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Abstract:  

Robotic technologies have shown the capability to interact with living organisms 
and even to form integrated mixed societies comprised of living and artificial 
agents. Bio-compatible robots, incorporating sensing and actuation capable of 
generating and responding to relevant stimuli, can be a tool to study collective 
behaviors previously unattainable with traditional techniques. To investigate 
collective behaviors of the western honeybee (Apis mellifera), we designed a 
robotic system capable of observing and modulating the bee cluster using an array 
of thermal sensors and actuators. We initially integrated the system into a 
beehive populated with approximately 4,000 bees for several months. The 
robotic system was able to observe the colony by continuously collecting spatio-
temporal thermal profiles of the winter cluster. Furthermore, we found that our 
robotic device reliably modulated the superorganism’s response to dynamic 
thermal stimulation, influencing its spatiotemporal re-organization. In addition, 
after identifying the thermal collapse of a colony, we used the robotic system in 
a “life-support” mode via its thermal actuators. Ultimately, we demonstrated a 
robotic device capable of autonomous closed-loop interaction with a cluster 
comprising thousands of individual bees. Such biohybrid societies open the door 
to investigation of collective behaviors that necessitate observing and interacting 
with the animals within a complete social context, as well as for potential 
applications in augmenting the survivability of these pollinators crucial to our 
ecosystems and our food supply.  

One-Sentence Summary: Robotic interaction with a honeybee colony influenced self-organized 
collective behaviors, enabling formation of a biohybrid society. 
 

Main Text: 
 
INTRODUCTION 

Honeybees, like wasps, ants, and other social insects, establish large self-organizing 
colonies, often interpreted as being self-regulating “superorganisms” (1–4). These 
superorganisms are important stabilizers of ecosystems and are thus considered to be 
“keystone species” (5, 6). For example, honeybee colonies’ ecological effect through 
pollination service by foraging is substantial for terrestrial ecosystems (7, 8). Honeybees 
are the most important eusocial pollinators (9), and hence crucial for our food supply (10, 
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11). In these ways, honeybees and their influence on ecosystems are a vital component for 
achieving the UN Sustainable Development Goals (SDG) (8, 12), especially to SDG 2 
(zero hunger) and SDG 15 (life on land). However, multiple anthropogenic stressors 
currently endanger honeybee populations (13, 14). Winter is the most critical season, 
when a high fraction of colonies die (15–17). During this period, a colony’s objective 
shifts from growth and reproduction to form a thermoregulated cluster to survive (18). 
Although collective thermoregulation of honeybees during the summer is relatively well 
understood, less is known about how they respond to dynamic conditions during winter 
(19, 20). 

Interactive robotics is an approach to studying animal behavior (21–24), whereby robotic 
systems generate artificial stimuli enabling investigation of how individual or groups of 
animals respond. This brings potential advantages of automating experimentation (25), 
presentation of complex sequences of stimuli (26, 27), and stimuli that are adapted 
according to animals’ responses in a closed loop (28, 29), potentially yielding a biohybrid 
society (30). But the approach is not without challenges. Developing such a system starts 
with identifying a suitable interaction pathway (31) such that the artificial agent is 
accepted by living animals. Therefore, important design goals include the need for 
minimal disruption to the natural behaviors (when not intentionally exerting influence), 
robustness to the animals and their local environments, and reliability for timescales 
spanning the behaviors of interest. Moreover, understanding the dynamics of specific 
behaviors may require multiple interactions (26, 27), or interacting with multiple 
individuals (30, 32). The latter point is especially pertinent in the study of collective 
behaviors expressed by honeybees in winter, which involves coordination of behaviors of 
thousands of animals (33) over periods of several months (18). Overcoming these 
challenges in developing robotics to modulate self-regulatory collective behaviors within a 
host bee colony could ultimately form a biohybrid superorganism. The robotic component 
of such a hybrid superorganism would enable us to better understand, and to interact with 
honeybee collective dynamics from within their society, even in challenging situations, 
such as during the winter period. 

Here we present such a robotic device that thermally interacts with an entire colony of 
honeybees (Apis mellifera carnica Pollmann) comprising thousands of worker bees and a 
healthy queen (Fig. 1, Movie 1). We conducted experiments with this robotic system by 
observing and interacting with three colonies for several months during the 2020 and 2021 
winter seasons. In a perturbation experiment, we demonstrated that the robotic device 
systematically controlled the location of the winter cluster. Moreover, through the sensor 
array we detected the thermal collapse of a weakened colony, that fell into a chill-coma 
state (34), and using thermal actuators, we were able to “resuscitate” the colony out of this 
unviable state, consequently extending its life. In another perturbation experiment, the 
robotic system autonomously measured colony reorganizations and reacted by generating 
new thermal stimuli to repeatedly reposition the cluster, thereby demonstrating a closed-
loop animal-robot interaction. We validated, in an observation hive (see Fig. S5C), that 
identification of colony parameters and modulation of winter cluster organization were 
feasible with our embedded bio-compatible robotic system. Our system creates a pathway 
for field applications with conventional beehives, within which measuring colony 
parameters and applying appropriate actuation are challenging. Such application may 
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expand our knowledge of thermally mediated collective behaviors and emergent patterns 
in these pollinators vital to our ecosystems, to our agriculture, and consequently to our 
food security. 

 

Fig. 1. A robotic system designed to conform to scientific and agricultural beehives. (A) 
Honeybee/robotic biohybrid superorganism overview including the regimes used in the experiments to 
control environmental (thermal) and behavioral (colony position) variables. (B) A photograph of a beekeeper 
performing a field verification of the robotic device fitting it into a standard box hive used in agricultural 
beekeeping. (C) A photograph of the assembled robotic system ready to be installed into a hive. In B and C, 
the beekeeper and the background were made black and white to emphasize the robotic device. (D) The 
robotic system operating in an observation hive. (E) A close-up image showing complete wax cells, and bees 
close to the electronics bay which is enclosed within transparent acrylic. 
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One environmental factor that highly influences honeybees is temperature. Accordingly, 
they exhibit diverse thermoregulatory strategies, building on individual (35, 36) and social 
(37–39) mechanisms. For example, they tightly regulate the thermal microclimates to raise 
their young (40), and reduce high temperatures throughout their hives (41, 42) and at 
localized hotspots (43). Moreover, honeybees respond to low temperatures by 
endothermic heat generation (44), especially within the winter clustering behavior (45), 
when a colony forms a dynamic self-regulating aggregate of thousands of bees that 
behaves like one single larger organism affording survival in cold climates. Recognizing 
the bees’ sensitivity to temperature, prior research developed robotics that interacted with 
small groups of young honeybees, successfully modulating their behaviors with localized 
thermal stimuli under laboratory conditions (46–48). Therefore, a thermal pathway offers 
a promising candidate for a robotic platform to interact with entire colonies.  

