo assemblies yielding tens to hundreds
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of thousands of contigs. Other tools, such as Mapdamage (Jónsson et al., 2013), do provide
an estimation of damage, but use slower algorithms that do not scale well to the analysis
of many thousands of contigs. Even tools, such as HOPS (Hübler et al., 2019), designed for
aDNAmetagenomics, can not easily scale for the analysis of the sheer number of unknown
contigs generated by the assembly process. A faster, automated approach with a better
sensitivity for distinguishing truly ancient contigs from modern environmental contigs is
needed.

Here, we present PyDamage, a software tool to automate the process of contig damage
identification and estimation. PyDamage models aDNA damage from deamination data
(C ! T transitions), and tests for damage significance using a likelihood ratio test
to discriminate between truly ancient contigs and contigs originating from modern
contaminants. Testing PyDamage on in silico simulated data, we show that it is able to
accurately distinguish ancient and modern contigs. We then apply PyDamage to de novo
assembled DNA from ancient paleofeces from the site of Cueva de los Muertos Chiquitos,
Mexico (ca. 1300 BP) and find that the contigs PyDamage identifies as ancient are consistent
with taxa known to bemembers of the human gut microbiome. Among the ancient contigs,
PyDamage authenticated multiple functional genes of interest, including a multidrug and
bile salt resistance gene cluster from the gut microbe Treponema succinifacians, a species
that is today only found in societies practicing traditional forms of subsistence. Using
PyDamage, de novo assembled contigs from aDNA datasets can be rapidly and robustly
authenticated for a variety of downstream metagenomics applications.

MATERIAL AND METHODS
Simulated sequencing data
In order to evaluate the performance of PyDamage with respect to the GC content of
the assembled genome, the sequencing depth along the genome, the amount of observed
aDNA damage on the DNA fragments, and the mean length of these DNA fragments, we
simulated short-read sequencing data using gargammel (Renaud et al., 2017) varying
these four parameters. We chose three microbiome-associated microbial taxa with
low(Methanobrevibacter smithii, 31%), medium (Tannerella forsythia, 47%), and high
(Actinomyces dentalis, 72%) GC content, following Mann et al. (2018) (Fig. 1A). Using
three different read length distributions (Fig. 1B), we generated short-read sequencing
data from each reference genome using gargammel’s fragSim. To the resulting short-read
sequences we added different amounts of aDNA damage using gargammel’s deamSim so
that ten levels of damage ranging from 0% to 20% were observed, which were measured
as the amount of observed C ! T substitutions on the terminal base at the 50 end of the
DNA fragments (Fig. 1C). Finally, each of these 90 simulated datasets was subsampled to
generate nine coverage bins ranging from 1-fold to 500-fold genome coverage by randomly
drawing a coverage value from the uniform distribution defining each bin (Fig. 1D) and
these were aligned to their respective reference genome using BWA aln (Li & Durbin, 2009)
with the non-default parameters optimized for aDNA -n 0.01 -o 2 -l 16500 (Meyer et al.,
2012).
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Figure 1 Simulation scheme for evaluating the performance of PyDamage. (A) The GC content of
the three microbial reference genomes. (B) The read length distributions used as input into gargammel
fragSim. (C) The amount of aDNA damage as observed as the frequency of C ! T substitutions on the
terminal 50 end of the DNA fragments that was added using gargammel deamSim. (D) Nine coverage bins
from which the exact coverage was sampled by randomly drawing a number from the uniform distribu-
tion defining the bin. (E) Nine contig length bins from which the exact contig length was sampled by ran-
domly drawing a number from the uniform distribution defining the bin.

Full-size DOI: 10.7717/peerj.11845/fig-1

Test contigs of different length were simulated by defining nine contig length bins
ranging from 0.5 kb to 500 kb length (Fig. 1E) and randomly drawing 100 contig lengths
from the respective uniform distribution defining each bin. Next, we chose the location of
these test contigs by randomly selecting a contig from all contigs of sufficient length. We
determined the exact location on the selected test contig from the reference genome by
randomly drawing the start position from the uniform distribution defined by the length of
the selected reference contig. This resulted in 900 test contigs per reference genome. Using
these test contigs, we selected the aligned DNA fragments of the simulated sequencing data
that overlapped the region defined by the contig and evaluated them using PyDamage.
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In total, we evaluated 702,900 test contigs (243,000 contigs for both M. smithii and T.
forsythia, and 216,000 contigs for A. dentalis, for which no reference contig longer than 200
kb was available).

Archaeological sample
Preparation and sequencing
We re-analyzed ancient metagenomic data from the archaeological paleofeces sample
ZSM028 (Zape 28) dating to ca. 1300 BP from the site of Cueva de losMuertos Chiquitos, in
Mexico, previously published in Borry et al.(2020) (ENA run accession codes ERR3678595,
ERR3678598, ERR3678602, ERR3678603, and ERR3678613).

Bioinformatic processing
The ZSM028 sample was first trimmed to remove adapters, low quality sequences with
Q-scores below 20, and short sequences below 30 bp using AdapterRemoval (Schubert,
Lindgreen & Orlando, 2016) v2.3.1. The reads were de novo assembled into contigs using
MetaSPAdes Nurk et al. (2017) v3.13.1 using the non-default k-mer lengths 21, 33, and 45.
The set of k-mer lengths was adapted to consider the on-average short length of the DNA
molecules of this sample (mode: 37 bp). We selected a k-mer length of 45 as the longest one
since this was the next longer uneven k-mer length of the median DNA molecule length
(median: 44 bp). Reads were then mapped back to the contigs with length > 1,000 bp
using Bowtie2 (Langmead & Salzberg, 2012), in the very-sensitivemode, while allowing
up to 1 mismatch in the seeding process. The alignment files were then given as an input
to PyDamage v0.50. Contigs passing filtering thresholds were functionally annotated with
Prokka v1.14.6 (Seemann, 2014), using the --metagenome flag.

Contig Taxonomic Profiling
To investigate the taxonomic profile of the contigs that passed the PyDamage filtering,
we ran Kraken2 v2.1.1 (Wood, Lu & Langmead, 2019) using the PlusPFP database(
https://benlangmead.github.io/aws-indexes/k2) from 27/1/2021. We then generated the
Sankey plot using Pavian (Breitwieser & Salzberg, 2016).

PyDamage implementation
PyDamage takes alignment files of reads (in SAM, BAM, or CRAM format) mapped against
reference sequences (i.e., contigs, a MAG, a genome, or any other reference sequences of
DNA). For each readmapping to each reference sequence j, using pysam (pysam developers,
2018), we count the number of apparent C! T transitions at each position which is i bases
from the 50 terminal end, i2 {0,1,...,k}, denoted Nj

i (by default, we set k = 35). Similarly
we denote the number of observed conserved ‘C-to-C’ sitesMj

i , thus

M j =
⇣
Mj

0,...,M
j
k

⌘
and N j =

⇣
Nj
0,...,N

j
k

⌘
.

Finally, we calculate the proportion of C ! T transitions occurring at each position,
denoted pji , in the following way:

p̂ji =
Nj
i

Mj
i +Nj

i

.
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For Di, the event that we observe a C ! T transition i bases from the terminal end, we
define two models: a null modelM0 (Eq. (1)) which assumes that damage is independent
of the position from the 50 terminal end, and a damage modelM1 (Eq. (2)) which assumes
a decreasing probability of damage the further a the position from the 50 terminal end. For
the damagemodel, we re-scale the curve to the interval defined by parameters [djpmin,d

j
pmax ].

P0
�
Di

��p0,j
�
= p0 =M0⇡ j (1)

P1
⇣
Di

��pjd,d
j
pmin,d

j
pmax ,j

⌘
=

⇣⇥
(1�pjd)

i⇥pjd
⇤
� p̂jmin

⌘

p̂jmax � p̂jmin

⇥ (djpmax �djpmin)+djpmin

= M1⇡
j
i ,

(2)

where

p̂jmin(p
d
j )= (1�pjd)

k ⇥pjd and p̂jmax(p
d
j )= (1�pjd)

0⇥pjd .

Using the curve fitting function of Scipy (Virtanen et al., 2020), with a trf (Branch,
Coleman & Li, 1999) optimization and a Huber loss (Huber, 1992), we optimize the
parameters of both models using pji , by minimising the sum of squares, giving us the
optimized set of parameters

✓̂0 =
�
p̂0
 

and ✓̂1 =
n
p̂jd,d̂

j
pmin,d̂

j
pmax

o

for M0 and M1 respectively. Under M0 and M1 we have the following likelihood
functions

L0

⇣
✓̂0|M j,N j

⌘
=

kY

i=0

✓
Mi

j +Ni
j

Ni
j

◆�M0 ⇡̂ j�Ni
j �
1�M0 ⇡̂ j�Mi

j

,

L1

⇣
✓̂1

���M j,N j
⌘

=
kY

i=0

✓Mj
i +Nj

i

N j
i

◆⇣
M1 ⇡̂

j
i

⌘Nj
i
⇣
1�M1 ⇡̂

1,j
i

⌘Mj
i
,

whereM0 ⇡̂
j andM1 ⇡̂i

j are calculated using Eqs. (1) and (2). Note that if djpmax = djpmin = p0,
then M0⇡ j =M1⇡

j
i for i= 0,...,k. Hence to compare the goodness-of-fit for models M0

andM1 for each reference, we calculate a likelihood-ratio test-statistic of the form

�j = �2ln

2

4
L0

⇣
✓̂0

���M j,N j
⌘

L1

⇣
✓̂1

���M j,N j
⌘

3

5,

from which we compute a p-value using the fact that �j ⇠ �2
2 , asymptotically (Neyman &

Pearson, 1933). Finally, we adjust the p-values for multiple testing of all references, using
the StatsModels (Seabold & Perktold, 2010) implementation of the Benjamini–Hochberg
procedure (Benjamini & Hochberg, 1995).
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RESULTS
Statistical analysis and model selection
To test the performance of PyDamage in recognizing metagenome-assembled contigs with
ancient DNA damage, we used the simulated short-read sequencing data aligned against
simulated contigs of different lengths. Our method correctly identified contigs as not
significantly damaged for simulations with no damage in 100% of cases. However, our
model only correctly identified contigs as significantly damaged in 87.71% of cases where
the contigs were simulated to have damage. To assess the performance of our method, and
to determine the simulation parameters that most affected model accuracy, we analysed
the simulated data using logistic regression via the glm function as implemented in the
stats package using R (R Core Team, 2018). We included as potential explanatory variables
the median read length, the simulated coverage, the simulated contig length, the simulated
level of damage, and the GC content of each of the reference contigs, yielding 32 candidate
logistic regression models.

