
  

Abstract— An algorithm that calculates the feasible robot joints’ 

accelerations based on a new forward dynamics algorithm while 

considering the actuators’ force/torque saturations and achieves a 

realistic simulation of robot movements is given in this paper. 

While the most used forward dynamics algorithm in the literature, 

Walker and Orin’s Method 1, calculates robot forward dynamics 

by executing Recursive Newton-Euler Algorithm (RNEA) n + 1 

times, where n is the number of degrees-of-freedom (DoFs), 

algorithm used here solves forward dynamics using the modified 

RNEA (mRNEA) only once. Owing to that, this algorithm is very 

efficient. Furthermore, the computational complexity of the 

algorithm is even more significant when used for robot simulation 

as it does not require calculating joint torques as inputs for 

forward dynamics, unlike other methods. Another benefit of the 

proposed method is the ease of development and implementation 

for a specific robot. The proposed mRNEA and its application 

within the forward dynamics algorithm are demonstrated using a 

serial 4-DoF spatial disorientation trainer as an example. 

 

Index Terms—Robot, Forward dynamics, Joint accelerations, 

Simulation system, Recursive Newton–Euler algorithm 

I. INTRODUCTION 

 

A robot simulation verifies the feasibility of programmed 

movements, and if necessary modifies them. It also calculates 

the values of forces and moments acting on robot links and 

joints that is essential in robot design. For this, robot simulation 

has to solve robot forward and inverse dynamics problems. 

Forward dynamics (FD) solves the motion from the forces, 

while inverse dynamics (ID) solves the forces from the motion 

[1]. ID is used within dynamic model-based control methods, 

and for FD calculations. FD is used mainly in simulation 

purposes.  

FD calculates the joint accelerations ( )ktq
 
at a time instant 

tk, the joint velocities 1( )kt +q  of the next interpolation cycle 

time (Δt) and joint positions q(tk+1) at the end of the next Δt. FD 

accounts for the joint torques u(tk); the inertial, gravitational, 

and Coriolis forces of the robot links; forces and moments 

acting on the end effector; and the friction forces and moments 

of the joints.  

When a robot is considered as a continuous nonlinear 

system, after obtaining ( )ktq , the velocity 1( )kt +q  and position 

q(tk+1), tk+1 = tk + Δt are computed using a numerical integration 

method, i.e., Runge–Kutta, with an integration step Δt [2]. On 
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the other hand, ID determines the joint torques u(tk) at time 

instant tk which are required to generate the motion specified 

by the joint accelerations, and consequently, the velocities and 

positions. This is accomplished by using the current velocities, 

current positions, the forces and moments acting on the end 

effector, and the friction forces and moments of the joints.  

One of the challenges in robot simulation is to derive 

algorithms that are computationally efficient and are also easy 

to apply to a specific robot.  

The ID of a manipulator with n DoFs can be solved by well-

known equations of motion which represent its joint space 

dynamic model 

 

 ( ) ( ) ( ) ( ) e, + =T
H q q +C q q q +g q J q k u ,   

            

(1) 

 

where q , q , and q  are n × 1 vectors of the joint accelerations, 

velocities, and positions, respectively; H(q) is n × n generalized 

robot mass (inertia) matrix; ( ),C q q  is an n × n matrix 

specifying the centrifugal and Coriolis effects; g(q)
 
is an n × 1 

vector of gravity terms; ke is a 6 × 1 vector of the external forces 

and moments on link n; J(q) is a 6 × n Jacobian matrix; and u 

is an n × 1 vector of the input joint torques/forces. The diagonal 

terms of the mass matrix are related to the inertias of the 

corresponding DoF, and the off-diagonal terms express the 

inertial couplings between the DoFs [3].  

