
Towards Human Society-inspired Decentralized DNN Inference

Dimitrios Papaioannou, Vasileios Mygdalis, Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

{mygdalisv, pitas} csd.auth.gr

Abstract

In human societies, individuals make their own decisions and they may select if and who may influence it, by e.g., consulting with
people of their acquaintance or experts of a field. At a societal level, the overall knowledge is preserved and enhanced by individual
person empowerment, where complicated consensus protocols have been developed over time in the form of societal mechanisms to
assess, weight, combine and isolate individual people opinions. In distributed machine learning environments however, individual
AI agents are merely part of a system where decisions are made in a centralized and aggregated fashion or require a fixed network
topology, a practice prone to security risks and collaboration is nearly absent. For instance, Byzantine Failures may tamper both
the training and inference stage of individual AI agents, leading to significantly reduced overall system performance. Inspired
by societal practices, we propose a decentralized inference strategy where each individual agent is empowered to make their own
decisions, by exchanging and aggregating information with other agents in their network. To this end, a ”Quality of Inference”
consensus protocol (QoI) is proposed, forming a single commonly accepted inference rule applied by every individual agent. The
overall system knowledge and decisions on specific manners can thereby be stored by all individual agents in a decentralized
fashion, employing e.g., blockchain technology. Our experiments in classification tasks indicate that the proposed approach forms
a secure decentralized inference framework, that prevents adversaries at tampering the overall process and achieves comparable
performance with centralized decision aggregation methods.

Keywords: Decentralized DNN inference, Distributed consensus, Distributed systems, Decentralized decision making, Blockchain

1. Introduction

There is a growing need of executing Deep Neural Net-
works (DNNs) on edge devices, since such architectures typ-
ically outperform other type of classifiers in a wide range of
applications, including computer vision, natural language pro-
cessing, and speech recognition [1]. Due to their computa-
tional/memory complexity, DNNs are typically trained and main-
tained on powerful servers, while the data used for inference
are obtained by edge devices such as tablets, smartphones, au-
tonomous vehicles, and sensors [2]. Adapting DNN Inference
across multiple allocated devices frequently necessitates offload-
ing the input sensor data to a cloud or a centralized fusion
server for executing all DNN Inference there, or dynamically
distributing DNN computations between the edge devices and
the master server. The master server typically employs cen-
tralized ensemble learning methods to aggregate the received
information collected by the individual edge devices [3]. The
aforementioned strategies frequently raise concerns about asso-
ciated costs in communication and latency, as well as privacy
concerns [4, 5].

The installation of DNNs on edge devices, motivated by
such issues, enables inference on the same user device rather
than sending samples to a centralized cloud server. These ar-
chitectures are required primarily because edge devices such as

smartphones, smart cameras and so on, frequently have mem-
ory and processing power limitations, thus existing approaches
work around that concept to reduce computation costs and de-
crease inference time for real-time applications [6]. To address
such issues, leading strategies propose compressing highly pa-
rameterized DNNs using pruning [7] and quantization [8] meth-
ods or combining statistical model-based domain knowledge
into DNN-aided systems that use compact networks [9, 10].
Such solutions are frequently focused on a single edge device,
without considering the fact that numerous users can comfort-
ably and securely collaborate in order to benefit from their shared
computational resources.

Moreover, approaches that enable device collaboration in-
volve the division and partitioning of the centralized master
server between multiple nodes (e.g., devices) that can commu-
nicate directly with each other by incorporating peer-to-peer
networks, ad-hoc networks, gossiping protocols, and so on. Com-
putation offloading is the partitioning of a multi-layered DNN
among multiple nodes to jointly form a large network during
inference [7], whereas collaborative intelligence is the division
of a DNN between an edge device and its edge server [11, 12].
In both scenarios, each participating device only keeps a sub-
set of the DNN layers and transmits its output features to the
specific device that keeps the succeeding layers, which may be
compressed to save overhead. The fundamental disadvantage

Preprint submitted to Elsevier September 4, 2023

of such designs is that each device cannot infer on its own, and
all of the devices that comprise the DNN must be present. As a
result, there is a high reliance on connectivity, which may cause
latency issues.

However, research in that field is still in narrow steps be-
cause existing approaches are limited to local inference via pre-
viously mentioned architectures, making device collaboration
practically impossible and relying heavily on assumptions of
constant reliable communications. In other words, these ar-
chitectures rely on mutual trust between all nodes, resulting
in high-risk failures such as crash failures, computational er-
rors, highly biased data, or even malicious attacks such as poi-
soned models or tamper and steal user’s private data [13]. In
distributed DNN settings, a common approach for dealing with
such issues is to replicate the centralized master server to avoid
it becoming a single point of failure. However, for the gen-
erated replicas to synchronize, a classical state machine repli-
cation (SMR) approach must be considered. A total order of
updates must be established in all replicas via consensus, to
eliminate the need of it and thus, benefit from the resilient na-
ture of the multiplicity of underlying replicas [14]. Such ap-
proaches, as seen in DNN training settings, particularly in de-
centralized SGD optimization algorithms, can result in signif-
icant latency and computational/memory overhead because, in
order for replicas to agree on a common state, they must also
agree on the overall order of model updates. This can lead
to multiple re-transmissions of gradients and parameter vec-
tors, burdening the network with large transactions of many
megabytes.

Blockchain, on the other hand, can be viewed as a decen-
tralized storage system that can be used for highly secure de-
centralized training under consensus assumptions, making it a
well-established alternative approach. The underlying Proof of
Work consensus protocol limits the proposal rate of blocks in
permissionless blockchain by allowing unauthenticated users to
propose blocks, if and only if, they prove that they have per-
formed the necessary computations [15]. Due to the ability
to prevent numerous attacks, including Sybil and Distributed
Denial of Service (DDoS) attacks, this approach offers fault-
resilient properties, at the cost of increased computational / en-
ergy consumption. Research focuses on the idea of Proof of
Useful Work. Rather than solving the alleged computational
puzzle, a machine learning task is tackled. The squandered en-
ergy during the consensus process is utilized for something that
actually matters, while the blockchain structure gives a highly
protected and privacy - preserving setting for the machine learn-
ing operations [16, 17]. Despite the fact that such methods
have a major impact on the total blockchain and AI combo,
big scale DNN models cannot be applied since they require a
sizable quantity of storage space from the blockchain nodes.

In our work, a society-inspired DNN inference architecture
is designed to simulate how people make decisions based on
their own opinion while taking into account the experts opin-
ions in a relevant field. In particular, a fully decentralized frame-
work over a multi-agent based system is proposed, by leverag-
ing peer-to-peer communications to form an ensemble of indi-
vidual experts. A novel SMR-based distributed consensus pro-

tocol is proposed in addition, ensuring the agreement of each AI
agent on a widely accepted ”prediction” history. The Quality of
Inference (QoI) consensus protocol aims at establishing con-
sensus between the individual agents without the need of any
centralized structure. A SMR strategy is employed, inspired
by the consensus protocols operating in blockchain, where each
agent stores and maintains a copy of all previously agreed-upon
predictions. Our experiments demonstrate that by individual-
izing an ensemble approach can increase the accuracy of each
agent and thereby enhance generalization performance, whereas
the QoI can offer a commonly accepted agreement between
the individualized agents, with outcomes comparable to typi-
cal centralized ensemble aggregation methods.

Our main contributions through that work are:

• A decentralized decision-making process influenced by
human society, where each agent is empowered to decide
whether or not the accumulate the knowledge of other
agents, simulating how individuals make decisions based
on their own beliefs while also taking expert advice into
account.

• A novel consensus protocol for distributed DNN Infer-
ence, in which a commonly accepted agreement is estab-
lished between AI agents in the same prediction history
working as a single inference rule.

• A fault-tolerant inference architecture in which misbe-
having AI agents are penalized, reducing their influence
on the decision making process of honest agents.

The rest of the paper is structured as follows. The problem of
decentralized DNN inference is formulated in Section 2, which
also provides a brief review of centralized and decentralized en-
semble approaches, as well as a review of distributed consensus
protocols. In Section 3 we describe the individualized ensemble
decision making process as well as the proposed QoI consen-
sus protocol. Section 4 contains experimental results from both
the individualized ensemble approach and the QoI consensus
protocol. Finally, Section 5 provides conclusion remarks and
future research directions.

2. Centralized, distributed and decentralized inference

Let G = {A,E} be a direct acyclic graph consisting of M
collaborating AI agents described in a set A = {α1, α2, ..., αM},
that are employed to perform some inference task, e.g., classi-
fication, and E defined as a set of fixed communication links
allowing them to communicate with each other. It is assumed
that all agents have obtained access to the same test sample x,
while their goal for them is to produce a single prediction ŷ.
This work differentiates the following strategies:
Centralized inference refers to the case where each AI agent αi

produces an intermediate prediction yi for a given test sample
xi. A master node thereby collects and aggregates the individ-
ual AI agent predictions and produces the final system output,
using e.g., an average/median rule or majority voting.
Distributed inference refers to the case where individual nodes

2

only perform computational tasks, i.e., the inference task is di-
vided between each of the nodes and/or a master node, and the
final output of the system for a given test sample is provided by
the master node.
Decentralized inference refers to the case where individual nodes
αi make their own predictions for a given sample as in the cen-
tralized inference case, however, the aggregation is performed
by all participating AI nodes, using a consensus protocol.
A conceptual diagram differentiating the different problem vari-
ants in shown in Figure 1.

Figure 1: A conceptual diagram of centralized, distributed and decentralized
inference.

2.1. Centralized Inference

Centralized inference is the simplest form of decision fu-
sion and is tightly coupled with ensemble learning, involving
numerous techniques that vary across the input data structure
or the heterogeneity of the base models. The combination of a
set of weak learners can be used to produce a stronger model,
which will improve the generalization performance and reduce
the biases accross base models. These methods can be divided
into three core families: bagging, boosting, and stack general-
ization [18]. Regardless of employed technique, decision fu-
sion is responsible for the aggregation rules that need to be ap-
plied for the combining step [19]. The most simple and com-
mon approach for agent decision fusing is the averaging rule.
The final prediction is produced by averaging the outputs of
the base models [20] while weighted variants obtained by op-
timizing objective functions [21] or the median rule. Another
approach is majority voting. Instead of calculating the average
of the probability outcomes, the central node counts the votes
of the base models and predicts the final class as the class with
the majority of votes.

In addition, ensemble selection methods [22, 23] (also re-
ferred to as ensemble pruning methods) are often required when
the AI agents form a collection of various heterogeneous mod-
els. These methods search for a subset of ensemble models that
performs similarly to the original ensemble model in order to
decrease the number of base models [24, 25]. Several strate-
gies for choosing an ideal subset of models are based to the
fact that it is possible to identify the class label that has the ma-
jority of support without taking into account all votes [26, 27].
Distributed structures make use of ensemble selection and cen-
tralized decision fusion methods for the final aggregation stage
on a fusion or cloud server.

