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Abstract: The goal of this paper is to investigate the changes of entropy estimates when the amplitude
distribution of the time series is equalized using the probability integral transformation. The data we
analyzed were with known properties—pseudo-random signals with known distributions, mutually
coupled using statistical or deterministic methods that include generators of statistically dependent
distributions, linear and non-linear transforms, and deterministic chaos. The signal pairs were coupled
using a correlation coefficient ranging from zero to one. The dependence of the signal samples
is achieved by moving average filter and non-linear equations. The applied coupling methods
are checked using statistical tests for correlation. The changes in signal regularity are checked
by a multifractal spectrum. The probability integral transformation is then applied to cardiovascular
time series—systolic blood pressure and pulse interval—acquired from the laboratory animals and
represented the results of entropy estimations. We derived an expression for the reference value
of entropy in the probability integral transformed signals. We also experimentally evaluated the
reliability of entropy estimates concerning the matching probabilities.

Keywords: approximate and sample entropy; cross-entropy; copulas; probability integral
transformation; dependency structures

1. Introduction

The sampling theorem [1] paved a way for pervasive signal processing within the scientific fields
where it was once inconceivable. Tools developed for classical thermodynamics or communications
engineering found new multidisciplinary implementation.

The function developed to estimate the uncertainty of the communication signals—entropy [2]
—attracted the attention of scientists from a range of different fields. Other entropy concepts were
accepted as well—Kolmogorov–Sinai [3], Grassberger et al. [4] and Eckmann et al. [5], despite difficult
implementation and firm theoretical framework.

To ensure easy implementation, Pincus [6] proposed the approximate entropy (ApEn) that avoids
the rigid mathematical requirements of its theoretical predecessors (hence the name—approximate).
The researchers readily accepted ApEn and its modification SampEn (sample entropy, [7]),
with a commendation of the rapidly growing number of citations [8].

Medical researchers quickly realized the benefits of signal processing [9] and successfully applied
ApEn and SampEn, in particular for cardiovascular signals: for heart rate variability (HRV) analysis
in patients with type 2 diabetes [10], in patients with heart failure [11], in healthy subjects [12] during
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exercise and during resting [13], under stressful conditions [7,14] or for age and gender analysis [15,16].
Entropy became important for quantifying the deterministic chaos of HRV [17], cardiac variability [18],
and complexity changes in cardiovascular disease [19], but it can also be applied for monitoring
the changes in neurocardiovascular dynamics, e.g., in acute brain injury patients [20].

Cross-entropy (XEn) was a straightforward generalization, derived as a measure that estimates
the mutual (un)predictability of two simultaneously recorded and interconnected signals [7,21,22].
XEn can be based on ApEn (XApEn) or SampEn (XSampEn). It came into the focus slower than ApEn
and SampEn, but it has found its place in cardiovascular analytics [23,24].

Many contributions have introduced the improvement of the original concepts [14,25–28]
or proposed the alternative ways to approximate the entropy [8,29–32], but ApEn and SampEn
have remained on the top, with the advantages summarized in a comprehensive tutorial [33].

The entropy application proposed in this paper is motivated by a mathematical method based
on copula theory [34]. The approach decomposes a multivariate joint distribution of D > 1 signals,
each with an arbitrary distribution, into D independent uniform marginals and a function that binds
them all—the copulas. The copulas reveal the dependency structure of two or more related signals,
while independent marginals, with equalized amplitude distributions, preserve the shape of signal
fluctuations. The signal transformation that produces the copulas and the corresponding marginals is
called the probability integral transform (PIT, or PI-transform) [35].

The goal of this paper is to investigate the changes of entropy when the amplitude distribution
of the time series is equalized, while the temporal fluctuations of the signal amplitudes remain
intact. In particular, we aim to show the benefits of the probability integral transformation to
the reliability of entropy estimates. We used artificial time series—pseudo-random signals with
arbitrary distributions, coupled with statistical or deterministic methods that include generators
of statistically dependent distributions, linear and non-linear transforms, and unpredictable (but not
random) signals of deterministic chaos. We also used real cardiovascular time series—systolic blood
pressure and pulse interval—acquired from laboratory animals.

The paper is organized as follows: Section 2 explains Sklar’s theorem, copula distribution,
and probability integral transform that motivated this study. It also gives a brief recap of ApEn, SampEn,
and XEn procedures. Section 2 then continues by presenting the artificial signals that were used
to verify the proposed concept, including pseudo-random signals with Gaussian, beta, and gamma
distributions and deterministic chaos (logistic map [36]). The pairs of signals are mutually coupled
with correlation coefficient ranging from zero to one. The dependency of the signal samples is
achieved by moving average (MA) filter, or by non-linear equations. The applied coupling methods are
checked using statistical tests for correlation and autocorrelation. The changes in signal regularity are
verified by a multifractal spectrum. The section concludes with a brief description of the experimental
protocol and of the signal acquisition from the laboratory animals. Section 3 first empirically defines
the threshold, a parameter crucial for reliable entropy estimation. The results of entropy estimation
from the artificial signals and the signals of laboratory animals exposed to stress are presented and
discussed. An expression for the entropy of random signals with uniform distribution is derived,
a reference value to which the entropy of PI-transformed signals can be compared. This expression can
be applied for ApEn, SampEn, and XEn. The reliability of entropy estimates concerning the matching
probabilities is also experimentally evaluated. Concluding remarks are given in Section 4.