From Eq. (1), it can be seen that for time instant tk, the joint 

torques/forces are linear functions of the joint accelerations 

( )ktq  when q(tk) and ( )ktq  are given. These equations can be 

obtained explicitly with the Lagrange formulation (LF) which 

contains the matrix H(q) and vectors ( ),C q q q , g(q), and 

e( )TJ q k . Consequently, the joint accelerations ( )ktq  can be 

computed by solving the following system of n linear equations 

 

                              e( ) ( , , ),= −H q q u u q q k                             (2) 

 

   e e( , , ) ( , ) ( ) ( ) . = + + T
u q q k C q q q g q J q k    

            

(3) 

 

The LF method for derivation of robot equations of motion 

provides a compact analytical form containing the mass matrix 

H(q), and a bias vector u  that denotes joint torque 

contributions that do not correlate with the joint accelerations 
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[4–10]. Therefore, when the LF is used, the joint accelerations 

( )ktq (within one interpolation cycle) can be computed by 

solving the system of n linear equations, where n is number of 

manipulator DoFs. Although it is not complex to solve FD 

using LF, this method is typically used for manipulators when 

n ≤ 3 because of the very high computational complexity of the 

LF: O(n4). 

Robot dynamic models should be derived in recursive form 

in order to be computational efficient [5]. In contrast to the LF, 

the computational complexity of the RNEA is O(n). Reference 

[11] developed a recursive LF; however, the computational 

complexity of the recursive LF is O(n3). 

Walker and Orin [6,7] employed the RNEA for computing 

the FD and presented four methods to solve the joint 

accelerations. Their method 1 (WO method 1) remains the 

simplest and the most recommended in the literature [2,5]. 

According to this method, torque u  is computed using the 

RNEA. Further, each column hi, i = 1 to n, of matrix H is 

computed as the torque vector given by the RNEA.  

In [12], a modified Recursive Newton-Euler Algorithm 

(mRNEA) for derivation of dynamic model of robot 

manipulator is presented. The mRNEA gives explicitly the 

mass matrix H and the bias vector u , in a similar manner as 

LF. Owing to that, it is easy to use in the FD computation, 

which executes the mRNEA only once. 

The additional calculation of the input-joint-torque u, Eqs. 

(2), had to be performed within a robot simulation system. With 

the method presented in [12], input-joint-torque calculation is 

performed within the FD algorithm, and therefore, the 

computational complexity of the simulation system is 

additionally reduced. As a result, the simulation system has to 

solve ID only once within each interpolation cycle, in 

comparison to simulation systems which use, for example, WO 

method 1, and which solve ID n + 2 times. 

Proposed FD algorithm is computationally very efficient, 

with O(n) complexity. 

The rest of the paper is organized as follows. Section II 

presents the proposed approach for efficient FD calculation and 

its implementation in a robot simulation system. Section III 

depicts the proposed FD algorithm for open-chain manipulators 

with n DoFs. A toy model for the 4-DoF spatial disorientation 

trainer (SDT) is also presented in Section IV. The FD 

algorithm, which calculates the achievable motor velocities in 

each interpolation cycle based on the actuator torque/force 

saturations, is presented in Section V. Finally, concluding 

remarks are given in Section VI. 

II. ACHIEVABLE JOINT ACCELERATIONS CALCULATION 

 

A path planner of the robot controller transforms the motion 

commands into a series of successive positions of robot 

joints/actuators. As they are sent to the servo controller at 

constant time intervals Δt, they correspond to the desired 

joint/actuator velocities of 1( ) ( ( ) ( ))i k i k i kq t q t q t t+= −  , which 

can be considered constant within each Δt (up-to-date 

controllers have Δt between 0.01 s and 0.003 s). Thereafter, the 

path planer sends the desired joint velocities to the speed 

controllers of the actuators, whose task is to keep them constant 

within each Δt. 

Since each joint velocity can be considered constant within 

each Δt, and since the current velocity ( )i kq t and given 

acceleration ( )i kq t are known (calculated within the path 

planer), the joint velocity in the next interpolation cycle is 

1( ) ( ) ( )i k i k i kq t q t q t t+ = +  , which is depicted in Fig. 1. 

