
A Comparison of Modelling Approaches for the Long-term Estimation
of Origin Destination Matrices in Bike Sharing Systems

Ibai Laña˚, Ignacio (Iñaki) Olabarrieta˚ and Javier Del Ser˚,:

Abstract— Micro-mobility services have gained popularity in
the last years, becoming a relevant part of the transportation
network in a plethora of cities. This has given rise to
a fruitful research area, covering from the impact and
relationships of these transportation modes with preexisting
ones to the different ways for estimating the demand of
such services in order to guarantee the quality of service.
Within this domain, docked bike sharing systems constitute
an interesting surrogate for understanding the mobility of
the whole city, as origin-destination matrices can be obtained
straightforward from the information available at the docking
stations. This work elaborates on the characterization of such
origin-destination matrices, providing an essential set of insights
on how to estimate their behavior in the long-term. To do so, the
main non-mobility features that affect mobility are studied and
used to train different machine learning algorithms to produce
viable mobility patterns. The case study performed over real
data captured by the bike sharing system of Bilbao (Spain)
reveals that, by virtue of a properly selected set of features
and the adoption of specialized modeling algorithms, reliable
long-term estimations of such origin-destination matrices can
be effectively achieved.

I. INTRODUCTION

Micro-mobility services like bike or scooter sharing
systems have acquired a notable momentum in the last
decade, with the outlook of having a central role in the future
development of urban areas [1]. Environmental awareness
has lead to a detriment of the private vehicle as individual
mobility means within cities, and to the rise of new individual
transportation means that are more efficient and sustainable.
Such new mobility alternatives have been embraced by many
city councils around the world, not only promoting the
private selection of these transportation modes, but also
fostering public services that provide access to networks of
shared individual vehicles such as bikes, e-bikes, scooters [2]
or even electric cars [3].

The upsurge of these new transport mode options unleashes
a number of challenges, including the design of networks of
protected paths [4], the estimation of the vehicle relocation
needs for balancing the service, or the adequate match
between the dimension and the demand of the service in
different areas of the city [5], [6]. The latter is a main
concern of docked micro-mobility services, namely, those in
which vehicles are hired in fixed stations. The location and
capacity of such stations must be estimated starting from
initial knowledge of transportation needs, demographic and
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topographic features (e.g. slopes, availability of protected
paths, proximity to educational buildings) and transport mode
alternatives available in each district. However, the real usage
of the deployed services allows improving these estimations
and resizing, readjusting and optimizing the availability and
balance of vehicles in each station [7], [8].

We herein set our focus on these docked micro-mobility
services, in which Bike Sharing Systems (BSS) can be argued
to be one of their major representatives. Characterizing the
usage of BSS and their interaction with other city services
[9] is a research area that has garnered the interest of many
scholars [10], [11]. The analysis of Origin-Destination (OD)
pairs among different stations or districts has been so far
addressed mainly from a predictive modeling perspective,
trying to estimate destinations given an origin [12], [13], or
to estimate the future behavior of the system, usually in the
short term [14], [15], [16]. From the managerial viewpoint,
the long-term characterization of the demand in each station
can be thought to be more actionable in practice, issuing
availability (or demand) predictions that reach the 24 hour
horizon [17]. This behavior estimation allows managers to
proactively take actions that improve the availability of the
service at each station.

This paper delves into this last issue, analyzing the main
aspects that characterize the BSS-based mobility in the long
term. Specifically, we propose and compare methods to
obtain origin-destination matrices for any temporal interval
in the future. The long-term estimation of mobility related
time series is always a challenging topic [18], as the
performance of typical modeling approaches degrades as
the prediction horizon increases. When dealing with long
prediction horizons, the task usually needs to be reduced
to a characterization of patterns that can be used as
future estimations [19]. In this study, essential pattern
characterization features will be considered, and used to
train different OD matrix long-term estimation models over
real-world BSS usage data collected over the city of Bilbao
(Spain). As a result, the most suitable modeling approach will
be identified subject to the same set of input characteristics.
The contributions of this work can be summarized as follows:
‚ We examine how to characterize the mobility patterns of a

BSS, proposing a set of essential features that can define
them in the long term.