2. Materials and Methods

This section shows the theory underlying the dependency structures of multivariate time series
given by a copula density. The copula density was a motivation to estimate the entropy from signals
with equalized amplitudes. The ApEn, SampEn, and XEn procedures are also briefly described.
The signals to be analyzed are the cardiovascular time series recorded from rats exposed to various
stressful situations. However, since the PI-transform influence to entropy estimates are still unknown,
first we need to analyze the artificially generated signals with known statistical properties.
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2.1. Probability Integral Transform, Sklar’s Theorem and Copula Density

The probability integral transform (PIT, or PI-transform) converts a random variable (RV) x with
an arbitrary distribution function Fx(x) into a RV y uniformly distributed on the segment [0, 1] [35].
The function used for transformation is the distribution function of signal x, i.e., y = Fx(x). The resulting
distribution function Fy(y) is uniform (Figure 1). The proof can be found in textbooks on probability
and random variables (e.g., p. 139, [37]), but it is included for the completeness:
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Figure 1. Probability integral transform. The random variable x with the density function fx(x) is 
transformed into the uniformly distributed random variable y = Fx(x), with uniform density fy(y) = 1. 

An illustrative example of signals transformed by PIT is presented in Figure 2, showing the 
systolic blood pressure (SBP) and pulse interval (PI) of a laboratory rat before and after PIT 
application. 

  

  

Figure 2. Waveforms recorded from a laboratory rat before and after the probability integral 
transform: (a) Systolic blood pressure (SBP) and corresponding probability integral transform (PIT) 
signal and (b) pulse interval (PI) and corresponding PIT signal. Note that fluctuations of PIT signals 
follow the fluctuations of the original signals. The insets in the top right corner illustrate the 
uniformity of the PIT amplitudes along the entire recording time. 

PIT gained its popularity during the early days of the digital era, as its inverse produces a 
random signal of arbitrary distribution. When software packages started to provide built-in 

Figure 1. Probability integral transform. The random variable x with the density function fx(x) is
transformed into the uniformly distributed random variable y = Fx(x), with uniform density fy(y) = 1.

From Figure 1 it is obvious that the probabilities Pr{x ≤ x0} and Pr{y ≤ y0} are equal. The same
applies to the distribution functions: (Fx(x0) = Pr{x ≤ x0}) = (Fy(y0) = Pr{y ≤ y0}). Additionally, the PIT
transformation rule states that y0 = Fx(x0), so the following may be written:

Fy(y0) = Pr
{
y ≤ y0

}
= Pr{x ≤ x0} = Pr

{
x ≤ F−1

x (y0)
}
= Fx

(
F−1

x (y0)
)
= y0 (1)

The distribution function Fy(y0) is a linear function of y0. Its derivative is a constant, so the
distribution of signal y is indeed uniform.

An illustrative example of signals transformed by PIT is presented in Figure 2, showing the systolic
blood pressure (SBP) and pulse interval (PI) of a laboratory rat before and after PIT application.
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Figure 2. Waveforms recorded from a laboratory rat before and after the probability integral transform:
(a) Systolic blood pressure (SBP) and corresponding probability integral transform (PIT) signal and
(b) pulse interval (PI) and corresponding PIT signal. Note that fluctuations of PIT signals follow
the fluctuations of the original signals. The insets in the top right corner illustrate the uniformity
of the PIT amplitudes along the entire recording time.

PIT gained its popularity during the early days of the digital era, as its inverse produces a random
signal of arbitrary distribution. When software packages started to provide built-in distribution
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generators, PIT was almost let into oblivion, but not for long. Sklar’s theorem [38], although derived
in the early sixties, came into the research focus at the turn of the century and brought PIT to
the forefront again.

Sklar’s theorem states that every D-dimensional (multivariate) distribution function
H(x01, x02, . . . , x0D) = Pr{x1 ≤ x01, . . . , xD ≤ x0D} can be expressed in terms of its uniform marginals
Fxi(x0i) = Pr{xi ≤ x0i}, i = 1, . . . , D, and a joint distribution—a copula C—that binds them, i.e.,

H(x01, x02, . . . , x0D) = C(Fx1(x01), Fx2(x02), . . . , FxD(x0D)). (2)

An alternative interpretation can be formulated if we recollect that each marginal is uniformly
distributed, i.e., Fxi(x0i) = ui, i = 1, . . . , D:

C(u1, u2, . . . , uD) = Pr
{
x1 ≤ F−1

x1 (u1), x2 ≤ F−1
x2 (u2), . . . xD ≤ F−1

xD(uD)
}
. (3)

Despite the abstract theoretical definition, a copula implementation and interpretation are simple.
The copulas are distribution functions, and their derivatives are the probability density functions—the
copula density.

The copula density depicts the dependency structure (density of dependency) of the composite
signals. An ability to visualize the dependency structure, especially for bivariate signals, is a unique
advantage of the copulas density. To estimate the empirical copula density—it is sufficient to apply
the probability integral transform to the source signals and find their joint probability density function.

An example of empirical copula density is shown in Figure 3. The left panel shows the classical
joint probability distribution function of systolic blood pressure (SBP) and pulse intervals (PI) signals
of the laboratory rats. The right panel presents the copula density of the same signals (D = 2),
in the abstract two-dimensional [0, 1]D copula plane. The dependency structure reveals the linear
relationship between SBP and PI that corresponds to baroreflex, a major regulatory feedback that helps
to maintain blood pressure at a nearly constant level.
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Figure 3. (a) Joint probability density function of systolic blood pressure (SBP) and pulse interval
(PI) of a laboratory rat; (b) copula density of PI-transformed SBP and PI signals. Note that the linear
dependency structure along the diagonal in (b) is consistent with the linear cardiovascular relationship
of SBP and PI in healthy subjects.

Another property of the copulas is that they quantify the strength of signal coupling. It differs
from other similar procedures because it can handle more than two signals, it can capture non-linear
dependencies as well, but, above all, it can be adapted to the properties of the observed signals.
There are many copula sets (“copula families” [39]), and each one is adapted to the particular signal
type. For example, Frank copulas are the most suitable for cardiovascular signals [34]. It is this feature
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of the copulas that has brought them great popularity in many research domains, from finances [40],
telecommunications [41], civil engineering [42], geodesy, [43] climatology [44], to medicine [45] and
cardiology [34].

