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Abstract. The main goal of this paper is to provide a Reduced Order
Model (ROM) able to predict the liquid induced dissipation of the violent
and vertical sloshing problem for a wide range of liquid viscosities, surface
tensions and tank filling levels. For that purpose, the Delta Smoothed
Particle Hydrodynamics (δ-SPH) formulation is used to build a database
of simulation cases where the physical parameters of the liquid are varied.
For each simulation case, a bouncing ball-based equivalent mechanical
model is identified to emulate sloshing dynamics. Then, an interpolating
hypersurface-based ROM is defined to establish a mapping between the
considered physical parameters of the liquid and the identified ball mod-
els. The resulting hypersurface effectively estimates the bouncing ball
design parameters while considering various types of liquids, producing
results consistent with SPH test simulations. Additionally, it is observed
that the estimated bouncing ball model not only matches the liquid in-
duced dissipation but also follows the liquid center of mass and presents
the same sloshing force and phase-shift trends when varying the tank
filling level. These findings provide compelling evidence that the iden-
tified ROM is a practical tool for accurately predicting critical aspects
of the vertical sloshing problem while requiring minimal computational
resources.

Keywords: Sloshing · Nonlinear Dynamics · Reduced Order Models ·
Smoothed Particle Hydrodynamics · Liquid Damping

1 Introduction

Aircraft wings can deform up to 20% of the wing span when they encounter an
atmospheric gust or turbulence. The fuel tanks are located inside of the wings
and their liquid weight is comparable to the one of the structural components.
The standard engineering practices for wing design do not consider the effect
of fuel slosh within the tanks for the determination of the aircraft design loads.
The two main tests to identify and verify the dynamic characteristics of the
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aircraft structure (Ground Vibration and Flight Flutter tests) only include small
amplitude excitations which do not significantly excite the main sloshing modes.

In this context, the European SLOshing Wing Dynamics (SLOWD) research
project [1, 2] investigates how the fuel slosh affects the damping of the civil air-
craft wings oscillations. One of the main objectives of the SLOWD project is to
tackle the vertical and violent sloshing problem using different methodologies,
namely, experimental [3–5], numerical [6–11] and based on Reduced Order Mod-
els (ROMs) [12–15]. Depending on the excitation amplitude sloshing in confined
tanks can be a highly nonlinear phenomenon as some early theoretical studies
indicate, see for example the classical Refs. [16–18]. Within the framework of
the SLOWD project, the initial experimental test involved examining the free
response of a cantilever beam with partially water-filled tanks mounted on it.
This investigation successfully demonstrated the presence of additional damping
induced by sloshing (see Refs. [19–21]). Following this result, Single-Degree-Of-
Freedom (SDOF) experiments were developed as part of the SLOWD project
to isolate the vertical component of tank motion in order to the study the dis-
sipative behavior of sloshing. Both free decay response (see Refs. [3, 4, 22]) and
forced vertical harmonic excitation (see Refs. [5,23]) test setups were developed
for this purpose.

Computational methods are another way of studying violent sloshing prob-
lems. There have been recent numerical studies making use of mesh-based tech-
niques, such as finite volumes (see Ref. [24]), the particle-Finite-Element-Method
(p-FEM) (see Ref. [25]) or the Consistent Particle Method (CPM) (see Ref. [26]).
However, in the present paper, the lagrangian Smoothed Particle Hydrodynam-
ics (SPH) method is used. Taking this approach and neglecting the influence of
the gas phase in the problem, the liquid phase is discretized in a set of parti-
cles that interact with one another. The SPH method has been broadly used in
engineering and research applications, such as free surface flows (see Ref. [27])
where the method presents and advantage simulating complex geometries (see
Refs. [28, 29]), or fluid-structure interaction problems (see Refs. [30, 31]) and
violent sloshing problems (see Ref. [32]). The Weakly-Compressible SPH formu-
lation has recently been applied to the vertical and violent sloshing problem in
Refs. [10,11]. In these studies, the tank-liquid system is first excited with a sinu-
soidal imposed motion and the global energy balance of the problem is examined.
Then, a validation against the experimental measurements performed in Ref. [22]
is carried out coupling the fluid solver with a one degree of freedom system that
represents the mechanical behaviour of the experimental tests. Further valida-
tions of the experiments carried out in Ref. [22] can be found in Refs. [6, 33].
Additionally, a thorough comparsion between 2D and 3D SPH simulations was
carried out and validated against imposed sinusoidal experiments in Ref. [34].
The SPH-based method can be considered as an efficient and accurate numer-
ical method when compared to mesh-based CFD solvers to simulate confined
and vertical violent sloshing flows. In the present work, the classical SPH formu-
lation has been modified by adding a diffusion term in the continuity equation
which helps regularizing the pressure field of the simulations. This formulation
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is called the Delta Smoothed Particle Hydrodynamics (δ-SPH) formulation as
presented in Ref. [35]. Further improvements to the delta-SPH formulation have
been introduced in Ref. [36] by implementing a Background Mesh scheme.