‚ We explore different algorithmic approaches for such
a characterization, from naïve statistical methods to
advanced models that take into account spatio-temporal
relationships between docking stations. A small selection
of algorithms is chosen within each approach in order to



contain the length of the paper.
‚ We evaluate and compare such methods to each other

over a complete case study comprising real-world BSS
data, towards analyzing the feasibility of the long-term OD
estimation task.
The rest of this paper is structured as follows: Section II

details the dataset, features and modeling approaches used
in our study, whereas results are presented and discussed
in Section III. Finally, Section IV concludes the paper with
some remarks and a prospect of future research lines.

II. MATERIALS AND METHODS

We begin by this section, which delves into the specifics
of the dataset in use (Subsection II-A), the information that
is used to characterize the mobility patterns in the long
term (Subsection II-B) and the experimental setup designed
to evaluate different estimation approaches departing from
such information, together with the details of the approaches
themselves (Subsection II-C).

A. Data and preprocessing

BSS data for experimentation have been obtained under
the URBANITE Horizon 2020 project1. Trips among e-bike
docking stations available over the city of Bilbao (Spain)
have been recorded since the beginning of the current service
in October 2018, storing duration, identifiers (ids) of origin
and destination and air distance (straight line between both
stations). The service started with 31 docking stations but
has been continuously increasing its coverage to currently 41
stations, while some of them have been relocated. Figure 1
shows the district division of the city and the current location
of the docking stations. The city has a central business
district in a lower area (district 6), whereas some of the
residential districts (2, 3, 4 and part of 5 and 7) are located
in hills. Although the BSS provides e-bikes that help with
slopes, it can be observed in the data that uppermost stations
rarely receive trips that do not come from central districts.
This lack of connectivity among certain OD pairs calls for
a deeper analysis.

The number and location of stations in the period covered
by this research study varied significantly. Together with
the connectivity issues described above, this variability
motivated an aggregation of data considering the districts
of Bilbao and the hour of the day as the main spatial
and temporal divisions, reformulating the case study as
a district-wise hourly origin-destination matrix estimation.
This aggregation allows maintaining a spatial coherence: in
the long term, connectivity between districts is expected
to remain stable. Thus, all trips from all stations of a
district towards all stations of another have been aggregated,
rendering a 8 ˆ 8 OD matrix. After the initial aggregation,
which spanned a total of around 1,400,000 trips during
years 2019, 2020 and 2021, several preprocessing filters
were applied to clean data. To begin with, the service

1URBANITE project website, https://www.urbanite-project.
eu, accessed on March 14th, 2022.

Fig. 1. Districts of the city of Bilbao (Spain), and location of the e-bike
docking stations.

is limited to 60 minutes, after which the bike must be
returned. Leaving a safety margin, all trips with duration
greater than 90 minutes were removed. Besides, in some
cases, bikes undergo some kind of problem and are returned
immediately. Thus, trips lasting less than 2 minutes and with
the same origin and destination docking stations were also
removed. Lastly, and as the dataset spans mostly dates within
a COVID-19 pandemic period, the operating hours of the
BSS have varied accordingly, from 24h service to different
levels of service up to the current one, in which the bikes
are not available at night. For this reason, and in order to
ascertain that 0 trips between two stations mean that no
trips were produced and not that the service was actually
down, a final filter was applied, removing from the dataset
all hours for which the total sum of trips in the whole city
was 0. After this preprocessing stage, the dataset is reduced
to around 1,220,000 trips that occur during approximately
7,000 hours, which is around 1{4 of the total hours of the
dataset period, due to the aforementioned confinements and
the reduced operation regime.

B. Calendar and Meteorological information

Our study is concerned with the characterization of
mobility in origin destination pairs without a particular
predictive horizon. Consequently, any model devised for
this purpose must not include actual trip data, as these
could not be available for future queries made to the
model. Thereby, input data are used only to train data-based
models in conjunction with calendar information, which
can be obtained for any time in the future, and also with
meteorological information, which is expected to be crucial
for the characterization (e.g., rain can have a high impact in



the usage of bikes). Other data sources could be considered
with this same purpose upon their availability. For instance,
sports or cultural events, demonstrations and parades, or
other transportation modes timetables can have an effect on
the way in which BSSs are used. However, and due to the
data availability for our particular case study, for each hour
of the available dataset, the following input data are used:
‚ Calendar data, which is realized by the hour of the day, the

day of the week and two fields to represent whether the day
is a public holiday or an academic holiday. These features
permit to characterize the usage per hour and day of the
week, but also consider aspects like the use of the bikes
for leisure or as a transportation means to reach schools
and universities.