2.2. XEn, ApEn and SampEn

The procedures for estimating ApEn and SampEn, originally introduced in [6,7], are repeatedly
described in most papers that implement them. We shall give a brief recap of XEn as a general
procedure and outline the differences in respect to ApEn and SampEn.

XEn [25,46] measures the mutual (un)predictability of time series X and Y, each one comprising
N samples:

• Reference series xi ∈ X, i = 1, . . . , N;
• Follower series yj ∈ Y, j = 1, . . . , N.

If ApEn or SampEn are implemented, there is just a single series X and in the remaining explanation
Y = X.

Time series must be pre-processed before further analysis. The signal comparability is ensured
by z-normalization (standard scaling—mean signal value and standard deviation reduced to 0 and
1, respectively). The estimation of statistical moments requires the stationary time series, ensured
by a filter designed specifically for biomedical time series [47].

Time series are then divided into the overlapping vectors of length m (m is usually 2, 3 or 4):

• Template vector X(i)
m = [xi, xi+1, · · · , xi+m−1], i = 1, · · · , N −m + 1;

• Follower vector Y( j)
m =

[
y j, y j+1, · · · , y j+m−1

]
, j = 1, · · · , N −m + 1;

A distance between each template X(i)
m and each follower vector Y( j)

m is defined as a maximal
absolute sample difference:

• d
(
X(i)

m , Y( j)
m

)
= max

k=0,··· ,m−1

∣∣∣xi+k − y j+k
∣∣∣, i, j = 1, · · · , N −m + 1.

If the distance is less than or equal to the predefined threshold r, the vectors are declared as similar.
The template matching probability p̂(m)

i (r) is proportional to the number of vectors similar to a particular

template vector X(i)
m :

p̂(m)
i (r) = Pr

{
d(Xm, Ym) ≤ r

∣∣∣∣Xm = X(i)
m , Ym ∈ Y, r > 0

}
=

1
N −m + 1

·

N−m+1∑
j=1

I {d
(
X(i)

m , X(i)
m

)
≤ r}. (4)

The sign “ˆ” in (4) denotes an estimate, while I{·} is an indicator function that is equal to 1 if

d
(
X(i)

m , Y( j)
m

)
≤ r, otherwise it is equal to zero. It is used as a mathematical description for the counting

process, so (4) estimates the relative frequency of vectors similar to the template X(i)
m . For SampEn and

XSampEn, the step (N − m + 1) is excluded from averaging. SampEn also excluded self-matching, when
the template vector X(i)

m is compared to itself.
Averaging the probabilities is different for ApEn and SampEn, and the corresponding

cross-entropies. For (X) ApEn, the logarithms of the probabilities (the information contents of
each template [2]) are averaged:

Φ̂(m)(r, N) =
1

N −m + 1
·

N−m+1∑
i=1

ln(p̂(m)
i (r)). (5)
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For SampEn, the logarithm is taken from the averaged probabilities:

Ψ̂(m)(r, N) = ln

 1
N −m

·

N−m∑
i=1

p̂(m)
i (r)

. (6)

The complete procedure is repeated for the vectors of length m + 1, with summands equal to:

Φ̂(m+1)(r, N) =
1

N −m
·

N−m∑
i=1

ln(p̂(m+1)
i (r)), Ψ̂(m+1)(r, N) = ln

 1
N −m

·

N−m∑
i=1

p̂(m+1)
i (r)

 (7)

Final entropy estimates are:

̂(X)ApEn(m, r, N) = Φ̂(m)(r, N) − Φ̂(m+1)(r, N),

̂(X)SampEn(m, r, N) = Ψ̂(m)(r, N) − Ψ̂(m+1)(r, N) = ln
( ∑N−m

i=1 p̂(m)
i (r)∑N−m

i=1 p̂(m+1)
i (r)

)
(8)

While the sample entropy is a robust estimator [7], the approximate entropy can suffer from
inconsistencies as it is based on the logarithm of probability estimations with accumulating estimation
errors (cf. Equation (5)). The time-series length N and threshold r are both pointed out as the primary
cause for inconsistencies [7,14,22,25]. One of the main adverse outcomes is the zero matching probability
(a template vector with no similar followers). The various corrections proposed in [8,22] converge
towards the true entropy values when time series length N converges to infinity. We implemented
a simple correction, which turned out to be close to the true entropy value regardless of N [22]:

Φ̂(m)
C (r, N) =

1
N −m + 1−N0

·

N−m+1∑
i=1, p̂(m)

i (r),0

ln
(
p̂(m)

i (r)
)
, N0 =

N−m+1∑
j=1

I {p̂(m)
i (r) = 0}. (9)

As already mentioned, this paper aims to investigate the ApEn, SampEn, and XEn of PI-transformed
cardiovascular time series, and PIT is closely related to the copula density. However, another entropy
measure related to the copulas—the copula entropy—already exists [48–50]. It is based on the Shannon
entropy [2], with corresponding probabilities evaluated as normalized histograms of the empirical
copula density.

The Shannon entropy applied to a time series is a static measure. If the order of signal samples
is permuted in time, as in isodistributional surrogate signals [51], the Shannon entropy will remain
unaltered because the probability density function remains the same, as it is derived from the amplitude
values, regardless of their position in time. Hence, Shannon entropy reflects the level of orderliness
in spatial, but not in the temporal domain.

The ApEn-based entropies reveal the signal orderliness both in the spatial domain (via threshold r)
and in the temporal domain (via the vector length m and its increase to m + 1). However, if the threshold
r is set to zero, it was shown that ApEn is equivalent to the Shannon conditional entropy applied to the
first-order Markov chain [6]. This is, however, a theoretical abstraction, as ApEn with r = 0 cannot be
practically achieved.