 

 
 
Fig. 1. Example of given joint velocity change. 

 
Herein, a method for obtaining equation (2) explicitly with 

the mRNEA is proposed. Consequently, a method which 

calculates ( )ktq
 
using the mRNEA only once is proposed. The 

presented FD algorithm utilizes the current values of q(tk) and 

( )ktq , the given values of q(tk+1) and 1( )kt +q  calculated in the 

path interpolator, and ke. First, it checks if the desired positions 

and velocities are feasible. If they are not, it limits their values 

in accordance with their maximum/minimum possible values. 

Based on this, the algorithm calculates the desired joint 

accelerations 1( ) ( ( ) ( ))i k i k i kq t q t q t t+= −  . Next, the mRNEA 

calculates the joint torques/forces u required for the desired 

joint motions. In the next step, the algorithm calculates the 

required actuator torques ua, whose capabilities are examined. 

Unachievable torques/forces are replaced with the 

maximum/minimum possible, with the aim that the FD 

algorithm determines the achievable accelerations. Other joint 

accelerations keep their values obtained from the path 

interpolator.  

Herein, within the simulation system, only attainable motor 

velocities and positions are sent from the path planner to the 

speed controller during each Δt. Consequently, joint forces and 

moments are calculated based on the attainable velocities and 

accelerations, so that their realistic values are obtained.  

The FD simulation can be used in a stage of the robot design 

process, in which case it enables the proper design of bearings 

and links. 

III. FD ALGORITHM BASED ON MRNEA 

 

Herein, the FD algorithm based on mRNEA for open–chain 

manipulators with n DoFs is presented. 

A 4 × 4 homogenous transformation matrix (HTM) that 

transforms point coordinates from frame j to frame i is j
iT , and 

from the base frame to frame i is Ti. The matrix j
iT  contains a 

3 × 3 orientation matrix 
j j j j

i i i i=  D x y z  and a 3 x 1 

position vector 
j

ip .  
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The linear acceleration of the robot link i centre of mass 

is 

         
Tcm cm cm cm cm cm( )i xi yi zi i i i i i iv v v= = +  +    v v ω r ω ω r ,         (4) 

 

where    
T Tcm cm cm cm cmˆ

i xi yi zi xi yi zi i ir r r r r r= = =r D r  is the 

position of the link i centre of mass with respect to the 

coordinates of link i expressed in the base coordinates. This 

vector in the coordinates of link i is  
Tcmˆ ˆ ˆ ˆi xi yi zir r r=r . A vector 

cross product is denoted with , and ωi, iω , and iv  are the link 

angular velocity, angular acceleration, and linear acceleration, 

respectively, i = 1 to n. Equation (4) can be rewritten as 

                cm

1 1

i i i

i ik k ikj k j

k k j k

q q q
= = =

= + v b b , i = 1 to n,             (5) 

 

where bik
 
and bikj

 
are 3 × 1 vectors. The total force Fi and total 

moment Ni exerted on link i, obtained from the NE equations, 

are 

 

                    
TT cm cm cm

i xi yi zi i xi yi ziF F F m v v v g= = −  F ,               (6) 

 

                   
T cm cm( )i xi yi zi i i i i iN N N= = + N I ω ω I ω .              (7) 

 

The mass of link i is denoted as mi, g is Earth’s acceleration and 
cm

iI  is the 3 × 3 moment of the inertia matrix of link i about the 

centre of mass of that link expressed in the base coordinates. 

