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In this paper, a nonlinear reduced order model based on neural networks is introduced
in order to model vertical sloshing for use in fluid-structure interaction simulations. A box
partially filled with water, representative of a wing tank, is first tested to identify a neural
network model and then attached to a cantilever beam to test the effectiveness of the neural
network in predicting the sloshing forces when coupled with the structure. The experimental
set-up is equipped with accelerometers and load cells at the interface between the tank and
an electrodynamic shaker, which provides vertical acceleration to the tank. Accelerations and
interface forces measured during the experimental tests are employed to identify a recurrent
network able to return the vertical sloshing forces when the tank is set on vertical motion.
The identified model is then experimentally tested and assessed by its integration on the tip
of a cantilever beam. The free response of the experimental setup are compared with those
obtained by simulating an equivalent virtualmodel inwhich the identified reduced-ordermodel
is integrated to account for the effects of vertical sloshing.

I. Introduction
The dissipative effects of a fluid inside commercial aircraft tanks have not specifically been looked at in the past

to reduce the resulting dynamic loads. The identification and the study of such dynamic effects can make it possible
in the future to design less conservative aircraft configurations, thus enabling increasingly lighter structures and, as a
consequence, having a less polluting impact on the environment. In this paper, we experimentally identify the vertical
sloshing, that mainly occurs on structures that undergo strong vertical accelerations. Aeronautical structures usually
withstand loads occurring from gusts, turbulence and landing impacts. The sloshing of fuel generally stowed in the
wing tanks caused by vertical accelerations is coupled with the structural dynamics of the aircraft by means of impacts
between fluid propellant and tank walls. This type of sloshing is well known to provide a noticeable increase in the
overall structural damping. This research activity is framed in the European project H2020 SLOshing Wing Dynamics
(SLOWD) aiming with an heuristic approach (combining experimental and numerical data) at characterising sloshing
dynamics for its use in future aircraft design (Ref. [1]).

Vertical slosh dynamics is one of the possible dynamics of the fluid stowed in the tanks which, when it occurs,
exhibits different characteristics compared to the classic sloshing, generally occurring with rotations and lateral motions
of the tank (see Refs. [2–5]). The latter motion generates standing waves inside the cavity that provide dynamic coupling
with structure and possible modification of flutter margins. Specifically, the effects of sloshing on aircraft aeroelastic
flutter stability was considered in Refs. [6–8]. On the other hand, the subject of this paper is sloshing induced by vertical
acceleration of the tank, hence perpendicular to the free surface.

At very low excitation levels, the free surface tends to remain flat. By increasing the level of vertical acceleration
some modes can become unstable depending on the oscillation frequency (Refs. [3, 9, 10]). Nonlinearities will generate
fluid fingers that can reach the tank ceiling. By increasing the level of acceleration even more, presumably around
16, the transition to a completely chaotic regime takes place. Indeed, higher values of vertical acceleration trigger
Rayleigh-Taylor instabilities (Ref. [9]), determining a chaotic flow regime with air/water mixing.
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Previous experimental fluid-structure interaction campaigns in which a tank system was positioned at the tip of a
beam, representing a wing, showed how this type of chaotic response induces a very damped response of the structure
(Refs. [11–14]). Indeed, turbulence, impacts and the continuous generation of the free surface cause additional
dissipation of energy. The total balancing of elastic potential energy and fluid energy results in a noticeable increase in
the effective damping of the structural motion. Moreover, for vertical harmonic motions, the dissipative characteristics
depend on the frequency as well as on the amplitude of the motion (Ref. [15, 16]). As a consequence, vertical sloshing
can not simply be described by means of linear viscoelastic models in which the loss of energy depends only on the
oscillation frequency [17, 18], such as fractional derivatives and finite states for the damping (see Ref. [19]). Nonlinear
predictive models are therefore necessary to simulate the impact the sloshing forces have on the dissipation of the elastic
energy. An equivalent mechanical model consisting of a bouncing ball capable to reproduce the impact mechanisms,
was proposed by Refs. [20, 21]). The proposed models provide fast prediction of sloshing forces, but they do not
provide results that can generally be applied to frequencies different from those used in their training.

The aim of this work is to identify nonlinear vertical sloshing using a machine learning technique for nonlinear
systems with a neural network that learns from data through a suitable training process. Refs. [22, 23] introduced the
use of artificial neural network for real-time prediction of the sloshing loads in cargo containers. Considering the black
box nature of the system under consideration, input-output data from high-fidelity numerical simulations (CFD) or
experiments with varying frequencies and amplitudes are likely to be the most useful for implementing this technique.