It was also shown that ApEn of differentially coded binary time series for r = 0 is equivalent to
Shannon’s binary entropy [52]. This result, although feasible, has no practical application.

2.3. Artificial Time Series

To test the entropy of signals before and after the PI-transformation, we generated random signals
with Gaussian, gamma and beta distribution. Gamma and beta distributions, with parameters (α, β)
equal respectively to (1, 2) and (3, 1), are skewed distributions with amplitude concentrated in different
regions. For each example, we have generated 20 signals or signal pairs, comprising N = 3000 samples
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each, and the distribution of each signal was tested by the Kolmogorov–Smirnov test. Additionally,
we generated signals of deterministic chaos, where their unpredictability is governed by deterministic
laws of the simple non-linear equation of the logistic map [36]:

x(i + 1) = RP·x(i)·(1− x(i)) (10)

The parameter RP was chosen to be 3.81, a value that guarantees chaotic behavior over the complete
signal range without oscillations. Another value, RP = 3.58, generated a chaotic signal, but omitting
some amplitude ranges. The probability distribution function (a normalized histogram) of these two
signals is presented in Figure 4. The second signal (RP = 3.58) is an example of the signal that cannot
be used for the copulas as it is not continuous, so it does not fulfill the theoretical requirements.
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The statistical dependency of signal samples is induced using an MA filter:

x(k)(i) =
1
k
·

k−1∑
j=0

x(i + j), i = 1, . . . , N − k + 1, k = 2, . . . , 10 (11)

Statistically dependent time series with distribution functions Fx(x) and Fy(y) were created using
the copula method as follows: the original signal points (x, y) are PI-transformed into uniform signal
points (ux, uy) and then the corresponding joint distribution is created in the unit plane [0, 1]2 using
the Frank copula distribution [34,39]:

C
(
ux, uy

)
= −

1
θ
· log

1 +

(
e−θ·ux − 1

)
·

(
e−θ·uy − 1

)
e−θ − 1

 (12)

Finally, each
(
ux, uy

)
point is transformed back to the original signal plane using the transform

(x, y) =
(
F−1

x (ux), F−1
y

(
uy

))
. This method generates mutually dependent time series X and Y with

distributions Fx(x) and Fy(y), where the dependency level is given by the copula parameter θ.
Figure 5 presents an illustrative example of signals X and Y with skewed gamma and beta

distributions, generated using copula generator with parameter θ = 3. From their joint probability
density function (PDF) (Figure 5c) no conclusions can be drawn about the relationship of X and Y,
but strong linear coupling is clearly visible in their dependency structure (empirical copula density,
Figure 5d).
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Figure 5. Statistical properties of skewed distributions. (a) Normalized histogram (empirical PDF) of 
the gamma (1, 2) distribution; (b) normalized histogram of the beta (3, 1) distribution; (c) joint 2D 
PDF; (d) copula density. Note that the linear statistical dependency induced by the copula parameter 
 = 3  cannot be recognized in the joint probability density function (c), but it is visible in the 
dependency structure of the copula density (d). 

Deterministic non-linear dependency is introduced using relationships Y = a·XEXP + b, where a = 
b = 1 are arbitrary chosen parameters, while parameter EXP ranges from 1.1 to 2. 

Figure 6a,b show the linear signal coupling estimated by the Pearson, Kendall and Spearman 
tests [53]. All three tests use different procedures—the Pearson test uses classical moment theory, 
while the Kendall and Spearman tests use different ranking procedures. The aim was to examine 
whether the PI transformation changes the linear coupling of two data series. The corresponding data 
series are generated using a copula generator and an MA filter. 

Figure 6a,b show that the PI transformation does not cause changes in the linear dependence of 
the two signals. The dependence between adjacent samples of a single signal also remains unchanged 
after PI-transformation, as shown by the autocorrelation function in Figure 6d. However, the Pearson, 
Spearman, and Kendall tests, designed to capture correlation, are unable to capture nonlinear 
dependence, Figure 6c. 

The correlation lines of source signals and their PI-transformed counterparts in Figure 6 overlap 
perfectly, showing that PIT does not alter the coupling of the signal pairs. 
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Figure 6. Classical properties of source signals and PI-transformed signals. (a) Correlation coefficients 
of the gamma–beta dependent signal pairs; (b) correlation coefficient of Gaussian signal pairs with 
dependency induced by the moving average (MA) filter; (c) correlation coefficient of non-linear 
dependencies; (d) autocorrelation function of a single signal filtered by the MA filter. The results are 
presented as the mean ± SE (standard error of mean) of 20 signals or signal pairs. 

To test whether the differentiation would be possible at all, we estimated a multifractal spectrum 
that describes the fluctuation of the local regularity of the observed signals. The multifractal spectrum 
is estimated in terms of wavelet leaders [54]. 

The results in Figure 7 reveal that the PIT induced the changes in signal regularity. The inset in 
the upper right corner of Figure 7a shows that the spectra of the transformed pseudorandom signals 
differ from the original spectra; besides, all transformed spectra overlap as the signals get the same 
distribution (inset in Figure 7a). The spectrum of deterministic chaos reveals monofractal properties. 
The spectrum remains monofractal after PI-transform (Figure 7b). The spectra of signals filtered by 
the MA filter differ from the source signals, showing that the local regularity of the signals has 
changed. 

  

Figure 6. Classical properties of source signals and PI-transformed signals. (a) Correlation coefficients
of the gamma–beta dependent signal pairs; (b) correlation coefficient of Gaussian signal pairs with
dependency induced by the moving average (MA) filter; (c) correlation coefficient of non-linear
dependencies; (d) autocorrelation function of a single signal filtered by the MA filter. The results are
presented as the mean ± SE (standard error of mean) of 20 signals or signal pairs.
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Deterministic non-linear dependency is introduced using relationships Y = a·XEXP + b, where
a = b = 1 are arbitrary chosen parameters, while parameter EXP ranges from 1.1 to 2.