As part of the SLOWD project, this work involves the use of acceleration
data from fluid-structure-interaction (FSI) simulations, performed by employing
the δ-SPH formulation (see Ref [35]), describing the SDOF sloshing experiment
carried out in the laboratories of the Universidad Politécnica de Madrid (UPM)
(see Ref. [22]). The experimental object consists of a single degree of freedom
mass-spring system coupled with the slosh dynamics within a Froude scaled tank.
The simulated numerical data is utilized to train a reduced-order model capa-
ble of accurately replicating the dissipative characteristics observed in vertical
sloshing, while accounting for variations in the physical properties of the liquid
and the filling level. To ensure the identification of an accurate and comprehen-
sive model for diverse liquid types, an extensive series of numerical simulations
is conducted. These simulations involve the systematic variation of parameters
associated with viscosity, surface tension, and filling level. The classical ROMs
designed to tackle sloshing problems are intrinsically based on potential fluid
theory or small lateral perturbations (see Refs. [37–39]). In Refs. [18, 38], for
example, several analytical methods were proposed to study slosh dynamics in
simplified tank geometries. Specifically, a realistic representation is provided by
the Equivalent Mechanical Models (EMMs), whose parameters can be suitably
related with the physical quantities obtained from the linearized potential flow
theory [37]. However, these models are unable to describe complex nonlinear phe-
nomena such as vertical sloshing, being limited to cases of sloshing caused by
small perturbations imposed on the tank. In other words, they fail to reproduce
the sloshing forces generated during impacts between liquid and tank. Thanks
to the research carried out in the SLOWD project, several reduced-order models
have been developed that are able to compensate for these shortcomings. Among
them is the bouncing ball EMM proposed in Ref. [4]. It is designed by assum-
ing that the fluid behaves like a single solid mass that follows a curved path
in free flight, and then bounces elastically off the walls of the tank. When the
fluid reaches the top or bottom of the tank, it experiences a smooth visco-elastic
force that acts like a spring and a damper. The parameters of this model required
tuning via experimental data or full order CFD simulations. Reference [12] intro-
duced another bouncing ball model, trained on the basis of the free response data
measured in the one-degree-of-freedom experiment presented in Ref. [22]. These
models accurately reproduce the dissipative behaviour of sloshing, but have lim-
ited capabilities in generalising the estimation of sloshing forces as operating
parameters vary (such as the frequency of tank motion). For this reason, a new
surrogate model for sloshing was developed in Ref. [40], based on the identifi-
cation of response surfaces capable of providing estimates of sloshing forces for
a wide range of kinematic excitation conditions. Its identification process used
direct interpolation of known experimental response. References [15, 41] devel-
oped instead a data-based ROM consisting of a neural network trained directly
with experimental data. Specifically, the model was identified by exploiting the
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experimental data obtained from the set-up introduced in Ref. [5] to investigate
the dissipative behaviour of the fluid sloshing inside a tank set in vertical motion.
Despite the high performance of these models, their capabilities are limited to
one type of liquid and one filling level. As already anticipated, in this work the
aim is to overcome this limitation by going on to develop a ROM that also takes
into account different liquid types and multiple fill cases. The bouncing ball in-
troduced in Ref. [12] is used for this purpose. Specifically, for each SPH-based
simulation case, a bouncing ball model is identified to emulate sloshing dynam-
ics. Then, an interpolating hypersurface-based ROM is defined to establish a
mapping between the considered physical parameters of the liquid (varied in the
numerical simulations) and the identified ball models. The resulting hypersur-
face effectively estimates the bouncing ball design parameters while considering
various types of liquids, producing results consistent with SPH test simulations.

The paper is organised as it follows. The δ-SPH formulation, together with
the SDOF experiment description and numerical model validation are presented
in Sec. 2. Section 3 presents the process of identifying the reduced-order sloshing
model, including a description of the bouncing ball model and the simulation
environment equivalent to the fluid-structure interaction problem under consid-
eration. The article ends with a section presenting the results of tests performed
with the identified ROM (Sec. 4) and a section with concluding remarks.

2 δ-SPH formulation

In this section, the weakly compressible δ-SPH formulation that will be used
to give the ROM a predictive capability is detailed. This formulation follows
the classical SPH formulation with continuity, momentum and particle trajec-
tory equations and adds a density diffussion term in the continuity equation
that regularizes the pressure field. Additionally, the minor compressibility of the
formulation is modelled through a barotropic equation of state.

2.1 SPH model

The flow evolution for a weakly-compressible barotropic fluid is governed by the
Navier-Stokes equations and can be expressed in Lagrangian form as:

Dρ

Dt
= −ρ∇ · u, p = f(ρ)

Du

Dt
=

1

ρ
∇p+

1

ρ
∇ · V + g +Ωst ,

Dr

Dt
= u ,

(1)

where
D

Dt
represents the Lagrangian derivative, p is the pressure field, g is a

generic external volumetric force field, Ωst represents the surface tension force
and V the viscous stress-tensor. The flow velocity, u, is defined as the material
derivative of a fluid particle position, r.
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In order to close the system of equations, the fluid is assumed to be weakly-
compressible. This compressiblity is modeled with a linear Equation of State
(EOS) that relates the fluid density with the pressure variations such that:

p = c2s (ρ− ρ0) . (2)

where ρ0 is the reference liquid density and cs is the numerical speed of sound
that has been chosen to satisfy cs ≥ 10Uref where Uref is the maximum tank
velocity of the simulation. In this way, it is ensured that the density variations
of the fluid are below 1 % of ρ0 with a Mach number below or equal to 0.1. For
a Newtonian fluid, the divergence of the viscous stress-tensor can be expressed
as:

∇ · V = ∇ · (λ tr(D) I + 2µD) = µ∇2u , (3)

where D is the strain rate tensor, D = (∇u+∇uT )/2, I the Identity tensor and
λ and µ the bulk and dynamic viscosity coefficients respectively. In Eq. 3 it is
assumed that for a weakly-compressible fluid tr(D) = ∇ · u ≈ 0.