We separated the data into two data sets: half of our data was used as ‘fit data’, data
for performing model fit and parameter estimation, and the remaining half was reserved
as ‘test data’, data that is used to assess model accuracy on data not used in fitting the
model (n= 206,831 in both cases). Unfortunately, with so many observations in our
model, classical model selection methods such as AIC and ANOVA tend to overfit (Babyak,
2004). Similarly, we also performed ten-fold down-sampling of the data for each model
such that we had equal numbers of damaged and undamaged simulations so as not to
bias the predictive model. Hence, for each of the fitted 32 logistic regression models (with
✏ = 1⇥10�14 andmaximum iterations 103) we instead report themean F1 andNagelkerke’s
R2 values for each candidate model.

Of the 32 candidate models, four models had both F1 and R2 values greater than 0.6 (see
Table 1). Each these four models contained at least the following predictor variables: contig
length, mean coverage, and the simulated level of damage. However, the full model with
GC content and read length as additional predictor variables had similar F1 and R2 values,
and so we consider all four models (see Fig. 2). Because it is possible that there is correlation
between some of our predictor variables (i.e., increased levels of simulated damage could
lead to a reduced median read length), we then performed a Relative Weights Analysis
(RWA) to further estimate predictor variable importance in an uncorrelated setting (Chan,
2020). In essence, RWA calculates the proportion of the overall R2 for the model that can
be attributed to each variable. We performed RWA on both the full model and our best
performing model. We found that the median read length and GC content accounted for
only 0.31% and 2.75% of the R2 value in the full model respectively. However, we found
that contig length, mean coverage and the simulated level of damage all accounted for
approximately one third of the R2 value in our best performing model, indicating that
these are the predictor variables of importance.

Our final logistic regressionmodel identifiedmean coverage, the level of damage, and the
contig length as significant predictor variables for model accuracy. Each of these variables
had positive coefficients, meaning that an increase in damage, genome coverage, or contig
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Table 1 The F1 score and Nagelkerke’s R2 mean values for the top ten models (ranked by F1). The
model we retained is highlighted in bold.

Variables F1 R2

readlength 0.791 0.001
GCcontent/readlength 0.642 0.005
damage/contiglength/coverage 0.624 0.607
damage/contiglength/readlength/coverage 0.624 0.610
damage/contiglength/GCcontent/readlength/coverage 0.623 0.619
damage/contiglength/GCcontent/coverage 0.622 0.618
damage/contiglength 0.600 0.432
damage/contiglength/readlength 0.593 0.434
damage/coverage 0.592 0.385
damage/readlength/coverage 0.588 0.387

Figure 2 Measures of model fit calculated on the test data for the top 3 models with one, two, three,
four, and five variables, where red is the F1 score and blue is Nagelkerke’s R2. Error bars indicate two
standard deviations calculated from ten-fold cross validation.

Full-size DOI: 10.7717/peerj.11845/fig-2

length all lead to improved model accuracy. Each variable contributed about one third
weight to the R2 value in the model, indicating roughly equal importance in the accuracy
of PyDamage. We integrated the best logistic regression model in PyDamage, with the
StatsModels (Seabold & Perktold, 2010) implementation of GLM to provide an estimation
of PyDamage ancient contig prediction accuracy given the amount of damage, coverage,
and length for each reference (Fig. 3), and found these predictions to adequately match the
observed model accuracy for our simulated data set (Fig. 4).
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Figure 3 Predicted model accuracy of simulated data. The grey title box above each panel is the sim-
ulated damage frequency on the 50 end. Light blue indicates improved model accuracy, with parameter
combinations resulting in better than 50% accuracy are outlined in green.

Full-size DOI: 10.7717/peerj.11845/fig-3

Application of PyDamage to archeological samples
To test PyDamage on empirical data, we assembled metagenomic data from the paleofeces
sample ZSM028 with the metaSPAdes de novo assembler. We obtained a total of 359,807
contigs, with an N50 of 429 bp. Such assemblies, consisting of a large number of
relatively short contigs, are typical for de novo assembled aDNA datasets (Wibowo et
al., 2021). After removing sequences shorter than 1,000 bp, 17,103 contigs were left.
PyDamage (revision 099fd34) was able to perform a damage estimation for 99.75% of
these contigs(17,061 contigs). Because the ZSM028 sequencing library was not treated with
uracil-DNA-glycosylase (Rohland et al., 2015), nor amplified with a damage suppressing
DNA polymerase, we expect a relatively shallowDNA damage decay curve, and thus filtered
for this using the pjd parameter. We chose a prediction accuracy threshold of 0.67 after
locating the knee point on Fig. 5 with the kneedle method (Satopaa et al., 2011). After
filtering PyDamage results with a q-value  0.05, pjd  0.6, and prediction accuracy � 0.67,
1,944 contigs remain. The 50 damage for these contigs ranges from 4.0% to 45.1% with
a mean of 14.3% (Fig. 6). Their coverage spans 6.1X to 1,579.8X with a mean of 65.6X ,
while their length ranges from 1,002 bp to 90,306 bp with a mean of 5,212 bp and an N50
of 10,805 bp.

The Kraken2 taxonomic profile of the microbial contigs identified by PyDamage
identified as ancient (Fig. 7) is consistent with bacteria known to be members of the
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Figure 4 Observed model accuracy of simulated data. The grey title box above each panel is the sim-
ulated damage frequency on the 50 end. Light blue indicates improved model accuracy, with parameter
combinations resulting in better than 50% accuracy are outlined with green lines. White tiles represent pa-
rameter combinations that were not sampled.

Full-size DOI: 10.7717/peerj.11845/fig-4

Figure 5 Number of ZSM028 contigs filtered by PyDamage with a q-value 0.05 as a function of the
predicted prediction accuracy. In total, 12,271 of the 17,061 contigs were assigned q-value  0.05. The
red vertical line is the predicted accuracy threshold of 0.67.

Full-size DOI: 10.7717/peerj.11845/fig-5

Borry et al. (2021), PeerJ, DOI 10.7717/peerj.11845 10/22

Chapter 2. From alignments to assemblies

63



Figure 6 Damage profile of PyDamage filtered contigs of ZSM028. The center line is the mean, the
shaded area is ± one standard-deviation around the mean.

Full-size DOI: 10.7717/peerj.11845/fig-6

human gut microbiome, including Prevotella (239 contigs), Treponema (166 contigs),
Bacteroides (103 contigs), Lachnospiraceae (119 contigs) Blautia (36 contigs), Ruminococcus
(25 contigs), Phocaeicola (18 contigs) and Romboutsia (16 contigs) (Schnorr et al., 2016;
Pasolli et al., 2019; Singh et al., 2017), as well as taxonomic groups known to be involved
in initial decomposition, such as Clostridium (145 contigs) (Hyde et al., 2017; Harrison et
al., 2020; Dash & Das, 2020). In addition, eukaryotic contigs were assigned to humans (18
contigs), and to the plant families Fabaceae (18 contigs) and Solanaceae (18 contigs), two
families of economically important crops in the Americas that include beans, tomatoes,
chile peppers, and tobacco. The remaining contigs were almost entirely assigned to higher
taxonomic levels within the important gut microbiome phyla Bacteriodetes, Firmicutes,
Proteobacteria, and Spirochaetes, as well as to the Streptophyta phylum of vascular
plants. Collectively, these five phyla accounted for 1,283 of to 1,494 contigs that could be
taxonomically assigned.

Functional annotation of the authenticated ancient contigs using Prokka was successful
for 1,901 of 1,944 contigs. Among these, multiple genes of functional interest were
identified, including contigs annotated as encoding the multidrug resistance proteins
MdtA, MdtB, and MdtC, which convey, among other functions, bile salt resistance
(Nagakubo et al., 2002) (Table 2). Kraken2 taxonomic profiling of these three contigs
yields a taxonomic assignation to the gut spirochaete Treponema succinifaciens, a species
absent in the gut microbiome of industrialized populations, but which is found globally
in societies practicing traditional forms of subsistence (Obregon-Tito et al., 2015; Schnorr
et al., 2014). Other authenticated contigs contained genes associated with resistance to
the natural antimicrobial compounds fosmidomycin, colistin, daunorubicin/doxorubicin,
tetracycline, polymyxin, and linearmycin. A growing body of evidence supports an ancient
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Figure 7 Taxonomic assignation by Kraken2 of the contigs filtered by PyDamage with q-value 0.05,
pjd  0.6, and prediction accuracy � 0.67.

Full-size DOI: 10.7717/peerj.11845/fig-7

origin for resistance to most classes of natural antibiotics (D’Costa et al., 2011;Warinner et
al., 2014; Christaki, Marcou & Tofarides, 2020; Wibowo et al., 2021).

DISCUSSION
De novo sequence assembly is increasingly being applied to ancient metagenomic data in
order to improve lower rank taxonomic assignment and to enable functional profiling of
ancient bacterial communities. The ability to reconstruct reference-free ancient genes, gene
complexes, or even genomes opens the door to exploring microbial evolutionary histories
and past functional diversity that may be underrepresented or absent in present-day
microbial communities. A critical step in reconstructing this past diversity, however, is
being able to distinguish DNA of ancient and modern origin (Warinner et al., 2017).
Characteristic forms of damage that accumulate in DNA over time, such as DNA
fragmentation and cytosine deamination, are widely used to authenticate aDNA (Orlando
et al., 2021) and have been important, for example, in enabling the reconstruction of the
Neanderthal genome from skeletal remains contaminated with varying levels of modern
human DNA (Briggs et al., 2007; Bokelmann et al., 2019; Peyrégne et al., 2019).

Nevertheless, applying such an approach to complex ancient microbial communities,
such as archaeological microbiome samples or sediments, is more challenging. Existing
microbial reference sequences in databases such as NCBI RefSeq have been found to be
insufficiently representative of modern microbial diversity (Pasolli et al., 2019; Manara et
al., 2019), let alone ancient diversity, making reference-free de novo assembly particularly
desirable for both modern and ancient microbial metagenomics. However, de novo
assembly of aDNA has always been a challenge due to its highly fragmented nature.
While tools have been designed to improve the assembly of ancient metagenomics data
(Seitz & Nieselt, 2017), assessing the damage carried by the assembled contigs has remained
an open problem.
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Table 2 Contigs assembled by metaSPAdes, identified by PyDamage as carrying damage, and anno-
tated as carrying resistance genes by Prokka.