Figure 6a,b show the linear signal coupling estimated by the Pearson, Kendall and Spearman
tests [53]. All three tests use different procedures—the Pearson test uses classical moment theory, while
the Kendall and Spearman tests use different ranking procedures. The aim was to examine whether
the PI transformation changes the linear coupling of two data series. The corresponding data series are
generated using a copula generator and an MA filter.

Figure 6a,b show that the PI transformation does not cause changes in the linear dependence
of the two signals. The dependence between adjacent samples of a single signal also remains
unchanged after PI-transformation, as shown by the autocorrelation function in Figure 6d. However,
the Pearson, Spearman, and Kendall tests, designed to capture correlation, are unable to capture
nonlinear dependence, Figure 6c.

The correlation lines of source signals and their PI-transformed counterparts in Figure 6 overlap
perfectly, showing that PIT does not alter the coupling of the signal pairs.

To test whether the differentiation would be possible at all, we estimated a multifractal spectrum
that describes the fluctuation of the local regularity of the observed signals. The multifractal spectrum
is estimated in terms of wavelet leaders [54].
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Figure 7. Multifractal spectrum of artificial test signals. (a) Spectrum of pseudorandom signals with
different distributions; inset in the top right corner shows the spectrum of PI transformed signals;
(b) spectrum of logistic map signal (deterministic chaos); (c) spectra of the same signal submitted to
the MA filter; (d) spectra of PI-transformed signals from (c).

The results in Figure 7 reveal that the PIT induced the changes in signal regularity. The inset
in the upper right corner of Figure 7a shows that the spectra of the transformed pseudorandom
signals differ from the original spectra; besides, all transformed spectra overlap as the signals get
the same distribution (inset in Figure 7a). The spectrum of deterministic chaos reveals monofractal
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properties. The spectrum remains monofractal after PI-transform (Figure 7b). The spectra of signals
filtered by the MA filter differ from the source signals, showing that the local regularity of the signals
has changed.

2.4. Time Series Recorded from the Laboratory Rats Exposed to Shaker and Restraint Stress

The real cardiovascular signals we used to check the PIT entropy concept were recorded at
Laboratory of Cardiovascular Pharmacology, Medical Faculty, University of Belgrade, from outbred
male Wistar rats weighing 330 ± 20 g.

Ten days before the experiments, radio-telemetric probes (TA11PA-C40, DSI, Transoma Medical,
St. Paul, MN, USA) were implanted into the abdominal aorta under combined ketamine and xylazine
anesthesia, along with gentamicin and followed by metamizole injections for pain relief. The arterial
blood pressure (BP) signal was digitized at 1000 Hz and relayed to a computer equipped with Dataquest
A.R.T. 4.0 software for analysis of cardiovascular signals.

Rats were randomized into two groups. The first group was exposed to shaker stress, with rats
positioned on a platform shaking at 200 cycle/min. The second group was exposed to restraint stress,
with rats placed in a Plexiglas restrainer tube (ID 5.5 cm with pores) in the supine position. Arterial
blood pressure (BP) waveforms were recorded before (CONTROL) and after the first exposure to stress
(SHAKER, RESTRAINT). Other phases of the experimental protocol are not relevant for this study [55].

Systolic blood pressure was derived from the arterial BP as local maxima in the BP waveforms,
while the pulse interval (PI) time series was derived as the time distance between successive maximal
arterial blood pressure increases. Artifacts were removed semi-automatically, first using the filter
designed for cardiovascular time series [56] and then carefully visually examining the BP waveforms
and residual artifacts. The signals from rats with traces of unstable health were completely excluded.
A very slow varying signal component (mostly the result of rat relocation) was removed using a filter
proposed by [47]. De-trended time series should be stationary at least in a wide-sense, i.e., their first
and second statistical moment should be time-invariant. Then the mean value and standard deviation
estimated from the time series are equal to their statistical counterparts [37], and only then the standard
scaling could be reliably implemented. Thus, de-trended time series were checked using a stationarity
test [57,58] and those that were not wide sense stationary were eliminated.

The final number of remaining animals per experimental group was n = 6. It was satisfactory
according to the variability of the parameters in the control group rats (the statistical software “Power
Sample Size Calculation”). All experimental procedures in this study were confirmed by the European
Communities Council directive of 24 November 1986 (86/609/ECC), and the School of Medicine,
University of Belgrade, Guidelines on Animal Experimentation.

3. Results and Discussion

This section presents the results of our study. Each set of the results is accompanied with
the corresponding discussion.

3.1. Threshold Choice

As already pointed out, the threshold value is crucial for the consistency of entropy estimates,
and its proper choice should be the first task. However, entropy is also a function of the time series
length N—shorter time series require a larger threshold, and the relationship is not linear. A thorough
analysis in [22] showed that a reliable estimation of probabilities (4) is a key factor for stable entropy
measures. This requires that the threshold values be higher than the generally accepted ones. One of
the methods is to plot a threshold profile, i.e., to estimate the entropy for different threshold values and
fixed N. Figure 8 presents the XEn profile estimated from the cardiovascular signals, as cross-entropy
requires higher threshold values than self-entropy [14,22]. Besides, real signals are a better choice for
threshold profiling than stationary artificial data. The vertical lines in Figure 8 show the threshold
for which the entropy estimates become consistent. This threshold value is equal to r = 0.3 and is
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adopted for further entropy estimation. The threshold evaluation method proposed in [22] gives higher
threshold values, but in present study, we did not want to differ too much from the classical values.
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Figure 8. Threshold profile for signals recorded from laboratory rats: (a) entropy estimates of SBP;
(b) cross-entropy estimates for SBP vs. PI signals. The estimates become stable for threshold r = 0.3
(vertical line).