In Ref. [15], an experimental campaign was carried out to characterise the dissipative behaviour of vertical sloshing
as a function of excitation frequency and amplitude. The same setup is here employed to generate an experimental data
set to train a recurrent neural network (Ref. [24]) for vertical sloshing. The identified network is then experimentally
validated by performing a new experiment in which the tank used for identification is placed at the end of a cantilever
beam. The comparison of the simulation of the beam free response with the analogous experimental result provide the
assessment and validation of the approach.

Within the paper the following problems are defined: i) Open-loop problem consisting of experiment with a
small box-shaped tank placed above the electrodynamics shaker to generate data from pseudo-harmonic test and
the identification of the associated neural-network-based ROM by training process that employs the measurements;
ii) Closed-loop problem consisting of the sloshing beam experiment in which the same tank is placed at the tip of
a beam structure to perform a free response analysis and the analogous numerical model in which the identified
neural-network-based ROM is integrated into the structural dynamics formulation.

The paper is organised as it follows. The sloshing beam problem, taken as an example of a general structure with
sloshing tank inside, is introduced in Sec. II; the sloshing open-loop problem is presented in Sec. III whereas the
closed-loop problem (sloshing beam response) is introduced in Sec. IV where the comparison between experimental
and the numerical results is provided. A concluding remarks section ends the paper.

II. The sloshing beam problem
The object of this section is to mathematically introduce the problem of a cantilever beam with a sloshing liquid in

a tank placed at its end, assumed perfectly symmetrical with respect to the vertical plane passing through the elastic
centre and in which the displacement field is linear and purely vertical. The structural displacements D(G, C) can be
expressed by

D(G, C) '
#∑
==1

k= (G)@= (C) (1)

where k= (G) are the modes of vibrations of the structure and @= (C) are the generalised coordinates describing the body
deformation in time. Note that a space-discretization for the structure is assumed by including a finite number # of
modes in the analysis, i.e., a frequency-band-limited unsteady process. Considering this displacement representation for
aircraft wing dynamics, one has the following Lagrange equations of motion in terms of N modal coordinates @= (C)

M¥q + Kq = g + f(4GC) (2)

where q = [@1, @2, . . . , @# ]T is the modal coordinates vector, M = diag(<1, <2, . . . <# ) and K are, respectively, the
modal mass and stiffness (diagonal) matrices, whereas g = [61, 62, . . . , 6# ]T is the vector of the generalised sloshing
forces induced by the elastic motion. The f(4GC) is the vector of the current external forcing terms.

The n-th component of g is the projection of the pressure distribution ?( on each n-th modal shape k= by integrating
the inner product on the i-th tank wet surface SC0=: as in the following (n unit normal vector to SC0=: and i3 vertical
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unit vector)
6= = −

"
SC0=:

?( n · i3 k= 3S (3)

By assuming a rigid tank identified by its geometrical centre, Eq. 3 can be recast as:

6= = 5( k= (G) ) + <( i= (G) ) (4)

where 5( and <( are, respectively, the sloshing force and moment applied in the geometric centre of the tank G) ,
whereas i= (G) ) = dk=/dG(G) ) is the n-th modal rotation of the point G) . A sloshing force is decomposed in this work
by considering two contributions: the inertial force as for the frozen configuration and the perturbation caused by the
relative motion of the fluid particles within the tank. Assuming there is only a vertical perturbation Δ 5(I

and that the
moment <( about the geometric centre of the tank is negligible, the sloshing force 5( is given by:

5( = −
#∑
:=1

<; k: (G) ) ¥@: + Δ 5(I
(5)

where d is the offset between the geometric centre of the tank and the liquid centre of mass and I; is the inertia tensor of
the frozen fluid. It is worth noting that Δ 5(I

is a non-conservative force that is a nonlinear function of the history of the
tank vertical displacement DI (G) , C). By considering Eq. 5, Eq. 4 can be recast as:

6= = <; k= (G) ) k: (G) ) ¥@: + k= (G) ) Δ 5(I
(6)

where Δ<=: is a component of the added mass given by the inertia of the fluid. Section III characterises Δ 5(I
by its

experimental data-driven identification using neural networks.