Contig name Contig
length
(bp)

Coverage Product

NODE_2446 3232 64.3 Arsenical-resistance protein Acr3
NODE_45 28638 26.0 Bifunctional polymyxin resistance protein ArnA
NODE_832 6259 46.3 Cobalt-zinc-cadmium resistance protein CzcA
NODE_832 6259 46.3 Cobalt-zinc-cadmium resistance protein CzcB
NODE_2661 3058 91.5 Colistin resistance protein EmrA
NODE_2661 3058 91.5 Colistin resistance protein EmrA
NODE_215 13020 27.0 Daunorubicin/doxorubicin resistance ATP-binding protein

DrrA
NODE_136 16294 26.0 Daunorubicin/doxorubicin resistance ATP-binding protein

DrrA
NODE_1676 4090 81.3 Fosmidomycin resistance protein
NODE_8410 1542 77.3 Linearmycin resistance ATP-binding protein LnrL
NODE_29 35207 27.8 Multidrug resistance ABC transporter ATP-binding and

permease protein
NODE_232 12485 31.9 Multidrug resistance protein MdtA
NODE_97 19553 27.4 Multidrug resistance protein MdtA
NODE_12 45672 45.6 Multidrug resistance protein MdtA
NODE_10 46280 59.8 Multidrug resistance protein MdtA
NODE_97 19553 27.4 Multidrug resistance protein MdtB
NODE_97 19553 27.4 Multidrug resistance protein MdtB
NODE_12 45672 45.6 Multidrug resistance protein MdtC
NODE_10 46280 59.8 Multidrug resistance protein MdtC
NODE_232 12485 31.9 Multidrug resistance protein MdtC
NODE_17 41269 29.9 Multidrug resistance protein MdtK
NODE_465 8695 37.5 Tetracycline resistance protein TetO
NODE_204 13262 44.9 Tetracycline resistance protein, class C

Existing tools such as HOPS (Hübler et al., 2019) andmapDamage2 (Jónsson et al., 2013)
are readily available programs used to investigate ancient DNA deamination damage.
However they perform a very different analysis compared to PyDamage, and their method,
scope of application, and ability to scale are dissimilar to PyDamage. While HOPS applies
additional authentication criteria beyond deamination (e.g., edit distance), when it comes
to C! T substitutions, it uses a simpler heuristic to segregate damaged from non-damaged
sequences, and does not provide any statistical testing of the damage. Furthermore, it is
intended to be used in a targeted manner, with the user having to specify a list of known
organisms of interest to look for, which is incompatible with de novo assembly that can
potentially recover previously unknown species. Regarding mapDamage2, while it provides
a statistical framework for aDNA damage modelling that can be used to rescale alignment
quality score, it is not intended to be used in a metagenomics context. MapDamage2 does
not provide a statistical test of the damage, and it is only designed to be used for single
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genomes, which poses scalability issues when using it with thousands of references typically
generated by metagenomics de novo assembly.

Here, we have presented PyDamage as a tool to rapidly assess aDNA damage patterns for
numerous reference sequences in parallel, allowing fast damage profiling of metagenome
assembled contigs. To evaluate the performance of PyDamage model fitting and statistical
testing, we benchmarked the tool using simulated assembly data of known coverage, length,
GC content, read length, and damage level. Because PyDamage predicts based on C ! T
transition frequency, we originally expected GC-content to impact the available number
of possible C ! T transitions, and hence influence the predictions of PyDamage. However
we found that GC content and read length were not a major driver of the accuracy of
PyDamage’s predictions, but contig length, coverage, and damage level each played major
roles. Taken together, this three parameter combination greatly influenced the ability of
PyDamage to make a accurate damage assessments for a given contig. Overall, PyDamage
has highly reliable damage prediction accuracy for contigs with high coverage, long lengths,
and high damage, but the tool’s power to assess damage is reduced for lower coverage,
shorter contigs length, and lower deamination damaged contigs. Although aDNA damage
levels (cytosine deamination and fragmentation) are features of the DNA itself and out of
the researcher’s control, we show that researchers can generally improve model accuracy
through deeper sequencing.

When comparing the parameter range of our simulated data to real world de novo
assembly data, we find that some of PyDamage prediction accuracy limitations are
mitigated by the assembly process itself: de novo assemblers usually need a minimum
of approximately 5X coverage to assemble contigs (Fig. 8) (Wibowo et al., 2021), and it is
common practice to discard short contigs (<1000 bp) before further processing steps in a
classical metagenomic de novo assembly analysis process. Nevertheless, low coverage, low
damage, short contigs will remain a marginal challenge for damage characterization, even
with furthermanual inspection. For example, for a 10,000 bp de novo assembled contig with
5% damage, PyDamage will only start to make reliable predictions once a coverage of 12X
is reached (Fig. 3, interactive app available at https://maxibor.shinyapps.io/pydamageglm).
For a similar contig with 10% damage, model accuracy is high even from 1X coverage.
Overall, we find that PyDamage generally performs well on ancient metagenomic data with
> 5% damage, but contig length and coverage are also essential factors in determining the
model accuracy for a given contig.

Although we used the kneedle method (Satopaa et al., 2011) to select the prediction
accuracy threshold for paleofeces sample ZSM028, users can adjust the selected prediction
accuracy threshold according to the needs of their research question. For example, for some
research questions where high accuracy in verifying damage is paramount, more stringent
thresholds can be applied to minimize false positives, even though this increases false
negatives. For other questions and where additional authentication criteria are available
(such as taxonomic information or metagenomic bins), lower thresholds may be applied
to reduce the number of false negatives due to insufficient coverage or contig length.

PyDamage is designed to estimate accumulated DNA damage in de novo assembled
metagenomic sequences. However, although DNA damage can be used to authenticate
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Figure 8 Distribution of the coverage for ZSM028 contigs> 1,000 bp assembled by metaSPAdes.
Full-size DOI: 10.7717/peerj.11845/fig-8

DNA as ancient, it is important to note that it is not necessarily an indicator of intra vitam
endogeneity. DNAwithin ancient remains typically consists of both an endogenous fraction
present during life and an exogenous fraction accumulated after death. For skeletal remains,
the endogenous fraction typically consists of host DNA, as well as possibly pathogen DNA if
the host was infected at the time of death. For paleofeces or dental calculus, the endogenous
fraction typically consists of microbiome DNA, as well as trace amounts of host, parasite,
and dietary DNA. In both cases, the endogenous fraction of DNA is expected to carry
DNA damage accumulated since the death (skeletal remains, dental calculus) or defecation
(paleofeces) of the individual. Within the exogenous fraction, however, the DNA may
span a range of ages. Nearly all ancient remains undergo some degree of degradation
and decomposition, during which either endogenous (thanatomicrobiome) or exogenous
(necrobiome) bacteria invade the remains and grow (Hyde et al., 2017; Harrison et al.,
2020; Dash & Das, 2020). DNA from bacteria that participated early in this process(shortly
after death or defecation), will carry similar levels of damage as the endogenous DNA
because they are of similar age. In contrast, more recent necrobiome activity will carry
progressively less age-related damage, and very recent sources of contamination from
excavation, storage, curation, and laboratory handling are expected to carry little to no
DNA damage.

To demonstrate the utility of PyDamage on ancient metagenomic data, we applied
PyDamage to paleofeces ZSM028, a ca. 1,300-year-old specimen of feces from a dry
rockshelter site in Mexico that was previously shown to have excellent preservation of
endogenous gut microbiome DNA and low levels of environmental contamination (Borry
et al., 2020). Using PyDamage, we assessed the damage profiles of contigs with lengths
>1,000 bp, and authenticated nearly 2,000 contigs as carrying damage patterns consistent
with ancient DNA. The overwhelming majority of these contigs were consistent with
bacterial members of the human gut microbiome, as well as expected host and dietary
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components, but a small fraction of authenticated contigs were assigned to environmental
bacteria and fungi, including the exogenous soil bacteria Clostridium botulinum (22
contigs) and Clostridium perfringens (38 contigs). These taxa are known to be important
early decomposers in the necrobiome (Harrison et al., 2020), and the damage they carry
suggests that they likely participated in the early degradation of the paleofeces before
decomposition was arrested by the extreme aridity of the rockshelter.

Among the PyDamage authenticated contigs assigned to gut-associated taxa, NODE_10,
NODE_12, and NODE_97 are of particular interest. These contigs encode a multidrug
resistant ABC (MdtABC) transporter associated with bile salt resistance in the bacterium T.
succinifaciens. T. succinifaciens is a human-associated gut species that is today only found
in the gut microbiomes of individuals engaging in traditional forms of dietary subsistence
(Obregon-Tito et al., 2015; Schnorr et al., 2014; Angelakis et al., 2019). It is not found in the
gut microbiomes of members of industrialized societies, and is believed extinct in these
groups (Schnorr et al., 2016). Its identification within paleofeces provides insights into the
evolutionary history of this enigmatic microorganism and its functional adaptation to the
human gut (Schnorr et al., 2019). The additional identification of other resistance genes
among the authenticated contigs provides further evidence regarding the evolution of
antimicrobial resistance in human-associated microbes.

CONCLUSION
As the fields of microbiology and evolutionary biology increasingly turn to the
archaeological record to investigate the rich and dynamic evolutionary history of
ancient microbial communities, it has become vital to develop tools for assembling
and authenticating ancient metagenomic DNA. Coupled with aDNA de novo assembly,
PyDamage opens up new doors to explore and understand the functional diversity of
ancient metagenomes.
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3

Application to the fermentation
microbiome

Manuscript E: Fermentation microbiome analysis of bibli-
cal king Herod’s wine
Maxime Borry, Tziona Ben Gedalya, Alexander Herbig, and Christina Warinner
Draft article

In Manuscript E, we apply the tools developed in chapter 2 for the analysis of ancient
wine fermentation samples. Since the first ancient metagenomic studies, a variety of
sample types has been explored, mostly limited to human associated microbiomes, such
as the dental calculus, teeth, bones, or paleofeces, and different type of sediments (Fig
3.1).

However, one category of artefacts commonly found in archaeological records that
remained so far mostly unexplored by metagenomic approaches, is ancient fermentation
vessels (Drieu et al., 2020).

In this manuscript, we analyzed ancient wine fermentation vessels, which once be-
longed to the winery of king Herod "the great" of Judea, known through the Bible. After
identifying which plants were present in the metagenomic records with sam2lca, we
then developed a differential abundance analysis to identify which fermentation mi-
crobes still remained in the fermentation vessels. After having enriched some of these
bacteria by applying in-solution capture assays to the sequencing libraries, we de novo
assembled and binned them, checked the aDNA deamination with pyDamage, and pro-
ceeded with a functional and phylogenetic analyses.
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Our findings open up a new door for the study of ancient fermentation vessels, and
confirm the potential instability of the roman wine fermentation process due to the pres-
ence of spoilage microbes.