Our goal is to leverage robotic capabilities in scientific studies of honeybee collective 
dynamics, specifically, by means of robotic interactions that can provoke the animals’ 
responses through modulation of localized thermal fields inside the hive. Understanding 
the emergent collective behaviors of colonies exposed to cold periods is difficult. This 
paper presents a robotic system that interacts with an overwintering superorganism that 
can be embedded into scientific and conventional hives. The robotic system demonstrated 
the ability to observe and quantify the thermal profiles of winter clusters during healthy 
and collapsing states. We also demonstrated the capacity to regulate colony level activity 
by influencing the movement of the bee aggregation in multiple colonies. The robotic 
system presented here has the capability to integrate into a honeybee colony and the 
potential to investigate their diverse collective thermoregulatory behaviors. 

RESULTS  
To evaluate the robotic system’s ability to form a biohybrid society with a honeybee 
colony, we installed the system inside an observation hive populated with a queenright 
colony with approximately 4,000 bees (Colony A). Hives were situated in the Honeybee 
Field Laboratory in Graz (HFLG), Austria (see Methods). Firstly, we used the system to 
observe the natural activity of the colony (without the injection of any modulatory 
stimulus) to verify the capacity of the collected data to reveal specific collective behavior 
patterns. Secondly, we performed an experiment to assess whether the thermal actuators 
were able to emit meaningful stimuli to interact with the colony, to modulate its position 
in the hive. Thirdly, we identified the thermal collapse of a colony using the sensory 
system, and reported our efforts to revive the colony using thermal actuators. Finally, we 
tested the robotic system in an autonomous mode where it estimated and modulated the 
position of the colony. 

Observing collective behaviors with a robotic system 
To verify the system’s capacity to monitor honeybee’s thermoregulatory collective 
behavior, the system was utilized to observe a colony for one week in the 2020/2021 
winter season, when all members of the colony tend to form a cohesive winter cluster. 
These observations (pictures and thermal data) are shown in Movie S1. When 
temperatures around the hive dropped below Tamb = 11.2°C, we observed the characteristic 
ellipsoidal shape of the winter cluster (49), with bees oriented inwards and aligned with 
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the temperature gradient (Fig. 2A) (50). The characteristic spatial organization of the 
winter cluster (44, 51) is reflected in the thermal data collected by our system (Fig. 2B, 
Movie S1). 
 

 
Fig. 2. A robotic system capable of observing collective thermoregulatory behaviors. (A) A photograph 
of a broodless bee colony displaying a winter cluster formation. (B) The associated thermal field generated 
by the linear interpolation of the data from 64 temperature sensors array (black markers). 

 
Temporal dynamics of a winter colony 

Honeybee thermal behaviors have differing temporal characteristics. Some have short 
durations (for example, individual bees heating brood cells (40)), whereas others can span 
over a period of months (such as winter clustering (49) and collective brood nest 
thermoregulation (52)). Hence, for a robotic system to integrate with a hosting colony, it 
must be able to properly sample the temporal evolution of the behaviors of interest. 

To test whether the robotic system was able to capture the temporal dynamics of the 
winter cluster, we calculated the cluster’s location and corresponding temperature values. 
We used computer vision to calculate the cluster’s location using images and calculated 
the temperatures defining the cluster’s outer edge Tmantle, the core contour Tcore, and the 
core centroid Tcen, in 10 min intervals (n=1008). The temperatures on the perimeter of the 
winter cluster Tmantle (Fig. 3A, yellow) followed the ambient temperature patterns Tamb 
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(Fig. 3A, blue. Spearman correlation ρs = 0.82, lag 0.34h, p < 0.001) with a median offset 
of +3.8°C, suggesting that the colony adjusted its structure to remain inside a safe thermal 
range (49, 53). When bees’ body temperatures drop below Tchill =10°C (Fig. 3A, black 
dotted line), they fall into a comatose state, or “chill-coma”, where they can no longer 
move or self-heat (34, 36). Furthermore, the similarity in the slope values of the first-order 
regressions between Tmantle and Tamb against Text, rendering parallel curves (Fig. 3B, yellow 
and blue), reinforces the observation that the cluster adjusted to ambient temperatures (53, 
54). The mantle is where most ectothermic bees are located (51), and the cluster core  
hosts the majority of the endothermic bees (44). The border region between the core and 
the mantle displayed fast-changing dynamics (Fig. 3A, orange) but little sensitivity (that 
is, decoupling) to changes in ambient temperature (low slope in Fig. 3B, orange). The core 
centroid temperature Tcen (Fig. 3A, red), at the positions calculated from processed images, 
closely follows the maximum temperature of the thermal field (Fig. 3A, purple, ρs = 0.98, 
lag 0.17h, p < 0.001). Interestingly, Tcen is more sensitive to external variations than Tmantle 
(Fig 3B) observe the regression line slopes for Tcen and Tmantle in Fig. 3B). 

Ambient temperature has a large influence on how a colony behaves, therefore making it 
an essential variable to be recorded. During the observation period, the external 
temperature Text ranged between –7.1°C and 7.1℃ (Fig. 3A, dark blue) and remained 
below bee chill-coma threshold Tchill =10℃ (Fig. 3A, black dotted line). The ambient 
temperature inside the field lab Tamb ranged from 8.0°C to 17.1°C (Fig. 3A, blue) and 
followed the changes in external temperature (Fig. 3B, dark gray, ρs = 0.96, lag 2.0h, 
p < 0.001) but with a positive median offset of 11.2°C. Inside the hive, the minimum 
temperatures measured in the populated frame Tmin (Fig. 3A, gray) were very close to the 
temperature surrounding the hive Tamb (median offset 1.0°C). Note that there were brief 
periods where Tmin was lower than Tamb, because Text is always below Tamb and cold air can 
flow into the hive through its entrance.  

Spatial organization of a winter cluster 
Winter clusters consist of thousands of bees (55, 56), usually positioning themselves in 
thermally optimal locations, typically in the center of the hive (49, 54). However, a cluster 
may also actively relocate itself towards honey reserves (49), needed for heating. 
Accordingly, a small number of sensing devices at fixed locations will fail to track the 
moving cluster throughout a season (57), but a dense array of sensors enables an accurate 
spatial representation of the signals generated by behaviors of interest. 