Equations (5) and (6) yield 

 

 
T

1 1

( 0 0 )
i i i

i i ik k ikj k j

k k j k

m g q q q
= = =

= − + + F b b , i = 1 to n. (8) 

 

Equation (7) can be rewritten as 

                    
1 1

i i i

i ik k ikj k j

k k j k

q q q
= = =

= + N d d , i = 1 to n, 

           

(9)

 

 

where dik
 
and dikj are 3 × 1 vectors. The effects of the external 

forces and moments,  
TT

e e e=k f n ,
 
acting on the end effector 

are well-known as 

 

                                          e ,n n= +f F f                                (10) 

 
T

e e e e e e e e e e e e e ,n i y z z y z x x z x y y xp f p f p f p f p f p f = + + − − − n N n  (11) 

 

where 
T

e e e e e
ˆ

x y z np p p= =  p D p  is the position of the external 

force with respect to the coordinates of link n expressed in the 

base coordinates. This vector in the coordinates of link n is 
T

e e e e
ˆ ˆ ˆ ˆ

x y zp p p=   p . Equations (8) and (10) yield 

 

                                  
1

,
i

i i ik k
k

q
=

= + F e e                               (12) 

 

        
T

1

( 0 0 )
i i

i i ikj k j

k j k

m g q q
= =

= − + e b , i = 1 to n–1,    (13) 

 

       
T

e
1

( 0 0 )
n n

n n ikj k j
k j k

m g q q
= =

= − + +e b f , i = n,          (14) 

 

 

                                ik i ikm=e b , i = 1 to n.                         (15) 

 

 

Similarly, Eq. (9) can be replaced with 

                           
1

i

i i ik k
k

q
=

= + N d d ,                                    (16) 

 

                   
1

i i

i ikj k j
k j k

q q
= =

= d d , i = 1 to n.                     (17) 

 

From robot dynamics, the force fi
 
and moment ni

 
exerted on 

link i by link i – 1 in the base coordinate frame, is well–known 

to be 

 

                        
T

1i xi yi zi i if f f += = +  f F f ,                           (18) 

 

 

              
T *

1 1,i xi yi zi i i i i i in n n + += = + +  +   n n N l F p f             (19) 

 

 

where  
T

* cm

i xi yi zi i il l l = = + l p r , 
1 1i i i



+ += −p p p . 

 

The mass of the end effector can be included in the mass 

of link n. In accordance with Eqs. (10)–(19), fi
 
and ni

 
can be 

calculated as 

         
1 1

n i n n n

i k jk k jk k
k i k j i k i j k

q q
= = = = + =

= + +   f e e e , i = n to 1,      (20) 

 

                   

1
1 1

1
*

1 1 1 2

1 c a1 a 2 a 3

( )

( )

  , to 1 ,  

i i

i i i ik k i i ik k
k k

n i n n n

i k jk k jk k
k i k j i k i j k

i i i i i

q q

q q

i n

+
= =

+

= + = = + = + =

+

= + + +  +

+  + +

= + + + + =

 

    

n n d d l e e

p e e e

n n n n n

        (21)
  
 

 

where cin , a1in , a2in , and a3in  are 3 × 1 vectors, as follows: 
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c 1 1

( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

n n n n n n

xn yn zn zn yn y n z n z n y n

yn zn xn xn zn z n x n x n z n

zn xn yn yn xn x n y n y n x n

d l e l e p f p f

d l e l e p f p f

d l e l e p f p f

+ +

+ + + +

+ + + +

+ + + +

= +  + 

+ − + − 
 

= + − + − 
 + − + − 

n d l e p f

, i = n,   (22) 

 

           

*

c 1

* *

( 1) ( 1)

* *

( 1) ( 1)

* *

( 1) ( 1)

i i i i i i

xi yi zi zi yi yi z i zi y i

yi zi xi xi zi zi x i xi z i

zi xi yi yi xi xi y i yi x i

d l e l e p E p E

d l e l e p E p E

d l e l e p E p E

+

+ +

+ +

+ +

= +  + 

+ − + − 
 

= + − + − 
 + − + − 

n d l e p E

, 

                       
1

1

n

i k
k i

+
= +

=E e , i = n – 1 to 1,                            (23) 

