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ABSTRACT 

Decision trees are fundamental in machine learning due to their interpretability and 

versatility. They are hierarchical structures used for classification and regression tasks, 

making decisions by recursively splitting data based on features. This abstract explores 

decision tree algorithms, tree construction, pruning to prevent overfitting, and ensemble 

methods like Random Forests. Additionally, it covers handling categorical data, imbalanced 

datasets, missing values, and hyperparameter tuning. Decision trees are valuable for feature 

selection and model interpretability. However, they have drawbacks, such as overfitting and 

sensitivity to data variations. Nevertheless, they find applications in fields like finance, 

medicine, and natural language processing, making them a critical topic in machine 

learning. 
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INTRODUCTION 

Decision trees are a fundamental and 

intuitive machine learning algorithm used 

for both classification and regression tasks.  

 

They mimic human decision-making by 

breaking down a complex decision-making 

process into a series of simpler decisions. 

Here's an overview of decision tree 

algorithms: 

 

Decision Tree Basics: 

- At its core, a decision tree is a tree-like 

structure composed of nodes and edges. 

- Each node in the tree represents a 

decision or a test on a specific attribute 

(feature). 

- Each edge represents the outcome of the 

test, leading to another node or a leaf node. 

- Leaf nodes contain the final decision or 

prediction. 

 

 

Tree Construction: 

- Decision trees are constructed through a 

process called tree induction or tree 

building. 

- The process starts with a root node, 

which represents the entire dataset. 

- At each internal node, the algorithm 

selects a feature and a threshold to split the 

data into two or more subsets. 

- The goal is to make these splits in a way 

that maximizes the "purity" of the subsets, 

meaning that data points of the same class 

or with similar values are grouped 

together. 

- This process continues recursively until a 

stopping criterion is met, such as reaching 

a maximum tree depth or having a 

minimum number of data points in a leaf 

node. 
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Splitting Criteria: 

- Decision tree algorithms use various 

criteria to determine how to split the data 

at each node. Common criteria include: 

  - Information Gain (ID3): Measures how 

much information is gained about the 

target variable by making a split. 

  - Gini Impurity (CART): Measures the 

probability of misclassifying a randomly 

chosen element from the dataset. 

  - Entropy (C4.5): Measures the level of 

disorder or impurity in a set of data. 

  - Mean Squared Error (for regression 

trees): Measures the variance of the target 

variable. 

 

Classification vs. Regression Trees: 

- Decision trees can be used for both 

classification and regression tasks. 

- Classification trees are used when the 

target variable is categorical, and they aim 

to assign a class label to each data point. 

- Regression trees are used when the target 

variable is continuous, and they aim to 

predict a numerical value for each data 

point. 

 

Pruning: 

- To prevent overfitting (where the tree fits 

the training data too closely but fails to 

generalize to new data), decision trees can 

be pruned. 

- Pruning involves removing branches of 

the tree that do not significantly improve 

predictive accuracy. 

- Pruning is essential for building simpler 

and more interpretable trees. 

 

Ensemble Methods: 

- Decision trees can be enhanced using 

ensemble methods such as Random 

Forests and Gradient Boosting. These 

methods combine the predictions of 

multiple decision trees to improve 

accuracy and reduce overfitting. 

 

 

 

Basic Structure of Decision Trees: 

The basic structure of a decision tree 

consists of the following elements: 

1. Root Node: The topmost node in the 

tree, representing the entire dataset. 

2. Internal Nodes: These nodes represent 

decisions or tests on specific features. 

They have one incoming edge (from their 

parent node) and two or more outgoing 

edges leading to child nodes. 

3. Edges: Edges connect nodes and 

represent the outcome of the test at the 

parent node. They lead to child nodes 

based on the result of the test (e.g., "yes" 

or "no"). 

4. Leaf Nodes: These are the terminal 

nodes of the tree and do not have any child 

nodes. Leaf nodes contain the final 

decision or prediction, whether it's a class 

label (for classification) or a numerical 

value (for regression). 