Despite the simplicity of centralized structures, decentral-
ized architectures are required in some applications to address
issues such as security, storage limitations, computational costs,
privacy, or handling large volumes of data. To overcome the
aforementioned issues, data or models are distributed across
multiple physical nodes (e.g., data centers, sensors, devices).
As a result, algorithms capable of dealing with non-collocated
data must be developed. Those type of algorithms can be di-
vided into two main categories: Distributed and Decentralized
Algorithms.

2.2. Distributed inference
Modern devices are boosted with high-level hardware com-

ponents allowing them to partially execute DNN models di-
rectly on them. Often a highly reliable communication scheme
is assumed for the individual devices to securely communicate
between each other their locally produced information. The
most computationally challenging operations and the general
coordination is ensured via a powerful cloud-based server. That
innovation provides solution to centralized issues since the DNN
computations can be allocated to multiple devices allowing then
to collaborate, secure the DNN process and preserve privacy
of the input data. A novel approach for Distributed DNN In-
ference [4] is proposed based on distributed computing hierar-
chies, involving cloud server, edge network and devices. Same
as in [28], the core idea is that the computational graph of pre-
trained DNN models is partitioned and distributed over edge
nodes along an edge to cloud path to achieve forward propaga-
tion in the network while the data traverses toward the cloud.

Furthermore, methods for improving the existing models’
sensor fusion capability, fault tolerance, and data confidential-
ity are proposed in [29, 30, 5]. A byzantine resilient fault-
tolerant inference algorithm is proposed in [29], under an en-
vironment of multiple sensor cameras. Specifically, each sen-
sor has a local feature extractor and each produced feature is
weighted based on the importance in terms of likelihood. A
weighted average scheme is used in back-end layers in order
to make the global prediction of the captured model. Other
fault tolerant approaches [30, 5, 3] adopt the concept of skip
hyper-connections where they skip one or more physical nodes
in the vertical hierarchy of distributed DNN providing alter-
nate paths for the information propagation when a node is de-
tected as faulty. In the field of unsupervised learning, a dis-
tributed approximate method for performing variational infer-
ence over a network of independent agents is proposed [31]in
order to address the problems observed in symmetry and depen-
dencies. Specifically, Bayesian models are employed to involve
approximate inference methods, so that agents can efficiently
use the Bayesian rule to combine the local posterior probabili-
ties. In DELCO [32] a new approach for aggregating the predic-
tions of the base models using a probabilistic model relying on
Gaussian copulas under the coordination of a global centralized
server is investigated.

2.3. Decentralized Inference
As we can observe, fault-resilient behavior can be estab-

lished in the previous architectures if and only if it is assumed

3

that the cloud-based server is not tampered and the communica-
tion links between edge devices are reliable [33]. Fully decen-
tralized architectures, on the other hand, correspond to setups
in which a centralized server does not exist. In such architec-
ture, individual nodes are collectively tasked to generate final
decisions based on information exchange among them in the
so-called ”on-device” algorithms. In parallel computing, fully
decentralized training approaches such as [34, 35] often involve
concepts where in each iteration, each worker exchanges their
locally computed gradients with its neighbors and combining
them by averaging methods. Despite the fact that a centralized
server is no longer required, synchronization through a com-
mon clock is vital. However, in Asynchronous Decentralized
Parallel SGD [36], there is no need for each worker to wait
for the rest ones to finish their execution process but instead, a
ring-based network topology is used where after each iteration,
a worker observes and selects a neighbor for averaging. Both
workers replace their local gradients with the averaged one. In
[37] in order to reduce communication between nodes, prede-
fined epochs in which workers execute SGD in parallel are used
and all individual results are averaged. The generated model is
then used as reference for the next epoch. LEARNAE [38] pro-
poses a fault-tolerant peer-to-peer architecture in which training
data is propagated across the network using resilient gossiping
protocols.

Other methods make use of Deep Ensembles, a class of ar-
chitectures that employ several models whose outputs are ag-
gregated to improve performance by using DNNs as individual
models [39]. Specifically, the input sample is processed in par-
allel by each of these DNNs, and their outputs are aggregated
into a single decision. Deep ensemble models are typically
made up of a trainable encoder that encodes the input data into
a continuous space and a dedicated decoder that compresses
the features into a discrete representation. A scalable element-
wise quantization can be used to extract the representation [40].
Later that year, another method called Edge Ensembles was in-
troduced, claiming that it can achieve collaborative inference
in a fully decentralized manner by leveraging Deep ensembles
with quantized features [41]. Those models are comprised of
a shared encoder and a user specific decoder. Let θE represent
the shared parameters of encoder, the shared quantizer as Q and
the unique and diverse parameters of decoder as θ{D, j} for the jth

user. At any given time t a user jt observes a data sample xit to
be used as inference. In order to collaborate with the neighbor
devices, it encodes and quantizes the input sample xit as:

z jt = fQ
(
fθE
(
xit
))
. (1)

The jt broadcasts the quantized features z jt in all the neigh-
bors in the set St

jt
, where set St

jt
represent the set of all users in

which user j can reliably communicate at a given time t. Then,
each available user in St

jt
applies its local decoding model to

z jt and conveys the resulting mapping fθD, j
(
z jt

)
back to user jt

which then aggregates them into a prediction ŷit . Specifically,
for classification tasks, with N different labels, the output of
each individual network fθD, j

(
zit
)

is a N × 1 vector whose val-
ues are estimated by the conditional distribution of each label

given zit [41]. The predicted value ŷit is given as the label which
maximizes the average condition distribution of the form:

argmax
n=1,...N

1∣∣∣St
i

∣∣∣ ∑
jϵSt

i

[
fθD, j
(
zit
)]

n
. (2)

As an alternative approach, blockchain has been employed
in a multi-agent decentralized ensemble approach based on sam-
ple exchange [42]. Each agent is assumed to have a small-scale
initial local dataset, interacting with each other based on the
exchange of their local data samples. When performing data
iteration, the results are stored in a blockchain to ensure the
validity and security of the data iteration. Anti-D chain is in-
vestigated in [43], a novel approach for detecting DDoS attacks
in a blockchain framework. Lightweight classifiers are used
with AdaBoost and a random forest ensemble strategy to cre-
ate AI blockchain, connected with the original based on VR
parallel tactics. The aim of that work is to achieve stronger
generalization, performance and universality in order to over-
come DDoS attacks in a P2P network. Danku Protocol [44]
offers a blockchain-based approach for model selection on the
Ethereum blockchain, allowing AI researchers to exchange ma-
chine learning models while adhering to highly secure princi-
ples. Since each node in the Danku ecosystem serves as a base-
line model and the best performing model is chosen among the
committees to be rewarded, the method is capable of working
into the concept of ensemble model selection, allowing AI re-
searchers to use the blockchain as a highly secure database of
well-trained models. These architectures are mostly build on
the application layer [45] of a blockchain system, in which the
underlying trust of the consensus layer is used as a collateral in
order to secure the DNN Inference process.

2.4. Decentralized Consensus Protocols

Decentralized consensus protocols can be employed for es-
tablishing a commonly accepted agreement between the indi-
vidualized devices for a given specific task operating in a de-
centralized DNN framework. Such protocols have been used
frequently in distributed computing, in order to protect and pre-
vent any system abuse. The theory of decentralized consen-
sus protocols begin with the introduction of the Byzantine Gen-
eral’s Problem, which is formulated by Lamport et al. [46]. It
is an allegory used to describe the challenges observed in the
establishment and maintenance of a consensus between nodes
in a decentralized system where the communications links are
highly unreliable. Under that assumption, several type of fail-
ures can be detected, which may occur during the consensus
process such as:

• Crash Failures: A case in which a node operating in the
system may suddenly goes offline.

• Fail-to-Stop Failures: A case in which a node operating
in the system may fail to stop its execution.

• Byzantine Failures: A case in which a node seems to
operating normally but it fails maliciously to deliver a
correct result.

4

To address the previously aforementioned issues, a series of
Byzantine Fault Tolerance (BFT) replication protocols [47, 48]
have been adapted, capable to detect and prevent faulty nodes
to tamper the overall consensus process. In particular, BFT
describes the ability of a system to normally function, even if
some of the underlying components fail to respond or act ma-
liciously. In BFT protocols, the implementation of the consen-
sus among a set of nodes adopts the idea of the State Machine
Replication where the state of a system is replicated across
n deterministic replicas (e.g., nodes). Additionally, a tradi-
tional BFT consensus protocol must specifically guarantee -
Agreement-, where no two non-faulty nodes arrive at different
decisions, -Termination- where all non-faulty nodes eventually
have a decision and -Validity- where the decision is proposed by
some nodes [49]. To address a Byzantine consensus problem,
one can extend an algorithm that satisfies the aforementioned
properties. On the other hand, a BFT SMR algorithm needs to
ensure the accuracy of the Safety and Liveness properties [49].
Safety states that every node successfully executes the same se-
quence of requests while Liveness states that all requests should
be served.

SMR approaches often require a small number of nodes in
order to prevent scalability and thus latency issues. Under that
settings, several approaches have been introduced in order to
improve the efficiency of classical BFT protocols by avoiding
the use of expensive cryptographic signatures. For example,
recent protocols like SBFT[50], Zyzzyva[51], BFT-Smart[52]
and DR-BFT[53] have reduced the amount of transmitted and
proceed signatures over the network by O(n2). Despite the fact
that due to the message communication complexity, the classi-
cal SMR approaches cannot be employed in a DNN training ap-
plication. Instead, the possibility of applying such approaches
in a pure DNN inference scenario, where the computation com-
plexity is limited, should be investigated. The SMR approaches
are dealing with the FLP impossibility result [54] which states
that there is no deterministic solution for the consensus problem
in any asynchronous system even with a single crash failure. In
order to over come this limitation, almost all BFT systems rely
on partially synchronous assumptions in order to ensure live-
ness.

Practical BFT proposed by M.Castro and B.Liskov et al.
[55] has been long-termly a state of the art consensus protocol
for coping with Byzantine systems. It can tolerate up to a 1/3
fraction of Byzantine faults in a system. When a client asks for
the execution of any operation, the primary/leader replica re-
ceives the request, performs the requested operations and then,
transmits the requests to rest replicas. The order of requests
is then agreed by all replicas working together in a three-phase
(pre-prepare/prepare/commit) agreement process. Every request
is processed by each replica, which then replies to the rele-
vant client. Because progress solely depends on the primary,
the PBFT protocol ensures that safety is maintained even when
there are timing violations [55]. The replicas initiate a view-
change process to choose a new leader to coordinate the con-
sensus procedure, after they determine that the current primary
replica is flawed through the consensus procedure. When there
are few participating replicas, the leader-based protocol per-

forms admirably, but scalability problems might arise. We took
inspiration from PBFT when developing the suggested AI - en-
hanced QoI consensus protocol since it is widely considered as
the baseline for practically all BFT protocols developed so far.