We calculated the median thermal field of the cluster over the observation period (Fig. 
3C). This thermo-spatial distribution captures the thermal gradient characteristic of winter 
clusters, with higher temperatures in the core than the periphery (44, 49). By overlapping 
the image-based contours with the measured median thermal field, we found the 
representative median temperatures for the outer edge of the cluster T̅mantle = 15.09 ± 
1.21℃, the core perimeter T̅core = 21.59 ± 1.54℃, and the core centroid T̅cen = 27.39 ± 
3.03℃ (Fig. 3C). 
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Fig. 3.  Observation of the temporal and spatial dynamics of a winter cluster. (A) Temporal variation of 
different temperatures in the system. Tcen, Tcore, Tmantle were calculated at 10-min intervals (n=1008), and Tamb 
and Text, were sampled every 30 min (n=335). Data smoothed with a trend filter. (B) Linear least squares 
regressions revealing the relationship between outdoor temperature and the temperature of the HFLG, Tamb 
(blue), cluster mantle contour, Tmantle (yellow), core contour, Tcore (orange), and core centroid, Tcen (red). 
Color bands represent measurements’ CI–95%. (C) Heatmap visualizing the median thermal field of the 
winter cluster during the observation period. Isotherms defining the outer edge of the cluster (blue) and the 
region of higher endothermic activity (orange) are shown. The median core centroid position is represented 
by a red circle. The thin lines delimit the isotherms uncertainty and are the median absolute deviations 
(MAD). Bottom and right panels depict the median thermal profiles of the horizontal and vertical transects 
crossing the core centroid (n=1008). 
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Robotic modulation of the winter cluster’s position 
For a robotic system to successfully integrate into an animal society, it requires not only 
the capacity to measure the state of the colony but also to emit relevant cues or signals to 
modulate behaviors of interest (21–23, 31). The objective of the present experiment was to 
assess and characterize whether the thermal pathway could influence the animal collective. 
Specifically, we aimed to answer the question of whether the thermal cues emitted by the 
robotic system can affect the colony’s collective position. We tested this with a 
perturbation experiment on colony A. We sequentially activated one of the five pairs of 
thermal actuators of the robotic system from one extremity of the frame to the other, 
creating a thermal stimulus with a zig-zag pattern (Fig. 4 and Movie S2). To attract the 
bees towards the actuator area, the controllers’ objectives were adjusted to 25℃. This 
setpoint was warmer than the hive’s ambient temperature (the experiment started with Tamb 
= 14.1℃), serving as a cue to attract bees to the warmer zone of the actuators, but lower 
than usual spring/summer temperatures. This avoids inducing potentially harmful 
behaviors during cold periods, such as onsets of foraging or breeding. Each actuator pair 
was active for a fixed period of 3 days. After each stimulation period, the actuators were 
turned off and the adjacent pair was enabled. This experiment lasted 51 days, with a 3-day 
initialization phase and 16 transitions.  
 
To evaluate the movement of the cluster towards the thermal actuators, we computed the 
cluster’s outer perimeter, its centroid position, and the horizontal distance of the centroid 
to the center of the actuator pairs (Fig. S1). When the actuator pair advanced to the next 
location (Fig. 5A, light yellow squares), the bee cluster followed it, which can be observed 
by how closely the centroid of the cluster follows the heated patches (Fig. 5A, red, blue, 
and Movie S2, Spearman correlation ρs = 0.96, lag 1.1 days, p < 0.001). This result also 
shows how similar the locations of the front and back sub-cluster are, with one mirroring 
the other (ρs = 0.99, lag 0, p < 0.001). 

 
To increase the likelihood of system acceptance by the colony, the thermal actuators’ 
controllers were designed to allow animals to participate in the control-loop (24). The 
temperature of endothermic bees is measured by sensors used in the control logic. This 
means that the balance of heat produced by the bees versus by the robotic agent is affected 
by the bees’ behaviors. Consequently, instead of a constant power injection, the amount of 
delivered energy was influenced by Tamb and the animals (Fig. 5B, yellow). During the 
experiment, the active thermal actuators operated at 51% of their maximum capacity 
(median power 0.77 ± 0.27 W, n=34 activations, power limited to 1.5 W). All the thermal 
actuators dissipated a total energy of 6.13 ± 0.59 MJ (median ± MAD) in 51 days. We 
estimate this energy to correspond to approximately 68 g/day of honey, equivalent to 15% 
of the energetic demands of the colony (see Supplementary Methods for details of the 
derivation). 
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Fig. 4. Thermal stimulation to modulate the winter cluster’s position. Timelapse showing the 51 days of 
experimentation, depicting an aggregation of bees following the thermal stimuli emitted by pairs of actuators 
organized in five columns (orange). Thermal actuators indexed following the convention: TAcolumn, row. Each 
frame above corresponds to the end of an activation period, every 3 days, with initial day d0 = 08-Dec-2020. 
The last image of the first cycle (d+27, left-bottom) is duplicated as the starting image of the second cycle 
(right-top). Only the front side of the cluster is shown, since the back sub-cluster followed a similar 
trajectory.  
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Fig. 5. The influence of the robotic system on honeybee collective position. (A) The change in position of 
the cluster with respect to thermal actuators. The horizontal centroid position and the cluster’s left and right 
extreme positions of the back (blue) and front (red) sub-clusters are shown. Cluster perimeter and centroid 
were calculated every 30 min. (B) Thermal actuator activation sequence and injected power over the course 
of the experiment (yellow). Actuator data sampled every 10s and trend filtered. (C) External Text (dark blue), 
HFLG Tamb (blue) and Tmax (purple) temperatures, sampled every 30 min. 
 
 
The broad temperature range observed inside the HFLG, Tamb from 3.1℃ to 18.8℃ (Fig. 
5C), did not impair the robotic device’s capacity to modulate the colony position observed 
by the cohesiveness of the bees cluster (and the weak negative monotonic correlation 
between Tamb and the cluster centroid, with a peak correlation of ρs = -0.26, p < 0.001, over 
a 10-day window). When the ambient temperature increased (such as on day 45), the 
winter cluster expanded and was less influenced by the actuators’ thermal cues, which can 
be seen by the higher variability in the cluster’s horizontal position (Fig. 5A). 
 
The cluster moved neither immediately nor constantly towards the new stimulus (Fig. S1). 
Rather, it took 11.6 ± 1.5 hours to start moving (considered after the cluster center moved 
5 mm from the previous position), and 15.1 ± 10.8 additional hours to enter the zone of the 
newly activated actuator (Fig. S1A). The cluster speed increased during the night to a 
maximum of 9.3 cm/day (Fig. S1B). The cluster could align itself with active actuators in 
the center of the frame but to a lesser degree at the edge of the hive (Movie S2; Figs. 5A 
and S1C). 
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Winter colony collapse and robot-mediated resuscitation  
Stressed or weakened colonies are more susceptible to colony collapse (58). No other 
period is more critical than the winter when a high percentage of colonies die (15–17). 
When temperatures drop inside the colony, bees can fall into a chill-coma which could 
lead to their deaths (59). In this state, bees can no longer self-heat, but the state is 
reversible if they are warmed by an external source (34). Inducing such a state would be 
unethical, but since it occurred to a colony under observation by our robotic system, we 
were able to test the robot-mediated augmentation of this animal society. Exploiting the 
sensing and modulating capabilities of the robotic device demonstrated above, we 
intervened in a colony identified at a critical state. During the winter of 2021/2022, a 
standard treatment against varroosis (60) was performed in an effort to strengthen Colony 
B (spraying 3 ml of 3.5% oxalic acid). Soon after the application of oxalic acid (time t0), 
the robotic device observed changes in the endothermic area (T̅core > 21.5℃, see above). 
Approximately 6 hours later, the area started to shrink until it disappeared at t0 +11.3h 
(Fig. 6B), indicating that bees had stopped their endothermic activity, and eventually fell 
into chill-coma. The decrease in endothermic activity is also evident in the maximum 
temperature Tmax (Fig. 6C, orange), which displayed a declining trend a few hours after the 
treatment. Moreover, the recorded images revealed no visual signs of motor activity, with 
bees standing still (Movie S3). 
 
