
 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 29

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

A Forest of Possibilities: Decision Trees and Beyond

I. Dwaraka Srihith
1
, P. Vijaya Lakshmi

2
, A. David Donald

3
, T. Aditya Sai Srinivas

4
,

G. Thippanna
5

1
Student, Alliance University, Bangalore

2
Student,

3,4
Assistant Professor,

5
Professor, Ashoka Women’s Engineering College, Kurnool

*Corresponding Author

E-Mail Id: - vijayalakshmi44668@gmail.com

ABSTRACT

Decision trees are fundamental in machine learning due to their interpretability and

versatility. They are hierarchical structures used for classification and regression tasks,

making decisions by recursively splitting data based on features. This abstract explores

decision tree algorithms, tree construction, pruning to prevent overfitting, and ensemble

methods like Random Forests. Additionally, it covers handling categorical data, imbalanced

datasets, missing values, and hyperparameter tuning. Decision trees are valuable for feature

selection and model interpretability. However, they have drawbacks, such as overfitting and

sensitivity to data variations. Nevertheless, they find applications in fields like finance,

medicine, and natural language processing, making them a critical topic in machine

learning.

Keywords: Decision Trees, Machine Learning(ML), Classification.

INTRODUCTION

Decision trees are a fundamental and

intuitive machine learning algorithm used

for both classification and regression tasks.

They mimic human decision-making by

breaking down a complex decision-making

process into a series of simpler decisions.

Here's an overview of decision tree

algorithms:

Decision Tree Basics:

- At its core, a decision tree is a tree-like

structure composed of nodes and edges.

- Each node in the tree represents a

decision or a test on a specific attribute

(feature).

- Each edge represents the outcome of the

test, leading to another node or a leaf node.

- Leaf nodes contain the final decision or

prediction.

Tree Construction:

- Decision trees are constructed through a

process called tree induction or tree

building.

- The process starts with a root node,

which represents the entire dataset.

- At each internal node, the algorithm

selects a feature and a threshold to split the

data into two or more subsets.

- The goal is to make these splits in a way

that maximizes the "purity" of the subsets,

meaning that data points of the same class

or with similar values are grouped

together.

- This process continues recursively until a

stopping criterion is met, such as reaching

a maximum tree depth or having a

minimum number of data points in a leaf

node.

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 30

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

Splitting Criteria:

- Decision tree algorithms use various

criteria to determine how to split the data

at each node. Common criteria include:

 - Information Gain (ID3): Measures how

much information is gained about the

target variable by making a split.

 - Gini Impurity (CART): Measures the

probability of misclassifying a randomly

chosen element from the dataset.

 - Entropy (C4.5): Measures the level of

disorder or impurity in a set of data.

 - Mean Squared Error (for regression

trees): Measures the variance of the target

variable.

Classification vs. Regression Trees:

- Decision trees can be used for both

classification and regression tasks.

- Classification trees are used when the

target variable is categorical, and they aim

to assign a class label to each data point.

- Regression trees are used when the target

variable is continuous, and they aim to

predict a numerical value for each data

point.

Pruning:

- To prevent overfitting (where the tree fits

the training data too closely but fails to

generalize to new data), decision trees can

be pruned.

- Pruning involves removing branches of

the tree that do not significantly improve

predictive accuracy.

- Pruning is essential for building simpler

and more interpretable trees.

Ensemble Methods:

- Decision trees can be enhanced using

ensemble methods such as Random

Forests and Gradient Boosting. These

methods combine the predictions of

multiple decision trees to improve

accuracy and reduce overfitting.

Basic Structure of Decision Trees:

The basic structure of a decision tree

consists of the following elements:

1. Root Node: The topmost node in the

tree, representing the entire dataset.

2. Internal Nodes: These nodes represent

decisions or tests on specific features.

They have one incoming edge (from their

parent node) and two or more outgoing

edges leading to child nodes.