A use case for merging between AI and blockchain can
arise from the consensus layer, which can offer DNN train-
ing solutions under completely decentralized and verifiable set-
tings, which aim to provide highly secure and efficient architec-
tures. Deep learning models concentrate on training these data
and making accurate predictions, while blockchain, as a fault-
tolerant technology, secures and prevents data leakage, mak-
ing training more reliable compared to centralized or cloud ap-
proaches since various types of attacks or data noise issues are
prevented. In consensus layer, BlockML [17] aims at leverag-
ing PoW in a concept where miners are being forced to solve a
task by using the same input data and generating a competitive
ML model. Once the miners successfully train the ML mod-
els, they immediately publish their results in blockchain and
the test set is revealed. The miner with the highest-ranked ac-
curacy model is winning the competition, its block is appended
in the chain and is getting rewarded. In, Committee Consensus
mechanism[13], consensus protocol aims at updating the global
model using the federated learning approach. WecaCoin[56]
on the other hand is a cryptocurrency developed to provide a
decentralized and publicly available database of ML models.
Miners are divided according to the DNN task and the Weca
block holds the transactions, the previous hash and the ma-
chine learning model, used to verify the previous block. Proof
of learning[57], attempts to solve large-scale DNN complexity
issues using a secure mapping layer approach where consen-
sus nodes are providing processing power for the given DNN
task. Once the minimum training requirements are full-filed the
miner is broadcasting the generated block and is rewarded.

3. Human society-inspired Decentralized DNN Inference

This Section describes the proposed Human society-inspired
Decentralized DNN Inference, which consists of the: a) Indi-
vidual Agent Decision Aggregation method in which each in-
dividual agent is requested to detect and eventually select the
neighboring agents that will indeed help him to improve his
individual performance and b) Quality of Inference (QoI) Con-
sensus Protocol in which all agents are requested to collaborate
with each other in order to reach a common decision agreement
about the content of a given sample, and thus serve as a single
inference rule.

3.1. Individual Agent Decision Aggregation (IADA)

In our pipeline, individual agents exchange information with
other agents about their predictions at a given data sample x in
order to calculate their own decisions. LetA = {α1, α2, ..., αM}

is an index set of M agents performing decentralized inference
and they have fixed communication links allowing to commu-
nicate directly to each other. We assume that each agent has
a different locally installed classification model that produces
a prediction for a given sample x, i.e., ŷi = f j

(
x;θ j

)
, where

5

θ j are the learnable parameters of the jth agent’s model. At
the inference stage, each agent generates a prediction based on
the observed sample and transmits it to the rest of the network.
A predetermined time interval, t, governs the communication
process. Once enough transmissions have taken place between
the agents and enough time has passed, each one makes a deci-
sion individually based on their own observations and the ones
received by the rest of the agents.

After the time interval t has passed, agent αi observes the
prediction vectors received from the rest M−1 agents and based
on a predefined condition decides whether to include them in
the final aggregation step, or not. An agent is disqualified from
the network if, for whatever reason, it was unable to success-
fully transmit its prediction over the designated time delay t.
Moreover, if the agents’ α j prediction does not follow the pre-
defined formation, is recognized from the rest of the agents as
null and is totally ignored.

Specifically, in the set of the non-excluded predictions gen-
erated by each agent, we assumed that a soft-max activation
function has been applied in order to transform the outputs into
probability distributions, i.e., Ŷ ∈ [0, 1]C , where C is the num-
ber of classes supported by the models. Aggregation with the
predictions of other agents is performed for each class, based
on two predefined conditions:

• Probability-based Condition: For a given sample x, the
prediction of agent a j only takes into account agents that
are more confident than itself, i.e.:

ŷ′j =
1

M′

M∑
i=1

biŷi, (3)

where bi = 1 if ŷ j < ŷi and bi = 0, otherwise, and
M′ ≤ M is the number of agent predictions taken into ac-
count, based on the above condition. Additionally, by in-
troducing a med(·) function, we can apply a median rule
for the aggregation step formally defined as:

ŷ′j = med
iϵM

(biŷi), ∀bi , 0. (4)

• Weighted-based Condition: As an alternative approach,
we can consider a weight condition where weights are as-
signed to each agent based on their performance on train-
ing or on validation set. LetW represent a set of weights
of the formW =

{
w j, ∀ j ∈ M

}
assigned for each agent

in set A. Then the condition for bi parameter is defined
as:

bi =

{
1, if w jŷ j < wiŷi

0, otherwise (5)

The aggregation rule is set to be as described in Eq. (3),
(4). The weights can be assigned manually by using e.g.,
the accuracy scores produced by each agent during the
training process. The above two conditions can be com-
bined or used individually.

3.2. Quality of Inference (QoI) Consensus Protocol
In this section, we propose a novel consensus protocol to

be formed as a single inference rule and provide coordination

in the individualized agent decisions under a fully decentral-
ized structure, thus eliminating the need of any kind of central-
ized coordination. The QoI protocol can be thought as a hybrid
consensus mechanism, where the core process is achieved by
adapting the traditional BFT SMR approach, where M ≤ 2 f +1
total agents are needed to tolerate f faulty agents who may fail
during execution or who may behave maliciously by transmit-
ting tampered data to the neighboring agents. The normal oper-
ating agents are considered honest.

The QoI protocol addresses byzantine failure settings, i.e.,
a classical byzantine failure model applied in Decentralized In-
ference scenario is assumed. We assume a strong adversary
model in which faulty agents may behave arbitrary in order
to compromise the entire DNN Inference process. In particu-
lar, each agent receives a data sample x as input. Its goal is
to communicate with the rest M − 1 agents to reach a com-
mon agreement about the content of that sample as well as, the
total ordering of the predicted classification results. The ad-
versaries aim at achieving full control over the DNN Inference
process and may even collude to each other in order to achieve
the most damage and subvert the rules of the protocol. The
Proof of Work byzantine agreement model, organizes and as-
signs decision-making authority to the most trustworthy agents
so far, in order to handle samples in which the decision is in
contention.

The system is designed under synchronous assumptions where
the delivery schedule of predictions (e.g., messages) are guar-
anteed. Communication delays are minimized. We assume that
each agent broadcasts a prediction (e.g., state machine com-
mand) to each neighbor agents ensuring that all agents receive
all predictions in same order and thus each one of them main-
tains a complete list of the prediction history. So, QoI must
guarantee:

• Validity: If an individual honest agent broadcasts a pre-
diction ŷ, then every honest agent eventually receives ŷ.

• Agreement: If an individual honest agent decides a pre-
diction ŷ, then every other honest agent must also decide
ŷ.

• Integrity: A prediction ŷ for sample x appears at most
once in the delivery sequence of any honest agent.

• Total Order: The ordered sequence of predictions ŷi and
ŷi+1 for samples xi, xi+1 must be the same for all honest
agents.

QoI, as already mentioned, is a state machine replication
protocol based on three sub operations: a) view change, b) nor-
mal operation, and c) conflict decision agreement. The view
change operation coordinates the primary election process. The
primary agent is responsible for beginning the consensus pro-
cess by broadcasting its prediction about the given sample to the
rest of the agents. The normal operation is the core execution
of the protocol, where the proposed decision of the primary is
evaluated in order to be universally accepted or rejected. In the
case of universal acceptance, the primary is responsible for de-
livering the final decision of the network. When the proposed

6

primary’s decision is universally rejected, a view-change pro-
cess is triggered. Otherwise, when view change fails to elect
a universally accepted primary, a conflict decision agreement
mechanism is provisioned. Conflict decision agreement is used
in order to handle situations that arise due to the nature of the
DNN models themselves and not via a malicious behavior. In
a conflict decision scenario, total ordering is not guaranteed in
the specific decision time.

Agents operate through a sequence of actions known as
views. Given that, QoI protocol operate in rounds in which each
consensus round is defined as one execution of the normal oper-
ation process regardless if it is successful or not. Views describe
the consensus rounds that are required in order for the network
to reach a consensus about a given sample and defined as an
index of the form vϵV, containing a sequence of testing pairs
whose predictions have been scheduled in the time interval t.
At each view, one agent is operating as primary while the rest
M−1 agents are operating as validators. In the reminder of this
work and for simplicity reasons, each view represents a single
sample and its prediction of the form (xi, yi). Our goal is that
every honest agent in M maintains an identical prediction his-
tory set defined as Ŷ =

{
ŷi j, ∀v ∈ V and j ∈ C

}
given a set of

C = {c1, c2, ..., cC} classes where ∥C∥ = C.

3.2.1. View Change
Leader Election. At any given time, all agents must be syn-

chronized and begin from the same view or consensus round.
At the beginning, a primary agent is selected from the set A to
begin the consensus process for the first round. From this mo-
ment onwards, the rest M − 1 agents will be working as “Val-
idators”. The primary agent is elected in circulating order, from
the first to the last one, ensuring that everyone has a chance
to be elected as long as they strict to the consensus rules. Let
apϵA be the primary agent, the election formula is defined as:

ap = v mod |A|, (6)

where |A| = M and vϵV represent the view we are currently
working on.

View Change. Once the primary agent of the current view
is detected as faulty, view change is performed in order to be
replaced. Specifically, in the vth view, the primary agent is pro-
moting a prediction for the ith sample of the form:

ŷp = argmax
(

fp (xi)
)
. (7)

He is communicating its prediction ŷp to the validators by
constructing and broadcasting a pre-prepared message of the
form pre− prepare < ap, ŷp, vp, rp > where ap is the primary’s
identifier, ŷp ∈ C is its predicted value for the current sample,
vp is the view index and rp is the rewards he have collected so
far.

Let a jϵA represent a random validator which has just re-
ceived the primary’s message. He calculate its prediction value
as:

ŷ j = argmax
(

f j (xi)
)
, a j ∈ {A|a j , ap}. (8)

If its predicted value ŷ j , ŷp or v j , vp then, from now on-
wards, the jth agent recognizes the primary as faulty and so,
he must immediately multi-cast a view-change message to the
rest of the validators of the form view − change < a j, v j +

1, vote j, r j >. The parameter vote j is calculated via the fol-
lowing voting process as:

vote j =

1, if ŷ j , ŷp or v j , vp

0, otherwise
. (9)

Once the validators receive that view change messages, they
append them in a local log. If

∑M−1
i=1 votei

|A|
≥ 0.5 then the primary

is globally recognized as faulty since it has lost the favor of the
majority. The consensus round at this moment has failed, so
the agents are switching to a new view in which a new primary
will be elected via the leader election process and the consensus
round will be restarted in the new view.

Figure 2: An illustration of the view change protocol applied to QoI.