III. Sloshing open-loop problem
In this section, sloshing dynamics is treated as an isolated system that can be studied separately to shed light on its

constitutive properties. Section III.A presents the experimental case study already used in Ref. [15] to characterise the
dissipation caused by vertical sloshing. Section III.B describes how this experiment is used to generate high-fidelity
data to identify a reduced-order model. Finally, Sec. III.C presents the training process of a reduced-order model based
on a neural network.

A. Experimental test case of the isolated sloshing-tank

(a) Experimental Set-up (b) layout

Fig. 1 Experimental Configuration

The experimental case study is a small-box-shaped tank made in plexiglass placed over a controlled electrodynamic
shaker, able to impose vertical sinusoidal displacement. The dimensions of the tank, a height of ℎ = 27.2 mm and
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the base of the sides ;1 = 117.2 mm and ;2 = 78.0 mm, are chosen so that the liquid collides with the roof of the tank,
according to the maximum achievable limits of the shaker (25 mm peak-to-peak amplitude of displacement). The
dynamic load at the interface between shaker and tank is measurable by two load cells (See Fig. 1), symmetrically
placed along the mid-line of the long side of the tank base. The overall force exchanged by tank and shaker is the sum of
the two load cells. The system is also equipped with two redundant accelerometers placed at the opposite corners of the
tank upper closing side and with an accelerometer used by the shaker controller. This experimental set-up is the same
one that was used in Ref. [15] to study the dissipative properties of fluid sloshing within a tank set in vertical motion.
The quantification of the energy dissipated by the fluid was performed for different values of oscillation amplitudes
and frequencies in order to characterise the sloshing nonlinear dissipative behaviour. These two parameters are strictly
related to the unsteady boundary conditions that a vertically vibrating structure can impose to the walls of a tank that
interfaces with it. The frequency and amplitude ranges considered covered both the region of small perturbations (low
values of acceleration) where Faraday waves occur and the region corresponding to high accelerations where intense
impacts between liquid and tank roof can occur after the fragmentation of the free surface (Rayleigh-Taylor instabilities).
To better interpret the mechanisms of energy dissipation, the test design included an analysis at different filling levels
(25 %, 50 % and 75 %).

Without any regard to the filling level, vertical sloshing provided always maximum dissipation beyond the 1 6 of
acceleration. The maximum relative dissipation seems to be linked to the oscillation amplitude values owe to a sort of
spatial synchronisation of the movement of the fluid with that supplied to the tank. The processed results showed that
the energy dissipated by the sloshing forces highly depends on the intensity of the excitation. More in details, a low
dissipation level has been noted for acceleration values lower than a 1 6. The dissipated energy maps are not simply
monotonically dependent on the amplitude levels of the vertical acceleration. Indeed, surface tension and viscosity
seem to play a role in stabilising the free surface at higher frequency range even at acceleration values higher than 1 g.
Moreover, beyond a certain level of acceleration (around 46) the dissipation mechanisms becomes less effective. This
motivates the possibility of collecting data that will be used for identifying vertical sloshing forces only over a specific
range of frequency.

B. Data collection for network training
The experimental setup presented in the previous section was used to generate a high-fidelity data set for training a

neural network. To this end, an additional test was performed in conjunction with the previously presented experimental
campaign: a very long pseudo-harmonic motion was assigned to the shaker (by considering the reference filling level
corresponding to the 50 %). In this experimental test, the vertical sloshing is considered as an isolated system that
receives as input a motion (or acceleration) imposed externally by the electromechanical shaker and returns as output a
force (related to the relative motion of the liquid inside the tank and to possible impacts of the droplets against the tank
walls). Figure 2(a) shows the path considered for the pseudo-harmonic test, plotted as a function of non-dimensional
frequency and velocity (that, for the vertical slosh dynamics assumes the meaning of Froude number, see Refs.[16, 25])
which are respectively defined as l̄ = Ω/

√
6/ℎ and 3̄ = 3/

√
6ℎ (where Ω is the excitation frequency and 0 = 3/Ω is the

amplitude of the vertical imposed motion). The acceleration assigned by the shaker, parametrized by time with the law
¥DI = 5 (C) cos(

´
Ω(C)dC), was such as to suitably cover the non-dimensional amplitude and frequency domain of interest,

that is highlighted in Fig. 2(b). In detail, the last figure shows the non-dimensional energy dissipated by the sloshing
fluid !3/(<;0

