"百闻不如一见!"

巨肖字^{1,4},许越^{1,2,3,4*}

¹ 旭月(北京)科技有限公司,北京,中国 10080; ² 旭月生物功能研究院,北京,中国,100080; ³ 中关村旭月非损伤微测技术产业联盟,北京,中国,100080; ⁴ 国际 NMT 联盟,19 Research Drive, Suite 6 Amherst, MA 01002, USA;

非损伤微测技术(NMT)作为生命科学领域的关键核心技术,已帮助中国科研学者在包括 Cell、Nature、Science 等在内的各类学术期刊上发表各类文献超过 1200 篇,但由于 NMT 目前依然 属于普及度不高的新技术,初次接触 NMT 的研究人员,需要花费较高地时间成本来收集 NMT 相关资料,以了解并学习 NMT 的使用。

为了能够让研究者们更系统、高效地学习 NMT,我们汇总了国内 NMT 领军企业旭月公司及超过 1000 位的中国科研学者和工程技术人员,在近二十年的时间里总结出的应用经验和体系视频资源,其中包括技术介绍、技术应用报告、技术应用案例、实验流程等。

一、视频资源总览

- 1. 非损伤微测技术 (NMT) 介绍
- 2. NMT 技术应用报告
 - 1) 生物医学
 - 2) 植物逆境
 - 3) 盐碱胁迫
 - 4) 重金属胁迫
 - 5) 植物免疫
 - 6) 养分元素
 - 7) 干旱胁迫
 - 8) 膜电位
 - 9) 植物质子泵
 - 10) 植物生殖生长发育
 - 11) 植物激素
 - 12) 环境科学
 - 13) 植物 微生物互作
 - 14) 光合研究
 - 15)NMT 相关专家报告

- 3. NMT 技术应用案例
- 4. NMT 文献
- 5. NMT 实验过程
 - 1)NMT 实验设计
 - 2)NMT 实验前物品准备
 - 3)NMT 实验测试液和校正液
 - 4)NMT 设备操作流程
 - 5)NMT 实验样品固定检测
 - 6)NMT 实验瞬时处理
 - 7)NMT 实验数据分析处理
 - 8)NMT 实验设备使用常问解答
 - 9)NMT设备维修维护

收稿日期: 2023-08-14 * 通讯作者 E-mail: xuyue_xulei@126.com

doi:10.5281/zenodo.8357570

二、视频列表

非损伤微测技术(NMT)介绍

NMT 技术介绍(一)	
NMT 技术介绍(二)	
NMT 技术检测过程(一)	
NMT 技术检测过程(二)	
NMT 技术介绍(一)	
NMT 技术原理(一)	
NMT 技术原理(二)	

NMT 技术应用报告——生物医学

NMT 在离子通道研究上的应用及其 与传统电生理的区别	
NMT 在斑马鱼离子细胞的应用:从 生理到环境毒理	
NMT 探究以斑马鱼为材料的药物耳 毒性研究	
NMT 技术活体脑片跨膜离子流检测 体系	
NMT 在肌肉损伤再生上的应用	
NMT 在肾小管离子通道上的应用	
NMT 在肠上皮细胞离子转运的研究 应用(上)	
NMT 在肠上皮细胞离子转运的研究 应用(下)	
NMT 在神经研究上的潜在应用	

NMT 技术应用报告——植物逆境

活体跨膜转运技术应用报告	
NMT 在非生物逆境、极性生长、器 官发育等方向的应用	
NMT 在盐胁迫上的应用	
NMT 在盐胁迫 / 植物激素 / 质子泵 / 保卫细胞上的应用	
NMT 在保卫细胞 / 质子泵 / 细胞壁酸化 / 酸生长理论 /IAA/ 干旱胁迫上的应用	
NMT 在盐胁迫 / 氮素营养等方向的 应用	
NMT 在重金属领域的应用	
NMT 在重金属研究中实验设计指导	
根表吸 Cd 与根茎内部 Cd 转运速率 检测的差异	
盐胁迫下根 Na+ 吸收速率检测体系	

Na-H 逆向转运体活性即排 Na [†] 速 率检测	
NMT 在养分元素、病害及非生物盐 胁迫上的应用	
NMT 在树木逆境生理与甘薯生物学 及分子育种上的应用	
NMT 在农业领域应用的生物学基础	
S- 硫巯基化修饰介导 H ₂ S 和 ABA 交叉互作提高植物干旱抗性	
PLANT PHYSIOL 一作网络报告:氢 分子调控小白菜耐 Cd 机制的研究	
NMT 在坛紫菜抗逆机制上的应用	
磷脂酸通过调控 SOS ₂ 维持盐胁迫 下拟南芥 Na [†] K [†] 平衡的新机制	
氨态氮提升超积累植物龙葵 Cd 耐性的机制	
拟南芥 SLAH3 通过调节 N-K 平衡 参与植物膜电位稳态的维持	