Reward System. The reward system aims at working as
an incentive mechanism for each primary, managing to retain
the majority of the validators with its share. In other words, at
any given time, if the current primary is honest, it is rewarded
by a predetermined amount of quality points (q) as a reward
for its honest work. However, if at any given time, the primary
loses the favor of the majority of the validators, it is penalized
according to a predetermined amount. As a result, each agent,
must locally maintain a record of the rewards acquired by each
agent so far defined as R where R = {r1, r2, . . . , rM}. For a given
primary ap, the reward and the penalty are calculated as:

rp =

q, if
∑M−1

i=1 votei

|A|
< 0.5

0.5rp, if
∑M−1

i=1 votei

|A|
≥ 0.5

. (10)

Half of the collected primary points will be lost if it fails
to get the majority’s support. This stage serves as a quality
control measure and an assurance that the primary agents would
continue to perform honestly in order to be rewarded. However,
if they fail to behave as such at any point, they will lose their
high-quality status, which could harm them in the subsequent
steps. In this way we are creating a quality index to guide us
to the ”by accident” faulty agents (e.g., poor trained models)
or those with the malicious behavior in order to further exclude
them for the conflict decision process.

7

3.2.2. Normal Operation
In a normal operation protocol, the determined primary is

responsible for observing the decisions of the validators, de-
ciding which of them is going to take under consideration and
finally, constructing its final decision which will be then multi-
casted to all the honest validators. Given a primary agent ap,
we consider the following three predetermined conditions for
the decision making process:

• Class-based Condition: Here, the primary agent com-
pares its decisions with the rest M − 1 validators. Specif-
ically, let ŷp be the prediction determined by the primary
for the ith sample calculated as described in Eq. (7) and ŷ j

be the prediction calculated by a random validator a jϵA
as determined by equation (8). The class-based condition
defines that if ŷp = ŷ j then:

ŷp =
{(

f j(xi)
)
, where a j ∈ A

}
(11)

and the final decision is produced by combining the se-
lected validators decisions using average 3 or median rule
4.

• Weight-based Condition: We can assume a weight-based
condition where the weights are assigned to each agent
based on their performance on training or validation set.
In such a set up, each agent must be able to provide evi-
dence to the rest M − 1 agents whose assigned weight is
not randomly selected but is determined based on the true
performance of its locally trained model. LetW repre-
sent a set of weights of the formW = {wi, ∀i ∈ M} as-
signed to each agent in the setA and wp represent the as-
signed to the primary agent ap weight and w j the weight
assigned to a random validator a jϵA. Then, the weight-
based condition states that if wp < w j then the primary
considers the decision of the jth agent as reable and then:

ŷp =
{(

f j(xi)
)
, where a j ∈ A

}
(12)

and the final decision is produced by combining the se-
lected validators decisions using the average 3 or the me-
dian rule 4. Regarding the weight-based condition, the
primary is considering only the agents achieving greater
overall performance than him.

• Hybrid Condition: Here the decision rule is mixed among
the weight and the classed-based condition. Specifically,
the hybrid rule states that if wp < w j and ŷp = ŷ j then:

ŷp =
{(

f j(xi)
)
, where a j ∈ A

}
. (13)

and the final decision is produced by combining the se-
lected validators decisions using average 3 or median rule
4. Hybrid Condition ensures that the primary is in con-
sensus for the predicted value while focusing on the val-
idator who has greater overall performance, comparing
to the primary, boosting in that way the decision process.

Figure 3: An illustration of the Normal Operation applied to QoI.

Regadless the condition, the final decision of the primary is
then calculated as:

ŷ f inalp = argmax
(
ŷp

)
. (14)

Once the primary has reached to a final decision, he multi-casts
to all agents, including himself, an encrypted prepare message
of the form prepare < ap, ŷp, ŷ f inalp , vp, rp > where ap is the
primary’s sequence number, ŷp is its initial predicted value for
the current sample, ŷ f inalp is the final agreed decision, vp is
the view index and rp is the collected so far rewards. Once
a validator receives a prepared message from the primary, it
first ensures its validity by observing if the vp matches with
its own view number and weather ŷp matches its own locally
produced prediction. If the prepare message is indeed valid, it
is transmits the prepared message to the rest validators. The
validators awaits for 2 f + 1 identical messages from differ-
ent agents in order to proceed to the commit phase, where a
commit < a j, ŷ j, ŷ f inalp , v j, r j > is transmitted. Once the valida-
tors ensure its validity, it transmits it back to the primary. If the
primary receives 2 f +1 identical commit messages from differ-
ent validators, it recognizes that the consensus is achieved for
that specific sample. The consensus round is initialized.

3.2.3. Conflict Decision Agreement
In this subsection, weather the agents working in QoI proto-

col will be unable to classify a sample at all is discussed. Con-
flict Decision Agreement occurs when the sample’s content is
too complex for the majority of the agents to understand. A
sample in which the majority of the agents are unable to agree
on a commonly accepted decision is referred as conflict sample.

Specifically, for any given sample, if all possible primaries
have failed to maintain the majority of the validators with their
share during view change operation, the framework cannot es-
tablish any decision for that specific sample. At this point, for
the conflict sample ith, the agents according the rewards R they
have collected so far are ordered, in a descending order of the
form:

r j+1 < r j, where r j+1, r jϵR. (15)

The final decision for that sample is achieved via Group of
Experts Rule, where agents, are organized in groups of experts
depending on the correlation of their decisions, where the most
qualified group eventually decides for the sample. If the pro-
cess fails, the Most Honest Rule is applied where the agent with

8

the highly recorded rewards is qualified to perform the final de-
cision.

• Group of Experts Rule:
A normal operation is executed for each agent in the set
A, starting from the agent with highest reward score and
all the way to the agent with the lowest. When the method
is applied for the first agent, it will simultaneously oper-
ate as primary agent ap ∈ A and produce a prediction via
the Eq. (7) of the form ŷp.

At this point, the primary agent observes the predictions
produced by the rest agents. If any of the other agents
agrees with him then they group up together and jointly
propose the prediction ŷp. Let groupi be a group of agents
and a j ∈ A be an agent that already jointed the group,
then the rewards he has collected so far are summed up
with the rewards of the primary’s group, reflecting in that
way the total reward of the group as groupi = rp + r j.
From now on, agent a j is excluded from the rest process
since he is already part of a group and there is no rea-
son for him to create it’s own. These steps are applied on
every agent in the set A forming groups of decided pre-
dicted values and total rewards for the ith conflict sample.

The final decision for the ith sample is achieved once, the
consensus for the next sample i + 1 is reached. Specifi-
cally, if agent a j is determined as primary agent for the
sample i+1 and successfully passes the view change pro-
cess, he is deciding for the sample i+1. Its given reward is
added in the total reward of the group that is member for
the previous sample i. At this point, if agent a j ∈ groupi

and if:

groupi∑M
i=1 ri

≥ 0.51 (16)

then the agent a j, is responsible to decide for the ith con-
flict sample as:

ŷ j = argmax
(

f j(xi)
)
. (17)

• Most Honest Rule: If the group of the primary agent for
the sample i + 1 fails to pass the 0.51 quality threshold,
the decision is made by the agent with the highest reward
score achieved. Specifically, the primary agent is deter-
mined as:

ap = argmax(r j), ∀r j ∈ R (18)

Then, the decision for the conflict sample i is the predic-
tion achieved by the agent ap.

Finally, our protocol can be considered as a hybrid consen-
sus mechanism based on DNN Inference architecture, aiming
at providing the Safety, Liveness and Fault Tolerant properties
when dealing with non-conflict samples. Specifically, the con-
ditions are formulated as:

• Safety: Agents will agree on the same value, which is
proposed by the primary agent.

• Liveness: Eventually, every honest agent should decide
upon a prediction value.

• Fault Tolerance: All honest agents must and will agree
on the same value.

When the decision for non-conflict samples is reached, Safety
and Liveness property is guaranteed. If for a primary agent ap

the proposed prediction ŷp is true, any prediction ˆyp′ is false
for any honest agent a j (even if ai = a j), for any ˆyp′ , ŷp.
This is guaranteed because two honest agents agree on the same
sequence number of samples that commit locally on their pre-
diction history record. Honest agents also agree on the same
sequence of views since a prediction for a view v

′

> v with-
out the first decision for the view v is not accepted. In a con-
flict sample scenario, the Liveness property is no longer valid
as the decision on that point can not be based on determinis-
tic assumptions. Instead a probability-based setting is adopted,
by requiring the agents to agree on the probability that some
predicted values are correct. In order to distinguish between
the agents with poor performance and the ones with the best
achieved so far, the Reward System is vital.

4. Experiments

In this section experimental results in various datasets are
presented among with illustration approaches. The benefits of
applying the proposed Individual Agent Decision Aggregation
approach are presented. The performance of the decentralized
QoI consensus protocol is compared with the traditional cen-
tralized DNN inference structure [19]. Experiments are applied
in both synthetic and real-world datasets. The process of devel-
oping synthetic datasets is covered first. The output of a DNN
model is built directly, simulating the generated prediction set
of an applied pre-trained model over a specified test set, rather
than following the more conventional method of creating a fea-
ture space using Gaussian rules to generate synthetic data. Each
individual agent performance is then observed and discussed
as we proceed to the numerical results for the IADA method.
Last but not least, we implement the QoI consensus protocol
in both the base AI-empowered agents and the enhanced ver-
sions of them, after implementing the collaborative inference
approach. We compare the outcomes with centralized aggrega-
tion rules such as weighted average and majority voting, under
the premise of a straightforward ”committee of experts” ensem-
ble approach.

4.1. Synthetic Data Generation

Our objective is to directly generate a set of predictions,
simulating the predicted values calculated by hypothetical DNN
models of the form F = { f1, f2, ..., fn}. These predictions serve
as the baseline agents, solving a specific computer vision clas-
sification task (e.g., Image Recognition) using a pre-defined set
of true labels.

9

In a supervised driven method, the dataset is defined as
D = {(xi, yi) ,∀i ∈ N} where xi ∈ R

D and yi ∈ [0, 1]C , here,
we focus to construct the space y and totally ignore the space
x. So, in the final form, our true label set will be defined as
Y =

{(
yi j

)
,∀i ∈ N and j ∈ C

}
. Given a number of C classes,

defined as C = {c1, c2, ..., cc} where |C| = C. We create the
space Y by randomly choosing values in a range [1,C]. Each
generated number is encoded by using the One Hot Encoding
method in order to serve as a vector of the form yi ∈ [0, 1]C .
Given a number of M agents, the set Y is cloned for each
agent and the global prediction set is formally defined as Ŷ ={(

ŷi jk

)
,∀i ∈ M, j ∈ N and k ∈ C

}
. For the ith agent and the jth

sample, the predicted value ŷ is replaced with a random se-
lected number calculated using a uniform distribution between
two float numbers a and b. For generating agents with diversity
on their predictions, we must define the follow strategies:

• High Range: The random float assigned to the predic-
tion ŷ is calculated in a range for a = 0.8 and b = 1.0.
We assume that models with such probabilities are quite
confident about their decisions.

• Medium Range: The random float assigned to the pre-
diction ŷ is calculated in a range for a = 0.7 and b = 0.8.
We assume that models with such probabilities are less
confident about their decisions.