‚ Meteorological data: hourly temperature and precipitation
have been considered to compose the dataset. These data
have been encoded into categorical features, leaving the
temperature and rain as variables with four possible values:
extremely cold, cold, warm and hot (for temperature); and
dry, light rain, rain and heavy rain (for precipitation).
The assumption is that if heavy rain or very cold weather

takes place, the amount of bike trips plummets, disregarding
the occurrence of precipitation or the nuances provided by
the Celsius degrees. Figure 2 shows that in fact, the amount
of bike trips is drastically reduces when heavy rain occurs.

Fig. 2. Effect of precipitation categories and temperature in the bike usage.

With these data and the number of trips for a certain
OD pair at a certain hour, three learning model are trained,
aimed at predicting the future behavior of the whole origin
destination matrix for the city. The prediction horizon is
conceptually unlimited, but in practice it is limited to
the availability of meteorological information, which will
ultimately depend on weather forecasts. Thus, this prediction
could be made for hours or even days into the future.

C. Experimental Framework and Estimation Approaches

An experimental framework has been designed in order
to evaluate different modelling choices capable of providing
long-term OD matrix estimations. In time series analysis,

the long-term characterization of segments is a complex task
that cannot be achieved under the same levels of accuracy as
short-term forecasting. The latter relies mainly on previous
observations of the time series, hence an increase of the
predictive horizon usually ends up reducing the quality of
predictions [18].
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Fig. 3. Block diagram showing the different approaches and data flow
used for OD estimation.

As a result, alternative approaches that allow feeding the
model with variables that can be known for any time in
the future need to be explored. We leave aside clustering
approaches of training data [19] to concentrate on regression
models, which can be trained to correlate the value of a target
variable (i.e., bike trips estimated for an OD pair) with the
set of input characteristics. It should be noted that since their
value must be known for any future instant of time, in most
cases input characteristics are coarsely defined and chosen
to be discrete (weather and calendar data as exposed above
support this statement). On the other hand, some learning
algorithms such as autoencoders and generative adversarial
networks allow creating or synthesizing output patterns that
are consistent with the ones that were used to train them. All
these notions are used to build three different approaches that
are considered in this work, and whose general operation is
illustrated in Figure 3:

Approach A : Supervised learning regression methods

A classical supervised machine learning framework is
proposed as the first approach to the problem at hand. Under
this framework, input variables X are conformed by the
calendar and meteorological features, whereas the output
variable y is a series defined by the trips registered for a
particular OD pair at each time step, as described in Figure
3 A . This approximation requires training as many models
as OD pairs (each OD pair produces a series of observations
that acts as y), or including the OD pair as a feature of a



general model that uses this inserted feature to discriminate
among OD pair. This first approach was selected as it is more
suitable to generalize to other contexts where the number of
considered areas (districts) can differ.

Based on this regression approach, different learning
algorithms have been considered, taking into account that
the limited variability of the input data will burden the
performance of all of them. However, the different ways in
which each algorithm represents the knowledge is expected
to be decisive for their efficiency. The following algorithms
have been used:
‚ Support Vector Regression (SVM, [20]), which extends

the concept of maximum-margin hyperplane to regression
problems, presenting a great generalization capability.

‚ Random Forest regressor (RF, [21]), namely, a bagging
ensemble of decision trees that performs robustly in most
modeling contexts.

‚ Catboost regressor (CBR, [22], [23]), i.e., a gradient
boosting ensemble that supports categorical features,
making it particularly suitable for the task at hand.
For the sake of fairness in the performed comparisons,

hyper-parameters of all learners were tuned exhaustively by
using off-line grid-search and cross-validation processes, so
that results elicited by the best performing configuration of
each model are reported.

Approach B : Conditional Variational Auto Encoder (CVAE)
The second approach evaluated in this work is an extension

of the standard family of Variational Auto Encoders (VAEs),
which are directed graphical models capable of generating
new data instances by learning the parameters of the
conditional distribution PX|Zpx|zq, where X is the input
data and z is an unobserved random variable with prior
distribution PZpzq. A VAE [24] has two structural parts:
1) an encoder that learns how to map (encode) input X to
the hidden embedding Z by learning a distribution Qθpz|xq

defined by parameters θ; and 2) a decoder that learns a
parametric approximation Pϕpx|zq of PX|Zpx|zq, allowing to
reconstruct the input from the embedding space. To this end,
a compound loss function is often used to account for the
reconstruction error Lrecpθ,ϕq from the latent distribution,
as well as the divergence Ldivpθq between the distribution
Qθpz|xq learned by the encoder and the prior distribution
PZpzq assumed for Z (often Gaussian). Once trained, new
samples can be synthesized by feeding the encoder with
realizations of Z drawn as per its assumed prior PZpzq.
Figure 4.a depicts the architecture of a typical VAE.
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Fig. 4. Block diagram showing (a) a standard VAE; (b) a CVAE.