Figure 3.1: Occurence of different sample material types in metagenomic studies. The
number of sample for each material type was computed from the ancientmetagenome-
environmental, ancientmetagenome-hostassociated, and ancientsinglegenome-hostassociated
sample tables retrived from the AncientMetagenomeDir, commit 079be27 (Fel-
lows Yates et al., 2021)
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ABSTRACT

The fortress of the Herodium built in 15 BCE by the Herod ”the great”, king of Judea, was a testimony of

the expansion of the Roman culture in the Middle-East. Among the different roman influences identified, a

winery was unearthed, containing clay fermentation vessels, known as dolia. The metagenomics shotgun

sequencing of these dolia revealed a preservation of the fermentation microbes, from which genomes

were reconstructed and phylogenetically and functionally described. The functional characterization of

these bacterial genomes sheds a new light on the roman practice of wine fermentation.

Keywords: wine, roman, fermentation, microbiome, metagenomics

INTRODUCTION
Located 12 km south of Jerusalem, at the edge of the Judean desert, the site of the Herodium, settled
during the early Roman period, is a double-walled palace-fortress, in a circular shape, flanked by four
towers embedded within the coumpound’s walls, built on top of a natural hill. Ordered in 22 BCE by
Herod ”the Great”, the construction of the palace took until 15 BCE. Herod ”the Great”, or Herod I, also
known from the Bible, was the client king of Judea between 37 and 4 BCE, under Roman overlordship,
appointed by the Roman Senate. This made Judea part of the Roman empire, which opened the doors to
an array of cultural practices, which greatly influenced the style of the Herodium.
The palace occupied both a defensive and residential role, with guard towers and defense walls, but also a
bathhouse, a theatre, a synagogue, mosaic floors and frescoes. It is believed that the Herodium is Herod’s
final resting place (Netzer et al., 2013). However, the body of the king has yet to be found. The palace
served mostly during his reign, and the one of his son, Herod Archelaus, the governor of Samaria, Judea,
and Idumea. It slowly fell into disuse thereafter, and was eventually partly destroyed by an earthquake,
occupied by the rebels during the First Jewish–Roman War in 66 AD, and eventually sacked by the
Romans in 71 AD.

While the first archeological excavations on the hilltop were conducted in the late 1960s (Corbo,
1972), it is only during the 1970’s that the underground system beneath the palace was unearthed (Netser,
1988; Netzer and Arazi, 1985). In 2017, during a new archeological campaign between the two walls
of the northern wing, we discovered an early Roman period winery beneath 3 layers of later historical
occupation of the site (Figure 1A), on the ground floor of the Herodium (Porat et al., 2018).

Among the various artifacts discovered in this layer, we unearthed 22 dolia, 1-meter-high large
earthenware containers, which were typically used in the Roman empire as wine fermentation vessels.
We found biogenic pomace (what is left of the pulp after a fruit has been pressed into juice) remains at the
bottom of 8 of these dolia.

In the Roman empire, dolia were typically partly embedded in an earthen floor and served as receptacle
for the different steps of wine making such as fermentations, racking, ageing, filtration and clarification,
as it is reported by ancient roman writers such as Pliny, in his Naturalis historia (Brun, 2004).
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(a) The structure and components of the
Herodian layers

(b) Reconstitution of the Herodium winery layout

Figure 1. The Herodium wine archeological excavation. (A) The layer 3, approximately up to 1 meter
above the earth floor, with some areas penetrating lower, contained earth spills and collapsed structures:
ceilings, roofs and walls of the perimeter corridors, as well as artifacts. This collapse layer lay on top of
dozens of dolia, densely placed along the northern wing corridor. The dolia which had broken in situ,
were found embedded in the floor of the original structure. The collapse layer penetrated into the top
levels of several of the dolia. Beneath this collapsed layer, an intermediate level, about half a meter above
the floor, includes an accumulation of sediments in which daily utensils and food scraps were found. The
lower level of layer 4 begins approximately 20 cm above floor level and is situated upon compacted earth
flooring (typical of most of the Herodian spaces in the fortress palace) which covered the ground level of
the perimeter corridor. This lower level contained biogenic remains layered upon the inner base of the
dolia, the so-called ”pomace”, and artifacts laying on the floor in between the dolia. Underneath the
ground floor, two stories of barrel-vaulted cellars are situated, built upon the natural bedrock. (B) Dolia
sampled for metagenomic analysis are annotated with a DNA pictogram, and their corresponding sample
ID.
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Even though the ecological understanding of the wine microbial fermentation was only made possible
with the invention of the microscope in 17th century, some 1700 years later, the romans already had
acquired a broad understanding of wine fermentation. They already had already established and codified
a set of different practices and recommendations for wine production (Columella, 1745). For example,
a great emphasis was given to the necessary cleanliness of the dolia, with a regular re-pitching of their
inner surface with pine-resin, and a late harvesting of the wine grapes to maximize the sugar content, and
kick-start the yeast alcoholic fermentation.

Nowadays, we have a much better understanding of the microorganisms involved in the wine fermen-
tation process, which can broadly be divided into two different categories. The fist category contains the
micro-organisms responsible for the alcoholic (also known as primary) fermentation, often yeasts, among
which Saccharomyces cerevisiae is the main actor. The second category regroups the microorganisms
responsible for malolactic (or secondary) fermentation. This group is mainly composed of bacteria part of
the Lactobacillaceae family, part of the Firmicutes phyla. On top of malolactic fermentation, which turns
the tart-tasting malic acid into the softer tasting lactic acid, these bacteria, known as Lactic acid bacteria
(LAB), are also responsible for the production of taste altering compounds, some of which are sought
after, some others considered as spoilage metabolites (Vinderola et al., 2019).

While aDNA metagenomics has already been applied to a variety of material types, from human
dental calculus (Warinner et al., 2014; Adler et al., 2013), to coprolites (Tito et al., 2008; Bon et al., 2012;
Borry et al., 2020; Wibowo et al., 2021), ancient chewing-gum (Jensen et al., 2019), and even ancient wine
grapes (Bouby et al., 2020), our understanding of the genetics of ancient wine microbes (Ramos-Madrigal
et al., 2019) and their role in wine fermentation remained so far very limited (Drieu et al., 2020).

Here we present the first metagenomic analysis of ancient fermentation vessels, from which we
sequenced DNA obtained from pomace samples. We investigated the microbial community diversity,
reconstructed genomes with de novo assemblies, and performed functional and phylogenetic analyses.
Altogether, these findings shed a light on what could roman wine have tasted like, and how the concerns
of the bible’s winemakers remain the same for their modern colleagues.

MATERIALS AND METHODS
Samples
We collected pomace from 8 dolia (HEO001-008) (Fig1B) and 4 control soil samples from around the
Herodium: soil from the organic rich inner garden of the Herodium palace (HEO009), foreign soil used
to cover the Herodium when it fell in disuse after the death of Herod (HEO010), soil from the second
archeological layer, dating to 66-70 CE (HEO011), and soil collected in the Herodian layer, between
dolia (HEO012) (table S1). From each sample, we subsampled ⇡ 50 mg of material before proceeding
to the DNA extraction. At every step, we handled and processed the samples in dedicated ancient DNA
laboratory facilities.

DNA extraction and library generation
We used a DNA extraction protocol optimised for the recovery of ultra-short DNA molecules, adapted
from the Dabney extraction protocol (Dabney et al., 2013), described in details by Aron et al. (2020a) and
Mann et al. (2018). We constructed double-stranded DNA sequencing libraries after UDG-half treatment
(Rohland et al., 2015) following a protocol adapted from Meyer and Kircher (2010) described by Aron
et al. (2020b). We double indexed the sequencing libraries following Stahl et al. (2021), and amplified
them following Aron and Brandt (2020).

Targeted capture enrichment
Because the DNA originally present in archaeological samples, the so-called endogenous DNA, often
only amounts to a small fraction of all recovered DNA molecules at the time of sampling, targeted capture
enrichment approaches tailored for aDNA have been developed (Enk et al., 2014; Carpenter et al., 2013).
Thanks to these methods, where custom designed probes will bind pre-selected sequences from genomes
of interest, the sequenced fraction of endogenous DNA is greatly increased. This amounts to selectively
”fishing” for the genome of taxons of interest in the ancient DNA sequencing libraries.
Based on the first estimate of the taxonomic composition of the dolia HEO001-003, and on typical
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expected microbes associated with wine-fermentation (Barata et al., 2012), we designed multi-species
capture arrays, for two species of yeasts and 7 lactic acid bacteria (Tab S2).

Due to differences in genome size, two different captures were designed: one for the two yeast
species, and another for the lactic acid bacteria. For both captures DNA probes were designed with a
length of 52 bp with an additional 8bp linker sequence (CACTGCGG) as described in Fu et al. (2013).
Duplicated probes and probes with low sequence complexity were removed. For the yeast capture, probes
were designed with 9 bp tiling resulting in 2,600,999 unique probe sequences. For the bacteria capture,
probes were designed with 7 bp tiling resulting in 2,590,619 unique probe sequences. Each probeset was
distributed over three Agilent one-million feature SureSelect DNA Capture Arrays, which were turned
into in-solution DNA capture libraries as described elsewhere (Fu et al., 2013).

DNA sequencing and data processing
After an initial shallow sequencing screen was performed, we first deeper shotgun sequenced all libraries,
and finally sequenced the captured libraries. The DNA libraries were sequenced on a Illumina NextSeq
500 platform for the HEO001-003 shotgun screening libraries, and on a HiSeq 4000 for all other libraries.
All libraries were sequenced using a 2⇥75 bp chemistry.

Microbial taxonomy and community analyses
We used the nf-core/eager v2.4.4 (Ewels et al., 2020; Yates et al., 2021) pipeline to construct the
metagenomic profiles. nf-core eager first aligns the raw DNA sequencing reads in FASTQ format to the
GRCh38 human genome after poly-G removal with fastp (Chen et al., 2018). Unmapped reads are then
taxonomically profiled by nf-core/eager with Kraken2 v2.1.2 (Wood et al., 2019) using a custom database
composed of all the RefSeq reference representative genomes or sequences from archaea, bacteria,
plasmids, bacteria, plasmids, viruses, human, fungi, plant, univec artificial sequences, and vertebrates,
built in 03/2022.

We then processed the Kraken2 taxonomic profiles using libraries of the Python ecosystem, with
Pandas v1.4.2 (McKinney et al., 2011), and taxopy v0.10.2 (Camargo and Borry, 2022) for dealing with
the taxonomic information. To account for the false positive rate of Kraken2, we created a score S for
each taxon, using the duplication rate d, and number of reads r, provided by Kraken2.