Approximately 5 hours after the robotic system indicated temperatures below the chill-
coma threshold, Tchill =10℃, we decided to try resuscitating the bees using the thermal 
actuators (Fig. 6C, faded curves). We manually applied a multi-step heating procedure that 
re-animated the comatose bees, which allowed them to re-aggregate, and then guided them 
using robotic modulation towards honey supplies on the opposite side of the hive. About 2 
hours after activating the thermal actuators, we observed bees regaining motion, and 20 
hours later the surviving bees regrouped into a new cluster. Despite the colony not 
ultimately surviving (likely due to the loss of the queen), our “resuscitation effort” 
avoided its immediate collapse and extended its life for over 2 months (Movie S3). 
 
The robotic system showed that the winter cluster is not a static aggregation. During the 
30 days prior to the oxalic acid treatment, the cluster’s point of maximum temperature 
moved considerably, dTmax = 21.3 cm (Fig. 6E). This implies that any single sensor placed 
inside a hive would have failed to capture the thermal signature of the cluster (Fig. 6D 
gray curve). But, since our robotic devices possess arrays of temperature sensors, they can 
accurately reveal the cluster’s repositioning.  
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Fig. 6. The collapse of a honeybee winter colony can be detected by its thermal dynamics. (A) Images 
showing the colony during thermal collapse. When the cluster falls into a chill-coma it can maintain 
approximately the same shape of a healthy thermogenic cluster. Therefore, diagnosing a colony in a critical 
state by visual inspection, especially with still images, can be difficult. (B) Temporal evolution of the 
endothermic area (orange region). The black dotted line defines the isotherm at chill-coma threshold, Tchill 
=10℃. (C) Time series of the minimum temperature Tmin (blue) and maximum temperature of the frame Tmax, 
which is colored orange whenever Tmax  > T̅core, implying the presence of a thermogenic core in the winter 
cluster. Tmax color changed to gray when Tmax  ≤ T̅core. Around t0 + 23h all thermal actuators were manually 
activated causing the Tmax and Tmin to rise. (D) Evolution of the cluster’s maximum temperature Tmax over a 
30-day period prior to t0 (orange). The gray curve represents the temperature of a single sensor, in the center 
of the frame, illustrating the necessity of multiple sensors. The blue curve shows Tmin. (E) Spatiotemporal 
evolution of the point of maximum temperature in the cluster, dTmax, over the period of 30 days (time is 
encoded with the same colors as panel D). 
 

 
Autonomous closed-loop interaction 

The synthesis of a biohybrid society relies on the capacity of living and artificial agents to 
interact. With an aim of testing whether the robot could use its sensory information to 
perceive colony states and autonomously generate new stimuli in response, we devised a 
perturbation experiment to attract the winter cluster to one of two designated regions, 
defined as zone L (left side) and zone R (right side), and comprised of four thermal 
actuators each (Movie S4). Once the system detected that the cluster’s residency time 
within one of the target zones was longer than 12 hours, it activated the thermal actuators 
of the second zone with the intention to attract bees there. The robot relied solely on its 
thermal sensing array to estimate the cluster’s position.  
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Fig. 7. Autonomous interaction between robotic agent and animal colony. (A) Examples of three 
frequent states detected by the system: (1) when the cluster was split in two or it was far from the active 
zone, two thermal hotspots are observed (the bee cluster and the actuators). This condition does not allow the 
robotic system to distinguish the true location of the winter cluster; (2) when just one maximum is defined 
but its centroid is outside the active zone; (3) when the detected contour is inside the active zone. (B) Time 
series of the estimated position of the cluster in response to the activated thermal zone (orange patches). 
Single centroids are depicted by black markers (•). When two centroids were estimated, their positions could 
be represented by purple and blue markers (••). (C) Autonomously identified states: cluster outside (gray) or 
inside (green) new stimulated zone; or undefined colony position where multiple centroids were found (red). 
(D) Total dissipated power by the four thermal actuators of each zone (orange curves). (E) Relevant 
temperatures for the biohybrid interaction: Tiso (red) is computed from Tmin (gray) that serves as a proxy for 
Tamb (blue). 

 
During a period of 16 days, Colony C repeatedly responded to stimuli generated by the 
robotic device (Fig. 7B). Each time the system was able to find the cluster’s centroid 
position and detect that bees were inside the selected zone (Fig. 7C, green segments) it 
generated a new thermal landscape. In contrast to the fixed-time regime used in the 
modulation experiment (Fig. 4), here the robotic system and animals jointly defined the 
transitions in thermal stimuli. Specifically, the robotic system waited for the animals to 
adjust to the stimulus which had a variable timespan as expected within natural societies. 
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The median active zone residency time was 29.8 ± 9.4 hours (range 21–85 h, n=10), with 
a residency time at zone R, 36.4 ± 16.2 h (n=5), slightly longer than zone L, 23.6 ± 3.9 h 
(n=5). Altogether these results demonstrate that our robotic device is able to 
systematically modulate colony position autonomously, based on successful perception of 
the animals and effective stimulus generation. 
 

 
DISCUSSION  

Our results imply that robotic systems are capable of integrating and interacting with full-
sized honeybee colonies. The presented robotic device can observe the thermal 
characteristics of the winter cluster (Movie S1), consistent with prior observations (44, 49, 
54), with high temporal and spatial resolution. Moreover, it is able to measure the thermal 
profile of a collapsing colony, providing potentially valuable data for future predictive 
systems of colony health. Our study yields two key results. Firstly, the robotic platform’s 
ability to systematically reposition the cluster, formed by thousands of bees, following a 
predefined pattern over 51 days (Fig. 1 and Movie S2). Secondly, using the robotic system 
in an autonomous mode, we successfully demonstrated that it was capable of perceiving 
the animals’ position and consistently influencing their movement for 10 transitions over 
16 days (Movie S4). Key properties of the presented system are its biocompatibility, dense 
array of sensors, and thermal actuation in close proximity to the cluster. These 
characteristics enable the robotic system to successfully interact with intact honeybee 
colonies over substantial periods, including the control of the movement of a large number 
of animals. 