3. Edges: Edges connect nodes and

represent the outcome of the test at the

parent node. They lead to child nodes

based on the result of the test (e.g., "yes"

or "no").

4. Leaf Nodes: These are the terminal

nodes of the tree and do not have any child

nodes. Leaf nodes contain the final

decision or prediction, whether it's a class

label (for classification) or a numerical

value (for regression).

5. Features and Thresholds: At each

internal node, a specific feature and a

threshold are used to split the data into

subsets. These determine the branching of

the tree.

6. Branches: Branches connect nodes and

show the path from the root node to a leaf

node, indicating the sequence of decisions

made to reach a decision or prediction.

7. Depth: The depth of a tree is the length

of the longest path from the root node to a

leaf node. Deeper trees are more complex

but can also lead to overfitting.

8. Pruning: Pruning involves removing

branches from the tree to simplify it and

improve generalization.

In summary, decision trees are versatile

machine learning algorithms that create a

hierarchical structure to make decisions or

predictions based on data. Understanding

the basic structure and principles of

decision trees is essential for effectively

using them in various machine learning

tasks.

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 31

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

Decision Tree Algorithms

Decision tree algorithms are the

foundation of decision tree models, which

are used for both classification and

regression tasks. There are several key

decision tree algorithms, including ID3,

C4.5, CART, and more. Let's explore them

in detail:

ID3 (Iterative Dichotomiser 3):

- Overview: ID3 was one of the earliest

decision tree algorithms, developed by

Ross Quinlan. It is primarily used for

classification tasks.

- Splitting Criterion: ID3 uses the

"Information Gain" criterion to select the

best attribute for splitting the data at each

node. Information Gain measures how

much uncertainty or entropy is reduced

after a split.

- Handling Categorical Data: ID3 works

well with categorical attributes but

struggles with continuous data, which it

discretizes.

- Drawbacks: ID3 tends to create deep

trees, which can lead to overfitting. It also

doesn't handle missing values gracefully.

C4.5:

- Overview: C4.5 is an improved version

of ID3, also developed by Ross Quinlan.

It's one of the most widely used decision

tree algorithms.

- Splitting Criterion: C4.5 uses

"Information Gain" or "Gain Ratio" as

criteria for attribute selection. Gain Ratio

addresses the bias of Information Gain

towards attributes with many values.

- Handling Categorical Data: C4.5 handles

both categorical and continuous attributes

efficiently.

- Pruning: C4.5 employs pruning to reduce

the risk of overfitting. It builds a large tree

first and prunes it later to find the optimal

size.

- Missing Values: C4.5 can handle missing

attribute values during tree construction.

CART (Classification and Regression

Trees):

- Overview: CART is a versatile decision

tree algorithm developed by Breiman et al.

It can be used for both classification and

regression tasks.

- Splitting Criterion:

 - For classification, CART uses the "Gini

Impurity" criterion. It measures the

probability of misclassifying a randomly

chosen data point.

 - For regression, CART uses the "Mean

Squared Error" (MSE) criterion. It aims to

minimize the variance of the target

variable within the leaf nodes.

- Binary Trees: CART constructs binary

trees, meaning each node has two child

nodes.

- Pruning: Similar to C4.5, CART uses

pruning to avoid overfitting by removing

branches that do not significantly improve

impurity (for classification) or MSE (for

regression).

- Handling Missing Values: CART can

handle missing values by assigning them

to a majority class or predicting them

using surrogate splits.

Random Forest:

- Overview: Random Forest is an

ensemble learning method based on

decision trees. It uses multiple decision

trees to make predictions and aggregates

their results.

- Bootstrapping: Each tree in a Random

Forest is trained on a different bootstrap

sample of the data.

- Feature Selection: Random Forest selects

a random subset of features at each split,

reducing the risk of overfitting and

improving generalization.

- Voting/Averaging: For classification

tasks, Random Forest uses majority

voting; for regression, it uses averaging of

predictions from individual trees.