S = d⇥ scaling(r)+0.01 (1)

with

scaling(r) =

(
0.01 if r > 1000
rescale(r)4 if r  1000

(2)

and

rescale(r) =
r

1000
⇥1.5�1.5 (3)

A higher score S corresponds to taxons that are likely to be false positive taxonomic assignments
(FigS1)

We discarded all taxons at the species level with a score S > 5, which corresponds to species with
a low read count and a high duplication rate, and we kept only species present in at least 30% of the
samples. To account for the compositional nature of the sequencing data, we transformed the Kraken2
species taxonomic profile with a Centered Log-Ratio transformation (CLR) (Calle, 2019) with scikit-bio
v0.5.7 (scikit-bio development team, 2022). We performed a Principal Component Analysis (PCA) at
the species level on the CLR transformed data with scikit-learn v1.0.2 (Pedregosa et al., 2011). For this
PCA analysis, we also included modern wine (Sternes et al., 2017) and modern human skin samples
(Oh et al., 2014; Chng et al., 2016; Human Microbiome Project Consortium, 2012) selected using
curatedMetagenomicsData (Pasolli et al., 2017), and processed exactly as the Herodium samples. Using
Statsmodels v0.13.2 (Seabold and Perktold, 2010), we then carried out a differential abundance analysis at
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the species level on the CLR transformed count of the Herodium dolia and soil samples, for each bacterial
species b, with a Linear Mixed Model (LMM) of the following design:

CLR(Cb)⇠ btXb,t +beXb,e +blXb,l +bqXb,q +(1|as)

The fixed effects, b , are the different samples types t = {Dolia, Control}, the different extraction
batches e = {1, 2}, the different library types l = {Shotgun, Capture}, the different Sequencers q =
{NextSeq, HiSeq}, while the random effect as is to account for each individual sample s, because of the
inclusion of more than one sequencing library per sample. Finally, we adjusted the p-values for multiple
testing with the Benjamini Hochberg procedure.

Microbial genome reconstruction
We used the nextflow (Di Tommaso et al., 2017) nf-core/mag (Krakau et al., 2022) (commit 00cccfe on
the dev branch) pipeline for performing de novo assembly of the reads that did not map to the human
genome using MEGAHIT (Li et al., 2015) after merging the libraries per sample. Assembled contigs are
then checked for ancient DNA damage using PyDamage (Borry et al., 2021), and binned into Metagenome
Assembled Genomes (MAGs) with MetaBAT2 (Kang et al., 2019) and MaxBin2 (Wu et al., 2016). Bins
are quality assessed with Busco (Manni et al., 2021), refined with DAS Tool (Sieber et al., 2018) and
taxonomically annotated using GTDB-TK (Chaumeil et al., 2020). Following the MIMAG standards
(Bowers et al., 2017), we then categorized the MAGs into high (HQ), medium (MQ), and low quality
(LQ), drafts according to the MIMAG reporting standards (Bowers et al., 2017).

Microbial functional and phylogenetic and analysis
We used the corephylo (Borry, 2023) nextflow pipeline to conduct the functional annotation of the
HQ MAGs using Bakta (Schwengers et al., 2021). From these functional annotated MAGs, corephylo
uses Panaroo (Tonkin-Hill et al., 2020) to extract a core-genome alignment, which is then cleaned of
recombination bearing regions with ClonalFrameML (Didelot and Wilson, 2015) (FigS4). corephylo then
uses this multi core-genome non recombinant alignment to compute a maximum likelihood phylogeny
using IQTree (Minh et al., 2020), with ultra-fast Bootstrapping (Hoang et al., 2018), or classic bootstrap
when computationally tractable.

Plant DNA identification
We used sam2lca (Borry et al., 2022) v1.1.2 with its plant marker database, which combines ITS markers
from the PLANiTS database (Banchi et al., 2020), 18s markers from the SILVA (Quast et al., 2012)
and PR2 database (Guillou et al., 2012), rbcL markers from (Bell et al., 2017), and 353 flowering plant
markers from the Kew Tree of Life database (Johnson et al., 2019; Baker et al., 2022). We then combined
the sam2lca results for taxons having been aligned to at least 2 different references, with the Viridiplantae
taxon identidied by Kraken2, with a score S < 5.

RESULTS

Microbial ecology
We sequenced a total of 1.31 billion reads of paired-end shotgun and targeted enrichment captured DNA
reads. We analyzed the Kraken2 metagenomics profiles in lower dimensions using a PCA. In this analysis,
the Herodium samples display a clear separation from the modern wine and human skin. Within the
Herodium samples cluster, dolia and soil control samples are also separated one from another (Fig2).

We then looked at the differential abundance analysis results, and the most impactful predictor variable
turned out to be the sample type t: dolia or soil (FigS2). After regressing out the other variables thanks to
the LMM, we analysed the differential abundance of taxons between dolia and soil (Fig3).

Among the bacterial species enriched in the dolia samples, we identified an elevated amount of LAB.
To check if the Herodium dolia were especially enriched in these LAB, we performed a fisher exact test.
This test indicates a significant enrichment in wine LAB, identified by Barata et al. (2012), while the
Herodium soil control samples showed no significant enrichment (Fig S3).
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Figure 2. PCA analysis at the species level of the CLR transformed Kraken2 metagenomic profiles, of
the Herodium dolia, and soil (control) samples, modern human skin, and modern wine samples.

Figure 3. Volcano plot of the differential abundance analysis of Herodium dolia versus soil samples,
with other variables regressed out by the LMM. The vertical dashed lines are the fold change (FC)
thresholds of �2, 2, while the horizontal dashed line is the corrected p-value threshold of � log10(0.05).
Bacterial species passing both log fold change and corrected p-value thresholds are colored in terracotta
orange. Wine LAB are annotated with their species name. The species enriched in the dolia samples are
found on the right-most side, while the species enriched in the Herodium soil samples are on the left-most
side.

De novo genome reconstruction
We managed to assemble between 35.2 and 336 Mbp per sample with MEGAHIT, for a N50 of between
1.1 to 3.1 Kbp per sample (Tab S3). From these contigs, we reconstructed 230 MAGs with MetaBAT2 and
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MaxBin2, of which 37 were HQ, and 84 were MQ MAGs. After dereplication and bin refinement with
Busco, 88 MAGs remain. Among these dereplicated refined HQ mags, 3 of them were taxonomically
annotated to species that belong to the group of significantly enriched taxa in wine (S3). These HQ wine
LAB MAGs (Tab 1) all display typical ancient DNA damage patterns for UDG-half libraries (Fig S5).

MAG Name Dolia Species Completion (%) Contamination (%) N50 Number of contigs MAG length Coverage GC (%)

MEGAHIT-MaxBin2Refined-HEO002-005 HEO002 Lentilactobacillus hilgardii 98.3 0.2 14719 299 2675945 157.6 40.1
MEGAHIT-MaxBin2Refined-HEO008-010 HEO008 Pediococcus parvulus 95.8 0.0 7018 330 1674845 62.4 38.93
MEGAHIT-MaxBin2Refined-HEO008.014 HEO008 Lactiplantibacillus plantarum 96.8 0.5 7091 532 2774156 49.5 45.51

Table 1. High Quality MAGs summary statistics. The completion is Busco reported percentage of
complete and single-copy specific genes, while the contamination is the Busco reported percentage of
complete and duplicated specific genes.

Phylogenetic and functional analysis
We used the corephylo pipeline to functionally annotate the HQ MAGs and generate a maximum-likelihood
non-recombinant core-genome phylogeny. As L. hilgardii (Douglas and Cruess, 1936) and P. parvulus
(Pérez-Ramos et al., 2016, 2018) are known to be often associated with wine spoilage (Landete et al.,
2005; Miranda-Castilleja et al., 2016; Inês and Falco, 2018; Barbieri et al., 2019; Vinderola et al., 2019),
we looked for genes encoding for enzymes catalyzing the production wine spoilage compounds, such
as biogenic amines like putrescine, and tyramine, or other wine spoilage metabolites such as bglucan
polysaccharides, or ethyl carbamate. Additionally, we also looked for the malolactic enzyme.

Putrescine production pathway
The biogenic amine putrescine has a rather unpleasant odor, sometimes referred as the ”smell of death”
(Wisman and Shrira, 2015), and is often found in alcoholic beverages. Its production pathway, already
identified in L. hilgardii (Arena et al., 2008), transforms the arginine amino acid into the putrescine
biogenic amine. Another starting point can be the agmatine, also naturally present in wine.

Arginine
Argininedecarboxylase �����������! Agmatine

Agmatine
Agmatinedeiminase ���������! N – Carbamoylputrescine

N – Carbamoylputrescine
N – carbamoylputrescineamidase ����������������! Putrescine

There are three enzymes, encoded by three different genes in this pathway:

• Arginine Decarboxylase, EC: 4.1.1.19

• Agmatine deiminase, EC:3.5.3.12

• N-carbamoylputrescine amidase, EC: 3.5.1.53

Tyramine production pathway
Tyramine is another type of biogenic amine, which in elevated concentration, can be associated with
migraines (Moffett et al., 1972), increased heart rate, and blood pressure (Scriven et al., 1984). The
production of tyramine is catalyzed by the tyrosine decarboxylase enzyme (EC: 4.1.1.25)

L – tyrosine
Tyrosinedecarboxylase �����������! tyramine + CO2

bglucan polysaccharides production pathway
bglucan polysaccharides are a class of exopolysaccharides that are responsible for giving the wine a ropy,
or viscous texture. Of these, the most common is the 1,3-b -Glucan, formed by the following reaction,
catalyzed by the 1,3-b -glucan synthase (EC: 2.4.1.34).