The δ−SPH formulation detailed in Ref. [35] is used in this work. The set of
Eqs. 1 turns in SPH into:

Dρi
Dt

= −ρi
∑
j

(uj − ui) · ∇WijVj + h cs δ
∑
j

Dji · ∇WijVj

Dui
Dt

= − 1

ρi

∑
j

(pi + pj)∇WijVj + gi +
µsphK

ρi

∑
j

Πij∇WijVj +Ωsti

Dri
Dt

= ui+δui ; p = p0 + c2s(ρi − ρ0)

(4)
where subscript j represents a general neighbor of particle i. The volume of

the neighbor particle is denoted as Vj , defined for a fluid particle as Vj = mj/ρj .
The kernel function is Wij = W (rj − ri, h) and h represents the smoothing
length. Therefore, ∇Wij represents the spatial derivative of the kernel function
with respect to the i−th particle. In the work presented in this paper, a Wendland
C2 kernel with h/dr = 2 is used, being dr the distance between particles.

The constant µsph is the maximum between the physical dynamic viscosity
µ and the artificial one as stated in Ref. [42]. It can be expressed as:

µsph = max(µ,
1

K
αcshρ0) (5)

where K = 8 for 2D simulations and α is the artificial viscosity constant that
is set to 0.01 for all simulations except for the ones where the variation of the
dynamic viscosity of the liquid is analysed. In these cases the artificial viscosity
term is set to zero (α = 0 and µsph = µ) to retain the physical dynamic vis-
cosity of the liquid. Furthermore, Dij and Πij are the density and momentum
diffusivity terms added to the continuity and momentum equations respectively
which constitutes the standard δ-SPH model (see Ref. [35]). They are expressed
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as:

Dij = 2

[
(ρj − ρi)−

1

2

(
〈∇ρ〉Lj∗ + 〈∇ρ〉Li

)
· rji

]
rji
‖r2
ji‖

Πij =
(uj − ui) · rji

r2
ji

, rji = rj − ri
(6)

where 〈∇ρ〉Li is the renormalized density gradient, defined by Ref. [43] and j∗
refers exclusively to fluid neighbor particles. The reader is encouraged to see
Ref. [6], where the convergence property in terms of particle resolution of the
density diffusivity term is evaluated for different liquids with surface tension
effects.

The turbulence of the problem could be tackled using a LES subgrid model
such as the one presented by Ref. [44] and later on applied in Refs. [10, 11],
however, it is not the scope of this work to deal with the turbulence of the
vertical sloshing problem and it is assumed that the extra viscosity added by
the Πij term is broadly representative of the turbulent viscosity. Additionally,
an analysis of the liquid viscosity in the sloshing induced damping is performed
in Ref. [6].

In order to avoid numerical cavitaion, also known as tensile instability a
Particle Shifting Technique (PST) is used represented by the δui term in the
partcile trayectory evolution equation. Following the PST formulation presented
in Ref. [45], δui is calculated as:

δui = −Uref2h
∑
j

[
1 + 0.2

(
Wij

W (dr)

)4
]
∇iWijVj (7)

Eq. 7 is corrected near the free surface according to the formulation presented in
Ref. [46]. An additional correction is applied to the PST term close to the free
surface to avoid shifting velocities normal to the free surface. For this purpose,
the SPH solver uses a free surface tracking algorithm following the work done
by Ref. [6].

In the momentum equation of the set of Eqs. 4, a surface tension field Ωsti is
added to model the free surface forces that have an influence in the free surface
shape, specially at initial stages, when vertical Rayleigh-Taylor instabilities are
triggered (see Ref. [47]). For this purpose, the formulation detailed in Ref. [48]
is implemented in this work, and it reads:

Ωsti = − σ
ρi

∑
j

(nj − ni) · ∇WijVj ni (8)

where nk is the normal at the free surface for a general particle k, calculated as:

ni =
〈∇λ〉i
‖〈∇λ〉i‖

with 〈∇λ〉i = −
∑
j

(λj − λi)Li∇iWijVj (9)

where λ represents the minimum eigenvalue of the renormalization matrix de-
fined by:
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Li :=

∑
j

rji ⊗∇iWijVj

−1

. (10)

For the time integration of the set of Eqs. 4 a purely explicit formulation with
a Leapfrog based predictor-corrector scheme is used, with the main advantage
that only one time derivative is needed for each time step (see Ref. [49]).

For the solid walls of the tank, the numerical boundary integrals approach,
as described by Ref. [50] is followed. In the boundary integrals formulation, the
differential operators from Eqs. 1 are redefined near a solid boundary as:

〈∇f〉i =
1

γi

∑
j∗
fj∗ · ∇WijVj∗ +

∑
j̄

fj̄ · nj̄Wijsj̄

 , (11)

where fi is a generic field function, nj represents the normal of the surface
pointing outwards, sj is the area of the surface element and γi the Shepard
renormalization factor, that is calculated geometrically through a semi-analytical
approach as explained in Ref. [51]. It should be noted that close to a boundary the
neighbor particles j are divided into two groups: fluid particles j∗ and boundary
particles j̄. In this work, the expression to compute all gradients will follow this
subdivision procedure following the methodology presented in Refs. [52, 53].

2.2 SDOF model

The numerical δ-SPH formulation described in the previous section is applied to
the sloshing problem of the vertically accelerated SDOF experiment depicted in
Fig. 1. The experimental setup consist of a Froude-scaled tank filled with liquid
up to a filling height hl which is attached to a mechanical guide and a set of
springs that constraints the tank motion to be purely vertical. The tank features
a base area of 60 cm2 and a height of 6 cm. It is contained in a C-shaped
wooden structure that is attached to a set of six springs (half on the upper
side and half on the lower side). Each individual spring presents an stiffness of
ki = 708.67 N/m which corresponds to a total system stiffness of K = 4252.03
N/m. The upper set of springs is attached to a metallic plate that is joined to the
embedded load-cell. The lower set of springs are attached to the floor. The system
is displaced a certain initial distance zT = zT0 from its equilibrium position until
it is fixed by the action of a pair of permanent solenoids. Then, when the current
is turned on the solenoids release the sytem starting the oscillatory motion and
the beginning of the experiment. Three quantities are measured from each test:
the tank acceleration, the tank position and the force at the load-cell. Using these
magnitudes, the vertical liquid motion can be derived following the methodology
explained in Ref. [22].