 
The proximate mechanisms of winter cluster thermoregulation including displacement of 
the bees are still unresolved research questions. Stabentheiner et al. (44) identified 
competing hypotheses that differ concerning the mechanisms essential to explain the 
cluster organization. Studies using in silico models addressing the within-cluster self-
regulation (61–65) and formation (63) have been based and validated on data from 
experiments with entire honeybee clusters subjected to various uniform ambient 
temperatures (44, 49, 66). Our system can generate nonuniform thermal stimuli that can be 
located inside or outside of the cluster and can move over time. These stimuli offer 
possibilities for experimentation to better understand behavioral mechanisms and thus 
stimulate refined modeling. For instance, our results showed several observations 
inconsistent with some assumptions made in state of the art models, such as individual 
positive thermotaxis of bees (temperature gradient-climbing) (61–65). Specifically, the 
cluster was able to sense a localized thermal cue that was outside of its own perimeter. For 
the cluster to relocate to such newly-appearing cues, the new area was only reachable by 
traversing a local temperature minimum in several cases (such as in Fig. 7A). These 
observations reject a hypothesis of individual thermotaxis towards a preferendum. New 
models may incorporate a method of representing bees moving outside of the cluster, such 
as through an additional state that relaxes the need for thermotaxis to allow random 
exploration. A model including this feature may be able to reflect the local minimum 
traversal dynamics observed – although care would be needed to avoid undermining the 
existing ability to maintain a cluster.  
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Although our system was developed to investigate collective behaviors, we can 
nonetheless envisage some immediate applications in supporting the colony. For example, 
the robot’s sensing and actuating capabilities allowed us to manually execute a 
“resuscitation maneuver” on a colony under observation. This action prevented the 
immediate death of the colony, and allowed the remaining bees to regain mobility and to 
reaggregate into a single compact cluster. Since the rescuing heating was not switched on 
until about six hours after the bees fell into a chill-coma (when Tmax < Tchill), a large 
number of bees and the queen were lost, removing the colony’s chance of repopulating. 
Ultimately, the number of surviving bees was already too low to sustain the colony until 
the foraging season commenced in the next spring. Despite the colony’s ultimate demise, 
the robotic device managed to keep the bees alive for over two months. This gives hope 
that future autonomous colony-health monitors will enable the application of supportive 
heating at early stages of the collapse increasing the probability of a full recovery. Further 
investigation is required to understand the effects of prolonged heat injection on aspects 
including the ratio of endothermic (active) to ectothermic (passive) bees, as well as the 
colony metabolic consumption (67). Such an understanding should inform the 
development of efficient strategies for robotic intervention. More generally, the 
observational and modulatory capacity of such robotic systems, tightly integrated into a 
hosting honeybee colony, could be beneficial in several ways. Observations of the animal 
society can contribute to design data-based health monitoring systems (68, 69). 
Modulation systems could be utilized in automating heat treatments against varroa (70), or 
to actively intervene in a distressed colony to try to revert its collapse. For instance, during 
winter, colonies can die from starvation despite honey stores remaining in unreachable 
cold regions (51), and an array of embedded thermal actuators could provide safe passages 
to make them accessible.  Despite the single instance of the presented robotic intervention, 
temporarily reverting the fate of a collapsing colony, this result emphasizes how 
robotically-enhanced organisms could be more resilient to challenging habitats. 

 
Observation hives provide an invaluable way to study behaviors from intact colonies, 
which interact with their natural ecosystems, in otherwise obscured regions of a hive (39, 
71). However, they bring some drawbacks, including an increased risk of luminous 
contamination inside the hive , and the reduced thermal isolation when compared to tree 
trunks or box hives (18, 72). Furthermore, these hives limit populations to 4,000–20,000 
individuals (18). Moreover, in observation hives, frames are usually stacked vertically, 
instead of parallel to each other, constraining bees to form more disk-like clusters during 
cold periods. However, our system is compatible with box hives (Fig. 1B) where multiple 
robotic devices could be placed parallel to each other. We see an opportunity for 
experiments with colonies that adopt more diverse topologies including those seen in 
apiculture, as well as in summer seasons during which honeybees exhibit various other 
collective behaviors. Application in field scenarios could ultimately support an important 
keystone species on a large scale, since one colony can forage and pollinate more than 100 
km2 (bees fly up to 14 km) (18). This way, such autonomous robotic systems can also 
contribute to ecosystem stabilization and agricultural improvements. 
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MATERIALS AND METHODS 
Robotic system design 

The robotic system comprises three sub-modules: the system orchestration and data 
processing, the thermal sensing, and the thermal actuation. For orchestrating the execution 
of low-level controls and high-level communication with external users and devices, we 
used an ARM Cortex-M4 32-bit microcontroller (MCU, STMicrosystems STM32F405). 
In the MCU, a real-time operating system (RTOS, ChibiOS v19.1) provides a multi-thread 
scheduler to run applications in a single-core processor. To make available an external 
interface to data, code, and commands between the robotic device and users or devices 
outside the hive, a USB communication channel was made accessible (Fig. S5A). 

 
Thermal sensing 

We selected a small (2.0 mm × 2.0 mm × 0.8 mm) silicon-based temperature sensor (TI 
TMP117) that fits within inside a honeycomb cell (preliminary trials with larger sensors 
caused bees to avoid the area nearby). This sensor returns a 16-bit temperature value with 
a resolution of 7.8125 × 10-3 °C, and can operate in the range of –20°C to 50°C with an 
accuracy smaller than ±0.1°C (115). The robotic device was equipped with 55 temperature 
sensors arranged in a 5 × 11 array with vertical and horizontal spacings of 36.4 mm and 
36.8 mm respectively (Fig. S5B). In addition, to allow the investigation of finer details of 
thermal fields, a nine-sensor high-density patch was positioned at the central axis of the 
frame (Fig. S5B), bringing the total number of sensors to 64. Since these sensors use an 
I2C digital communication bus, with the possibility of four different identification 
addresses, a circuit with two 8-channels multiplexers (TI TCA9548A) was devised to 
connect all 64 sensors to a single I2C port in the MCU (Fig. S5A). 
 

Thermal actuation 
Bees adjust the metabolic intensity of specific thermogenic activities to the hive 
microclimate and social conditions (such as winter clustering and brood caring). 
Generally, the average maximum metabolic rate is approximately 115 W/kg at 10°C and 
decreases at higher temperatures (35, 45, 55, 73). To allow our system to generate thermal 
cues with intensities similar to natural behaviors, we distributed 10 thermal actuators (2 × 
5 array), in the bee-occupied area of the robotic device, with a total dissipation capacity of 
158 W using a 12 V supply, similar to the peak metabolic rate of a 1-kg honeybee colony 
(~7,700 bees (74)). Actuators were designed as meandered copper trace resistors Ract that 
warm up via Joule heating when current flows through them (Pheat ∝ I2Ract). Each actuator 
consists of a 4,852 mm long copper trace, laid out over a square area with 74.7 mm sides, 
resulting in a 9.1 Ω resistance. 
 