• Low Range: The random float assigned to the prediction
ŷ is calculated in a range for a = 0.5 and b = 0.7. We as-
sume that models with such probabilities are unconfined
about their decisions.

The rest values in the positions ŷk, ∀k ∈ C and ŷk , ŷ, are re-
placed with random floats calculated in a range of a = 0 and
b = 0.1 until the overall summation of vector ŷk results in 1.0.
This strategy gives us the ability to generate agents with diverse
probability distributions and also provides us with a way to de-
fine agents with different confidence levels on their produced
predictions.

Finally, we should be able to create misclassified samples
in order to reduce and customize the accuracy score produced
by each agent. This is achieved by calculating, for each agent,
a random float value randvalue in a range of our choice and
then constructing a boolean condition of the form count ≤ N ∗
randvalue. While the condition is true, we select a random sam-
ple j ∈ N and use the vector ŷ jk to calculate the predicted value
and the position of the predicted value as:

predvalue = max (ŷk) ,∀k ∈ C, (19)

predpos = argmax (ŷk) ,∀k ∈ C. (20)

then we replace the predicted value with the one in a random
position in range [1,C].The predicted value is also decreased by
a random float calculated in a range [0, 1]. The procedure de-
scribed above is applied for each agent constructing the global
set of predictions Ŷ, in which we apply a soft-max activation
function in order for it to follow a probability distribution.

Table 1: Synthetic Datasets Set-Up.

Dataset nSamples nClasses

D1 1k 10
D2 6k 100
D3 10k 10
D4 10k 25
D5 10k 120
D6 15k 60
D7 100k 10

4.2. Evaluation on Synthetic Data

Experiments are conducted with varied numbers of agents
for each dataset based on the configurations shown in Table 1.
Some of them simulate well-trained models with high confi-
dence scores in their predictions. Others are less accurate but
nevertheless handle high levels of confidence and others are
mixed based on agents with high accuracy but low confidence in
the produced predictions and vice versa. The purpose of those
experiments is to demonstrate, as illustrated in Table 2, that the
decentralized character of collaborative decision-making has
the potential to be advantageous for all agents.

To clarify some of the following notations, we refer to the
AI-powered agents as Base Agents and demonstrate their indi-
vidual accuracy performance over the corresponding dataset.
Secondly, DA stands for Decentralized Agents after the ap-
plication of the proposed IADA inference framework over the
probability condition, as stated in Subsection 3.1. DWA stands
for Decentralized Weight-based Agents after the application the
weight-based condition. The number of agents M varies be-
tween 5 − 11 depending on the experiment. In order to keep
track of each individual agent performance, their total number
is kept small. In our method, both in DA and DWA conditions,
the generally accepted aggregation rule of the median or av-
erage is applied. Median appears to outperform averaging in
most of the experiments. Thus, our results are presented under
the median aggregation rule.

The base agents overall accuracy scores are presented in
Table 2. The agent performance in each dataset is varying be-
tween 49% to 87%. As observed in the experiments where
the base line agents appear to have a well-established ”knowl-
edge” about the content, the DA and DWA results demonstrate
than we can distinguish them in a descending order and the
top rated agents can still gain a boosted information improving
their accuracy and thus generalization performance by around
0.20 to 1%. The poorly performing agents gain an overall
boost between 2% to 5%. This occurs due to the fact that
we are focusing on improving them on each class rather than
applying the method directly on final prediction. On the other
hand, when we involve low performance agents with average
45% to 60% , the individual agents gain an boost from 1% to 7%.
Such behavior is observed mostly because the divergence be-
tween them is high enough in order to allow the poorly per-
forming agents to receive an incremental rise of their ability to
recognize the underlying content of a given sample xi.

10

Table 2: Results on Synthetic Data.

Experimenta Dataset Accuracy (%)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

Base Agents 53.30 50.30 49.60 52.10 48.90 53.40 50.81 - - - -
DA D1 53.80 53.10 51.30 52.80 51.10 54.30 53.20 - - - -
DWA 54.00 52.60 51.00 52.90 51.10 53.30 53.50 - - - -

Base Agents 53.10 55.80 51.50 55.41 54.30 52.80 51.10 51.90 54.20 - -
DA D1 54.80 57.10 54.50 55.10 55.20 54.50 53.60 53.30 55.40 - -
DWA 54.60 55.70 54.60 55.10 54.90 54.70 53.80 53.60 53.50 - -

Base Agents 69.02 68.30 73.75 71.45 70.00 73.53 70.47 68.07 67.12 - -
DA D2 71.62 71.40 74.07 72.62 71.73 73.92 72.35 70.97 70.40 - -
DWA 71.52 71.38 73.89 72.12 71.56 73.45 72.21 70.64 70.06 - -

Base Agents 52.63 53.03 53.52 50.37 54.35 51.25 54.54 54.62 53.54 54.41 50.51
DA D3 54.17 54.23 55.00 52.40 54.80 52.80 55.25 55.12 55.01 55.41 52.79
DWA 54.34 54.21 54.91 52.91 54.68 53.27 54.75 54.23 54.91 54.83 53.34

Base Agents 85.46 84.34 85.09 84.04 84.83 84.68 85.22 - - - -
DA D3 87.47 86.80 87.31 86.85 87.08 87.21 87.43 - - - -
DWA 87.09 86.89 87.19 86.97 87.00 87.38 87.24 - - - -

Base Agents 87.55 87.91 88.00 87.88 87.81 - - - - - -
DA D4 88.68 88.90 89.12 89.03 88.99 - - - - - -
DWA 88.70 88.90 89.10 89.01 88.76 - - - - - -

Base Agents 69.71 68.68 68.75 68.18 67.89 - - - - - -
DA D5 70.01 68.94 68.81 68.61 68.21 - - - - - -
DWA 69.91 68.80 68.85 68.49 68.22 - - - - - -

Base Agents 84.29 85.11 84.55 84.87 83.70 84.71 85.69 - - - -
DA D6 84.70 85.21 84.87 85.25 84.43 85.05 85.79 - - - -
DWA 84.67 85.29 84.84 85.16 84.52 85.01 85.81 - - - -

Base Agents 81.58 82.28 82.17 82.37 81.76 82.54 81.88 81.63 82.56 83.37 82.49
DA D7 84.07 84.52 84.55 84.65 84.16 84.75 84.31 84.13 84.68 85.22 84.70
DWA 84.37 84.72 84.74 84.84 84.42 84.95 84.63 84.39 84.89 84.87 84.88

Base Agents 75.22 74.87 74.93 76.28 73.79 75.72 73.71 - - - -
DA D7 77.09 76.86 76.92 77.67 76.24 77.37 76.17 - - - -
DWA 77.25 77.13 77.23 77.21 76.54 77.55 76.53 - - - -
a DA: Decentralized Agents; DWA: Decentralized Weight-based Agents;

4.3. Evaluation on Real Datasets

We decided to use a combination of DNN models in order to
demonstrate a heterogeneous model environment and evaluate
our framework in real-world scenarios. In some experiments,
the pre-trained on a specific set of data agents, reflect their true
performance as best as possible, whereas when trained from
scratch with the intention of producing poor performance.

Experiments were conducted on five well-known image clas-
sification datasets: Fashion MNIST [58], Cifar 10 and 100 [59],
STL-10 [60] and Street View Housing Numbers (SVHN) [61].
Fashion MNIST consists of 60K training and 10K testing gray
scale images equally distributed among 10 object classes. Cifar-
10 and 100 consists of 50K training and 10K testing gray scale
images equally distributed among 10 and 100 object classes re-
spectively. STL-10 consists of 5k 96 × 96 labeled images for
training and 8k for testing equally distributed among 10 ob-
ject classes. Finally, SVHN dataset consists of 73257 training
and 26032 testing images of labeled digits of street view num-
bers distributed in 10 classes. In F-MNIST the used pre-trained
models are VGG16, DesNet161, EfficientNet, MobileNet v2,
ShuffleNet v2. In Cifar10-100 the used pre-trained models are
VGG11, VGG16, ResNet20, ResNet32, MobileNet v2, Shuf-

fleNet v2, RepVgg-a1. Additionally, in STL-10 dataset, the
used pre-trained models are ResNet20, ResNet32, MobileNet
v2, ShuffleNet v2, RepVgg-a1. Finally in SVHN, the used pre-
trained models are VGG11, VGG16, ResNet20, ResNet32, Mo-
bileNet v2, ShuffleNet v2, RepVgg-a1.

As we can see in Table 3, in F-Mnist and Cifar-10, all of
the agents benefit from an increase in accuracy, with the highly
performing agents in each dataset gaining around 1% overall,
while the poorly performing ones gain around 4 − 5%. In addi-
tion, in datasets such as STL-10 and Cifar-100, the accuracy
boost is increasing significantly, with the highly performing
agents achieving an overall increase around 5 − 8% , while the
lower performing agents can achieve an overall increase of up
to 10% in some cases. In those experiments we use median as
the general aggregation rule for the combination of the chosen
agents in DA condition while in DWA conditions the rule is set
to be the averaging.

Also, in Table 9 we further investigate the behavior of the
IADA method for each agent in per class level results. We
choose the STL-10 dataset since it achieves the best perfor-
mance in real world scenarios. As we see, each base agent
is learning a specific class better than the others. By applying

11

Table 3: Results on Real Datasets.

Experiment Dataset Accuracy (%)

A1 A2 A3 A4 A5 A6 A7

Base 90.63 87.85 90.99 90.34 91.02 - -
DA F-MNIST [58] 91.26 91.07 91.90 91.93 92.14 - -
DWA 91.27 91.08 91.91 91.94 92.15 - -

Base 73.30 68.70 66.84 71.43 70.65 - -
DA STL-10 [60] 78.12 77.39 76.89 77.55 78.00 - -
DWA 77.70 77.12 76.71 77.61 78.06 - -

Base 90.90 91.27 88.36 91.69 90.72 89.43 94.33
DA SVHN [61] 93.11 93.12 92.69 93.28 93.05 92.76 94.37
DWA 92.97 93.06 92.66 93.32 93.19 92.89 94.34

Base 92.18 92.65 91.53 93.68 92.57 89.96 94.51
DA Cifar-10 [59] 94.68 94.88 94.38 94.73 94.74 94.27 95.32
DWA 94.77 94.73 94.61 94.79 94.99 94.53 95.11

Base 62.67 63.41 66.15 69.81 64.47 59.83 69.62
DA Cifar-100 [59] 70.40 73.24 73.23 73.80 73.42 72.90 74.75
DWA 70.32 73.34 73.37 73.78 73.57 73.02 74.93

the proposed methods the, shared among the agents, knowledge
improves the generalization performance of each agent individ-
ually. This occurs due to the fact that each agent has a diverse
discrete probability distribution where the knowledge of each
class is divided under the setting of the given base line model.