The SDOF system can be modeled using the following equation:
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Fig. 1. Snapshot of the experimental setup (left) and outline (right). (1) Load cell,
(2) Metallic plate with mass mp = 0.06 kg, (3) Upper set of springs with stiffness
constant k1 = 2126 N/m, (4) Lower set of springs with stiffness constant k2 = 2126
N/m, (5) Laser sensor, (6) Mechanical guide, (7) Accelerometer, (8) Methacrylate tank
and C-shaped wooden structure, (9) Pair of solenoids acting as release mechanism.

ms
d2zT
dt2

+B0 sgn

(
dzT
dt

)
+B1

dzT
dt

+KzT = F sphslosh

with zT (0) = zT0 and żT (0) = 0

(12)

where zT is the vertical tank displacement. The structural mass is denoted byms,
B0 = 0.38 N and B1 = 1.73 kg/s account for the structural damping coefficients
of the rig, K = 4252.03 N/m is the total spring stiffness and Fslosh the vertical
liquid load which its calculation will be detailed later. The liquid weight mlg is
subtracted from Fslosh so only the dynamic part of the force is included in the
system reported in Eq. 12. The liquid and structural masses of the system are
balanced depending on the filling level and the type of liquid used in order to
have a total mass m = ms + ml = 2.58 kg so that the natural frequency of the
total system is fixed to 6.46 Hz.

The sloshing force acting on the SDOF system is calculated from the SPH
solver according to F sphslosh = F pslosh + FVslosh, where:
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F pslosh :=

∫
∂ΩB

−pn dS ,

FVslosh :=

∫
∂ΩB

2µD · n dS ,
(13)

where F pslosh and F Vslosh are the corresponding pressure and viscous compo-
nents of the vertical sloshing load. According to the boundary integrals formu-
lation, these forces can be expressed in the SPH model as:

F pslosh = −
∑
i

∑
j∈BE

(pj + pi) njWij Vi Sj ,

FVslosh = µ
∑
i

∑
j∈BE

[
Πijnj +

(I − nj ⊗ nj)uji
|rij · nj |

]
WijViSj .

(14)

where the second term of the viscous force FVslosh is accounted only in case no
slip boundary conditions are enforced. A similar procedure to compute the forces
is followed by Ref. [54].

2.3 Validation against experimental decay tests

The δ-SPH solver used is AQUAgpusph, an open-source code developed by CE-
HINAV (see Ref. [50]), which is validated against for the violent and vertical
sloshing case that was experimentally assesed in Ref. [22]. For the validation,
2D simulations have been carried out for 10g, 50% filling level water and oil
experiments. Figures 2 and 3 show the comparison between the SPH simulation
and experimental data for the tank acceleration and vertical sloshing force in
both water and oil tests.

The tank motion seems to be well captured by the SPH simulations for both
water and oil tests in terms of tank frequency and envelope of the decay. Regard-
ing the vertical sloshing force, the SPH simulations tend to present pronounced
spikes close to the force maxima due to the noise coming from the integrated
pressure field. Overall, the match between simulations and experiments is good.
Further details on the validation of the AQUAgpusph code with respect to the
vertical sloshing problem can be found in Refs. [6, 33].

Figure 4 displays experimental and SPH snapshots of some of the charac-
teristic instants of the flow kinematics. The experiment starts with a flat sur-
face and when it is accelerated upward a ripple is formed in the free surface
(t = 0.075 s) which then develops into Rayleigh-Taylor instabilities that impact
the upper tank wall (t = 0.1 s). After that, the flow becomes highly turbulent
and violent with bubble formation and many liquid-to-liquid and liquid-to-wall
impacts (t = 1.43 s). At this stage, the flow kinematics is not captured to a
great level of detail by the δ-SPH simulation since 3D and multiphase effects
are involved. However, the relative motion of the bulk liquid mass position with
respect to the tank motion is well captured. Finally, the liquid restores its initial
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Fig. 2. Comparison between δ-SPH simulations and experimental data of the acceler-
ation of the tank over time for water and oil decay tests at 50% filling level and 10g of
maximum acceleration.
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Fig. 3. Comparison between δ-SPH simulations and experimental data of vertical slosh-
ing force over time for water and oil decay tests at 50% filling level and 10g of maximum
acceleration.

state displaying a standing wave like regime (t = 3.31 s). The reader is encour-
aged to watch and download the videos of the experiments and SPH simulations
in http://canal.etsin.upm.es/files/SLOWD/videos/. At the bottom side of
Fig. 4 the pressure fields at time instants t = 0.075 s , 0.1 s , 1.43 s and 3.31
s are shown. It can be seen that, despite the addition of the diffusion term in

http://canal.etsin.upm.es/files/SLOWD/videos/
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Fig. 4. Experimental snapshots (top) of a vertical sloshing experiment with water at
a 50% filling level and 10g of maximum acceleration at t = 0.075 s, 0.1 s , 1.43 s and
3.31 s. Free surface evolution (middle) simulated with the δ-SPH method at the same
instants. Nondimensional pressure field (bottom) of the δ-SPH simulation at the same
instants.

the continuity equation, the pressure field displays spurious acoustic noise which
affects the accuracy of the integrated sloshing force. This source of error may
potentially come from the explicit time-stepping. To overcome this issue two
approaches could be adopted: implement an implicit time integration scheme as
done in Ref. [55] (in which case the use of artificial diffusion terms could also be
avoided) or use Velocity-divergence Error Mitigating (VEM) and Volume Con-
servation Shifting (VCS) schemes that ensure a divergence-free velocity field (see
Ref. [56]).