- Robustness: Random Forest is robust to

outliers and noisy data, making it a

popular choice for various applications.

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 32

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

Gradient Boosted Trees (GBM):

- Overview: GBM is another ensemble

method that builds decision trees

sequentially, with each tree trying to

correct the errors of the previous ones.

- Loss Functions: GBM can use various

loss functions, such as "MSE" for

regression and "Log Loss" for

classification.

- Boosting: GBM boosts the performance

of the model by iteratively adding trees

that focus on the mistakes made by the

previous ones.

- Regularization: GBM employs

regularization techniques to prevent

overfitting.

- Gradient Descent: GBM uses gradient

descent to minimize the loss function and

update tree predictions.

Each of these decision tree algorithms has

its strengths and weaknesses, and the

choice of algorithm often depends on the

specific problem, the nature of the data,

and the desired output (classification or

regression). Understanding the differences

between these algorithms is essential for

effectively applying decision trees in

machine learning tasks.

Tree Construction

Tree Building Process:

The tree construction process is the core of

decision tree algorithms. It involves

building a tree structure by recursively

splitting the dataset into subsets based on

certain criteria until a stopping condition is

met. Here's a step-by-step explanation:

1. Initial Node:

- At the beginning, all the training data is

considered as one single node, which is the

root of the decision tree.

2. Node Splitting:

- In each internal node (non-leaf node), the

algorithm selects one feature and a

threshold value.

- The goal is to split the data into child

nodes such that the impurity or error in

each child node is minimized.

3. Impurity Measures:

- The choice of the splitting criteria is

crucial. Common impurity measures used

in decision trees include:

 - Gini Impurity: It measures the

probability of incorrectly classifying a

randomly chosen element if it were

randomly classified according to the

distribution of classes in the node.

 - Information Gain (Entropy): It measures

the reduction in entropy (uncertainty) of

the target variable achieved by splitting the

data.

 - Mean Squared Error (MSE): Used in

regression trees, it measures the average

squared difference between the actual and

predicted values.

4. Splitting Decision:

- The feature and threshold that result in

the lowest impurity or error are selected

for the split.

- For classification, this minimizes the

impurity in child nodes, while for

regression, it minimizes the MSE.

5. Recursive Partitioning:

- After the best split is found, the data is

partitioned into subsets based on the

chosen feature and threshold.

- Each subset becomes a child node of the

current node.

- The splitting process then continues

recursively for each child node until one or

more stopping conditions are met.

6. Stopping Conditions:

- Tree construction stops when one or

more of the following conditions are met:

 - Maximum tree depth is reached.

 - The number of samples in a node falls

below a specified minimum (minimum

samples per leaf).

 - The impurity or error in a node becomes

lower than a predefined threshold.

 - Other criteria like maximum leaf nodes

or maximum features are reached.

7. Leaf Nodes:

- When a stopping condition is met, a node

becomes a leaf node.

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 33

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

- In classification, the class label of the

majority of samples in the node is assigned

to the leaf node.

- In regression, the leaf node contains the

predicted value, which is often the mean or

median of the target values in that node.

8. Pruning:

- After the tree is constructed, it may be

pruned to reduce complexity and

overfitting. Pruning involves removing

branches that do not significantly improve

the model's performance.

Recursive Partitioning:

The heart of decision tree construction is

the recursive partitioning of the data. This

process involves repeatedly splitting the

dataset into subsets based on the selected

feature and threshold. The idea is to create

child nodes that are more homogenous

with respect to the target variable than the

parent node. This recursive process

continues until the stopping conditions are

met.

The choice of feature and threshold for

splitting nodes is critical. Different

algorithms use different criteria, such as

Gini impurity, information gain, or mean

squared error, to decide which split is best

at each node. These criteria guide the tree

construction process by selecting the split

that results in the most significant

reduction in impurity or error.