2Ω2) (with !3 the energy dissipated by the fluid per cycle and <; the total mass of the fluid) in a vertical
harmonic motion DI = 0 cos(ΩC). This dissipated energy map was the result of the experimental energy characterisation
performed in Ref. [15]. The time series needed for training the neural network were obtained by acquiring sensor
measurements. In particular, from the accelerometers we obtain the signal associated with the motion imposed by the
shaker, while from the load cells we obtain the force exchanged at the fluid-tank interface. Integrating the acceleration
signal yields the velocity signal shown in Figs. 3(a) and 3(b), which is used as input to the model to be identified.
Subtracting the inertial force of the fluid from the force measured by the load cells (the sum of the forces measured by
the two cells) yields the sloshing force shown in Figs. 3(c) and 3(d), which is the output of the model. These time series
are 480 B long with a sample frequency of 0.77 kHz. This sampling rate is the result of a down-sampling process of the
original signal, aimed at reducing the length of the time histories in order to facilitate the training phase.

C. Training of neural-network-based ROM
In order to identify a nonlinear reduced order model for vertical sloshing it was decided to exploit an external

dynamics strategy, that is, by far, the most widely used approach for modelling and identifying nonlinear dynamical
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(a) Path of the pseudo-harmonic experimental test (b) Dissipated energy map

Fig. 2 Path of the pseudo-harmonic experimental test and dissipated energy characterisation

(a) Velocity imposed on the tank (b) Zoom in Velocity

(c) Sloshing force (d) Zoom in sloshing force

Fig. 3 Input-Output time histories for data-driven ROM identification
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systems. It is based on a nonlinear input/output model. The name "external dynamics" comes from the fact that the
nonlinear dynamic model can be uniquely divided into two parts: a nonlinear static approximator and an external
dynamic filter bank. The filters are chosen as simple time delays, while the approximator is chosen as a neural network.
A model of this kind is usually called a time delay neural network (TDNN). A nonlinear dynamic model can be used
in two configurations: for prediction and for simulation. A prerequisite for prediction is that the process output is
measured during operation. In contrast, simulation means that the model simulates only the future outputs based on
past process inputs. Therefore, simulation does not require measurements of the process output during operation. The
one-step prediction configuration is called a series-parallel model, while the simulation configuration is called a parallel
model. The one-step prediction is purely feedforward, while the simulation is recurrent. In this work, it is assumed that
the goal of the model is to perform a simulation, that is, it is used in a parallel configuration. This is a much more
difficult task than a one-step prediction, since it involves feedback. It is worth noting that a model used in a parallel
configuration does not necessarily need to be trained in a parallel configuration. The recommended procedure is to first
train a feedforward model and possibly use it as initial model for subsequent optimization (training) of the recurrent
model (Ref. [26]). Among the wide variety of NN architectures, a NARX Network in a parrallel configuration has been
considered, in which the estimated output is fed back into the network input port (see Fig. 4). It consists of 1 hidden
layer with 10 neurons and 1 output layer. Moreover, 2 tapped delay lines are considered for the input and for the output.
Hyperbolic tangent functions are employed as activation functions in all nodes of the hidden layer, whereas the output
layer is made up with a simple linear function. The velocity-force input-output data obtained with the pseudo-harmonic

Fig. 4 Neural network architecture

experimental test has been used for the training of the network. In particular, the algorithm used for the training consists
of Levenberg-Marquardt backpropagation implemented in Matlab® through the trainlm function with a fixed number
of epochs equal to 500, in which the mean-squared error performance is observed to converge to a constant value, thus
guaranteeing the convergence of the network (Ref. [24]). The network was first trained in a feedforward configuration
(series-parallel) and then used as the initial model for the recurrent model re-training procedure.

The trained network was then converted into a Simulink® block (using the Matlab function gensim) to simulate it
and obtain predictions for the output. Figure 5 shows the sloshing force (in red) that the network predicts when it is
excited at a velocity equal to that used for the identification (see Figs. 3(a) and 3(b)) compared to the force (in blue) used
for the identification process (see Figs. 3(c) and 3(d)). From the comparison figure, it can be seen that the identified
network is able to accurately reproduce the nonlinear behavior of the sloshing force.

IV. Sloshing beam response (closed-loop)
In this section, we present the experimental strategy used to validate the reduced-order model identified in the

previous section. In particular, in Sec. IV.A we consider a free response problem where the tank presented in Sec. III.A
is mounted at the free end of a cantilever beam (experimental sloshing beam model). On the other hand, in Sec. IV.B,
we integrate the identified neural network into a closed-loop simulation model that represents the same interaction
between sloshing and structure as in the sloshing beam experiment. Finally, validation is performed by comparing the
free response results obtained with the experimental and the numerical model.