It is also critical to present a mix of well-trained and poorly
trained agents in order to investigate their interactions. The low
performing agent should not influence the decisions produced
by the well trained ones. We can assume that poor agent be-
havior results from either poorly trained base models or ma-
licious behavior, in which some agents broadcast completely
tampered results to the others, poisoning either the model itself
or the produced prediction set. As we see in Tables 10,12 we
simulate 2 different scenarios and testing it in both synthetic
and real datasets. To begin, we distinguish between honest and
faulty agents. Honest agents typically have good performance,
whereas faulty agents are tampered. Their performance is sig-
nificantly reduced in comparison to the honest. In such settings,
as a general aggregation method, both in probability and weight
basted condition, the average rule is used. As we can see, hon-
est agents can successfully ignore the faulty ones and even im-
prove their performance through collaboration. In addition the
faulty ones can correct themselves through the well-established
knowledge honest agents provide. This behavior can provide
us with a fault-tolerant resilient schemes. While some agents
consistently make incorrect predictions on a given sample, the
well-trained ones are unaffected and will correct their perfor-
mance by receiving a significant boost from the ”experts.”

In particular, when the performances are mixed in a ”honest-
faulty” scenario, the accuracy of each honest agent is still en-
hanced but with lower rates such as 0.1 to 0.4%, whereas the
faulty agents’ performance can be boosted up to 40% in some
cases. This demonstrates that we can provide substantial assis-
tance to those in need while also preventing faulty actors from
tainting the good actors as long as they are in the minority. We
use two different scenarios to investigate the number of faulty
agents that our system can handle. In the first scenario, faulty

agents are set to be 3 out of 7 total agents, yielding the previ-
ously discussed results, whereas in the second scenario, faulty
agents are set to be 5 out to 7 total agents, yielding the previ-
ously discussed results. In the second scenario, we can clearly
see that performance remains constant, but the faulty agents
gain less accuracy boost than before.

4.4. Cost vs Accuracy

In this section we study the efficiency of our IADA method
in an economic costly environment. Specifically, we assume
that each agent has the ability to cost their produced predictions
applied in a decentralized collaborative market place for ex-
changing decisions. Under that settings, each individual agent,
in order to be able to improve itself, they must select a subset
of neighboring agents to take into account and thus to pay a fee
in them in order to gain the ability to use their predictions. The
centralized majority voting aggregation rule application in that
setting, for each agent individually, requires all agents involve-
ment into the decision making process thus resulting a total cost
of 100%. In the IADA method 3.1, each agent can instead se-
lect who would lessen or not, reducing significantly the overall
cost, in some cases even to a 40% or 60%, for him self as we
can see in Table 4.

Furthermore, Tables 6, 7, 8 present the results of the exper-
iments conducted by bounding the associated cost in thresholds
of 50%, 35% and 25% in order to study the cost-efficiency ra-
tio. In particular, when the cost is bounded on 50% and 35%
threshold, the observed drop in the agents accuracy is relatively
small, making them capable to atomically improve themselves
with a significant lower cost. On the other hand, when the cost
threshold is dropping to 25%, the finally boosting for each of
them, drops significantly, showing the amount of agents each
one should uses in order to present well-established final deci-
sions.

12

Table 4: Total Cost per Agent.

Experiment Dataset Cost (%)

A1 A2 A3 A4 A5 A6 A7

DA F-MNIST [58] 86.75 46.25 67.50 37.88 57.00 - -
DWA 86.13 47.87 72.38 35.00 56.75 - -

DA STL-10 [60] 61.25 59.22 53.47 67.72 56.63 - -
DWA 59.59 61.06 55.06 67.44 56.84 - -

DA SVHN [61] 49.20 58.21 60.63 60.89 54.11 46.25 70.71
DWA 51.16 61.25 58.57 59.38 53.84 46.43 69.38

DA Cifar-10 [59] 69.02 54.91 71.79 48.21 61.70 63.13 31.25
DWA 76.87 57.50 65.98 46.16 59.02 67.95 26.52

DA Cifar-100 [59] 52.12 65.84 67.23 79.51 49.03 50.94 35.33
DWA 54.33 66.28 67.99 76.22 51.75 48.93 34.49

Table 5: Comparison of Aggregation Methods in Real Datasets

Experiments Dataset Centralized Voting Rules QoI Consensus Protocol

Weight Average Majority Voting Class Rule Weight Rule Hybrid Rule

Base Agents 94.09 93.75 93.58 94.12 93.62
DA SVHN [61] - - 94.02 94.20 93.99
DWA - - 93.97 94.16 93.95

Base Agents 95.12 95.05 95.04 95.27 94.97
DA Cifar-10 [59] - - 95.05 95.21 95.14
DWA - - 95.16 95.29 95.17

Base Agents 74.65 73.96 71.47 71.42 71.64
DA Cifar-100 [59] - - 73.84 74.01 73.85
DWA - - 74.80 74.96 74.74

Base Agents 92.51 92.01 91.94 92.33 92.01
DA F-MNIST [58] - - 92.15 92.28 92.17
DWA - - 92.16 92.13 92.14

Base Agents 80.11 79.29 78.19 78.21 78.49
DA STL-10 [60] - - 79.49 79.44 79.34
DWA - - 79.19 79.07 79.27

4.5. Comparison with centralized Aggregation

In this section, we compare the QoI consensus protocol to
simple centralized ensemble aggregation techniques such as a
”commit of experts” architecture with weighted average and
majority voting as combine rules. Our main goal here is to
present performance that is nearly on pair with centralized tech-
niques. After all, the main difference between the centralized
and decentralized approaches we proposed is in the architecture
of the setting. We investigate how many faulty agents we can
tolerate in our protocol and discuss how they affect the over-
all performance. Firstly, in Table 5, we present results in real-
word datasets constructed by pre-trained models, with the goal
of producing results as close as possible to the centralized ag-
gregation methods. Secondly we proceed by employing in each
experiment a set of ”faulty” agents, defined either as low perfor-
mance trained models or under completely malicious settings.

As we see in Table 5, in most of the cases, we achieve a
comparable performance with centralized architectures, and in
some datasets such as SVHN and Cifar-10 we manage to im-
prove the accuracy levels in base line agents. In almost all of the
experiments, after we apply the IADA technique in the base line
agents we are in a situation to improve the decentralized con-

sensus performance. The reason of that observation is because
each agent firstly improves their own decisions individually by
applying the decision making process introduced in the section
3.1. Each agent can indeed distinguish between the agents that
will have a positive effect on him and those that will have a
negative effect in any given sample. After that, using the con-
sensus process in the already enhanced agents, we can provide
a final decision under a fully decentralized structure, simulat-
ing how humans make decisions based on feedback from their
environment. This architecture does not rely on a straightfor-
ward decision-making process, as we see in centralized archi-
tectures, but rather on a collaborative setting that can improve
the final process by using the QoI protocol, where the occasion-
ally observed ties in majority voting, can be completely avoided
through the reward system and the conflict sample management
system. In other words, ties are resolved by the agent or agents
determined to be the most honest during the consensus process,
rather than by a convince rule.

Continuing, in Tables 11 and 13 we study two attack types.
In the first one, faulty agents are defined as bad trained mod-
els attempting to achieve inference. In that case, the predicted
probability of each class in each sample has a small correla-

13

tion with the honest agents, which are presented as well trained
models, and thus their generalization and prediction probability
is significantly higher. As expected, the centralized weighted
average technique outperforms the majority voting and QoI con-
sensus in the base agent situation. However, after boosting each
agent individually, better consensus is reported. This empha-
sizes how important is for each agent to observe and take accu-
rate decisions about the agents that would be able to improve
him or not. In Tables 12,13, a scenario in which the faulty
agents are attempting to tamper the overall consensus process
by transmitting totally randomized prediction results is applied.
In Table 12 we observe how the IADA method is autocorrecting
the malicious agents. The amount of the faulty ones are within
the bounds of the n ≤ 2 f + 1 rule. Both the IADA method and
the QoI protocol can recognize them and reduce the influence
of them in the whole process. On the other hand, when the rule
is no longer applicable, the consensus protocol can no longer
work properly. Those experiments work as a visualized proof
for the faulty/honest ratio in which our algorithm can tolerate.

5. Conclusion

In this work, a decentralized decision-making process for
a DNN inference framework has been proposed. Inspired by
human societies, this framework allows each individual agent
to make their own decisions by exchanging and aggregating in-
formation with other agents in their network, in an effort to im-
prove individual performance. In order to build an agreement
among the several AI-agents that would ultimately form one in-
ference rule, a novel consensus protocol is also presented. All
individual agents maintain a replica of the prediction history
that establishes the overall system knowledge and judgments
regarding particular samples. Additionally, it has been shown
that by adopting a fault-tolerant inference architecture, miss-
behaving AI agents can be punished in a way that dramatically
lessens their ability to influence the decisions of good agents.
Our classification task studies have demonstrated that the sug-
gested methodologies forms a secure decentralized inference
framework, which hinders adversaries from interfering with the
whole process and delivers performance that is comparable to
centralized decision aggregation techniques.

Particularly, it was demonstrated that by choosing the neigh-
bors who will benefit them the most, individual agents can ac-
tually increase their performance greatly. Additionally, a cost-
efficiency approach is described, in which the process of choos-
ing individual agents can significantly lower the overall infer-
ence cost. The QoI consensus mechanism has also shown its re-
sistance to malicious attacks while its accuracy performance is
comparable with centralized aggregation techniques. However,
since the experiments are not carried out on an actual decen-
tralized DNN system, neither the algorithm’s scalability nor the
latency experienced during communication among AI agents
are thoroughly investigated. Finally, since the QoI protocol is
particularly created be utilized as a consensus layer algorithm,
the outcomes of this work reveal significant potential benefits
of implementing a genuinely decentralized DNN inference pro-
cess within a blockchain network.

The following study areas could be further explored after
our work. First, the feasibility of direct implementation in an
AI blockchain network must be examined. That could be con-
sidered as a challenging task because the blockchain network
needs to be designed in a way that enables AI task to be carried
out and allows the penalties and rewards amassed by the agents
during the process to actually be used in something that mat-
ters. Additionally, the algorithm needs to be coupled with other
consensus protocols in order to scale sufficiently. Another re-
search path, in order to study how SMR-based approaches can
be used in training situations in order to prevent the overload of
message communications, must be considered.

Acknowledgment

This work has received funding from the European Union’s
European Union Horizon 2020 research and innovation pro-
gram under grant agreement 951911 (AI4Media). This pub-
lication reflects only the authors’ views. The European Com-
mission is not responsible for any use that may be made of the
information it contains.

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–
44.

[2] J. Chen, X. Ran, Deep learning with edge computing: A review, Proceed-
ings of the IEEE 107 (8) (2019) 1655–1674.

[3] A. Yousefpour, B. Q. Nguyen, S. Devic, G. Wang, A. Kreidieh, H. Lobel,
A. M. Bayen, J. P. Jue, Resilinet: Failure-resilient inference in distributed
neural networks, arXiv preprint arXiv:2002.07386 (2020).