Each actuator is powered with 12 V from the system main power supply, and it is 
individually modulated by the microcontroller via pulse-width modulation. This control 
signal is sent to a gate driver chip (TI UCC27517A) that enables the fast actuation of a 
power MOSFET with low RON (Vishay SiSS12DN) and connected to each thermal 
actuator (Fig. S5A). We numerically implemented a proportional integral differential 
(PID) controller for each actuator’s duty cycle, although note that the system can 
accommodate diverse control strategies.  
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Mechanical construction 
To allow the instrumentation of hives used in science (observation hives) and agriculture 
(box hives), the robotic system was designed in the form of a Zander beekeeping frame 
(420 mm × 220 mm, Fig. S5B). The frame structure consists of a sandwich of six layers 
with a printed circuit board (PCB) made of 1.6 mm FR-4 (epoxy and fiberglass) in the 
center. The PCB is surrounded by six laser-cut layers, where the four outermost layers are 
made of plexiglass and the two closest to the center are made of 1 mm thick wood 
laminate. The wood layers exhibit a hexagonal pattern to serve as a honeycomb 
construction template for worker bees (Fig. 1), with cells presenting minor and major 
inner axes of 4.55 mm and 5.25 mm respectively. The monitored and actuatable area of 
the frame has a surface area of 410 mm × 180 mm and is fully covered by the hexagonal 
mesh. The in-hive atmosphere is very humid, and bees can be very protective against 
foreign bodies (for example, by chewing soft materials or covering parts with propolis). 
Therefore, to protect the temperature sensors installed inside cells, we coated them with a 
50-75 µm acrylic resin layer (MG chemicals 419D) and electronics and connectors were 
placed inside the protected “electronics bay”, in the upper 30 mm of the frame.  
 
When designing the elements of the robotic system including control software, hardware, 
and materials, we were committed to ethical principles to preserve the animal’s welfare 
and we considered the consequences of mixing robotic devices and living organisms (see 
Supplementary Discussion “Ethical considerations”). 

 
Robotic system preparation 

To prepare the robotic device for experimental colonies’ integration, the hexagonal mesh 
on both sides of the honeycomb was coated with melted beeswax. This structure led to 
better bio-acceptance and provided initial building material for the construction of 
honeycombs (Fig. 1). Once prepared, the devices were inserted either into a populated box 
hive, by replacing one of the nine conventional Zander combs (Colonies B and C), or 
directly into an observation hive with a bee colony (Colony A). Robotic systems that were 
added to established colonies in box hives had fully drawn cells constructed after 10 to 14 
days and were then transferred to observation hives. Since there is comparatively less 
space in an observation colony, hence fewer bees, the construction of the combs took 
slightly longer there (~21 days). All experiments were made in observation hives in the 
Honeybee Field Laboratory Graz (HFLG), at the Botanical Gardens of the University of 
Graz, in Graz, Austria. 

 
Animals, colonies & hives 

Colonies of Apis mellifera carnica Pollmann, bred for commercial use by the Styrian 
Beekeeping Center, Austria, were established at the University of Graz for the purposes of 
scientific research. According to the principles of animal care of the University of Graz, 
the ethics commission of the university as well as the Austrian Animal Experiments Act 
(Tierversuchsgesetz 2012 - TVG 2012, 1. Abschnitt, §1), no ethical approval is required 
for experiments with insects. The animals received appropriate care from a professional 
animal keeper before, during and after the observations and experiments. A queen was 
introduced to the colony and acclimatized in a queen cage for three days before being 
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released to roam freely in the colony. During the entire experimental period, the bees were 
fed ad libitum with 73% sucrose solution.  

 
Three colonies were used in this study. Colony A was used in the observation and 
modulation experiments, performed during the 2020–2021 winter season, and with an 
estimated initial size of approximately 4,000 bees. The system was installed in the hive on 
01-August-2020 where preliminary tests and observational experiments were conducted, 
accounting for a total of 180 days inside the colony (preliminary and experimental 
phases). For this colony, the data presented above are from 01-December-2020 to 28-
January-2021. Measurements from Colonies B and C were taken during the 2021–2022 
winter season and presented in the colony collapse and closed-loop experiment results 
respectively. These colonies were estimated to have an initial size of 5,000 bees. 
 
In the experiments, we used observation hives (w×h×d = 53 cm × 68 cm × 11 cm) 
containing two vertically stacked Zander frames. In colonies A and C, we used one robotic 
system, and in Colony B two were used. Pipes installed in the lower part of the hives gave 
bees access to the exterior. Both faces of the hives were covered by 4-mm anti-reflective 
glass windows (Conturan Magic), allowing the colony activity to be recorded (Fig. S5C). 

 
Experimental setup 

At the observation hives in the HFLG, each robotic device was controlled by a dedicated 
single-board computer (SBC, Raspberry Pi 4) located outside the hive. In addition, two 
extra SBCs controlled four cameras (Raspberry Pi High Quality Camera, with the 6-mm 
CS-mount lens with removed IR filter) facing the combs from the front and backside. 
Since bees are not sensitive to infrared (IR) light, hives were illuminated by 12 IR lamps 
(Synergy 21 LED retrofit 4×1W IR security) equipped with paper diffusers. The dedicated 
SBC orchestrated the behavior of the connected robotic device (via its MicroPython 
interface), collected, processed, stored measurements, logged system events, recorded 
images and finally uploaded the data to a desktop PC (located in the HFLG). 
 
To allow the analysis of the influence of the ambient surrounding the colony during the 
experiments, we installed a weather station (Ecowitt Eurochron EFWS 2900) near the 
HFLG. The relevant variables to this research were the external temperature Text and the 
ambient temperature inside the HFLG Tamb, measured through a wireless dongle connected 
to the weather station. Both temperatures were recorded in intervals of 30 minutes. 

 
Closed-loop experiment 

Prior to the experiment, actuators TA3,1 and TA3,2 were activated for 3 days to move the 
colony to the center of the frame. Then, from 09-January-2022 to 26-January-2022, the 
robotic system installed within Colony C operated autonomously. The robotic device was 
programmed to attract bees to one of the two defined zones comprising four thermal 
actuators, with maximum combined heat dissipation of 6 W and regulated to 30°C when 
active. Once the system measured the cluster residency time inside the desired zone to be 
longer than 12 hours, it would deactivate its thermal actuators and activate the actuators of 
the opposite zone. The robotic system was programmed to estimate the position of the 
bees based on their thermal signature. This used an isotherm (Tiso) to delimit a contour that 
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would represent the cluster’s position. Following preliminary work with a constant Tiso 
that failed to track the cluster when ambient temperatures (and consequently Tmin) were 
warmer than Tiso, we designed a simple piecewise-linear function to define Tiso. 
Specifically, Tiso adapted to changes in ambient temperature. For Tmin values below 
11.2°C, Tiso ← 15°C. For higher values of Tmin, the isotherm threshold adapted as Tiso ← 
0.92⋅Tmin + 4.7, after the linear regression between Tmantle and Tamb (closely related to Tmin). 