3 Sloshing reduced order model identification

This section presents a comprehensive procedure for identifying a reduced-order
model that accurately replicates the dissipative behavior of sloshing in a fluid-
structure interaction problem. The section begins by providing a detailed descrip-
tion of the bouncing ball model, with its constitutive parameters and underlying
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principles. Next, the simulation environment developed to reliably emulate the
fluid-structure interaction problem is introduced. The bouncing ball model is
integrated into this environment to reproduce the nonlinear dynamics of vertical
sloshing. Finally, the section illustrates the ROM identification logic, which uses
an interpolating hypersurface to establish a mapping starting from physical fluid
parameters and fill level, resulting in the estimation of a bouncing ball model
that accurately simulates the desired sloshing behavior for a generic liquid.

3.1 Bouncing ball model

The bouncing ball model used in this work was introduced in Ref. [12]. It is an
equivalent mechanical model able to emulate the mechanics of the impacts that
can occur between the sloshing fluid and the walls of the tank, when the latter
is excited violently in a vertical direction. In particular, the sloshing forces are
replaced by the forces exchanged between the tank and a ball bouncing inside
the rigid tank. Figure 5 shows the design scheme of the bouncing ball. A part of

Fig. 5. Bouncing ball model outline.

the total liquid mass ml = mb+mf is associated to the ball mb, whereas another
portion is considered frozen mf , namely attached to the wall. The equation of
motion of the bouncing ball can be thus summarized as follows

mbz̈b = −mbg + Fb(zb(t), zT (t)) (15)

where Fb is the force exchanged between the tank and the ball, zT (t) represents
the motion of the tank whereas zb is the absolute vertical motion of the bouncing
ball. The frozen mass mf is expressed as mf = (1− β)ml and β is a nondimen-
sional parameter that can take values between zero and 1 and regulates how
much mass of the liquid is considered frozen. A variable s(t) that represents the
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relative motion of the ball with respect to the tank is defined as:

s(t) =


zb(t)− zT (t)− r0 if zb(t) < zT (t) + r0

zb(t)− zT (t)− h+ r0 if zb(t) > zT (t) + h− r0

0 elsewhere

(16)

where r0 is the radius of the rigid ball and h is the height of the tank. When
the condition, zb(t) < zT (t) + r0 occurs, the ball is in the impact region with
the floor of the tank. Whereas, the condition zb(t) > zT (t) + h− r0 is related to
impact with the ceiling. The new variable s(t) is null when the ball finds itself
in the suspension or floating phase, where there is no impact. Moreover it is
introduced the relative velocity of the ball with respect to the tank ν = żb− żT .
It follows that we can define the viscoelastic forces as

Fb(s(t), ν(t)) = kbs+ cbν = k̂bfnls+ cbν = k̂b

(
1 +

αs2

r0 − |s|

)
︸ ︷︷ ︸

fnl

s+ cbν (17)

where kb and cb are, respectively the stiffness and damping associated to the
bouncing ball. It is worth noting that kb = k̂bfnl may eventually be, in turn,
nonlinear function of s(t) by introducing a penalty function fnl that avoids the
ball to go out by the limits of the tank. The penalty function coefficient α is one
of the design parameters of the bouncing ball, which defines the intensity of this
nonlinear function. The overall sloshing force exchanged between the tank and
fluid mass inside consists of two terms yielded by bouncing ball force and frozen
mass inertia:

F bbslosh(s(t), ν(t)) = Fb(s(t), ν(t))−mf (z̈T + g) (18)

3.2 Simulation environment and bouncing ball tuning

Numerical modeling of fluid-structure interaction problems is performed in Sim-
ulink®, casting the bouncing ball model as representative of vertical sloshing
dynamics (as it was done in Ref. [12]). Figure 6 displays the flowchart of the
complete system comprising the structure and sloshing. In this figure, the slosh-
ing forces denote the input of the structural subsystem, while the input of the
sloshing subsystem includes the vertical rigid displacement and the tank velocity.
This numerical model ideally reproduces the dynamic behaviour of the SDOF
experimental (or numerical) system presented in Sec. 2. Note that, the bouncing
ball based sloshing block can also be simulated in isolation from the structure,
with an appropriate seismic excitation assigned as input.

The identification of the bouncing ball model is performed following the same
procedure as in Ref. [12], in which the five design parameters (r0, k̂b, cb, α, β)
of the model are estimated through an optimisation process. Specifically, this
procedure uses the numerical data of vertical tank acceleration calculated in
the SPH simulations of the FSI problem. From the envelope of the acceleration
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Fig. 6. Diagram of the fluid-structure interaction problem implemented in Simulink®.

signal, the instantaneous damping ratio is derived by means of the logarithmic
decay. By reporting this quantity as a function of the amplitude of accelera-
tion, the influence of viscous and frictional (Coulomb) structural damping is
also highlighted. The instantaneous damping ratio defines the objective func-
tion of the optimisation procedure. In other words, the bouncing ball model is
identified by finding a combination of parameters that when simulated in the
FSI environment (see Fig. 6), returns the closest instantaneous damping ratio to
the one retrieved by the decaying SPH acceleration data. The objective function

that is minimized in the optimisation process is J =

√
N∑
i=1

(
ζsphi − ζbbi

)2

, where

ζsphi and ζbbi represent respectively the instantaneous damping obtained from
the SPH acceleration data and that obtained from the simulations with the ball.
Note that the summation in the objective function is performed on the damp-
ing values as the acceleration varies (N values corresponding to the acceleration
values considered).