[4] S. Teerapittayanon, B. McDanel, H. Kung, Distributed deep neural net-
works over the cloud, the edge and end devices, in: 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 328–339.

[5] A. Yousefpour, B. Q. Nguyen, S. Devic, G. Wang, A. Kreidieh, H. Lobel,
A. M. Bayen, J. P. Jue, Resilinet: Failure-resilient inference in distributed
neural networks (2020).

[6] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief, Mobile edge comput-
ing: Survey and research outlook, CoRR (2017).

[7] Y. Cheng, D. Wang, P. Zhou, T. Zhang, A survey of model compression
and acceleration for deep neural networks, CoRR (2017).

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
D. Kalenichenko, Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference, in: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[9] N. Shlezinger, N. Farsad, Y. C. Eldar, A. J. Goldsmith, Inference from
stationary time sequences via learned factor graphs, CoRR (2020).

[10] N. Shlezinger, Y. C. Eldar, S. P. Boyd, Model-based deep learning: On
the intersection of deep learning and optimization (2022).

[11] R. A. Cohen, H. Choi, I. V. Bajić, Lightweight compression of interme-
diate neural network features for collaborative intelligence, IEEE Open
Journal of Circuits and Systems 2 (2021) 350–362.

[12] M. Merluzzi, A. Martino, F. Costanzo, P. Di Lorenzo, S. Barbarossa, Dy-
namic ensemble inference at the edge, in: 2021 IEEE Global Communi-
cations Conference (GLOBECOM), 2021, pp. 1–6.

[13] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, Q. Yan, A blockchain-based
decentralized federated learning framework with committee consensus,
IEEE Network 35 (1) (2020) 234–241.

[14] X. Chen, J. Ji, C. Luo, W. Liao, P. Li, When machine learning meets
blockchain: A decentralized, privacy-preserving and secure design, in:
2018 IEEE international conference on big data (big data), IEEE, 2018,
pp. 1178–1187.

[15] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Cryptogra-
phy Mailing list at https://metzdowd.com (03 2009).

14

[16] A. Lihu, J. Du, I. Barjaktarevic, P. Gerzanics, M. Harvilla, A proof of
useful work for artificial intelligence on the blockchain (2020).

[17] A. Merlina, Blockml: A useful proof of work system based on machine
learning tasks, in: Proceedings of the 20th International Middleware
Conference Doctoral Symposium, Association for Computing Machin-
ery, New York, NY, USA, 2019, p. 6–8.

[18] O. Sagi, L. Rokach, Ensemble learning: A survey, Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8 (02 2018).

[19] J. Kittler, M. Hatef, R. Duin, J. Matas, On combining classifiers, IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 (3) (1998)
226–239.

[20] C. Ju, A. Bibaut, M. J. van der Laan, The relative performance of ensem-
ble methods with deep convolutional neural networks for image classifi-
cation (2017).

[21] S. Mao, L. Jiao, L. Xiong, S. Gou, B. Chen, S.-K. Yeung, Weighted classi-
fier ensemble based on quadratic form, Pattern Recognition 48 (5) (2015)
1688–1706.

[22] Y. Zhang, S. Burer, W. Nick Street, K. P. Bennett, E. Parrado-Hernández,
Ensemble pruning via semi-definite programming., Journal of machine
learning research 7 (7) (2006).

[23] I. Partalas, G. Tsoumakas, I. P. Vlahavas, Focused ensemble selection:
A diversity-based method for greedy ensemble selection, in: M. Ghallab,
C. D. Spyropoulos, N. Fakotakis, N. M. Avouris (Eds.), ECAI 2008 - 18th
European Conference on Artificial Intelligence, Patras, Greece, July 21-
25, 2008, Proceedings, Vol. 178 of Frontiers in Artificial Intelligence and
Applications, 2008, pp. 117–121.

[24] R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection
from libraries of models, in: Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 18.

[25] Q. Hu, D. Yu, Z. Xie, X. Li, Eros: Ensemble rough subspaces, Pattern
Recognition 40 (2007) 3728–3739.

[26] D. Hernández-Lobato, G. Martı́nez-Muñoz, A. Suárez, Statistical
instance-based pruning in ensembles of independent classifiers, IEEE
Transactions on Pattern Analysis and Machine Intelligence 31 (2) (2009)
364–369.

[27] S. hyeun Park, J. Fürnkranz, Efficient prediction algorithms for binary
decomposition techniques (2012).

[28] Z. Tao, Q. Li, esgd: Communication efficient distributed deep learning
on the edge, in: I. Ahmad, S. Sundararaman (Eds.), USENIX Workshop
on Hot Topics in Edge Computing, HotEdge 2018, Boston, MA, July 10,
2018, USENIX Association, 2018.

[29] J. Choi, Z. Hakimi, J. Sampson, V. Narayanan, Byzantine-tolerant infer-
ence in distributed deep intelligent system: Challenges and opportunities,
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
9 (3) (2019) 509–519.

[30] A. Yousefpour, S. Devic, B. Q. Nguyen, A. Kreidieh, A. Liao, A. M.
Bayen, J. P. Jue, Guardians of the deep fog: Failure-resilient dnn inference
from edge to cloud, in: Proceedings of the First International Workshop
on Challenges in Artificial Intelligence and Machine Learning for Internet
of Things, 2019, pp. 25–31.

[31] T. Campbell, J. P. How, Decentralized variational bayesian inference,
CoRR (2014).

[32] J. Klein, M. Albardan, B. Guedj, O. Colot, Decentralized learning with
budgeted network load using gaussian copulas and classifier ensembles,
in: Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, Springer, 2019, pp. 301–316.

[33] D. Zissis, D. Lekkas, Addressing cloud computing security issues, Future
Generation Computer Systems 28 (3) (2012) 583–592.

[34] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, J. Liu, Can de-
centralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent, Advances in Neural
Information Processing Systems 30 (2017).

[35] Z. Jiang, A. Balu, C. Hegde, S. Sarkar, Collaborative deep learning in
fixed topology networks (2017).

[36] X. Lian, W. Zhang, C. Zhang, J. Liu, Asynchronous decentralized parallel
stochastic gradient descent (2017).

[37] H. Yu, S. Yang, S. Zhu, Parallel restarted sgd with faster convergence and
less communication: Demystifying why model averaging works for deep
learning (2018).

[38] S. Nikolaidis, I. Refanidis, Privacy preserving distributed training of neu-
ral networks, Neural Computing and Applications 32 (12 2020).

[39] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, 1st Edi-
tion, Chapman & Hall/CRC, 2012.

[40] N. Shlezinger, Y. C. Eldar, Deep task-based quantization (2019).
[41] M. Malka, E. Farhan, H. Morgenstern, N. Shlezinger, Decentralized low-

latency collaborative inference via ensembles on the edge (06 2022).
[42] Y. Yu, J. Deng, Y. Tang, J. Liu, W. Chen, Decentralized ensemble learning

based on sample exchange among multiple agents, in: Proceedings of the
2019 ACM International Symposium on Blockchain and Secure Critical
Infrastructure, Association for Computing Machinery, 2019, pp. 57–66.

[43] B. Jia, Y. Liang, Anti-d chain: A lightweight ddos attack detection scheme
based on heterogeneous ensemble learning in blockchain, China Commu-
nications 17 (2020).

[44] A. B. Kurtulmus, K. Daniel, Trustless machine learning contracts;
evaluating and exchanging machine learning models on the ethereum
blockchain, arXiv preprint arXiv:1802.10185 (2018).

[45] N. Deepa, Q.-V. Pham, D. C. Nguyen, S. Bhattacharya, B. Prabadevi,
T. R. Gadekallu, P. K. R. Maddikunta, F. Fang, P. N. Pathirana, A survey
on blockchain for big data: Approaches, opportunities, and future direc-
tions, Future Generation Computer Systems 131 (2022) 209–226.

[46] L. Lamport, R. Shostak, M. Pease, The byzantine generals problem, ACM
Transactions on Programming Languages and Systems 4 (1982) 382–401.

[47] K. P. Kihlstrom, L. E. Moser, P. M. Melliar-Smith, The securering pro-
tocols for securing group communication, in: Proceedings of the Thirty-
First Annual Hawaii International Conference on System Sciences - Vol-
ume 3, HICSS ’98, IEEE Computer Society, USA, 1998, p. 317.

[48] D. Malkhi, M. Reiter, Byzantine quorum systems, Distrib. Comput.
(1998).

[49] V. Gramoli, From blockchain consensus back to byzantine consensus, Fu-
ture Generation Computer Systems 107 (2020) 760–769.

[50] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K.
Reiter, D.-A. Seredinschi, O. Tamir, A. Tomescu, Sbft: a scalable and
decentralized trust infrastructure (2018).

[51] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, E. Wong, Zyzzyva: Specula-
tive byzantine fault tolerance, ACM Trans. Comput. Syst. 27 (4) (2010).

[52] A. Bessani, J. Sousa, E. E. Alchieri, State machine replication for the
masses with bft-smart, in: 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2014.

[53] Y. Fan, H. Wu, H.-Y. Paik, Dr-bft: A consensus algorithm for blockchain-
based multi-layer data integrity framework in dynamic edge computing
system, Future Generation Computer Systems 124 (2021) 33–48.

[54] M. J. Fischer, N. A. Lynch, M. S. Paterson, Impossibility of distributed
consensus with one faulty process, J. ACM (apr 1985).

[55] M. Castro, B. Liskov, Practical byzantine fault tolerance, in: Third
Symposium on Operating Systems Design and Implementation (OSDI),
USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS,
New Orleans, Louisiana, 1999.

[56] F. Bravo-Marquez, S. Reeves, M. Ugarte, Proof-of-learning: a blockchain
consensus mechanism based on machine learning competitions, in: 2019
IEEE International Conference on Decentralized Applications and Infras-
tructures (DAPPCON), IEEE, 2019, pp. 119–124.

[57] Y. Lan, Y. Liu, B. Li, Proof of learning (pole): Empowering machine
learning with consensus building on blockchains (2020).

[58] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms (2017).

[59] A. Krizhevsky, Learning multiple layers of features from tiny images,
2009.

[60] A. Coates, A. Ng, H. Lee, An analysis of single-layer networks in unsu-
pervised feature learning, Journal of Machine Learning Research - Pro-
ceedings Track 15 (2011) 215–223.
URL http://cs.stanford.edu/~acoates/stl10

[61] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Ng, Reading digits
in natural images with unsupervised feature learning, NIPS (01 2011).
URL http://ufldl.stanford.edu/housenumbers

15

http://cs.stanford.edu/~acoates/stl10
http://cs.stanford.edu/~acoates/stl10
http://cs.stanford.edu/~acoates/stl10
http://ufldl.stanford.edu/housenumbers
http://ufldl.stanford.edu/housenumbers
http://ufldl.stanford.edu/housenumbers

6. Appendix A: Tables

Table 6: Accuracy on 50% Total Cost Threshold.