3.2. Entropy Estimated from Artificial Data

The purpose of artificial data, generated in controlled conditions, is to present the reference
regarding the probability integral transformation entropy estimates.

Self-entropy estimates (ApEn and SampEn) are presented in Figure 9. As expected, the entropy of
pseudo-random signals depends on their distribution (Figure 9a), but PI-transform eliminates this
dependency (Figure 9b). The chosen parameters (N = 3000, r = 0.3) are sufficient to ensure reliable
entropy estimates. Obviously, no correction is needed as the original and corrected ApEn estimates
perfectly overlaps.
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Figure 10 shows cross-entropy estimates. The correlation of the signal pairs in Figure 10a has 
been verified using Spearman, Pearson and Kendall tests (shown in Figure 6a). However, their XEn 
estimates are constant, revealing that the entropy does not reflect the statistical correlation between 
two pseudo-random time series. It is in accordance with the entropy procedure, where a template 
vector is compared with each one of its followers, while the dependency exists only with the followers 
in its vicinity. 

Figure 9. Self-entropy estimates: (a) Gaussian, beta and gamma distributions; (b) PI-transformed
Gaussian, beta and gamma distributions; (c) MA filtered Gaussian signal; (d) Gaussian signal with
induced non-linear transform, Y = a·XEXP+ b.

The dependency of signal samples, induced by the MA filter, causes an entropy decrease.
The decrease is indeed due to the sample correlation, as the signal distribution remains Gaussian
and decrease if entropy is seen both for original signals, and the PI-transformed signals (Figure 9c).
On the other hand, the non-linear transform induced by the relation Y = a·XEXP + b also decreases
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the entropy, but this decrease is due to the distribution change: PI-transform converts the distribution
into uniform, and the entropy of all converted signals remains stable, regardless of the exponent EXP
(Figure 9d).

Figure 10 shows cross-entropy estimates. The correlation of the signal pairs in Figure 10a has
been verified using Spearman, Pearson and Kendall tests (shown in Figure 6a). However, their XEn
estimates are constant, revealing that the entropy does not reflect the statistical correlation between
two pseudo-random time series. It is in accordance with the entropy procedure, where a template
vector is compared with each one of its followers, while the dependency exists only with the followers
in its vicinity.
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When correlation is induced by the MA filter (Figure 10b), both XApEn and PIT-XApEn decrease 
with the increase of filter length. SampEn decreases as well, but at a lower rate, while PIT-SampEn 
remains stable. SampEn is known to be a stable measure, due to the logarithm taken from the average 
matching probabilities [7]. However, this stability reduces the ability to recognize the subtle changes, 
and equalizing the distribution further reduces the possibility of recognition, so it might be a 
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The non-linear relationship between the signals is induced by the relation Y = a·XEXP + b. The 
corresponding cross-entropies are independent of the level of exponent EXP, if the reference signal 
is a pseudo-random signal X (source signal). If the reference signal is signal Y, obtained by a non-
linear transform of signal X, the cross-entropy decreases for XApEn and XSampEn, but the PIT 
counterparts remain constant. The reason is the same as for the Figure 9d: the decrease is due to the 
distribution of reference signal that changes as a consequence of non-linear transform; had the 
decrease been due to the induced non-linear coupling, the PIT entropy would have changed as well; 
since it has not changed, the non-linear coupling is not responsible for entropy decrease. 

The artificial time series have so far been pseudo-random signals with a given distribution. The 
deterministic chaos exhibits unpredictability, but not randomness. Figure 11 presents the entropy 
estimated from the logistic map signals. The entropy of the non-continual chaotic signal (Figure 11a) 
is very low, revealing a low level of its uncertainty. The second signal (Figure 11b) is genuinely 
chaotic and it depends on the initial conditions. For this reason, the estimated entropy values are not 
constant, but their changes are not significant (Figure 11b). 

The absolute values of cross-entropy estimates are similar to the self-entropy in Figure 11b. This 
means that less predictable signal (with higher entropy) is dominant in cross-entropy estimates. On 
the other hand, the consistency of repeated entropy estimation governed by the reference signal: 
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11b,d). 
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Figure 10. Cross-entropy estimates: (a) signal with beta distribution vs. signal with gamma distribution
for different correlation coefficients; (b) signal with Gaussian distribution vs. the same signal filtered
with the MA filter; (c) signal with Gaussian distribution (X) vs. its non-linearly transformed counterpart
Y = a XEXP + b; (d) signals from (c) in different order, Y vs. X.

When correlation is induced by the MA filter (Figure 10b), both XApEn and PIT-XApEn decrease
with the increase of filter length. SampEn decreases as well, but at a lower rate, while PIT-SampEn
remains stable. SampEn is known to be a stable measure, due to the logarithm taken from the average
matching probabilities [7]. However, this stability reduces the ability to recognize the subtle
changes, and equalizing the distribution further reduces the possibility of recognition, so it might be
a disadvantage.

The non-linear relationship between the signals is induced by the relation Y = a·XEXP + b.
The corresponding cross-entropies are independent of the level of exponent EXP, if the reference signal
is a pseudo-random signal X (source signal). If the reference signal is signal Y, obtained by a non-linear
transform of signal X, the cross-entropy decreases for XApEn and XSampEn, but the PIT counterparts
remain constant. The reason is the same as for the Figure 9d: the decrease is due to the distribution
of reference signal that changes as a consequence of non-linear transform; had the decrease been due
to the induced non-linear coupling, the PIT entropy would have changed as well; since it has not
changed, the non-linear coupling is not responsible for entropy decrease.