3.3 Hyper-surface ROM of the bouncing ball parameters

The bouncing ball presented in the previous subsections is used to create a
dataset aimed at identifying a reduced-order model capable of estimating a new
bouncing ball model, for a generic liquid type and without performing the op-
timisation process. This ROM consists of an interpolating hypersurface that
maps the physical parameters of the liquid (together with the fill level) to the
five parameters of the bouncing ball. From the dimensional analysis and CFD
computations performed in Refs. [6,7] the fluid parameters that influence the liq-
uid induced dissipation in vertical sloshing are the fluid filling level fill = hl/h,
the Reynolds number Re = ρωh2/µ and the Weber number We = ρω2h3/γ
(where h is the height of a tank oscillating at a natural frequency ω, filled up to
a height of hl with a liquid of density ρ, dynamic viscosity µ and surface tension
γ). The logic of what is proposed in this work is schematized in Fig. 7. For the
development of this map, many SPH simulations were carried out by varying
the physical parameters in order to have a sufficient number of points in the
three-dimensional space of physical quantities - which then form the design of
experiment (DoE). Specifically, 54 randomly selected free response SPH simula-
tions were performed at the same operating natural frequency, initial amplitude,
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Fig. 7. Outline of the mapping procedure between fluid parameters and bouncing ball
parameters.

tank dimensions and structural parameters. The physical parameters that were
varied are the following ones:

– Filling level fill: [10 - 90] %
– Reynolds number Re: [62 - 1257480]
– Weber number We: [2640 - 26400] (corresponding to γ: [10 - 90])

All these simulations started at the same initial conditions, equal to zT (0) =
−0.0584 m and żT (0) = 0. Among the 54 simulation cases we define the reference
case for which we have fill = 50%, Re = 140000 and We = 3668. The Re and
We values given for the reference case correspond to a test with water. As each
SPH simulation is performed at a constant frequency value, the identification
process must be repeated if the system is operated at other frequencies. In fact,
the bouncing ball is unable to adequately extrapolate the dissipative behaviour of
sloshing at frequencies other than the identification frequency. The identification
procedure presented in Sec. 3.2 is used to derive the optimal bouncing ball
design parameters for each of the FSI fluid-dynamic simulations. Each identified
bouncing ball will correspond to a set of physical parameters, associated with
the SPH simulation used as the target of the optimisation. By employing this
method, a data set of parameters can be generated to enable the development of
the interpolating response model. The resulting model provide estimation of ball
parameters for a different set of physical liquid parameters, distinct from those
utilized in SPH simulations. The notable advantage of this model is its ability
to remove the need for the optimisation process to identify a new ball, resulting
in a significant reduction in computational cost.

4 Results

This section presents a brief overview of the obtained results, illustrating the
comparisons of achievements in terms of acceleration, damping, and sloshing
force. First, the design of the experiment on which the reduced-order model is
built is presented, followed by the simulation results for both the reference and
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test cases. A further analysis of the performance of the identified model with
respect to important aspects related to the physics of vertical sloshing is also
conducted.

4.1 Reference case

Following the identification of the bouncing ball model for each of the 54 triplets
of physical parameters, a set of ball design parameters is obtained.

Fig. 8. Simulations points with respective values of the objective function J .

Figure 8 shows how the 54 points are distributed in the three-dimensional
space defined by the parameters Re,We and fill. Each of them is associated with
a colour indicative of the value of the objective function J (defined in Sec. 3.2),
obtained after the identification process of the bouncing balls. With the design
parameter sets associated with each of the bouncing ball models identified at the
54 points, an interpolation process is implemented in Matlab®, aimed at obtain-
ing a response surface model (hypersurface) capable of providing the prediction
of the five ball parameters based on a set of physical parameters different from
those selected for the starting simulations. For the sake of brevity, of all the SPH
simulations considered, only the results obtained for the reference case mentioned
in Sec. 3.3 are shown in Fig. 9. The rest of the simulation cases and bouncing
ball responses can be found and downloaded at http://canal.etsin.upm.es/

ftp/SLOWD_DATABASE/ROM_data/SPH_BB/. The optimisation process presented
in Sec. 3.2, results in a bouncing ball having the constitutive parameters shown

http://canal.etsin.upm.es/ftp/SLOWD_DATABASE/ROM_data/SPH_BB/
http://canal.etsin.upm.es/ftp/SLOWD_DATABASE/ROM_data/SPH_BB/
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in Tab. 1. They lead the definition of a bouncing ball model capable of exhibit-
ing dissipative behavior comparable to that observed in the reference SPH free
response simulation. In fact, as can be seen from Figs. 9(a) and 9(b), the identi-
fied bouncing ball model is able to return an acceleration and an instantaneous
damping ratio that present a good match with the numerical ones. The force
predicted by the model can also be compared to that obtained with the SPH
test. As can be seen from Fig. 9(c), the equivalent mechanical model is able to
capture the nonlinear trend of the load exerted by the liquid. However, the force
predicted by the ball turns out to be more impulsive, and this is due to the way
it was designed, namely, as a viscoelastic impact force.

k̂b [Nm−1] cb [Nsm−1] α [m−1] β r0 [m]

382.19 10.58 96.64 3.67e-4 0.0295
Table 1. Optimal parameters of the bouncing ball model for the reference case.