  

  

1

a1
1 1

1

T

1a1 2a1 a1 1 2

( )

( ) ( )

( )

.... ,

i

xik yi zik zi yik k
k

i i

i ik i ik k yik zi xik xi zik k
k k

i

zik xi yik yi xik k
k

i i ii i

d l e l e q

q d l e l e q

d l e l e q

q q q

=

= =

=

 
+ − 

 
 = +  = + −
 
 
 + −
  

=



 



n d l e

n n n

 

 

        1a1 2a1 a1 1 1 2 2.... ....i i ii i i i i i i ii i ii= +  +  + n n n d l e d l e d l e ,   (24) 

      i = n to 1,         

 

       

 

1
* *

( 1) ( 1)
1

1 1
* * *

a2 ( 1) ( 1) ( 1)
1 1

1
* *

( 1) ( 1)
1

1a2 2a2 ( 1)a2 1 2 1

( )

( )

( )

i

yi z i k zi y i k k
k

i i

i i i k k zi x i k xi z i k k
k k

i

xi y i k yi x i k k
k

i i i i i

p E p E q

q p E p E q

p E p E q

q q q

+

+ +
=

+ +

+ + +
= =

+

+ +
=

+ +

 
− 

 
 =  = −
 
 
 −
  

=  



 



n p E

n n n ,
T

     

     
* * *

1a2 2a2 ( 1)a2 ( 1)1 ( 1)2 ( 1)( 1)i i i i i i i i i i i+ + + + +=        n n n p E p E p E ,                     

( 1)
1

n

i k jk
j i

+
= +

=E e , i = n – 1 to 1, a2n =n 0 ,
                                

(25) 

 

 

  

* *

2

* * *
3

2 2

* *

2

T

( 2)a3 a3 1 2 2

( )

( )

( )

,

n

yi zkk zi ykk k

k i
n n

ia i kk k zi xkk xi zkk k

k i k i
n

xi ykk yi xkk k

k i

i i in i n

p E p E q

q p E p E q

p E p E q

q q q q

= +

= + = +

= +

+ +

 
− 

 
 =  = −
 
 
 −
  

=



 



n p E

0 0 n n

  

  * *
( 2)a3 a3 ( 2)( 2)i i in i i i i nn+ + +=    0 0 n n 0 0 p E p E , 

n

kk jk
j k=

=E e , i = n – 2 to 1, a3 ( 1)a3n n−= =n n 0 .
                       

(26) 

 

In order to reduce the number of counts, the vector 1i+n  

can be included in the vectors cin , a1in , a2in , and a3in . In this 

way, Eq. (21) is transformed into 

 

              c a1 a 2 a3( )i i i i i
   = + + +n n n n n q  , i = n to 1,               (27) 

 

where  
T

1 2 .... nq q q=q  is an n × 1 vector, cin  is a 3 × 1 

vector, and a1in , a2in , and a3in  are 3 × n vectors. They are 

given in the following equations: 

 

                                   
c ( 1)c ci i i+
 = +n n n ,                                  (28) 

                       

 a1 1a1 2a1 a1

1 1 2 2

....

( ) ( ) .... ,

i i i in

n n

k k k k k k nn n nn
k i k i= =

   =

 
= +  +  +  

 
 

n n n n

d l e d l e d l e
     (29) 

                         
1 1 1 1

a2 1 2 2 2 3 2 4 2 ( 1)( 1) 2

1 1 1
* * *

( 1)1 ( 1)2 ( 1)3

1
*

( 1)4 ( 1)( 1) 2

....