Unlike standard VAE, in CVAE the generative problem is
reformulated to control the data generated by the model by

means of an external supervisory signal C (condition) [25].
This signal can be the class of the image to be generated by
the decoder module. In our case, C represents the conditions
under which the origin-destination matrix is to be estimated:
departing from a certain value of this signal c, an estimated
matrix is produced by drawing a sample from a conditioned
prior distribution PZ|Cpz|cq, whereas the output x results
from sampling the distribution PX|C,Zpx|c, zq learned by the
CVAE decoder. The loss function is similar to that of VAE,
the difference being that the reconstruction and divergence
loss terms are now conditioned on C. In other words, the
CVAE, trained to reconstruct an input origin-destination
matrix under different conditions, can easily produce new
estimated matrices for any given value of c, which encodes
the weather and calendar features for which the query is
done. This modified architecture is shown in Figure 4.b.

Approach C : Naïve baseline approach

Lastly, a naive approach is proposed as baseline to compare
the performance of the other approaches. Since the selected
weather and calendar features are discrete, there is a limited
set of feature combinations that define all possible situations
for that particular set of features. Thus, for each combination,
the trips of all available OD pairs on hours that satisfy that
combination are averaged. In prediction stage, a combination
(set of calendar and meteorological conditions) is defined, so
that the averages for each OD pair are used as the estimation
produced for the query at hand. This approach takes no
training time, and should establish the minimum achievable
performance (baseline) for the problem under consideration.

III. EXPERIMENTS AND RESULTS

Once data have been cleansed, initial three years of data
were split into train, validation and test subsets, the latter
including the late December days of 2020 and January and
February 2021. This test subset contains samples of all
kinds of days, with cold, diverse amounts of rain, bank
holidays and academic holidays, namely, all circumstances
that may affect the normal bike usage. However, it is relevant
to highlight that training data include normal operation
months of 2019, but also the most challenging months
of the pandemic with very limited service. In terms of
day similarity, samples within the test subset cannot be
considered close to those during the normal operation in
2019, nor are they similar to those held during the pandemic
scenario, when different levels of COVID-19 measures
were in place and impacted on the service. This situation
can burden the performance of the proposed approaches:
although they can be compared to each other as they consider
the same training and test data, performance metrics could
be expected to improve if non-exceptional usage patterns are
again in place.

Bearing this in mind, the performance of the models is
assessed in terms of the Root Mean Squared Error (RMSE):

RMSEpy, pyq “

d

1

N

ÿ

tPTtest

pyt ´ pytq2, (1)



where RMSEpy, pyq is the RMSE computed for a particular
OD pair belonging to the test partition Ttest; yt denotes the
number of observed trips at test time t; pyt the estimated
number of trips at that same time; and N is the total number
of considered query samples. This metric is obtained for each
OD pair and model, resulting in a matrix of 64 ˆ 5 RMSE
values that are represented in Figure 5.

Focusing on this figure, RMSE values are plotted for
every OD pair, labeled as O_D (with O and D integers
denoting the index of the district). As it can be observed
from the performances of the 5 approaches in the 64 OD
pairs, in most situations all models behave very similarly,
with slight error differences that do not justify solidly the
use of advanced modelling approaches. However, for those
OD pairs where mobility is higher, specially those with
origin or destination in zone 6 (central business district), it is
particularly noticeable that specialized modeling approaches
provide better performances. Particularly CVAE (approach
B ) seems to leverage spatio-temporal relationships that

are encoded in the network. It is the only approach that
considers all trips at once during the training phase, so that an
estimation is provided for all OD pairs together. In a closed
system like a BSS, trips from one location to another increase
the availability of bikes in the destination, augmenting the
possibility of trips from it. The rest of approaches are unable
to harness these interactions, what could explain the better
performance of the CVAE approach.