Experiment Dataset Accuracy (%)

A1 A2 A3 A4 A5 A6 A7

Base 90.63 87.85 90.99 86.21 91.02 - -
DA F-MNIST [58] 91.69 90.50 91.64 88.84 91.88 - -
DWA 91.54 90.53 91.63 88.68 91.84 - -

Base 73.30 68.70 66.84 71.43 70.65 - -
DA STL-10 [60] 75.96 74.85 74.62 75.48 75.70 - -
DWA 76.24 74.44 74.38 75.84 75.62 - -

Base 90.93 91.36 88.51 93.11 90.64 89.54 94.20
DA SVHN [61] 92.85 92.88 92.35 93.80 92.88 92.22 94.52
DWA 92.77 92.82 92.26 93.77 92.71 92.05 94.44

Base 91.93 93.07 91.72 93.48 92.68 90.01 94.46
DA Cifar-10 [59] 94.49 94.48 94.13 94.39 94.46 93.63 95.07
DWA 94.09 94.36 93.93 94.09 94.32 93.33 94.92

Base 62.79 63.41 65.98 70.39 64.39 59.02 69.77
DA Cifar-100 [59] 69.10 72.80 72.10 73.11 72.88 71.45 74.83
DWA 68.97 73.04 72.23 72.92 72.30 71.43 74.27

Table 7: Accuracy on 35% Total Cost Threshold.

Experiment Dataset Accuracy (%)

A1 A2 A3 A4 A5 A6 A7

Base 90.63 87.85 90.99 86.21 91.02 - -
DA F-MNIST [58] 90.97 88.51 91.18 86.65 91.38 - -
DWA 90.67 88.52 91.20 86.46 91.37 - -

Base 73.30 68.70 66.84 71.43 70.65 - -
DA STL-10 [60] 74.29 71.85 70.60 73.34 73.11 - -
DWA 74.20 71.85 70.62 73.36 73.11 - -

Base 90.93 91.36 88.51 93.11 90.64 89.54 94.20
DA SVHN [61] 92.52 92.61 91.54 93.78 92.38 92.00 94.46
DWA 92.38 92.64 91.67 93.80 92.53 91.83 94.47

Base 91.93 93.07 91.72 93.48 92.68 90.01 94.46
DA Cifar-10 [59] 93.89 94.28 93.48 94.24 93.86 92.99 94.99
DWA 93.82 94.19 93.32 94.20 93.91 92.88 95.02

Base 62.79 63.41 65.98 70.39 64.39 59.02 69.77
DA Cifar-100 [59] 68.22 71.56 71.25 72.46 70.85 69.12 73.66
DWA 67.61 71.34 70.62 71.86 70.63 69.05 73.43

16

Table 8: Accuracy on 25% Total Cost Threshold.

Experiment Dataset Accuracy (%)

A1 A2 A3 A4 A5 A6 A7

Base 90.63 87.85 90.99 86.21 91.02 - -
DA F-MNIST [58] 90.59 87.41 90.88 85.11 90.83 - -
DWA 90.59 87.41 90.88 85.11 90.83 - -

Base 73.30 68.70 66.84 71.43 70.65 - -
DA STL-10 [60] 73.12 68.81 67.00 71.46 70.62 - -
DWA 73.12 68.81 67.00 71.46 70.62 - -

Base 90.93 91.36 88.51 93.11 90.64 89.54 94.20
DA SVHN [61] 91.56 91.92 89.38 93.55 91.49 90.55 94.57
DWA 91.58 91.73 89.34 93.46 91.49 90.35 94.47

Base 91.93 93.07 91.72 93.48 92.68 90.01 94.46
DA Cifar-10 [59] 92.35 93.08 92.11 93.73 93.05 90.62 94.42
DWA 92.28 93.00 92.20 93.55 92.79 90.60 94.41

Base 62.79 63.41 65.98 70.39 64.39 59.02 69.77
DA Cifar-100 [59] 64.11 67.77 68.49 71.55 68.60 65.29 71.94
DWA 64.32 67.95 68.49 71.40 67.82 65.12 72.23

Table 9: Per-class Results on STL-10 based on F1-score

Agents Method Classes

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Base 0.83 0.65 0.88 0.62 0.69 0.57 0.73 0.69 0.89 0.82
A1 DA 0.88 0.72 0.91 0.66 0.75 0.62 0.78 0.73 0.91 0.87

DWA 0.88 0.72 0.91 0.66 0.75 0.62 0.78 0.73 0.91 0.87

Base 0.84 0.65 0.87 0.46 0.62 0.47 0.66 0.63 0.86 0.78
A2 DA 0.88 0.73 0.91 0.64 0.73 0.58 0.80 0.71 0.90 0.86

DWA 0.87 0.73 0.91 0.64 0.73 0.57 0.80 0.71 0.90 0.86

Base 0.79 0.61 0.79 0.59 0.67 0.48 0.67 0.53 0.83 0.74
A3 DA 0.86 0.71 0.89 0.66 0.73 0.60 0.76 0.72 0.91 0.87

DWA 0.86 0.71 0.89 0.66 0.72 0.59 0.76 0.72 0.91 0.87

Base 0.84 0.68 0.86 0.57 0.66 0.54 0.71 0.67 0.85 0.82
A4 DA 0.87 0.75 0.90 0.62 0.75 0.61 0.78 0.74 0.90 0.87

DWA 0.88 0.75 0.91 0.62 0.75 0.60 0.78 0.74 0.90 0.87

Base 0.82 0.68 0.84 0.57 0.63 0.52 0.70 0.67 0.83 0.79
A5 DA 0.87 0.75 0.89 0.66 0.72 0.62 0.78 0.74 0.91 0.86

DWA 0.87 0.76 0.89 0.66 0.72 0.62 0.78 0.74 0.90 0.86

Table 10: Results on Poisoned Experiments

Experiment Dataset - Faulty Agents Accuracy (%)

A1 A2 A3 A4 A5 A6 A7

Base Agents 90.83 42.60 88.45 32.97 46.76 89.49 94.18
DA (ours) SVHN - 3 92.54 89.09 91.30 89.87 88.48 91.81 94.17
DWA (ours) 92.43 89.08 91.39 90.04 88.45 91.79 94.29

Base Agents 90.90 42.40 32.38 33.03 46.72 20.39 94.17
DA (ours) SVHN - 5 88.88 89.83 91.52 91.25 88.42 91.78 94.31
DWA (ours) 88.86 89.87 91.31 91.10 88.49 91.66 94.336

Base Agents 85.20 83.70 83.00 83.20 47.80 53.20 48.30
DA (ours) D1 - 3 86.30 84.70 84.80 84.10 86.20 85.70 85.90
DWA (ours) 86.30 84.40 84.60 83.40 87.50 86.40 86.60

Base Agents 88.70 89.20 47.00 49.50 46.90 47.10 47.30
DA (ours) D1 - 5 90.20 90.50 65.70 66.70 66.40 69.20 63.60
DWA (ours) 89.40 89.80 66.30 68.70 67.00 70.00 64.80

17

Table 11: Comparison of Aggregation Methods in Poisoned Data

Experiments Dataset - Faulty Agents Centralized Voting Rules QoI Consensus Protocol

Weight Average Majority Voting Class Rule Weight Rule Hybrid Rule

Base Agents 93.21 90.24 91.47 92.27 91.31
DA SVHN - 3 - - 92.55 93.04 92.66
DWA - - 92.66 93.18 92.64

Base Agents 93.73 55.14 59.48 72.83 59.64
DA SVHN - 5 - - 92.91 93.39 92.95
DWA - - 92.72 93.28 92.75

Base Agents 90.80 89.40 86.80 87.40 86.60
DA D1 - 3 - - 88.60 87.90 88.40
DWA - - 88.30 89.30 88.70

Base Agents 91.20 81.40 61.40 63.10 61.00
DA D1 - 5 - - 93.30 92.90 93.20
DWA - - 93.40 92.70 92.90

Table 12: Results on Confident Poisoned Agents

Experiment Dataset - Faulty Agents Accuracy (%)

A1 A2 A3 A4 A5 A6 A7

Base Agents 91.92 92.97 91.67 93.56 92.32 89.97 10.04
DA Cifar-10 - 1 94.41 94.28 93.62 94.38 94.54 93.94 92.14

Base Agents 91.86 93.14 91.90 92.69 89.92 10.07 10.14
DA Cifar-10 - 2 93.58 93.69 92.89 93.80 92.96 85.28 84.67

Base Agents 92.34 91.87 92.82 90.01 9.74 10.33 10.40
DA Cifar-10 - 3 92.81 92.33 92.87 92.15 85.30 78.27 77.12

Base Agents 92.34 91.87 90.01 10.40 9.74 10.33 10.59
DA Cifar-10 - 4 91.33 91.08 90.83 90.26 89.72 89.13 87.19

Base Agents 90.95 88.18 89.55 10.33 10.11 9.94 9.71
DWA SVHN - 4 80.40 81.20 80.94 83.42 51.43 48.05 48.03

Base Agents 68.70 66.84 70.65 10.91 10.47 - -
DWA STL10-2 72.66 71.54 72.64 39.35 36.18 - -

Base Agents 68.70 66.84 10.12 10.17 10.32 - -
DWA STL10-3 63.66 63.79 53.42 47.91 35.41 - -

Table 13: Comparison of Aggregation Methods on Confident Poisoned Agents

Experiments Dataset - Faulty Agents Centralized Voting Rules QoI Consensus Protocol

Weight Average Majority Voting Class Rule Weight Rule Hybrid Rule

Base Agents 94.78 94.57 94.46 94.37 94.41
DA Cifar-10 - 1 - - 94.85 94.80 94.82

Base Agents 93.77 94.12 93.74 93.58 93.64
DA Cifar-10 - 2 - - 94.08 94.20 94.06

Base Agents 92.61 93.29 92.43 92.37 92.52
DA Cifar-10 - 3 - - 92.36 92.84 92.33

Base Agents 90.91 89.69 74.66 74.86 73.59
DA Cifar-10 - 4 - - 90.29 91.09 90.30

Base Agents 55.68 88.25 90.39 90.49 90.56
DA SVHN - 4 - - 80.65 80.89 80.72

Base Agents 69.93 70.80 69.76 69.44 69.42
DA STL10 - 2 - - 73.62 73.96 73.60

Base Agents 62.50 56.46 45.39 42.48 42.43
DA STL10 - 3 - - 61.44 63.50 55.06

18

	Introduction
	Centralized, distributed and decentralized inference
	Centralized Inference
	Distributed inference
	Decentralized Inference
	Decentralized Consensus Protocols

	Human society-inspired Decentralized DNN Inference
	Individual Agent Decision Aggregation (IADA)
	Quality of Inference (QoI) Consensus Protocol
	View Change
	Normal Operation
	Conflict Decision Agreement

	Experiments
	Synthetic Data Generation
	Evaluation on Synthetic Data
	Evaluation on Real Datasets
	Cost vs Accuracy
	Comparison with centralized Aggregation

	Conclusion
	Appendix A: Tables