5. Features and Thresholds: At each 

internal node, a specific feature and a 

threshold are used to split the data into 

subsets. These determine the branching of 

the tree. 

6. Branches: Branches connect nodes and 

show the path from the root node to a leaf 

node, indicating the sequence of decisions 

made to reach a decision or prediction. 

7. Depth: The depth of a tree is the length 

of the longest path from the root node to a 

leaf node. Deeper trees are more complex 

but can also lead to overfitting. 

8. Pruning: Pruning involves removing 

branches from the tree to simplify it and 

improve generalization. 

 

In summary, decision trees are versatile 

machine learning algorithms that create a 

hierarchical structure to make decisions or 

predictions based on data. Understanding 

the basic structure and principles of 

decision trees is essential for effectively 

using them in various machine learning 

tasks. 
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Decision Tree Algorithms 

Decision tree algorithms are the 

foundation of decision tree models, which 

are used for both classification and 

regression tasks. There are several key 

decision tree algorithms, including ID3, 

C4.5, CART, and more. Let's explore them 

in detail: 

 

ID3 (Iterative Dichotomiser 3): 

- Overview: ID3 was one of the earliest 

decision tree algorithms, developed by 

Ross Quinlan. It is primarily used for 

classification tasks. 

- Splitting Criterion: ID3 uses the 

"Information Gain" criterion to select the 

best attribute for splitting the data at each 

node. Information Gain measures how 

much uncertainty or entropy is reduced 

after a split. 

- Handling Categorical Data: ID3 works 

well with categorical attributes but 

struggles with continuous data, which it 

discretizes. 

- Drawbacks: ID3 tends to create deep 

trees, which can lead to overfitting. It also 

doesn't handle missing values gracefully. 

 

C4.5: 

- Overview: C4.5 is an improved version 

of ID3, also developed by Ross Quinlan. 

It's one of the most widely used decision 

tree algorithms. 

- Splitting Criterion: C4.5 uses 

"Information Gain" or "Gain Ratio" as 

criteria for attribute selection. Gain Ratio 

addresses the bias of Information Gain 

towards attributes with many values. 

- Handling Categorical Data: C4.5 handles 

both categorical and continuous attributes 

efficiently. 

- Pruning: C4.5 employs pruning to reduce 

the risk of overfitting. It builds a large tree 

first and prunes it later to find the optimal 

size. 

- Missing Values: C4.5 can handle missing 

attribute values during tree construction. 

 

CART (Classification and Regression 

Trees): 

- Overview: CART is a versatile decision 

tree algorithm developed by Breiman et al. 

It can be used for both classification and 

regression tasks. 

- Splitting Criterion: 

  - For classification, CART uses the "Gini 

Impurity" criterion. It measures the 

probability of misclassifying a randomly 

chosen data point. 

  - For regression, CART uses the "Mean 

Squared Error" (MSE) criterion. It aims to 

minimize the variance of the target 

variable within the leaf nodes. 

- Binary Trees: CART constructs binary 

trees, meaning each node has two child 

nodes. 

- Pruning: Similar to C4.5, CART uses 

pruning to avoid overfitting by removing 

branches that do not significantly improve 

impurity (for classification) or MSE (for 

regression). 

- Handling Missing Values: CART can 

handle missing values by assigning them 

to a majority class or predicting them 

using surrogate splits. 

 

Random Forest: 

- Overview: Random Forest is an 

ensemble learning method based on 

decision trees. It uses multiple decision 

trees to make predictions and aggregates 

their results. 

- Bootstrapping: Each tree in a Random 

Forest is trained on a different bootstrap 

sample of the data. 

- Feature Selection: Random Forest selects 

a random subset of features at each split, 

reducing the risk of overfitting and 

improving generalization. 