Overall, tree construction is an iterative

and recursive process that aims to create a

tree structure that effectively partitions the

data and makes accurate predictions for

both classification and regression tasks.

Properly choosing splitting criteria and

handling stopping conditions is essential

for building decision trees that generalize

well to new, unseen data.

Decision Trees in Machine Learning

We'll use the popular scikit-learn library,

which provides a user-friendly interface

for working with various machine learning

algorithms, including decision trees.

Let's assume you want to build a decision

tree classifier for a simple binary

classification problem using the Iris

dataset. Here's how you can do it:

1. Import Required Libraries:

2. Load and Prepare the Data:

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 34

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

3. Create and Train the Decision Tree Classifier:

4. Make Predictions:

5. Evaluate the Model:

6. Visualize the Decision Tree:

You can visualize the trained decision tree using the plot_tree function from scikit-learn's tree

module:

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 35

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

This code snippet demonstrates how to

build a simple decision tree classifier using

the Iris dataset. Keep in mind that this is a

basic example. In practice, you might need

to tune hyperparameters, handle missing

data, and consider more advanced

techniques like pruning and ensembling to

improve the performance and

generalization of your decision tree

models.

Ensemble Methods

Ensemble methods are machine learning

techniques that combine the predictions of

multiple base models (often called "weak

learners") to create a more accurate and

robust model. These methods are used to

improve predictive performance and

reduce overfitting. Random Forests,

Gradient Boosted Trees (GBM), and

AdaBoost are three popular ensemble

methods, each with its unique approach.

Let's delve into each of these methods in

detail:

Random Forests:

- Random Forest is an ensemble method

that combines multiple decision trees to

create a more accurate and stable model.

- It was introduced by Leo Breiman and

Adele Cutler and is widely used for

classification and regression tasks.

How Random Forest Works:

1. Bootstrapping (Random Sampling):

- Random Forest starts by creating

multiple bootstrap samples (randomly

selected subsets with replacement) from

the original training dataset.

- Each bootstrap sample is used to train a

separate decision tree.

2. Random Feature Selection:

- At each node of a decision tree, only a

random subset of features (a subset of all

available features) is considered for

splitting. This randomness helps to

decorrelate the trees.

3. Voting (Classification) or Averaging

(Regression):

- For organization tasks, each tree "votes"

for a class, and the class with the most

votes becomes the prediction.

- For regression tasks, each tree predicts a

continuous value, and the final prediction

is often the average of these predictions.

Advantages of Random Forest:

- Reduces overfitting compared to

individual decision trees.

- Provides feature importance scores,

allowing you to identify which features are

more influential.

- Robust to noisy data and outliers.

- Handles both categorical and numerical

data well.

Disadvantages of Random Forest:

- Can be computationally expensive,

especially with a large number of trees.

- May not provide as interpretable results

as a single decision tree.

2. Gradient Boosted Trees (GBM):

Overview:

- Gradient Boosted Trees (GBM) is an

ensemble method that builds multiple

decision trees sequentially.

- It aims to correct the errors made by

previous trees in the sequence by assigning

more weight to data points that are

misclassified.

How GBM Works:

1. Base Model Creation:

- It starts with an initial simple model

(often a single decision tree).

2. Error Calculation:

- Errors (residuals) are calculated for each

data point by comparing the actual target

values with the predictions made by the

current model.

3. Creating Weak Learners:

- A new decision tree (weak learner) is

constructed to predict these errors, with the

goal of reducing them.

4. Weighted Combination:

- The predictions from the new tree are

added to the predictions of the previous

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 36

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

model, with weights applied to minimize

errors.

5. Iterative Process:

- Steps 2-4 are repeated iteratively,

creating additional trees, each focused on

correcting the errors of the ensemble built

so far.

6. Final Prediction:

- The final prediction is the weighted sum

of the predictions from all the trees.

Advantages of GBM:

- Can capture complex relationships in

data.

- Typically provides very high predictive

accuracy.

- Handles both regression and

classification tasks.