1,3 – b -D – Glucan(n) + UDP – D – glucose
1,3 – b -glucansynthase �����������! 1,3 – b -Glucan + UDP

Ethyl carbamate production pathway
The ethyl carbamate, also know as urethane, is a carcigonenic and genotoxic compound, often found in
alcoholic beverages (on the Evaluation of Carcinogenic Risks to Humans et al., 2010). It is formed by the
reaction of alcohol with urea. Urea (NH3) itself is formed by the following reactions
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L – arginine + H2O ADI �! L – citrulline + NH3

L – citrulline + pi OTC �! L – ornithine + carbamoyl – p
carbamoyl – p + ADP CK �! ATP + CO2 + NH3

These reactions are catalyzed by the following enzymes:

• Arginine deiminase (ADI), EC:3.5.3.6

• Ornithine carbamoyltransferase (OTC), EC:2.1.3.3

• Carbamate kinase (CK), EC: 2.7.2.2

Ethyl carbamate formation is in turn catalyzed by the enzyme urethanase (EC: 3.5.1.75)

ethanol + CO2 + NH3
urethanase ����! ethylcarbamate + H2O

Lactic acid production pathway
The production of lactic acid in wine is the typical thought after fermentation, know as the malolactic, or
secondary fermentation. It turns the tart-tasting malic acid into the softer tasting lactic acid, a reaction
catalyzed by the malocatic enzyme (EC: 4.1.1.101), encoded by the mle gene.

malicacid + H+ malolacticenzyme ��������! lacticacid + CO2

Lentilactobacillus hilgardii
The MAG MEGAHIT-MaxBin2Refined-HEO002-005 was taxonomically assigned to the species Lenti-
lactobacillus hilgardii by GTDB-Tk. We therefore constructed the phylogeny using all 13 available L.
hilgardii reference genome assemblies on NCBI Genbank, and rooted the phylogeny with L. farraginis
(GCA 001435875) as outgroup. The MEGAHIT-MaxBin2Refined-HEO002-005 MAG has the shortest
root to tip branch length of all L. hilgardii strains (Fig 4).
In L. hilgardii, the agmatine deiminase, and N-carbamoylputrescine amidase enzymes, involved in the
putrescine production pathway, are respectively encoded by the aguA and aguB genes. Both these genes
are present in most L. hilgardii strains, including the HEO002 MAG (Fig 4).
Conversely, the tyrosine decarboxylase enzyme is encoded by the tdc gene, but only identified in two L.
hilgardii strains (Fig 4).
Regarding the ethyl carbamate formation pathway in L. hilgardii, the ADI, OTC, and CK enzymes are
respectively encoded by the arcA, argF, and arcC genes, all present in all L. hilgardii strains, including
the HEO002 MAG (Fig 4).
The urethanase enzyme was not directly annotated by Bakta, however, by means of sequence homology
in the Uniprot database (UniProt Consortium, 2019), the gatA gene (Uniprot ID: A0A544U8T5) was
identified as belonging to the same Uniref90 cluster as the urethanase (Uniprot ID: A0A4Y5NHK8). While
the gatA gene was annotated by Bakta in all L. hilgardii strains (locus tag FIANLH 04270), we also
confirmed the urethanase function of the gatA gene annotated in the the HEO002 MAG by predicting
its structure from its sequence using Alphafold2 (AF2) (Cramer, 2021) through the colabFold interface
(v1.3.0) (Mirdita et al., 2022). We then aligned it, using PyMol, to the AF2 predicted structure of
A0A4Y5NHK8. The root mean square deviation (RMSD) of this structural alignment is 0.760Å (Fig S6),
which is a lower than the typical resolution of crystallography resolved protein structure.
Similary, we identified the mle gene encoding the malolactic fermentation enzyme by sequence homology
of the FIANLH 12060 locus tag annotated by Bakta with the Uniref90 C0XI94 cluster. This cluster also
contains the A0A6G9Q9M6 protein, annotated as the malolactic enzyme. We further confirmed the anno-
tation by following the same prediction and structure alignment, of FIANLH 12060 to A0A6G9Q9M6,
as described above, with a RMSD of 0.468Å S7.

Pediococcus parvulus
The MEGAHIT-MaxBin2Refined-HEO008-010 MAG was taxonomically assigned by GTDB-Tk to the
Pediococcus parvulus species. We used all 7 available reference genome assemblies for this species
to construct the maximum likelihood phylogeny tree. The phylogeny was outgroup rooted with the P.
damnosus (GCF 001611155). The P. parvulus MAG reconstructed from the HEO008 sample falls on
the branch with the shortest root to tip distance (Fig 5).
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Figure 4. Outgroup rooted maximum likelihood phylogeny of the Lentilactobacillus hilgardii species
with available reference genomes and the reconstructed MEGAHIT-MaxBin2Refined-HEO002-005
MAG. Values at the nodes indicated the UFBootstrap values. In the heatmap, a blue box indicates a gene
presence, while a red box indicates its absence in the corresponding strain assembly. The product of each
enzymatic pathway/reaction is indicated on the top of the heatmap.

All strains of P. parvulus are capable of performing malolactic fermentation thanks to the mle gene (Fig
5). The gene encoding the 1,3-b -glucan synthase in P. parvulus is gtf, also called bcsA. It is only found in
the strain assembly GCF 0016440785 (Fig 5).

Plant DNA identification
Three plants were reliably identified by both sam2lca (with alignments to at least 2 references) and
Kraken2 (with a S < 5), in 2 different samples (Tab S4).

DISCUSSION
With the excavation of the northern wing, we re-discovered the original layer of the herodian winery,
buried under 5 meters, and 3 layers of later historical periods. Among the artefacts we excavated, the dolia
turned out to be promising candidates for biomolecular analyses, thanks to the pomace remaining at their
bottom. After the 14C isotopic dating further confirmed the Herodium contextual dates, we proceeded
with the metagenomic analyis of the pomace.
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Figure 5. Outgroup rooted maximum likelihood phylogeny of the Pediococcus parvulus species with
available reference genomes and the reconstructed MEGAHIT-MaxBin2Refined-HEO008-010 MAG.
Values at the nodes indicated the Bootstrap/SH-aLRT values. In the heatmap, a blue box indicates a gene
presence, while a red box indicates its absence in the corresponding strain assembly. The product of the
enzymatic reaction is indicated on the top of the heatmap.

After a DNA extraction tailored for the recovery of ancient degraded DNA molecules from metage-
nomic sample, we submitted the the sequencing libraries to shotgun and targeted enrichment sequencing.
To overcome the false negative detection potential of Kraken2, we devised the custom S score which
proved to be effective at segregating true detected taxa from false positive artifacts: taxa only identified
from a few reads were only retained if they had a low enough duplication rate S1).

All three plants reliably identified in the pomace by both sam2lca and Kraken2, namely olives, barley,
and chickpeas, were part of the common diet in judea at the time of Herod (MacDonald, 2008). However,
because these plants were both identified in the pomace and in the soil control samples, they might also
come from contamination from a later period, after the floor collapsed on the dolia, or crushed them.

The overall dolia bacterial communities appear to bear little resemblance with modern wine micro-
biomes. However, they dot not display signs of complete decomposition either, as they appear separated
from the Herodium soil samples. Furthermore, a modern contamination due to the handling of the samples
by modern human skin microbes can be excluded as they fall in a completely different cluster (Fig 2).

Thanks to inclusion of soil samples from selected locations around the Herodium (Tab S1), we were
able to conduct a differential abundance analysis to identify which factor contributed the most to explain
the difference between the dolia and the soil samples bacterial communities. After having confirmed that
the technical artefacts only played a minor role (Fig S2), we regressed them out to solely focused on the
bacterial differential abundance explained by the difference between dolia and soil samples.

Among the bacteria most enriched in the dolia samples, we identified an elevated amount of LAB that
are typically known to be associated with wine fermentation (3), which we further tested for statistical
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significance (Fig S3).
After a targeted enrichment of a selection of these LAB enriched in dolia samples, we reconstructed

88 MAGs using de novo (Tab S3) assembly and binning of the shotgun and captured libraries. Among
these, we identified HQ MAGs of the wine LAB species Lentilactobacillus hilgardii, and Pediococcus
parvulus(Tab 1), which we further subjected to functional and phylogenetic analyses.

The functional analysis of L. hilgardii and Pediococcus parvulus revealed a variety of genes encoding
enzymes associated with the production of wine spoilage compounds, such as the biogenic amines
putrescine, responsible for foul odors, and tyramine, contributing to migraines, together with the carcino-
genic compound ethyl carbamate, and the b -glucan responsible for the ropy aspect of wines. Despite
being able to produce these wine spoilage metabolites, both L. hilgardii and P. parvulus also possess
a gene encoding the malolactic enzyme, responsible for the malolactic fermentation, a wine quality
enhancing metabolic reaction (Fig 4,5).

From a phylogenetic standpoint, both L. hilgardii and P. parvulus are falling on the branch with the
shortest root to tip distance, indicating less genetic changes, and therefore suggesting a more ancient
origin of these MAGs compared to reference strains (Fig 4,5).

CONCLUSION
While wine has been a staple of human beverages since 6000 BC, our knowledge of the genetic bases
of its ancient fermentation was so far very limited. With this study, we brought a better understanding
of some of the key actors in the process of wine microbial fermentation. Our findings shed a new light
on the common roman habit of wine taste alteration with varied spices and aromas: the discovery of a
variety of spoilage metabolites producing genes leads us to believe that the taste of wine produced in the
Herodium wineries might have required these post-fermentation flavour enhancing practices.

DATA AVAILABILITY
The sequencing data data have been deposited on ENA under the accession XXXXXXX, and the code and
scripts to reproduce the analysis of this project is available at github.com/maxibor/herodium-metagenomics

ACKNOWLEDGMENTS
Additional information can be given in the template, such as to not include funder information in the
acknowledgments section.

11/23

Chapter 3. Application to the fermentation microbiome

89



REFERENCES

Christina J Adler, Keith Dobney, Laura S Weyrich, John Kaidonis, Alan W Walker, Wolfgang Haak,
Corey JA Bradshaw, Grant Townsend, Arkadiusz Sołtysiak, Kurt W Alt, et al. Sequencing ancient
calcified dental plaque shows changes in oral microbiota with dietary shifts of the neolithic and
industrial revolutions. Nature genetics, 45(4):450–455, 2013.

M.e. Arena, J.m. Landete, M.c. Manca de Nadra, I. Pardo, and S. Ferrer. Factors affecting the production
of putrescine from agmatine by Lactobacillus hilgardii X1B isolated from wine. Journal of Applied
Microbiology, 105(1):158–165, 2008. ISSN 1365-2672. doi: 10.1111/j.1365-2672.2008.03725.
x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2672.

2008.03725.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2672.2008.03725.x.
Franziska Aron and Guido Brandt. Amplification and pooling. protocols.io, 12 2020.

https://dx.doi.org/10.17504/protocols.io.beqkjduw.
Franziska Aron, Courtney Hofman, Zandra Fagernäs, Irina Velsko, Eirini Skourtanioti, Guido Brandt,

and Christina Warinner. Ancient dna extraction from dental calculus. protocols.io, 12 2020a.
https://dx.doi.org/10.17504/protocols.io.bidyka7w.

Franziska Aron, Gunnar Neumann, and Guido Brandt. Half-udg treated double-stranded
ancient dna library preparation for illumina sequencing. protocols.io, 12 2020b.
https://dx.doi.org/10.17504/protocols.io.bmh6k39e.