- Voting/Averaging: For classification 

tasks, Random Forest uses majority 

voting; for regression, it uses averaging of 

predictions from individual trees. 

- Robustness: Random Forest is robust to 

outliers and noisy data, making it a 

popular choice for various applications. 
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Gradient Boosted Trees (GBM): 

- Overview: GBM is another ensemble 

method that builds decision trees 

sequentially, with each tree trying to 

correct the errors of the previous ones. 

- Loss Functions: GBM can use various 

loss functions, such as "MSE" for 

regression and "Log Loss" for 

classification. 

- Boosting: GBM boosts the performance 

of the model by iteratively adding trees 

that focus on the mistakes made by the 

previous ones. 

- Regularization: GBM employs 

regularization techniques to prevent 

overfitting. 

- Gradient Descent: GBM uses gradient 

descent to minimize the loss function and 

update tree predictions. 

Each of these decision tree algorithms has 

its strengths and weaknesses, and the 

choice of algorithm often depends on the 

specific problem, the nature of the data, 

and the desired output (classification or 

regression). Understanding the differences 

between these algorithms is essential for 

effectively applying decision trees in 

machine learning tasks. 

 

Tree Construction 

Tree Building Process: 

The tree construction process is the core of 

decision tree algorithms. It involves 

building a tree structure by recursively 

splitting the dataset into subsets based on 

certain criteria until a stopping condition is 

met. Here's a step-by-step explanation: 

1. Initial Node: 

- At the beginning, all the training data is 

considered as one single node, which is the 

root of the decision tree. 

2. Node Splitting: 

- In each internal node (non-leaf node), the 

algorithm selects one feature and a 

threshold value. 

- The goal is to split the data into child 

nodes such that the impurity or error in 

each child node is minimized.  

3. Impurity Measures: 

- The choice of the splitting criteria is 

crucial. Common impurity measures used 

in decision trees include: 

  - Gini Impurity: It measures the 

probability of incorrectly classifying a 

randomly chosen element if it were 

randomly classified according to the 

distribution of classes in the node. 

  - Information Gain (Entropy): It measures 

the reduction in entropy (uncertainty) of 

the target variable achieved by splitting the 

data. 

  - Mean Squared Error (MSE): Used in 

regression trees, it measures the average 

squared difference between the actual and 

predicted values. 

4. Splitting Decision: 

- The feature and threshold that result in 

the lowest impurity or error are selected 

for the split. 

- For classification, this minimizes the 

impurity in child nodes, while for 

regression, it minimizes the MSE. 

5. Recursive Partitioning: 

- After the best split is found, the data is 

partitioned into subsets based on the 

chosen feature and threshold. 

- Each subset becomes a child node of the 

current node. 

- The splitting process then continues 

recursively for each child node until one or 

more stopping conditions are met. 

6. Stopping Conditions: 

- Tree construction stops when one or 

more of the following conditions are met: 

  - Maximum tree depth is reached. 

  - The number of samples in a node falls 

below a specified minimum (minimum 

samples per leaf). 

  - The impurity or error in a node becomes 

lower than a predefined threshold. 

  - Other criteria like maximum leaf nodes 

or maximum features are reached. 

7. Leaf Nodes: 

- When a stopping condition is met, a node 

becomes a leaf node. 



  ac 
 
 

    

 

HBRP Publication Page 29-37 2023. All Rights Reserved                                                          Page 33   

Journal of Advancement in Parallel Computing  
Volume 6 Issue 3 

- In classification, the class label of the 

majority of samples in the node is assigned 

to the leaf node. 

- In regression, the leaf node contains the 

predicted value, which is often the mean or 

median of the target values in that node. 

8. Pruning: 

- After the tree is constructed, it may be 

pruned to reduce complexity and 

overfitting. Pruning involves removing 

branches that do not significantly improve 

the model's performance. 