A. Experimental test case of the sloshing beam
The tank presented in the previous section, which was used to generate the data for the identification of the reduced

order model, is placed at the end of a cantilever beam to obtain a new experimental configuration to study the interaction
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Fig. 5 Comparison between the output predicted by the identified neural network and the experimental time
history of the force used for the training

between fluid (liquid stowed in the box) and structure (beam). The two systems (sloshing and beam) interface with
each other, defining a closed-loop problem, through the motion imposed by the structure and the load returned by the
liquid impacts inside the tank. These two actions are measured by accelerometers and load cell sensors, arranged
appropriately on the experimental system, shown in Fig. 6. The beam is 74 2< long, 10 2< large, 1 2< thick. Two
different configurations are considered in this analysis: the frozen configuration, in which the liquid is replaced by an
equivalent not-sloshing mass, and the sloshing case where the liquid is free to slosh and impact the walls of the box.
Table 1 shows the main modal quantities of the first three modes of vibration of the cantilever beam (in the configuration

Fig. 6 Layout of the experimental FSI problem

with frozen liquid at the free end). In particular, the experimental natural frequencies are listed, as well as the numerical
frequencies derived by a structural updating process. In addition, the table also shows the experimental modal damping
coefficients. The modal masses of the beam are also listed based on the numerical model obtained with the structural
updating process.

The experimental setup studied is used to obtain experimental reference data that can be used to validate the identified
reduced-order model. Similarly to Refs. [11], a free-response problem was considered in this work, where an initial
displacement is assigned to the free end of the beam. The release of the beam tip gives rise to the dynamics of the
sloshing beam. A mass of 7 kg was used to provide an initial vertical displacement of the beam tip of 1.46 cm. Figure 7
shows the time trends of the free acceleration response signals measured by the accelerometers for the frozen case in Fig.
7(a) and the sloshing case in Fig. 7(b)). The impacts of the liquid with the ceiling of the tank, which occur in the initial
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experimental numerical
Mode 5= [Hz] Z= [%] 5= [Hz] <= [kg]

1 10.87 0.32 10.87 0.8956
2 79.06 0.90 78.31 1.0692
3 223.15 1.76 226.5 0.9655

Table 1 Experimental and numerical natural frequencies 5=, modal damping coefficients Z= and modal masses
<= of the cantilever beam with frozen liquid at the free end.

(a) Frozen case (b) Sloshing case

Fig. 7 Comparison between acceleration signals measured by the sensors in the case where the liquid is
considered as frozen (a) and in the case where it is free to move (sloshing) (b).

stages of the response, lead to considerable dissipation of energy, resulting in more damped responses than in the frozen
case.

By applying the modal filter technique (see Ref. [27]) to the experimental signals measured by the accelerometers,
the modal accelerations of the cantilever beam are obtained, by obtaining a separation of the modal contents of the
responses. The comparison of the modal accelerations of the frozen case with those of the case where the slosh dynamics
is present is shown in Fig. 8.

B. Simulation environment and results
The neural network identified in section III.C is experimentally validated using the free response data obtained

with the experimental set-up presented in section IV.A. For this purpose, a simulation model was built in Simulink®,
representing the cantilever beam experiment with the addition of the tank with sloshing liquid (see Fig. 9). Figure 9(a)
shows the FSI simulation model. The block structure contains the modal description of the cantilever beam, while the
block sloshing (shown in detail in Fig. 9(b)) include the network architecture. It provides the forces returned by the
identified neural network-based ROM when it receives as input a given motion of the beam. Note that before and after
the network block, gains are required to convert signals from a modal to a point description and vice versa. The point of
interest is exactly the one corresponding to the center of the tank, since it is assumed that the sloshing forces act on
this point. The two blocks of the closed-loop system interface with each other through modal velocities of the beam
and modal loads representing the sloshing forces predicted by the ROM (which in turn go on to affect the structural
dynamics creating a fluid-structure interaction problem). The simulation model presented here implements precisely Eq.
2, in which the sloshing forces k= (G) ) Δ 5(I

are the loads predicted by the neural network, following the history of the
elastic velocity

∑
< k< (G) ) ¤@< (C) evaluated at the tank position G) . The identified neural network, coupled with the

structural dynamics, was used to replicate the same free response of the experimental layout in Sec. IV.A. Figure 10(a)
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(a) Frozen case (b) Sloshing case

Fig. 8 Comparison between modal accelerations of frozen (a) and sloshing (b) cases.