( ) ( ) ( )

( ) .... ,

n n n n

i k a k a k a k a n n a
k i k i k i k i

n n n

k k k k k k
k i k i k i

n

k k n n a
k i

− − − −

− −
= = = =

− − −

+ + +
= = =

−

+ − −
=

 
 = 

 


=   




 



   

  



n n n n n n

p E p E p E

p E n

   

(30) 

 
3 2

* * * * *
a3 1 33 1 2 44 ( 1)( 1)

1 1

( ) ....
n n

i i n n i nn
i i

− −

− −
= =

 
 =  +    

 
 n 0 0 p E p p E p E p e . (31) 

 

The forces and moments exerted on link i by link i − 1 in 

the coordinates of link i − 1 are 

 
T TT T

1 1
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆandi xi yi zi i i i xi yi zi i if f f n n n− −

 = = =  =  f D f n D n .    (32) 

 

The projection of ni
 
along the axis of motion of joint i is 

 

                                   T
1i iiu −=z n ,                                         (33)

 

 

where zi–1
 
is a unit vector of the axis of motion, given in the 

first three elements of the third column of the matrix Ti. 

Consequently, using Eqs. (22)–(33), the joint torques ui are  

 

                         
1

n

i ij j i
j

u h q u
=

= + , i=1 to n,                          (34) 

 

                    
T

1 a1 a 2 a 3
1

( )
n

ij j i i i i
j

h q −
=

  = + + z n n n q ,

                     

(35) 

 

                            T
c1i iiu −

 =z n .

    

                            (36) 

 

Herein, ( )i kq t  and ( )i kq t  are used to calculate hij and iu .  
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The computations needed to solve the linear system of 

Eq. (34) in order to compute ( )i kq t  can be performed using 

Gaussian elimination. 

IV. NUMERICAL EXAMPLE OF 4-DOFS SPATIAL 

DISORIENTATION TRAINER 

 

The spatial disorientation trainer (SDT) is designed as a 4-

DoFs manipulator with rotational axes, Fig 2. Herein, 

 
T

1 1 1 1 0a c s =p ,  
T

2 20 0 d =p , 
3 4 5

  = = =p p p 0 . 

 

  
Fig. 2. (a) 3D model of the four DoFs SDT. (b) Coordinate frames of the SDT. 

 

The vectors cin , a1in , a2in , and a3in , Eqs. (22)–(31), for 

the SDT are 

 

4c 4 4 4= + n d l e , 3c 3 3 3= + n d l e , *

2c 2 2 2 2 3= +  + n d l e p E ,  

 
*

1c 1 1 1 1 2= +  + n d l e p E , where 3 3 4= +E e e , 2 3 2= +E E e ,         (37)  

 
4 4

4a1 4 4 4 4 a1
1 1

( )k k k k k
k k

q q
= =

= +  = n d l e n ,

3 3

3a1 3 3 3 3 a1
1 1

( )k k k k k
k k

q q
= =

= +  = n d l e n , 

2 2

2a1 2 2 2 2 a1
1 1

( )k k k k k
k k

q q
= =

= +  = n d l e n , 

1a1 11 1 11 1 11a1 1( )q q= +  =n d l e n ,                                                (38) 

 

 

 

4a1 41a1 42a1 43a1 44a1

41 4 41 42 4 42 43 4 43 44 4 44 ,

 =

= +  +  +  + 

n n n n n

d l e d l e d l e d l e
 

 

 3a1 3a1 4a1 31a1 32a1 33a1 44a1

4 4 4

1 1 2 2 3 3 44a1
3 3 3

( ) ( ) ( ) ,k k k k k k k k k
k k k= = =

    = + =

 
= +  +  +  

 
  

n n n n n n n

d l e d l e d l e n
 

 

 2a1 2a1 3a1 21a1 22a1 33a1 44a1

4 4

1 1 2 2 33a1 44a1
2 2

( ) ( ) ,k k k k k k
k k= =

     = + =

 
 = +  +  

 
 

n n n n n n n

d l e d l e n n
 

 

 1a1 1a1 2a1 11a1 22a1 33a1 44a1

4

1 1 22a1 33a1 44a1
1

( ) ,k k k
k=

     = + =

 
  = +  

 


n n n n n n n

d l e n n n
                               (39) 