William J Baker, Paul Bailey, Vanessa Barber, Abigail Barker, Sidonie Bellot, David Bishop, Laura R
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Cristina Valdiosera, Nuria Garcı́a, Svante Pääbo, Juan-Luis Arsuaga, et al. Complete mitochondrial
genome sequence of a middle pleistocene cave bear reconstructed from ultrashort dna fragments.
Proceedings of the National Academy of Sciences, 110(39):15758–15763, 2013.

Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio Palumbo, and Cedric
Notredame. Nextflow enables reproducible computational workflows. Nature biotechnology, 35(4):
316–319, 2017.

Xavier Didelot and Daniel J Wilson. Clonalframeml: efficient inference of recombination in whole
bacterial genomes. PLoS computational biology, 11(2):e1004041, 2015.

H. C. Douglas and W. V. Cruess. A LACTOBACILUUS FROM CALIFORNIA WINE: LACTOBAC-
CILLUS HILGARDII. Journal of Food Science, 1(2):113–119, March 1936. ISSN 0022-1147,
1750-3841. doi: 10.1111/j.1365-2621.1936.tb17774.x. URL https://onlinelibrary.wiley.

com/doi/10.1111/j.1365-2621.1936.tb17774.x.
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Laure Guillou, Dipankar Bachar, Stéphane Audic, David Bass, Cédric Berney, Lucie Bittner, Christophe
Boutte, Gaétan Burgaud, Colomban de Vargas, Johan Decelle, et al. The protist ribosomal reference
database (pr2): a catalog of unicellular eukaryote small sub-unit rrna sequences with curated taxonomy.
Nucleic acids research, 41(D1):D597–D604, 2012.

Diep Thi Hoang, Olga Chernomor, Arndt Von Haeseler, Bui Quang Minh, and Le Sy Vinh. Ufboot2:
improving the ultrafast bootstrap approximation. Molecular biology and evolution, 35(2):518–522,

13/23

Chapter 3. Application to the fermentation microbiome

91



2018.
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human micro-

biome. Nature, 486(7402):207–214, June 2012. ISSN 1476-4687. doi: 10.1038/nature11234. URL
https://www.nature.com/articles/nature11234.

António Inês and Virgı́lio Falco. Lactic Acid Bacteria Contribution to Wine Quality and Safety. In-
techOpen, November 2018. ISBN 978-1-78984-453-5. doi: 10.5772/intechopen.81168. URL
https://www.intechopen.com/chapters/undefined/state.item.id. Publication
Title: Generation of Aromas and Flavours.

Theis ZT Jensen, Jonas Niemann, Katrine Højholt Iversen, Anna K Fotakis, Shyam Gopalakrishnan,
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Mosè Manni, Matthew R Berkeley, Mathieu Seppey, Felipe A Simão, and Evgeny M Zdobnov. Busco
update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for
scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38(10):
4647–4654, 2021.

Wes McKinney et al. pandas: a foundational python library for data analysis and statistics. Python for
high performance and scientific computing, 14(9):1–9, 2011.

Matthias Meyer and Martin Kircher. Illumina sequencing library preparation for highly multiplexed target
capture and sequencing. Cold Spring Harbor Protocols, 2010(6):pdb–prot5448, 2010.

Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Woodhams, Arndt
Von Haeseler, and Robert Lanfear. Iq-tree 2: new models and efficient methods for phylogenetic
inference in the genomic era. Molecular biology and evolution, 37(5):1530–1534, 2020.

Dalia E. Miranda-Castilleja, Ramon Alvar Martı́nez-Peniche, J. A. Aldrete-Tapia, Lourdes Soto-Muñoz,
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SUPPLEMENTARY MATERIAL

Archeological ID Sample ID Sampled weight (mg) # Input reads Extraction Batch

P2 HR LH3540 HEO001 52,9 92 789 988 1
P5 HR L3546 HEO002 52,3 152 855 912 1

P20 HR L3563 HEO003 54,6 89 174 981 1
P10 L3559 HEO004 52,6 101 915 757 2
P12 L3570 HEO005 52,7 99 596 344 2
P13 L3558 HEO006 48,2 117 660 992 2
P14 L3564 HEO007 51,0 92 036 489 2
P23 L3578 HEO008 49,2 140 225 340 2

Garden soil L.H.3588 HEO009 52,7 109 905 794 2
Neutral earth control HEO010 48,5 115 919 526 2

Floor remains HEO011 51,8 108 591 098 2
Earth control HEO012 51,5 93 041 849 2

Table S1. Description of the samples
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Species Type NCBI genome accession

Lentilactobacillus hilgardii bacteria GCF 011765585.1
Lactiplantibacillus plantarum bacteria GCF 003269405.1

Gluconobacter albidus bacteria GCF 002005485.1
Gluconobacter cerinus bacteria GCF 002723935.1
Pediococcus parvulus bacteria GCF 007990205.1

Pediococcus damnosus bacteria GCF 001611155.1
Oenococcus oeni bacteria GCF 002966535.1

Saccharomyces cerevisiae yeast GCF 000146045.2
Brettanomyces bruxellensis yeast GCA 900496985.1

Table S2. Species used for the design of the targeted capture enrichment
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Sample Name N50 (Kbp) N75 (Kbp) L50 (K) L75 (K) Largest contig (Kbp) Length (Mbp)

HEO001 2.6Kbp 1.1Kbp 10.0K 30.2K 222.6Kbp 134.2Mbp
HEO002 2.3Kbp 1.0Kbp 25.1K 84.3K 604.4Kbp 336.0Mbp
HEO003 1.9Kbp 0.9Kbp 13.8K 46.5K 521.3Kbp 160.5Mbp
HEO004 3.1Kbp 1.1Kbp 4.6K 15.8K 172.4Kbp 79.3Mbp
HEO005 2.4Kbp 0.9Kbp 2.8K 9.4K 85.0Kbp 35.2Mbp
HEO006 2.4Kbp 0.9Kbp 7.9K 29.5K 258.1Kbp 119.2Mbp
HEO007 1.2Kbp 0.7Kbp 11.8K 33.4K 81.9Kbp 76.3Mbp
HEO008 2.4Kbp 0.9Kbp 15.6K 53.7K 348.9Kbp 214.0Mbp
HEO009 1.1Kbp 0.7Kbp 22.5K 49.7K 86.8Kbp 92.0Mbp
HEO010 1.4Kbp 0.8Kbp 27.0K 68.0K 116.3Kbp 161.6Mbp
HEO011 1.2Kbp 0.7Kbp 43.4K 102.7K 120.9Kbp 213.1Mbp
HEO012 1.1Kbp 0.7Kbp 34.4K 78.2K 135.1Kbp 152.9Mbp

Table S3. de novo assembly summary statistics

Sample Library TAXID Species Kraken read count Kraken S score sam2lca read count sam2lca reference count

HEO011 HEO011.A0101.SG1 4146 Olea europaea 3699 0.02 7 4
HEO011 HEO011.A0101.FB1 4146 Olea europaea 24022 0.02 7 4
HEO011 HEO011.A0101.SG1 4513 Hordeum vulgare 3550 0.02 12 6
HEO011 HEO011.A0101.FB1 4513 Hordeum vulgare 25774 0.02 12 6
HEO008 HEO008.A0101.FB1 3827 Cicer arietinum 189 4.69 1 8
HEO008 HEO008.A0101.SG1 3827 Cicer arietinum 169 4.21 1 8

Table S4. Plant species identified reliably by both sam2lca and Kraken2

Figure S1. Kraken2 Score S computed from the number of reads and Kraken2 duplication rate. A
higher S corresponds to an increased likelihood of a false positive taxonomic assignment.
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Figure S2. Boxplot of the coefficients for the different predictor variables of the Generalized Linear
Mixed model. Extraction corresponds to the different DNA extraction batches, library corresponds to the
different library processing methods (shotgun or targeted enrichment), sequencer corresponds to the
different sequencers, and sample corresponds to the categories of the samples (dolia or soil).

Figure S3. Venn diagram of the intersection of bacteria enriched in dolia (FC ¿ 2), enriched in
Herodium soils (FC ¡ 2), and wine bacteria idenfied in Barata et al. (2012). p-value of the fisher exact test
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(a) Number of masked positions in L. hilgardii genomes
before and after checking for recombinant regions

(b) Number of masked positions in P. parvulus genomes
before and after checking for recombinant regions

Figure S4. Recombinant regions identified with ClonalFrameML were then masked with maskrc-svg
(Kwong, 2023)
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Figure S5. Ancient DNA C to T transitions from the 5’ end damage plot (left), and distribution of the
number of reads aligned per contig (right) for each HQ MAG. On the damage plot, the damage is
averaged over all contigs of the MAG (red line), and the standard deviation is represented by the shaded
area.
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Figure S6. PyMol alignment of the AF2 predicted structure of the gatA gene in the
MEGAHIT-MaxBin2Refined-HEO002-005 MAG in pink, to the AF2 predicted structure of the Urethanase
(uniprot ID: A0A4Y5NHK8) in grey. RMSD = 0.760Å

Figure S7. PyMol alignment of the AF2 predicted structure of the FIANLH 12060 locus tag in the
MEGAHIT-MaxBin2Refined-HEO008-010 MAG in orange, to the AF2 predicted structure of the
malolactic enzyme (uniprot ID: A0A6G9Q9M6) in grey. RMSD = 0.468Å
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Discussion

An additional line of evidence for paleofeces identi�ca-
tion
Out of the different possible archaeological materials available for the study of human
microbiomes, paleofeces is the microbiome source that remains the most understudied
(Fig 3.1) compared to its modern counterpart, arguably the most studied human mi-
crobiome: the gut microbiome. One of the reasons for the lack of ancient DNA studies
on paleofeces is the archaeological context itself. While microbiome material sources
like dental calculus, teeth, or bones are sampled directly from an archaeological source
morphologically identifiable as human remains, paleofeces in archaeological context are
mostly found exogenously, usually outside of human burial sites. Furthermore, the
macro and micromorphological examination of paleofeces is often unable to pinpoint
their source of origin. In addition, paleofeces typically need very special environmen-
tal conditions to preserve and not immediately decompose. A dry, relatively cold and
stable environment is required, such as caves, or mines. The combination of all of these
factors makes the study of paleofeces more challenging than the more abundant other
sources of ancient microbiomes. It was therefore even more necessary to make sure
that the few available paleofeces samples were correctly identified as humans. While
this challenge had previously been acknowledged, the techniques used to address it,
namely morphology, rehydration, macro and micro inclusions with the help of scan-
ning electron microscopy (Reinhard et al., 2019), and parasite composition remained
sometimes insufficient. The challenge of coprolite identification proved to be especially
tough for distinguishing dog from human paleofeces (Poinar et al., 2009b), owing the
shared habitat of humans and their four legged companions since the domestication of
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dogs more than 12,000 years ago (Frantz et al., 2016). In order to provide an additional
line of evidence to identify paleofeces, we leveraged the information potential provided
by shotgun metagenomics sequencing, which is composed of both host, and microbial
DNA. As humans and dogs have a very distinct gut microbiome composition, we were
able to use this information, in addition to the amount of endogenous DNA in their fe-
ces, to predict the origin of their paleofeces. This approach allowed us to validate the
human origin of the paleofeces included in our study. It serves as a stepping stone for
future studies on human paleofeces, which will help to decipher the unexplored diver-
sity of ancient human gut microbiomes.