Among the rest, CBR performs in general slightly
better than the others, specifically in the most challenging
scenarios with many trips. As it was anticipated previously,
this superiority can be attributed to the specialization of
CBR to deal with categorical features. Another interesting
finding that emerges from these results is the extreme
similarity of RF and the naive average (approach C ).
In a highly discrete scenario as the one presented here,
it seems reasonable that the decision trees ensemble ends
up averaging values and providing averages, what explains
the very similar performances. However, that slight error
difference is relevant, for some specific cases the naive
averaging mechanism does not have enough data to provide
an average: the particular combination of features has not
been observed in the training phase. A machine learning
method as RF is able to provide at least an interpolated value
for those areas, obtaining a final better result.

However, this representation of the error by observing
the individual RMSE values for each OD pair does not
portray all the nuances that can be found in Figure 6, where
estimations for all approaches for a particular winter day
with moderate rain are shown. This is one of the cases
where naive average approach does not have enough previous
information, producing a non valid estimation, while RF and
CBR behave very similarly and CVAE produces a line closer
to the real one. In the case of SVM, the produced estimation
follows the underlying scheme of the travel behavior, but is
not able to capture all variability. This is reflected in Figure 5,
where SVM usually performs worse than other approaches,
but in some cases this smooth result yields the best individual

estimation, as it can be observed in Figure 6 at hours 9:00
and 11:00.

When it comes to the connectivity between OD pairs,
Figure 7 depicts the normalized error of each method
for a particular day and hour, obtaining very similar
representations for CBR, RF and AVG, while SVM and
CVAE render a different behavior. It is interesting to observe
that CVAE outperforms the rest of approaches specially when
the amount of trips is large, while for connections with a low
amount of trips (districts 3 and 4 on the right of the map)
are better represented with the rest of the methods. CVAE
provides an advantage in those cases where trips in one OD
pair affect other OD pairs. This circumstance is more likely
to happen with higher amounts of trips, which can lead to a
shortage of bikes in certain stations, or a better availability
in others. These hidden relationships are certainly part of
the generally best performance levels attained by CVAE. For
consistently lower OD pair connectivity over time, the rest
of methods provide a more straightforward approach to the
problem.

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

In this work, we have examined several machine learning
approaches to the long-term estimation of the number
of trips held among origin and destination pairs in a
bike sharing system. The estimation is done with no
prediction horizon beyond the one defined by the limit of
the weather forecasts. Several conclusions can be drawn
from experiments performed over real data from Bilbao
(Spain). The most basic approach based on averaging data
from days with the same features occurs to suffice for
providing accurate estimations. The modeling capability of
more elaborated machine learning approaches increases the
performance and the ability to produce estimations for types
of days never observed before.

The proposed methods have shown that long-term mobility
patterns based on calendar and weather features hold a
certain stability in time, even under considerable disruptions
in the BSS service. These disruptions, however, may impact
on this performance, as the accumulated usage is particularly
low in some of the zones, making it easier to estimate
their behavior. If the limited service and changing schedules
discourage users from taking a bike in certain districts, it
is relative easy to estimate a null usage of the service in
those areas. Nonetheless, in the districts where the amount
of trips is significant – particularly in zone 6 (central district)
and the inner connections of stations within district 1 –
the spatio-temporal relationships modeled by CVAE allows
obtaining better estimations than with the rest of the models.

Modeling a continuous variable (number of OD trips)
with discrete features is in principle limited on its own
as per their alphabet and cardinality. Therefore, achieving
reliable estimations in such a limited setup can be certainly
challenging. However, when dealing with periodic data
patterns, estimations in very long term intervals can be
produced under this setting, which can be very useful
for service managers. In this manuscript, discrete features
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Fig. 7. Trips from zone 6 (central) on the midday of a rainy January day.
Top left map represents the real amount of trips, whereas the rest of nested
maps represent a normalized error of each method when estimating trips
for each OD pair.

(calendar, weather) were restricted to those available in
the scenario under study. However, we envision that
incorporating more features such as events that can force
docking stations to be provisionally closed (for instance,
nearby stations are closed during football matches or street

fairs) can help improve the performance of the developed
models. Aspects related to the topography and the availability
of cycling paths could be added as well as priors of the
relationships between docking stations, potentially improving
estimations for modeling choices that are sensitive to such
interactions. Lastly, factors that are considered in short-term
predictions, like the spillage to other stations or transport
modes, could also be analyzed in the long term, towards
achieve even better estimations.
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