4.2 Blind test case

Similar results were also obtained for the remaining simulations. It should also be
noted that, although not included in the objective function to be optimised, the
sloshing force that the bouncing ball is able to provide is, for each of the tests,
very similar to the SPH force (again leaving aside the presence of somewhat more
impulsive peaks present in the first cycles of the response, where the fluid im-
pacts are more violent). To validate the process of identifying the interpolating
surface, an additional test with physical parameters different from those used for
the other simulations is considered. However, these always fall within the ranges
defined in Sec. 3.3, and correspond specifically to fill = 90%, Re = 251496 and
We = 4400. Figure 10 shows the results obtained, again comparing acceleration,
damping and sloshing force. In particular, the curves indicated in the legend with
opt , are those obtained by performing the direct optimisation aimed at identi-
fying the ball parameters (as presented in Sec. 3.2). While, the curves indicated
with int , are those obtained by performing free response simulations with a
ball having the parameters predicted by the identified interpolating surface (in
correspondence with the physical quantities of the additional test). The above
parameters are compared with those obtained from direct optimisation in Tab.
2. The parameters k̂b and α shown in Tab. 2 have a considerable relative error of
13% and 25% respectively, while cb and β are more close (both have an error of
7%). The radius of the ball r0, on the other hand, presents a negligible relative
error when compared to the identified ball model. However, these parameters
make it possible to obtain a bouncing ball model that, once simulated, is able to
return accurate responses. This is also seen in the comparisons in Fig. 10, where
for the acceleration, instantaneous damping ratio and sloshing force curves there
is almost an overlap for the two bouncing ball models (direct optimisation and
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(a) Free Response (b) Instantaneous damping ratio

(c) Sloshing Force

Fig. 9. Comparisons between SPH data and bouncing ball predictions in terms of tank
acceleration, instantaneous damping ratio and vertical sloshing force for the reference
case (Re = 140000, We = 3668 and fill = 0.5).

k̂b [Nm−1] cb [Nsm−1] α [m−1] β r0 [m]

opt 1.93e+03 22.29 317.89 0.235 0.0298

int 1.67e+03 20.47 397.35 0.221 0.0298

Table 2. Optimal parameters of the bouncing ball in for the validation test case.

interpolating response surface). In particular, the distance between the damping
curves obtained by direct optimisation and by interpolation (see Fig. 10(b)) is
again quantified by the J function, which in this case is equal to 0.022. This
value is comparable to the lower values obtained for the simulations shown in
Fig. 8.
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(a) Free Response (b) Instantaneous damping ratio

(c) Sloshing Forces

Fig. 10. Comparisons between SPH data and bouncing ball predictions in terms of
tank acceleration, instantaneous damping ratio and vertical sloshing force for the blind
test case (Re = 2514960, We = 4400 and fill = 0.9).

Taking advantage of the test case presented in this section, it is also possible
to perform a sensitivity analysis as the number of physical parameter triplets
that are considered to generate the interpolating surface changes. Specifically,
our objective is to evaluate whether an increase in the number of considered
simulations leads to improved accuracy in predicting the synthetic parameters
of the bouncing ball. For this purpose, three added cases with 20, 30 and 40
points selected randomly from the total 54 simulations carried out in this work
are considered. For each, a response surface is identified, which is then used
to estimate the parameters of the test case. Figure 11 illustrates the results of
the sensitivity analysis based on the value of the J function. It demonstrates
that as the number of selected points increases, the discrepancy between the
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damping curves obtained through direct optimization and those predicted by
the interpolating surface decreases.

Fig. 11. Trend in objective function J as the number of simulations considered in
identifying the interpolating surface varies.

In terms of computational costs, the direct optimisation process aimed at
identifying the parameters of the bouncing ball takes 12.3 minutes, while the
construction of the interpolating surface with the full number of simulations
available takes 2.5 minutes. Once available, the interpolating surface makes it
possible to obtain the parameters of the bouncing ball in considerably less time
than is necessary for the direct optimisation. It is important to note that free
response simulation in Simulink is of the order of a few seconds so it was not
considered when evaluating the computational cost. In comparison, an SPH sim-
ulation run with AQUAgpusph took approximately 6 hours to complete using
state-of-the-art GPU technology which translates in 95.86 % reduction of com-
puting time.

4.3 Comparison of sloshing magnitudes

This section explores other aspects related to the physics of vertical sloshing,
and how the bouncing ball model is able to describe them. Figure 12 shows
three snapshots where the ball is impacting the tank ceiling (t = 0.4 s), floating
(t = 0.44 s) or impacting the tank floor (t = 0.47 s). In the δ-SPH conunterparts
we see that the bulk liquid is located at the ceiling or floor of the tank when the
ball is impacting these walls and we find that the fluid is scattered across the
tank space when the ball is floating. Similar observations where made in Ref. [12]
when the bouncing ball model was compared with experimental snapshots.

Building upon this rationale, a comparative analysis is proposed between the
position of the liquid’s center of gravity (COG) (from the SPH simulation) and
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Fig. 12. Comparison of snapshots coming from a δ-SPH simulation (top) and a BB
model simulation (bottom) for instants t = 0.4 (floating) , 0.44 (ceilling impact) and
0.47 (floor impact) seconds. The sloshing forces predicted by SPH F sph

slosh and the bounc-
ing ball model F bb

slosh are included for comparison.

the vertical displacement of the bouncing ball mass. The COG of the liquid in
the SPH simulation zCOG, is calculated in the same way as a discrete system of
particles:

zCOG =
1

ml

N∑
i=1

zimi (19)

where zi and mi are the vertical coordinate and mass of particle i, N is the
total number of particles and ml is the total liquid mass. Figure 13 shows the
comparison between the velocity of liquid COG and the velocity of the bouncing
ball, for the reference case introduced in Sec. 3.3. Overall, there is a good match
between the bouncing ball model and SPH simulation except for the first 4
cycles when the tank amplitudes and sloshing forces are the highest. For these
first cycles, the flow is highly fragmented and the bouncing ball model tends to
underestimate the COG amplitude. The good match between ball velocity and
liquid COG velocity is confirmed in the analytical study conducted in Ref. [15],
which was further corroborated through numerical validation in Ref. [33]. These
references emphasise the direct correlation between the dissipative component
of the vertical sloshing force, which includes liquid-induced dissipation, and the
relative motion of the liquid with respect to the tank. Therefore, if the bouncing
ball model matches the dissipation of the problem by optimising the objective
function J , it should match the COG of the liquid.
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Fig. 13. Velocity of the COG over time. Comparison between the SPH simulation and
the BB model for a water test at Re = 140000, We = 3668 and fill = 0.5.