 

4a2 =n 0 , 
3 3a2

 =  =p 0 n 0 ,  

 

 4a2 3a2
 = =n n 0 0 0 0 , 

 
* * *

2a2 2 31 2 32 2 33
 =     n p E p E p E 0 , 

 
* * * * *

1a2 1 21 2 31 1 22 2 32 2 33
 =  +   +    n p E p E p E p E p E 0 ,        (40) 

where  

E31 = e41 + e31, E32 = e42 + e32, E33 = e43 + e33, E21 = e31 + e21, 

E22 = e32 + e22, 

 

 *
2a3 2 44
 = n 0 0 0 p E ,  * * *

1a3 1 33 1 2 44( ) =  + n 0 0 p E p p E ,(41)
 

where E44=e44. 

 

 

 

 
 

Fig. 3. (a) Link torques ui calculated using RNEA and mRNEA. (b)  Link 
accelerations of SDT. 

 

 

In this numerical example, the consecutive link positions 

( )i kq t , velocities ( )i kq t , and accelerations ( )i kq t  of the SDT 

are used as the input. Based on these data, and the inertial and 

geometric parameters of the SDT links, the torques ui are 

calculated using RNEA and mRNEA. The same results were 

obtained using both algorithms, Fig. 3(a). Consequently, 

solution of the linear system of Eqs. (34) gave the values of 

( )i kq t  that coincides with the input accelerations, Fig. 3(b). 
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V. FD ALGORITHM RELATIVE TO MANIPULATOR ACTUATORS 

 

Similar to Eq. (1), the motion equations for the 

manipulator relative to the torques/forces of the robot actuators 

can be written as 

 

                            a a ea a( ) ( , , ) =H q q +u q q k u ,                     (42) 

 

a ea a a ea( , , ) ( , ) ( ) ( ) sign( )v s = + +T
u q q k C q q q+g q J q k +F q F q . (43) 

 

Herein, Ha(q), a ea( , , )u q q k , and ua relate to the actuator 

rotors. Fv
 
denotes an n × n diagonal matrix of viscous friction 

coefficients fvi. The static friction torques are considered as 

Coulomb friction torques; Fs is an n × n diagonal matrix of the 

Coulomb friction constants. Herein, sign( )q  denotes an n × 1 

vector whose components are given by the sign functions of 

single joint velocities.  

If certain absolute value of uai exceeds its limit, it is 

reduced to the maximum possible. These achievable values of 

uai are then used in the following linear system of n equations 

to calculate the achievable (realistic) joint accelerations iq : 

 

                       
a a a

1

n

ij j i i

j

h q u u
=

= −  , i = 1 to n.                       (44) 

VI. CONCLUSIONS 

 

An algorithm which calculates the achievable joint 

accelerations in each interpolation cycle based on the FD model 

and actuators’ capabilities was given in this paper. Presented 

algorithm enables the setting of only attainable joint velocities 

within each interpolation cycle as determined from the joint 

acceleration by taking into account the achievable actuator 

torques. As a result, a precise simulation of the robot 

movements is provided. This algorithm can indicate to the 

operator that the programmed parameters of the movements are 

not achievable. Furthermore, calculation of the realistic forces 

and moments of the robot joints can be achieved when the 

simulation system is used in the design phase.  

In presented simulation, the mRNEA that gives the mass 

matrix H and the bias vector u  of a dynamic model was used. 

Consequently, mRNEA allows for solving FD by calculating 

ID only once. It was shown that proposed FD algorithm does 

not need to calculate the input vector u of the FD algorithm, 

which additionally increases the computational efficiency of 

the presented method. Compared with the other methods given 

in the literature, the algorithm presented herein is one of the 

most efficient ones. Apart from that, it is very simple to develop 

and implement. 
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