The artificial time series have so far been pseudo-random signals with a given distribution.
The deterministic chaos exhibits unpredictability, but not randomness. Figure 11 presents the entropy
estimated from the logistic map signals. The entropy of the non-continual chaotic signal (Figure 11a) is
very low, revealing a low level of its uncertainty. The second signal (Figure 11b) is genuinely chaotic
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and it depends on the initial conditions. For this reason, the estimated entropy values are not constant,
but their changes are not significant (Figure 11b).
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3.3. Entropy Estimated from Cardiovascular Signals of Laboratory Rats Exposed to Stress 

The parameters recorded from the laboratory rats are presented in Table 1. It reveals a significant 
decrease in pulse interval (increase in heart rate) in rats exposed to the restraint stress, other changes 
are slight and not significant. 

Table 1. Systolic blood pressure and pulse interval of rats in baseline and stressed condition. 

 SBP [mmHg] PI [ms] 
STRESS BASELINE STRESS BASELINE STRESS 
SHAKER 116.28 ± 6.82 125.55 ± 8.89 167.8 ± 13.95 157.97 ± 10.98 

RESTRAINT 107.08 ± 7.83 114.37 ± 24.92 179.29 ± 13.66 131.46 ± 5.71 * 
The results are presented as mean ± standard deviation. * denotes the difference between the baseline 
and stressed signals at the significance level of p < 0.05. 

The entropy estimates are given in Figure 12. 
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(a) entropy of signal X with parameter RP = 3.58, non-continual signal; (b) entropy of signal Y with
parameter RP = 3.81; (c) cross-entropy X vs. Y; (d) cross-entropy Y vs. X.

The absolute values of cross-entropy estimates are similar to the self-entropy in Figure 11b.
This means that less predictable signal (with higher entropy) is dominant in cross-entropy estimates.
On the other hand, the consistency of repeated entropy estimation governed by the reference signal:
consistency of X vs. Y cross-entropy is similar to the consistency of X self-entropy (Figure 11a,c);
variability of Y vs. X cross-entropy is proportional to the variability of Y self-entropy (Figure 11b,d).

3.3. Entropy Estimated from Cardiovascular Signals of Laboratory Rats Exposed to Stress

The parameters recorded from the laboratory rats are presented in Table 1. It reveals a significant
decrease in pulse interval (increase in heart rate) in rats exposed to the restraint stress, other changes
are slight and not significant.

Table 1. Systolic blood pressure and pulse interval of rats in baseline and stressed condition.

SBP [mmHg] PI [ms]

STRESS BASELINE STRESS BASELINE STRESS

SHAKER 116.28 ± 6.82 125.55 ± 8.89 167.8 ± 13.95 157.97 ± 10.98
RESTRAINT 107.08 ± 7.83 114.37 ± 24.92 179.29 ± 13.66 131.46 ± 5.71 *

The results are presented as mean ± standard deviation. * denotes the difference between the baseline and stressed
signals at the significance level of p < 0.05.

The entropy estimates are given in Figure 12.
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A detailed evaluation of the theoretical value is shown in Appendix A. This is a result of perfect 
randomness and uniformity that can serve as a reference value, without the need to run the tedious 
simulation studies, e.g., surrogate data tests [51]. 

Considering the experimental results, the entropy of PI-transformed signals captured slightly 
more statistically significant differences between the cardiovascular parameters of the animals before 
and after exposure to stress: while classical entropies found the differences in shaker stress—SBP and 
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Contrary to the artificial signals with the controlled outcome, the reliability of the entropy 
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estimating the matching probabilities, Equation (4), leads to an inconsistent entropy estimation. The 
reliability of probabilities can be checked using the Jeruchim criterion that defines the minimal signal 
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Figure 12. Self-entropy and cross-entropy estimates based on ApEn with corrections and SampEn:
(a) self-entropy, rats submitted to the restraint stress; (b) self-entropy, rats submitted to the shaker
stress; (c) cross-entropy, rats submitted to the restraint stress; (d) cross-entropy, rats submitted to the
shaker stress. Results are presented as mean ± SE (standard error of mean); * denotes the difference
between the control and stressed signals at the significance level of p < 0.05. The horizontal line shows
the theoretical value for perfect random signals with uniform distribution.

The horizontal line in Figure 12 shows the theoretical value of ApEn, SampEn, and XEn that can be
evaluated for the random signals with uniform distribution:

ApEn(uni f , r) = SampEn(uni f , r) = XEn(uni f , r) = − ln
(

4·
√

3·r− r2

12

)
(13)

A detailed evaluation of the theoretical value is shown in Appendix A. This is a result of perfect
randomness and uniformity that can serve as a reference value, without the need to run the tedious
simulation studies, e.g., surrogate data tests [51].

Considering the experimental results, the entropy of PI-transformed signals captured slightly
more statistically significant differences between the cardiovascular parameters of the animals before
and after exposure to stress: while classical entropies found the differences in shaker stress—SBP and
PI vs. SBP, and XSampEn found a difference in SBP vs. PI, PIT entropy found additional differences
in XApEn of SBP vs. PI, and, in restraint stress, in PI vs. SBP and XSampEn in SBP vs. PI.

Contrary to the artificial signals with the controlled outcome, the reliability of the entropy estimated
from real data sources is always a subject of discussion. As already stated, a failure in estimating
the matching probabilities, Equation (4), leads to an inconsistent entropy estimation. The reliability
of probabilities can be checked using the Jeruchim criterion that defines the minimal signal length
required to achieve p̂(m)

i (r) within a 95% confidence interval [59]. A comprehensive theoretical analysis
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confirmed the traditional engineering rule that the signal length required for a reliable estimation
of a binary event probability should be at least 10/p̂(m)

i (r) [59].

The ultimate case of unreliability is the matching probability equal to zero, p̂(m)
i (r) = 0. This occurs

if the signal length N is too short, or if the threshold r is inadequate, or if the vector length m is too
long [22]. However, zero probability can occur in XEn for a completely logical reason: the template
vector can comprise amplitudes that can never be found in another signal, so no follower vectors exists.
In this case, the zero probability is not a result of an incorrect estimation, but a valid relationship
between the two signals.