Another way of checking that the bouncing ball model is properly repro-
ducing the sloshing physics in the vertical sloshing problem is by performing a
sensitivity analysis with respect to filling level variation. The influence of the fill-
ing level in the liquid induced power dissipation and the phase-shift between the
tank motion and the vertical sloshing force has been experimentally confirmed in
several studies (see Refs. [3–5]). In these experiments, the maximum dissipation,
computed as the global damping ratio of the expriment ξ, is found close to half
of the filling level fill ∈ [40, 60]. On the other hand, the maximum sloshing force
F increases with the filling level and the phase-shift ϕ decreases as the fill level
increases. To see how these magnitudes are computed the reader is encouraged
to see Ref. [3]. These trends have been reproduced by the SPH and bouncing
ball simulations and shown in Fig. 14, where they have been normalized with
respect to the reference case (corresponding to magnitudes with subscript 0).
While the bouncing ball model may not precisely reproduce the exact values of
the magnitudes, it successfully captures the overall trends. Hence, despite the
simplifications inherent in the model and considering the predictive capability
offered by the response surface, it can be concluded that the bouncing ball model
is a valuable tool for investigating vertical and violent sloshing flows within the
defined parameter space.

5 Conclusions

The approach presented in this paper makes it possible to identify a reduced-
order model for vertical sloshing on the basis of numerical data from SPH fluid
dynamic simulations. The novelty lies in the possibility of modelling the sloshing



Title Suppressed Due to Excessive Length 23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

Fig. 14. Global damping ratio, sloshing force maximum and phase-shift as a function
of the filling level. Comparison between the SPH simulation and the BB model for
water tests at Re = 140000 and We = 3668. All magnitudes have been normalized
with respect to the fill = 0.5 case.

phenomenon for a wide range of possible fluids with different intrinsic proper-
ties, i.e. different viscosity and surface tension. But also for different tank levels.
Therefore, by assigning the desired physical parameters, it is possible to ob-
tain an equivalent mechanical model, represented by a bouncing ball, capable of
emulating the dynamic behaviour of a liquid contained in a tank subjected to
vertical excitation. In particular, this model will reproduce the same dissipative
behaviour that the fluid induces in the system by impact.

By building up a database of numerical simulations in which the fluid prop-
erties are varied, hypersurfaces can be constructed that map the physical prop-
erties to the bouncing ball parameters. This mapping procedure gives the ROM
a predictive capability which has been tested against a blind test. The predicted
response of the ball, when validated with the blind test, agrees well with the
model identified with the optimisation procedure and the numerical SPH data.
In addition, a sensitivity analysis is performed to see how the objective function
is affected by the number of simulations used to build the interpolation hyper-
surfaces. It is seen that the accuracy of the procedure increases as the number
of randomly selected cases increases.

Having validated the predictive capability of the ball model, the ROM is
used to investigate other aspects of the vertical sloshing problem. It is seen that
the relative motion of the ball is consistent with the liquid COG motion of
the SPH simulation. In addition, a level variation study is carried out and it is
observed that the bouncing ball model captures the maximum sloshing force and
phase-shift trends of the study. This observation indicates that the bouncing ball
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model could be used as a tool to predict some key characteristics of the vertical
and violent sloshing problem while consuming very low computational resources
compared to other CFD tools.

Despite the strong performance observed with the bouncing ball, it is impor-
tant to note that its estimation accuracy decreases when the frequency deviates
from the specific value for which it was identified. Reduced-order models based
on neural networks are able to bypass this problem, allowing the accurate esti-
mation of forces in a larger operational domain. However, the model identified
in this work may be preferable, as the use of neural networks carries the risk
of obtaining an unstable response outside the identification input space. In such
cases, a physics-based model like the bouncing ball can be advantageous as it
provides a response that, while potentially less accurate, remains stable and does
not lead to divergence.
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amplitude assessment in sloshing type problems with smooth particle hydrodynam-
ics,” Ocean Engineering, vol. 33, pp. 1462–1484, 2006.

50. J. L. Cercos-Pita, “Aquagpusph, a new free 3d sph solver accelerated with opencl,”
Computer Physics Communications, vol. 192, pp. 295–312, 2015.

51. J. Calderon-Sanchez, J. Cercos-Pita, and D. Duque, “A geometric formulation of
the shepard renormalization factor,” Computers & Fluids, vol. 183, pp. 16 – 27,
2019.

52. J. Michel, A. Vergnaud, G. Oger, C. Hermange, and D. Le Touzé, “On particle
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Data Availability

– The experimental data used to validate the numerical tool can be found in
http://canal.etsin.upm.es/ftp/SLOWD_DATABASE/case_1/index.html

– The SPH data can be downloaded in http://canal.etsin.upm.es/ftp/

SLOWD_DATABASE/Numerical_data/AQUAgpusph/

– Videos of the SPH simulations and experiments can be downloaded at http:
//canal.etsin.upm.es/files/SLOWD/videos/

– The 54 simulation points for the hypersurface identification and the ROM re-
sponses can be found in http://canal.etsin.upm.es/ftp/SLOWD_DATABASE/

ROM_data/SPH_BB/
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