- Automatically deals with missing data.

Disadvantages of GBM:

- Prone to overfitting if not properly tuned.

- Can be computationally expensive.

- Hyperparameter tuning is crucial for

optimal performance.

3. AdaBoost (Adaptive Boosting):

Overview:

- AdaBoost is an ensemble method that

focuses on improving the classification

performance of weak learners.

- It assigns different weights to data points

to give more importance to those that are

misclassified by the current model.

How AdaBoost Works:

1. Weighted Sample Selection:

- Initially, all data points are assigned

equal weights.

- A base model (often a decision stump - a

single-level decision tree) is trained on this

weighted dataset.

2. Error Calculation:

- Errors are calculated by comparing the

actual and predicted labels.

3. Weight Update:

- The weight of each data point is adjusted

based on the errors.

- Misclassified points receive higher

weights, making them more important for

the next model.

4. Iterative Process:

- Steps 2 and 3 are repeated iteratively to

create additional weak learners.

- Each new model is trained on the dataset

with updated weights.

5. Final Prediction:

- The final prediction is a weighted

combination of predictions from all the

models.

Advantages of AdaBoost:

- Good at handling both categorical and

numerical features.

- Effective for binary and multiclass

classification problems.

- Less prone to overfitting compared to

some other ensemble methods.

Disadvantages of AdaBoost:

- Sensitive to noisy data and outliers.

- Can be affected by weak learners that are

too complex or too simple.

- May require careful tuning of

hyperparameters.

In summary, ensemble methods like

Random Forests, Gradient Boosted Trees

(GBM), and AdaBoost combine the

predictions of multiple weak learners to

create stronger models. Each method has

its strengths and weaknesses, and the

choice of which one to use often depends

on the specific problem and dataset at

hand. Proper hyperparameter tuning is

crucial for optimizing their performance.

CONCLUSION

Decision trees stand as a cornerstone in

machine learning due to their intuitive

structure and versatile applicability. They

serve as powerful tools for both

classification and regression tasks,

enabling data-driven decisions in various

domains.

The algorithm's ability to handle diverse

data types, its interpretability, and minimal

data preprocessing make it a preferred

 ac

HBRP Publication Page 29-37 2023. All Rights Reserved Page 37

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

choice, especially for exploratory analysis

and initial model development. However,

decision trees are not without challenges;

overfitting, sensitivity to data fluctuations,

and potential bias towards dominant

classes are areas that necessitate careful

consideration.

Techniques like pruning, ensemble

methods, and hyperparameter tuning can

mitigate these limitations. Decision trees

not only empower predictive modeling but

also serve as a stepping stone for

understanding more complex machine

learning concepts, contributing to the

broader landscape of AI-driven insights

and solutions.

REFERENCES

1. https://www.geeksforgeeks.org/decisio

n-tree-introduction-example/

2. https://thecleverprogrammer.com/202

0/07/07/decision-trees-in-machine-

learning/

3. https://www.javatpoint.com/machine-

learning-decision-tree-classification-

algorithm

4. https://www.analyticsvidhya.com/blog

/2021/08/decision-tree-algorithm/

5. https://towardsdatascience.com/decisi

on-tree-in-machine-learning-

e380942a4c96

https://www.geeksforgeeks.org/decision-tree-introduction-example/
https://www.geeksforgeeks.org/decision-tree-introduction-example/
https://thecleverprogrammer.com/2020/07/07/decision-trees-in-machine-learning/
https://thecleverprogrammer.com/2020/07/07/decision-trees-in-machine-learning/
https://thecleverprogrammer.com/2020/07/07/decision-trees-in-machine-learning/
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/
https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/
https://towardsdatascience.com/decision-tree-in-machine-learning-e380942a4c96
https://towardsdatascience.com/decision-tree-in-machine-learning-e380942a4c96
https://towardsdatascience.com/decision-tree-in-machine-learning-e380942a4c96