Figure 13 shows the percentage of reliably estimated matching probabilities, while Figure 14
shows the estimated percentage of zero probabilities.
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Figure 14. The percentage of p̂m
i (r) = 0 cases that violate the entropy estimation; (a) SBP is the reference

signal, PI is the follower; (b) PI is the reference signal, SBP is the follower. r. Horizontal line shows
the border for which the percentage of zero probabilities is below 1%.

From both figures, it can be seen that PIT signals have better performances than source
signals. The increased number of reliably estimated probabilities in Figure 13 is an outcome
of the uniform distribution. The signal amplitudes are equally probable, so the probability that
a template finds a matching follower is increased. In distributions with exhibited tails (source signals),
some of the templates are less likely to find a matching follower.

The decreased number of zero-matching probability (Figure 14) is another benefit of the probability
integral transform. As already said, the distributions of signal pairs for cross-entropy can
have non-overlapping segments, so some of the templates will never find the followers.
After the PI-transform, the signals would be mapped into the same [0, 1] segment, and non-overlapping
segments would not exist.

Figures 13 and 14 also reveal the empirically obtained threshold r = 0.3, although slightly exceeding
the traditional values from the literature (0.15–0.25), might not be sufficient for XEn as the values of
XApEn and XApEn with correction differ. It is in accordance with the theoretical findings from [22],
but we preferred to use the values that are more aligned with the traditional ones.
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4. Conclusions

The aim of this paper was to apply the ApEn-based entropies and cross-entropies to the signals
submitted to the probability integral transformation. PIT yields the signal with uniform distribution,
keeping the signal fluctuations intact. The idea was to eliminate the influence of amplitude distribution,
and to estimate the entropy where each amplitude has equal opportunity. Then the true unpredictability
of the signal could be estimated without the bias induced by amplitude distribution.

The artificial environment revealed that PIT self-entropy estimates are insensitive to the linear
or non-linear signal transformation, if the transformation is induced sample by sample (relationship
Y = a·XEXP + b). However, entropy estimates are sensitive to transformations that induce the dependency
along the signal itself, e.g., using the MA filter. Considering the cross-entropy, its estimates remain
constant when correlation coefficient between the signals X and Y increase from 0 to 1, with a conclusion
that statistical correlation cannot be measured by the means of cross-entropy. Cross-entropy, on the other
hand, notices if one of the signal is formed from another by inducing the correlation between its
successive samples.

The chaotic signals are generated using the formula for deterministic chaos. “Chaos” did not
deceive the entropy procedure, so the entropy estimates were quite low, showing the high level of
signal predictability. Regardless of apparent chaotic signal appearance, the “deterministic” component
could not escape the unbiased entropy measure.

Estimates of the real signals showed that PIT results of signals in stress reveal a slightly
increased statistical significance than classical entropy measures. However, the main outcome
is the increased estimation reliability, compared to the classical measures. The increased reliability
is a consequence of the uniform amplitude distribution over [0, 1] segment and reduced number
of zero-matching probabilities.

The entropy estimates of PI-transformed signals are unbiased regarding the amplitude distribution.
Their reliability has improved, and a referent value—a ground truth to which entropy estimates can be
compared—can be obtained by formula and not by a simulation study.

The future work will be devoted to the evaluation of errors in entropy estimation for ApEn,
SampEn, XEn, and their PIT pairs, and to developing the methods for error attenuation. The future
work will also include the continuation on thresholds role in inconsistency of entropy estimation.
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Appendix A

ApEn, SampEn and XEn of PIT transformed signals have an explicit theoretical value ground truth
to which they can be compared.

XEn requires the signals with zero mean and standard deviation so the PIT signals have to
be z-normalized (standard scale, i.e., zero mean value and unit standard deviation). The uniform
probability density function of signals x and y is defined as:

fx(x) = fy(y) =
{ 1

2·a , −a ≤ x, y ≤ a
0, elsewhere

; a =
√

3. (A1)
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The probability that two signal samples are “similar”, i.e., that their absolute difference is below
the threshold r is equal to:

p = Pr
{∣∣∣x− y

∣∣∣ ≤ r
}
=

∫ a
−a fx(x)·

(∫ y+r
y−r fy(y)·dy

)
·dx =

= 1
4·a2 ·

(∫
−a+r
−a (r + a + x)·dx +

∫ a−r
−a+r 2·r·dx +

∫ a
a−r(r + a− x)·dx

)
=

= 4·a·r−r2

4·a2 = 4·
√

3·r−r2

12 .

(A2)

The probability that all m pairs of samples are similar (matching probability, Equation (4)) is
equal to:

p̂m
i (r) = pm =

(
4·
√

3·r− r2

12

)m

. (A3)

The summand Φ(m) for (X)ApEn then becomes:

Φ(m)(r, N) = 1
N−m+1 ·

N−m+1∑
i=1

ln(p̂(m)
i (r)) = 1

N−m+1 ·
N−m+1∑

i=1
ln(pm)

= N−m+1
N−m+1 ·m· ln(p) = m· ln(p)

(A4)

Similarly, Φ(m+1)(r, N) = (m + 1)· ln(p), so, for the case of random time series with uniform
distribution, entropy estimates are equal to:

ApEn = XApEn = Φ(m)(r, N) − Φ(m+1)(r, N) = m· ln(p) − (m + 1)· ln(p) = − ln(p) (A5)

where p is given with (A2).
The results for (X) SampEn are the same:

SampEn = XSampEn = Ψ(m)(r, N) −Ψ(m+1)(r, N) = ln
( ∑N−m

i=1 p̂(m)
i (r)∑N−m

i=1 p̂(m+1)
i (r)

)
= ln

(
(N−m)·pm

(N−m)·pm+1

)
= − ln(p).

(A6)
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