Machine learning methods to predict the source of mi-
crobiome samples
Estimating the contamination of a microbiome sample, an approach known as source
tracking, has been a recurring challenge since the adoption of shotgun metagenomics
methods. While different solutions have been proposed, relying on Naive Bayes (Green-
berg et al., 2010), and Random Forest (Smith et al., 2010) algorithms, it is only with the
appearance of SourceTracker (Knights et al., 2011) that a source tracking method became
widely adopted by the community. SourceTracker relies on the latent dirichlet allocation
(LDA) algorithm, a generative statistical model first introduced to infer genetic admix-
ture (Pritchard et al., 2000), and for topic modelling (Blei et al., 2003). SourceTracker
uses Gibbs sampling, a MCMC appraoch, to infer the Dirichlet posterior probability
distribution. While it proved to be an effective method for this challenge, it also turned
out to be relatively hard to scale because of the long time needed for convergence of
the MCMC chains when using many sources. With the development of new faster data
embedding techniques, such as t-SNE (van der Maaten, 2014), and UMAP (Lozupone
et al., 2011), and new ecological distance metrics such as weighted unifrac (Lozupone
et al., 2011), I seized the opportunity to develop a new faster source tracking discrimi-
native method relying on a machine learning source mixture prediction in a lower di-
mensional space. Due to the marginally different objective of estimating the source of
paleofeces, I also implemented the slightly different task of source prediction, akin to
a task of classification. Sourcepredict, depending of the embedding method uses, can
be either used for source tracking, using a linear dimension reduction method, such as
principal coordinate analysis, or for source prediction, using a non-linear dimension re-
duction method, such as t-SNE or UMAP. While much faster than SourceTracker, it is
expected that SourceTracker will remain relevant when using vastly different sources
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because of its generative model. However, while the scaling of LDA based methods has
been limited by the computational complexity of MCMC approaches, there have been
new developments to speed up the posterior distribution sampling with the use of new
neural network based variational inference methods such as prodLDA (Srivastava and
Sutton, 2017), which hold great promises for the scalability of generative source track-
ing. In addition, whilst source tracking methods have so far relied on the abundance of
taxons in a sample, new methods such as DECOM (González et al., 2023) using k-mer
abundance could provide an alternative approach that might prove very relevant when
dealing with samples of less studied sources.

The required scalability of metagenomics methods
With the ever decreasing price of sequencing thanks to the development of shotgun
WGS, the amount of sequencing data has grown up massively, faster than the avail-
able computing capacity (Fig 0.2). Computational tools that were once used manually
now have to be integrated in workflow managers to deal with the processing of many
samples in parallel. Furthermore, in the field of metagenomics, the complexity can be
quadratically increased. An example is taxonomic classification, where each sample
needs to be compared to every available reference genome. To circumvent this explod-
ing complexity, approaches applied to modern metagenomics samples have been rely-
ing on simplifying heuristics, such as the alignment free approaches of Kraken (Wood
and Salzberg, 2014) for instance. However, in aDNA metagenomics, where an align-
ment step is still often required to compute a damage profile, these simplifying heuris-
tics are not always applicable. Furthermore, even if the comparison step of query and
reference sequences becomes computationally tractable thanks to these heuristics, the
size of reference database and their in-memory indexing remains a challenge. With
sam2lca, we introduced an approach based on a divide and conquer strategy in com-
bination with a workflow manager like nextflow enabling a parallelization of the com-
putation on all the computing nodes of a cluster, or a cloud. In the divide step, one
can align each sample to each reference separately with a fast short read aligner, hence
solving the issue of in-memory loading of whole reference genomes database encoun-
tered by tools such as MALT (Herbig et al., 2016). The conquer step is then performed
downstream by sam2lca after all alignment files have been gathered. While the sam2lca
approach solves the issue of in-memory loading of reference database, an alternative
approach will be eventually needed in order to reduce the redundancy of the reference
genomes, while preserving the sensitivity.

104



Discussion

Approaches such as SPARSE (Zhou et al., 2018) have relied on using a representative
genome after genome clustering to reduce the size of the reference database, however,
with the multiplicity of genome rearrangements in bacteria, even genome clustering is
not a viable enough long term solution. Fortunately, the progress in the field of sequence
graph representation applied to reference sequence database have allowed a reduction
of the index size by factors of up to 1000X, with very fast query times (Karasikov et al.,
2020). Furthermore, sequence graph based approaches are much better equipped to deal
with reference bias, as they encode all sequence variations in a single reference graph
(Martiniano et al., 2020).

The ever decreasing cost of sequencing data also enabled the field of aDNA metage-
nomics to sequence samples ever deeper. And with deeper sequencing, aDNA metage-
nomics de novo became a reality (Wibowo et al., 2021), and tools to assess the amount of
DNA damage were suddenly facing a scalability issue as well. MapDamage, as well as
DamageProfiler were designed to assess the damage of reads aligned against a single
reference, either with the appreciation of the damage left to interpretation of the user
with a smiley plot, or with a bayesian MCMC, but slower, statistical model. Regard-
less of the method, these approaches both suffered from a scalability issue that either
lied on the human side, or on the computational side. MapDamage and DamagePro-
filer quickly became inadapated to assess the damage of the many thousands of contigs
typically generated by de novo assembly. Therefore, to develop a scalable approach, we
decided to rely on a faster, albeit simpler heuristic. With a model having fewer parame-
ters, and a parameter estimation relying on a convex optimization, pyDamage was now
able to scale for the damage assessment of the many thousands of contigs generated by
metagenomics de novo assembly, while maintaining a good damage prediction accuracy.

After contigs are assembled, the necessary next step to reconstruct genome from
metagenomics de novo assembly is to perform binning, a form of clustering of the con-
tigs into artificial genomes, the MAGs. Most binning methods cluster the MAGs based
on short k-mer frequencies similarity, and evenness of coverage between contigs of the
same bins. While these two metrics already create coherent MAGs in modern metage-
nomics de novo assemblies, aDNA samples could use the additional damage information
to provide another dimension to help with the clustering of contigs into MAGs.

Finally, provided that there is enough coverage, pyDamage could be integrated with
sam2lca to automatically provide a damage assessment at each taxon LCA.
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Ancient microbiomes need not to be only human
Like many scientific fields, before gaining insights, and later forming theories, aDNA
proceeds with a trial and error methodology. The study of the different aDNA material
samples is a good illustration of this process. For example, there has been a long stand-
ing quest for the ideal human bone, the one preserving the most endogenous human
DNA, but its only after many trial and error that the petrous bone was identified as
one of the best candidate (Parker et al., 2020; Pinhasi et al., 2015). In parallel, for aDNA
metagenomics, many different material types have been explored (Fig 3.1), to gain a
general understanding of ancient microbiomes, but also to answer different research
questions.

But one type of archeological artifact that remained so far unsuccessfully exploited
by a DNA metagenomics are fermentation vessels. Because humans have been produc-
ing wine, and alcoholic beverages for at least 8000 years (Harutyunyan and Malfeito-
Ferreira, 2022), there is a plethora of fermentation vessels among the different excavated
archeological artefacts. Some of these vessels, like amphoras of the roman period, have
been extensively studies for an epigraphic standpoint (Lorenzo et al., 2021), but until
now, never using aDNA metagenomics methods. As very little was known about the
potential microbial composition of these samples, we couldn’t rely on source tracking
approaches, with no available comparative samples being available. We therefore had
to rely on other approaches, such as the differential abundance analysis to assess the
preservation of our sample. Combining the tools developed earlier in this thesis, as well
as established metagenomics approaches allowed us to reconstruct the genome of wine
fermentation bacteria, and study them from a functional and phylogenetic standpoint.
Our findings highlighted the potential presence of spoilage metabolites in Herodian
wines, which further explains the Roman habit to better the flavour of their wine with a
diversity of spices and aromas (Dodd, 2022). Since our approach relied on targeted cap-
ture enrichment to retrieve enough fermentation bacteria DNA to study their genome,
we had to restrict ourselves to a limited list of known wine fermentation microbes.
While this approach limits the discovery of entirely new microbes, it is however very
efficient at recovering the genome of low abundance ancient microbes diluted among
the more abundant DNA of contaminating modern microbes. Furthermore, in combi-
nation with already established methods for the study of ancient microbes and their
products, such as proteomics, and metabolomics, there is a lot of potential to expand
our knowledge on the ancient practices of alcoholic fermentation. Furthermore, this ap-
proach is not limited to alcoholic fermentation, but can also be applied to other types of
non-alcoholic fermentation in food processing, that have also been a key cultural aspect
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of ancient diets, which we nowadays benefit from on a daily basis (Steinkraus, 1997).

Conclusion
In this work, I developed a variety of new bioinformatics methods applied to ancient
DNA metagenomics. With the current scale of data production, and what can be an-
ticipated to be produced in the coming years, one of the main challenge that I tried to
address was the scalability of these methods. I have demonstrated that some of the
methods developed during this thesis can be applied for the identification of human
paleofeces, and the reconstruction of ancient fermentation microbiome and their associ-
ated bacterial genomes from metagenomics WGS data.

Not only do the methods developed in this thesis allow for a better scalability, but the
recent introduction of technological solutions such as more efficient workflow manager
also allow for an easier scaling of already existing methods, and will allow to deal with
the current amount of produced data in the near future.

Furthermore, a new generation of algorithms is coming to the field of metagenomics,
for example with graph based representation of databases, and deep learning approaches
showing even greater promises to deal with the ever growing influx of new aDNA data
on a longer term.

In the four years of this thesis, both the field of aDNA metagenomics and its commu-
nity saw a great expansion. Nevertheless this expansion hasn’t been detrimental to the
openness of the community. On the contrary, its blooming community sees flourishing
exchanges between its members which, together with the technical developments, hold
great promises for the future of the field.
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