 
Statistical methods 

Sample sizes are described in each result section text and in figure legends. A 
nonparametric kernel density estimator was used to compute probability density 
distributions for the observation experiment (Fig. S2) and the perturbation experiments 
(Figs. S3, S4). If not indicated otherwise, measurement estimators are stated as the sample 
median and after the symbol ± the uncertainty is expressed by the robust estimator of 
spread MAD (median absolute deviation), and found by: MAD{xi}= 1.4826⋅median{||xi – 
median{xi}||} (118). Confidence intervals at the level of 95% represent the uncertainty of 
the linear regressions presented in Fig. 3. In some noisy time series, we applied a trend 
filter (for example, Figs. 3A, 5B), and whenever the level of temporal similarity between 
series was stated, we computed it via a time lagged Spearman rank correlation (see 
Supplementary Methods “Trend filtering” and “Time series relationships”). 
 

Data analysis 
Optical data was sampled at 4-second intervals from both sides of the hives. The collected 
images were undistorted and contrast-enhanced via a sequence of algorithms. To 
understand the cluster structuring, images were automatically segmented to identify areas 
containing bees (through an adaptative background subtraction method) and zones with 
bees presenting different levels of motility (via dense optical flow). Details of these 
methods are included in the Supplementary Methods “Visual data sampling and 
processing”. 
 
The thermal fields used in the analysis were generated from the linear interpolation of the 
64 temperature values provided by the robotic systems’ sensor array. For the extraction of 
the thermodynamics of different regions of the cluster, we sampled the thermal field at the 
core, mantle, and peripheral positions extracted from the optical analysis (see 
Supplementary Methods “Thermal data analysis”). 

 
 
Supplementary Materials 

Supplementary Methods 
Supplementary Discussion 
Fig. S1. Dynamics of cluster motion towards thermal stimuli. 
Fig. S2. Data distributions for the observation experiment. 
Fig. S3. Data distributions for the collective position modulation experiment. 
Fig. S4. Data distributions for the autonomous closed-loop experiment. 
Fig S5. Structure and design of the robotic honeybee comb. 
Movie S1. Time-lapse of the observation experiment showing pictures and thermal 
profiles of the winter cluster. 
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Movie S2. Time-lapse showing modulation of the winter cluster’s position. 
Movie S3. Annotated video depicting the evolution of a winter cluster, from the formation 
of a cluster until the "resuscitation" effort after the collapse of the colony. 
Movie S4. Autonomous closed-loop collective position modulation experiment depicting 
visual, thermal and robot-processed data. 
References: (75–90) 
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SUPPLEMENTARY METHODS

Method for estimating biohybrid energetic efficiency
Since energy consumption dictates the chances of surviving extended cold periods, we tried to
estimate how much of the thermal energy, injected by the actuators, could have been exploited by
the colony. We derived the estimation of energetic transfer as follows. For the duration of the
modulating experiment, the robotic system activated pairs of thermal actuators operating at a
median level of 1.54 W (=2 ⨉ 0.77 W). Both actuators injected a median daily energy of 120
kJ/day (or 6.13 MJ over 51 days). To estimate the energetic economy provided by the artificial
agent, we must establish the energetic requirements of the living organism. A winter colony has
metabolic heat production close to 20 W/kg at 10°C (45), resulting in a steady metabolic
expenditure of 10 W (=864 kJ/day) for a colony with a size similar to ours (4,000 individuals,
weighing 0.5 kg). Assuming that all metabolic activity is supported by honey consumption and
considering an energetic value of 12.72 MJ/kg for honey (75), we project that the energy
provided to the bees by the embedded robot is equivalent to a consumption of 68 g/day of honey.
Thus, the actuators had the potential to provide up to 15% of the usual energetic demands of the
colony's metabolic activity, if we assume that bees benefited from all the injected power (100%
transfer efficiency). The levels of energy injected to modulate position were not dominant in
terms of the colony’s total energetic demand. Nonetheless, the bees were very responsive to the
thermal signals, which points to their evolved capacities to collectively exploit available
resources and hence increase their survival chances during cold periods.

Statistics and data analysis
Trend filtering

In some cases, where we had noisy time series (Figs. 3A, 5B), we used a modern denoising
technique known as trend filtering (76) that tries to optimize the amount of noise reduction and
data smoothing while maintaining the shape of the original signal (77). The filtered signal is
calculated by minimizing the following function,
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where xt is a scalar time series, yt is the estimated trend, λ is a regularization parameter to
trade-off denoise maximization (i.e., smoothness) and bias minimization (i.e., difference between
observation and fitted values) (78), and D(k) is the discrete difference operator of order k. We used
λ=50 and order k=2.

Time series relationships

To quantify temporal similarities between two variables (e.g., between temperature series or the
position of the bee cluster to actuators activation series), we performed a time-lagged
nonparametric Spearman rank correlation. The correlation coefficient ρs, the values of peak
synchrony lag, in hours or days, and the two-sided p-value of the significance test are reported.

2



Visual data sampling and processing

Cameras from both sides of the robotic device were triggered every four seconds and images
with a resolution of 4056 ⨉ 3040 pixels were temporarily stored in the memory card of the SBC
controlling the camera. Since photos suffered barrel distortions caused by the wide-angle lens,
we calibrated one camera of the setup and the resulting correction matrix and coefficients were
used, in post-processing, to undistort all collected images. To correct minor misalignment
between cameras and comb centers, images were processed with a linear transformation to
correct for perspective distortions. Finally, the global contrast of each image was increased by
sharpening (via “unsharp masking”) and performing histogram equalization.

To find how the winter cluster was thermally structured, we analyzed the collected images to
identify the perimeter delimiting the core and the outer edge of the cluster that encompassed
most bees. The core of the cluster is identified by the perimeter of the region with high bee
motility, close to the center of the cluster (49, 62), which implies that portions of the images with
higher levels of pixel movement can provide a robust approximation of the cluster core. Hence,
to detect the level of pixel movement, we computed the dense optical flow of two consecutive
frames (Δt=4s) in intervals of 10 min using Farnebäck’s algorithm (79). We computed the
magnitude of the optical flow vector field to find the contours of the regions with high pixel
motility (i.e., high flow magnitude) and selected the biggest contour as the core representative
region. From this contour, we extracted metrics including area, perimeter length, and centroid. To
find the contour of the outer edge of the cluster, a background image of the honeycomb was first
computed, using the Gaussian mixture-based background/foreground segmentation algorithm
(80), using one image per hour. Each image was scaled to 30% of the original size and then
processed with a histogram equalizer and a Gaussian blur filter. The images were then
thresholded depending on the brightness level of the background image: darker areas of the
background image required a lower threshold to be counted as part of the cluster while lighter
areas required a higher threshold. In total, three brightness zones were defined so that different
brightness levels in the image were compensated. This resulted in a binary image in which
erosion and dilation operations assisted in removing noise. The contour of the binary geometry
was computed using a border-following algorithm (81).