shows the predicted numerical acceleration at the centre of tank G) compared with that obtained by the corresponding
experiment. On the other hand, Fig. 10(b) shows the comparison of time histories (numerical and experimental) of
the interface forces exchanged between the structure and the tank. It can be noticed that the curves are practically
superimposed for both acceleration at tank location and interface force. Figure 11 shows instead the comparison of the
instantaneous damping ratio associated to the first mode of vibration. Once the dynamics of the first mode of vibration
has been isolated for both experiment and numerical simulation, the instantaneous damping is derived from its envelope
by logarithmic decay. Since the envelope decreases monotonically, we can reparametrize the damping as a function
of the vertical acceleration of the tank due to the first mode of vibration. Except for the very initial transient (higher
accelerations) the neural-network-based ROM looks to provide perfect superimposition in the prediction of the nonlinear
damping induced by slosh dynamics.

V. conclusions
In this paper, data-driven nonlinear system identification techniques were exploited to identify a neural network-based

reduced order model to describe vertical sloshing. The neural network was trained directly with experimental data.
Specifically, an experimental set-up with a box-shaped tank filled halfway with water and placed on an electromechanical
shaker was considered for data generation. In this configuration, the vertical sloshing was considered as an isolated
system that receives as input an externally imposed motion and returns as output a force arising due to the relative
motion of the fluid with respect to the tank and possible impacts of the liquid with the rigid walls of the tank. The
motion is generated by the shaker, which is capable of producing intense seismic excitations that can trigger violent
sloshing phenomena. The time series required for training the neural network were obtained by acquiring measurements
from the sensors. In particular, the system is equipped with accelerometers, to measure the signal associated with the
movement imposed by the shaker, and with load cells, to measure the force exchanged at the shaker-tank interface. The
experimental test chosen for data generation consisted of a very long pseudo-harmonic excitation cleverly covering
the amplitude-frequency range (parameters that are likely to be the most important for characterising the dissipation
induced by sloshing). The velocity signal and sloshing force (obtained by subtracting the inertial force of the fluid from
the force measured by the load cells) acquired during the pseudo-harmonic test were used respectively as input and
output data for the training phase of the network. From the variety of network architectures, a NARX network in a
parallel configuration (suitable for simulation purposes) was selected, where the estimated output is returned to the
input port of the network. Based on the same velocity signal that was used to train the network, it was able to predict the
sloshing force with acceptable accuracy.

In the second part of the paper, we moved from an open-loop logic (sloshing as isolated system) to a closed-loop
logic, where the sloshing dynamics interacts with the structural dynamics of a cantilever beam. This transition was used
to understand how the identified model would behave in a more complex problem, such as one where it is excited by the
elastic displacements of a vibrating beam. So, a new experimental set-up was first designed, in which the tank used to
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(a) FSI model plant

(b) Neural network plant

Fig. 9 Simulink® model representing the sloshing beam experiment

generate the training data was mounted above the free end of a cantilever beam. By using a trigger system at the end of
the beam, it was possible to perform a free response analysis from which we collected data over time (both for slosh
dynamics and frozen liquid mass). The results of the experimental free response were compared with those obtained by
simulating an equivalent virtual model in which the identified reduced-order model is integrated to account for the
effects of vertical sloshing. The comparisons showed that the time histories of the acceleration at the end of the beam
and the force exchanged at the interface between the tank and the structure are very similar and overlap especially in the
first transient of the response. The same is true for the damping characteristic, which was estimated directly from the
time trend of the first mode of vibration.

Nonetheless, the identified model works properly because the closed system into which it has been integrated is
characterised by having only one dominant oscillatory characteristic. If, on the other hand, the identified network were
to interface with a system having more than one dominant harmonic in the interest frequency range, the results might not
be as good. The reason lies in the nature of the signal by which the identification was made. Indeed, a pseudo-harmonic
test does not allow to obtain signals with which the network can detect more complex dynamics (multi-harmonics).
However, this identification technique provides a ROM able to predict the sloshing forces when the structure (e.g. an
aeroelastic wing) operates close to the stability margin with a main harmonic as in Ref. [28]. Nevertheless, future
developments will involve a new identification process that uses experimental data from stochastic tests to train a model
capable of capturing multi-harmonic effects.
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(a) Acceleration at the tank location

(b) Interface force

Fig. 10 Comparison between the vertical acceleration of the tank and interface forces predicted by the simula-
tion and those obtained by experiments.
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