 

Recursive Partitioning: 

The heart of decision tree construction is 

the recursive partitioning of the data. This 

process involves repeatedly splitting the 

dataset into subsets based on the selected 

feature and threshold. The idea is to create 

child nodes that are more homogenous 

with respect to the target variable than the 

parent node. This recursive process 

continues until the stopping conditions are 

met. 

The choice of feature and threshold for 

splitting nodes is critical. Different 

algorithms use different criteria, such as 

Gini impurity, information gain, or mean 

squared error, to decide which split is best 

at each node. These criteria guide the tree 

construction process by selecting the split 

that results in the most significant 

reduction in impurity or error. 

 

Overall, tree construction is an iterative 

and recursive process that aims to create a 

tree structure that effectively partitions the 

data and makes accurate predictions for 

both classification and regression tasks. 

Properly choosing splitting criteria and 

handling stopping conditions is essential 

for building decision trees that generalize 

well to new, unseen data. 

 

Decision Trees in Machine Learning 

We'll use the popular scikit-learn library, 

which provides a user-friendly interface 

for working with various machine learning 

algorithms, including decision trees. 

Let's assume you want to build a decision 

tree classifier for a simple binary 

classification problem using the Iris 

dataset. Here's how you can do it: 

 

1. Import Required Libraries: 

 
 

2. Load and Prepare the Data: 
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3. Create and Train the Decision Tree Classifier: 

 
 

4. Make Predictions: 

 
 

5. Evaluate the Model: 

 
 

6. Visualize the Decision Tree: 

You can visualize the trained decision tree using the plot_tree function from scikit-learn's tree 

module: 
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This code snippet demonstrates how to 

build a simple decision tree classifier using 

the Iris dataset. Keep in mind that this is a 

basic example. In practice, you might need 

to tune hyperparameters, handle missing 

data, and consider more advanced 

techniques like pruning and ensembling to 

improve the performance and 

generalization of your decision tree 

models. 

 

Ensemble Methods 

Ensemble methods are machine learning 

techniques that combine the predictions of 

multiple base models (often called "weak 

learners") to create a more accurate and 

robust model. These methods are used to 

improve predictive performance and 

reduce overfitting. Random Forests, 

Gradient Boosted Trees (GBM), and 

AdaBoost are three popular ensemble 

methods, each with its unique approach. 

Let's delve into each of these methods in 

detail: 

 

Random Forests: 

- Random Forest is an ensemble method 

that combines multiple decision trees to 

create a more accurate and stable model. 

- It was introduced by Leo Breiman and 

Adele Cutler and is widely used for 

classification and regression tasks. 

 

How Random Forest Works: 

1. Bootstrapping (Random Sampling): 

- Random Forest starts by creating 

multiple bootstrap samples (randomly 

selected subsets with replacement) from 

the original training dataset. 

- Each bootstrap sample is used to train a 

separate decision tree. 

2. Random Feature Selection: 

- At each node of a decision tree, only a 

random subset of features (a subset of all 

available features) is considered for 

splitting. This randomness helps to 

decorrelate the trees. 

3. Voting (Classification) or Averaging 

(Regression): 

- For organization tasks, each tree "votes" 

for a class, and the class with the most 

votes becomes the prediction. 

- For regression tasks, each tree predicts a 

continuous value, and the final prediction 

is often the average of these predictions. 

Advantages of Random Forest: 

- Reduces overfitting compared to 

individual decision trees. 

- Provides feature importance scores, 

allowing you to identify which features are 

more influential. 

- Robust to noisy data and outliers. 

- Handles both categorical and numerical 

data well. 

Disadvantages of Random Forest: 

- Can be computationally expensive, 

especially with a large number of trees. 

- May not provide as interpretable results 

as a single decision tree. 

 

2. Gradient Boosted Trees (GBM): 

Overview: 

- Gradient Boosted Trees (GBM) is an 

ensemble method that builds multiple 

decision trees sequentially. 

- It aims to correct the errors made by 

previous trees in the sequence by assigning 

more weight to data points that are 

misclassified. 