Thermal data analysis

Based on data from the 64 temperature sensors, we reconstructed the thermal field across the
bee-occupied region of the robotic device using a linear interpolation method. We detected
failures in two sensors (positions x,y = 3,3 and 5,1) from Colony A device and excluded the data
produced by these from our analysis.

Combining thermal and visual data

To find the representative temperatures in the regions of the mantle and the core, we sampled the
interpolated thermal fields at the points contained by the perimeter curves calculated from optical
data. We segmented each computed contour into 100 equidistant points, obtained temperature
values for each one from the thermal fields, and then reduced to one value, calculated by the
median and the uncertainty by the MAD. This process was repeated for each timestep, forming
the temporal evolution of the temperature in the core center, core periphery, and mantle contour
(see Fig. 3A). Finally, the median of each temporal series and the median of its uncertainties
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(MADs) were used to find a single representative value for those regions (T̅mantle, T̅core, and T̅cen,
see Fig. 3C).

Modulation experiment metrics

During the modulation experiment, the position and the size of the cluster were estimated in
intervals of 30 minutes, using the previously described adaptive background subtraction method,
resulting in n=2,448 estimates for the back and front sub-clusters. To analyze the cluster response
to each new actuator activation, we investigated the commonalities of n=32 activations, each
lasting 3 days. Once a new pair of actuators was turned on, we calculate the temporal evolution
of the absolute distance between the active actuator center and the cluster centroid, d = |xactuator –
xcluster|. Each 3-day activation resulted in 144 distances,
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Then, the median movement, from the 32 distance vectors, was calculated by the median of all
distances at each time step, . The uncertainty of the𝑑 = {𝑚𝑒𝑑(𝑑
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distance measurements is given by the robust estimator of scale MAD, calculated by the median
of all absolute distances from the sample median (82):
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value for each time step, MAD = {MAD0, MAD1, …, MADt-1, MADt}. The results of this
analysis can be seen in Fig. S1.
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SUPPLEMENTARY DISCUSSION
Ethical considerations for using the robotic honeycomb

Unlike biorobotics, where biology is a source of inspiration for creating new biomimetic devices
(such as (83)), interactive robotic systems presuppose proximity and information exchange with
living animals (21–23, 31). Although not as invasive as cyborgs, where sometimes electrodes are
surgically implanted into the animal (84, 85), the creation of mixed societies, where animals are
exposed to artificial agents, is not necessarily free of unintended and lasting consequences for
individual animals (i), colonies (ii), or their habitats (iii) (86, 87). Our results demonstrate that
robotics can be used for extended periods embedded in a colony. So, what are the ethical
considerations of such systems? In (48), we explored some of the ethical considerations we
followed in designing our robotic systems and conducting experiments. For instance, to address
potential unintended consequences on the individual level (i), we restricted the interaction
pathway between the artificial agent and bees to thermal stimuli with intensities normally
encountered in honeybee thermoregulatory behaviors to minimize stress. When moving outside
of the hive, honeybees interact with their ecosystem (iii), for example, by foraging. However,
due to the technology being confined to the hive, any negative effects at the ecosystem level are
expected to be similar to those that a strong, robust honeybee colony would have without being
augmented by the technology. Lastly, the potential effects on the colony, and more broadly, the
species, should be taken into account (ii). The honeybees we used are managed livestock and like
other domesticated species, natural selection no longer shapes their evolution (88, 89). Instead,
artificial selection by bee breeders has favored traits such as tameness and high honey yield. If a
robotic system were to assist a weak colony in surviving, the colony might eventually reproduce
through swarming. Any resulting feral daughter colony would lack access to supportive robotics,
and its weaknesses would be exposed to natural selection. This greatly limits the potential for our
robotic systems to have a lasting effect on the evolution of feral honeybees.
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Fig. S1. Dynamics of cluster motion towards thermal stimuli. (A) Movement of the cluster's
horizontal center towards the center of an active actuator. The black curve is the median value of
n=32 cluster movements towards newly heated zones Δdh (from back and front sub-clusters).
Each zone, spanning two actuators, was active for 3 days. The uncertainty of the distance Δdh is
calculated by the MAD and represented by the region delimited by the two thin gray lines.
Active actuators’ horizontal boundaries are depicted by the dotted yellow lines, with the dashed
yellow line indicating the horizontal center. The green and red markers indicate the initial and
final distances from the cluster centroid to the new actuator center. The vertical gray bands depict
astronomical nights. (B) Median cluster horizontal speed smoothed by a trend filter (purple). (C)
Linear least-squares regression depicting the influence of the active actuators in the final position
of the winter cluster. The gray dots are Δdh from the last 6h of each activation window (n=16
median distances). The gray zone represents the 95% sample confidence interval. The dashed
line shows a hypothetical cluster centroid aligned with the active zone’s center. The analysis of
these metrics is described above in "Modulation experiment metrics".
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Fig. S2. Data distributions for the observation experiment. Probability density functions
(PDF) computed through a nonparametric kernel density estimator (KDE) for each temperature
series in Fig. 3. The Gaussian kernel size was automatically defined via Scott's method (90). On
each distribution, the thick black line indicates the median value, and the thin lines the 25 and 75
percentiles.

Fig. S3. Data distributions for collective position modulation experiment. (A) Dissipated
power PDFs for each active actuator's column during the 51 days of the experiment. (B) PDFs of
relevant temperatures during the modulation experiment. As in the previous figure, the thick
black line indicates the median and the thin lines the 25 and 75 percentiles. The distributions are
related to the series depicted in Fig. 5.

Fig. S4. Data distributions for the autonomous closed-loop experiment. (A) Dissipated power
PDFs for active periods of the left and right attraction, comprising 4 actuators each, during the 17
days of the experiment. (B) PDFs of relevant temperatures during the closed-loop experiment.
The distributions are related to the series depicted in Fig. 7.
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Fig. S5. Structure and design of the robotic honeybee comb. (A) Functional architecture,
comprising arrays of thermal sensors and actuators, and a microcontroller as the orchestrator of
the system. (B) 3D render with indications to main system component positions. (C) 3D diagram
of the double-frame observation hives used in this study. Non-reflective glass on each side of the
hive allowed visual data to be collected whilst maintaining an enclosed volume for the colony.
Bees had unrestricted access to the exterior by a pipe connecting a perforation in the HFLG’s
wall and the hive entrance.

8



Legends for Supporting Movies

Movie S1. Time-lapse of the observation experiment showing pictures and thermal
profiles of the winter cluster.

Movie S2. Time-lapse showing modulation of the winter cluster’s position.

Movie S3. Annotated video depicting the evolution of a winter cluster, from the
formation of a cluster until the "resuscitation" effort after the collapse of the colony.

Movie S4. Autonomous closed-loop collective position modulation experiment depicting
visual, thermal, and robot-processed data.

Legends for Data Files

Data file 1. Original thermal data in the observation result.

Data file 2. Original thermal data in the position modulation result.

Data file 3. Original thermal data in the autonomous closed-loop result.

Data file 4. Original thermal data in the colony collapse results.
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