How GBM Works: 

1. Base Model Creation: 

- It starts with an initial simple model 

(often a single decision tree). 

2. Error Calculation: 

- Errors (residuals) are calculated for each 

data point by comparing the actual target 

values with the predictions made by the 

current model. 

3. Creating Weak Learners: 

- A new decision tree (weak learner) is 

constructed to predict these errors, with the 

goal of reducing them. 

4. Weighted Combination: 

- The predictions from the new tree are 

added to the predictions of the previous 
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model, with weights applied to minimize 

errors. 

5. Iterative Process: 

- Steps 2-4 are repeated iteratively, 

creating additional trees, each focused on 

correcting the errors of the ensemble built 

so far. 

6. Final Prediction: 

- The final prediction is the weighted sum 

of the predictions from all the trees. 

Advantages of GBM: 

- Can capture complex relationships in 

data. 

- Typically provides very high predictive 

accuracy. 

- Handles both regression and 

classification tasks. 

- Automatically deals with missing data. 

Disadvantages of GBM: 

- Prone to overfitting if not properly tuned. 

- Can be computationally expensive. 

- Hyperparameter tuning is crucial for 

optimal performance. 

 

3. AdaBoost (Adaptive Boosting): 

Overview: 

- AdaBoost is an ensemble method that 

focuses on improving the classification 

performance of weak learners. 

- It assigns different weights to data points 

to give more importance to those that are 

misclassified by the current model. 

How AdaBoost Works: 

1. Weighted Sample Selection: 

- Initially, all data points are assigned 

equal weights. 

- A base model (often a decision stump - a 

single-level decision tree) is trained on this 

weighted dataset. 

2. Error Calculation: 

- Errors are calculated by comparing the 

actual and predicted labels. 

3. Weight Update: 

- The weight of each data point is adjusted 

based on the errors. 

- Misclassified points receive higher 

weights, making them more important for 

the next model. 

4. Iterative Process: 

- Steps 2 and 3 are repeated iteratively to 

create additional weak learners. 

- Each new model is trained on the dataset 

with updated weights. 

5. Final Prediction: 

- The final prediction is a weighted 

combination of predictions from all the 

models. 

 

Advantages of AdaBoost: 

- Good at handling both categorical and 

numerical features. 

- Effective for binary and multiclass 

classification problems. 

- Less prone to overfitting compared to 

some other ensemble methods. 

 

Disadvantages of AdaBoost: 

- Sensitive to noisy data and outliers. 

- Can be affected by weak learners that are 

too complex or too simple. 

- May require careful tuning of 

hyperparameters. 

 

In summary, ensemble methods like 

Random Forests, Gradient Boosted Trees 

(GBM), and AdaBoost combine the 

predictions of multiple weak learners to 

create stronger models. Each method has 

its strengths and weaknesses, and the 

choice of which one to use often depends 

on the specific problem and dataset at 

hand. Proper hyperparameter tuning is 

crucial for optimizing their performance. 

 

CONCLUSION 

Decision trees stand as a cornerstone in 

machine learning due to their intuitive 

structure and versatile applicability. They 

serve as powerful tools for both 

classification and regression tasks, 

enabling data-driven decisions in various 

domains.  

 

The algorithm's ability to handle diverse 

data types, its interpretability, and minimal 

data preprocessing make it a preferred 
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choice, especially for exploratory analysis 

and initial model development. However, 

decision trees are not without challenges; 

overfitting, sensitivity to data fluctuations, 

and potential bias towards dominant 

classes are areas that necessitate careful 

consideration.  

 

Techniques like pruning, ensemble 

methods, and hyperparameter tuning can 

mitigate these limitations. Decision trees 

not only empower predictive modeling but 

also serve as a stepping stone for 

understanding more complex machine 

learning concepts, contributing to the 

broader landscape of AI-driven insights 

and solutions. 
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