NMT 技术应用报告——盐碱胁迫

活体跨膜转运技术应用报告	
NMT 在盐胁迫上的应用	
盐胁迫下根 Na+ 吸收速率检测体系	
Na-H 逆向转运体活性即排 Na [†] 速 率检测	
NMT 在树木逆境生理与甘薯生物学 及分子育种上的应用	
NMT 在坛紫菜抗逆机制上的应用	
磷脂酸通过调控 SOS2 维持盐胁迫 下拟南芥 Na [†] K [†] 平衡的新机制	

NMT 技术应用报告——重金属胁迫

NMT 在重金属领域的应用	
根表吸 Cd 与根茎内部 Cd 转运速率 检测的差异	
PLANT PHYSIOL 一作网络报告:氢分子调控小白菜耐 Cd 机制的研究	
氨态氮提升超积累植物龙葵 Cd 耐性的机制	

NMT 技术应用报告——植物免疫

Nature 作者网络报告 Phytocytokines: modulators of plant immunity	
NMT 在保卫细胞 / 质子泵 / 细胞壁酸化 / 酸生长理论 /IAA/ 干旱胁迫上的应用	
NMT 在植物免疫上的应用	
内生吸水链霉菌 OsiSh-2 介导水稻 生长与抗病平衡作用研究	

NMT 技术应用报告——养分元素

NMT 在农业领域应用的生物学基础	
NMT 在盐胁迫 / 氮素营养等方向的 应用	
NMT 在氮钾元素研究上的应用 - 非 损伤微测技术	
NMT 在养分元素研究上的应用讲座	
NMT 在养分元素、病害及非生物盐 胁迫上的应用	
NMT 应用于氮素养分吸收 / 氮代谢 突变株验证 / 铵硝内稳态 / 铵盐硝 盐胁迫研究领域 / 实验设计	
浙大喻景权院士组:氮素含量和形态影响番茄叶根部对重要病害的抗性	
Nature Commun 一作网络报告: Involvement of PM H ⁺ - ATPase in the plant nutrition	
拟南芥 SLAH3 通过调节 N-K 平衡 参与植物膜电位稳态的维持	
NMT 应用于氮素养分吸收 / 氮代谢 突变株验证 / 铵硝内稳态 / 铵盐硝 盐胁迫研究领域 / 实验设计	

NMT 技术应用报告——干旱胁迫

NMT 在重金属领域的应用 S- 硫巯 基化修饰介导 H_2S 和 ABA 交叉互作 提高植物干旱抗性

NMT 技术应用报告——膜电位

如何用 NMT 检测组织膜电位

NMT 技术应用报告——植物质子泵

活体跨膜转运技术应用报告

NMT 在保卫细胞 / 质子泵 / 细胞壁酸化 / 酸生长理论 /IAA/ 干旱胁迫上的应用

NMT 技术应用报告——植物生长发育

NMT 在非生物逆境、极性生长、器 官发育等方向的应用

NMT 在植物生长发育上的应用

NMT 技术应用报告——植物激素

NMT 在保卫细胞 / 质子泵 / 细胞壁酸化 / 酸生长理论 /IAA/ 干旱胁迫上的应用

NMT 技术应用报告——环境科学

NMT 在环境领域的应用

NMT 技术应用报告——植物 - 微生物互作

NMT 在植物 - 微生物互作上的应用

NMT 技术应用报告——光合研究

NMT 在光合研究上的应用

NMT 技术应用报告——NMT 相关专家报告

浙大喻景权院士组:氮素含量和形态影响番茄叶根部对重要病害的抗性	
Plant Journal 一作:糖酵解、脂肪酸和膜脂生物合成在大豆结瘤过程中的关键作用	
三峡水库消落带生态修复及植物形 态与呼吸代谢生态适应机制	
内生吸水链霉菌 OsiSh-2 介导水稻 生长与抗病平衡作用研究	
Nature 作者网络报告	
Phytocytokines: modulators of plant immunity	

NMT 技术应用案例

沈应柏:离子流是植物感知外界刺激的原初信号

孙健:NMT 非损伤微测技术在植物 抗逆研究中的应用

质子(H⁺)驱动力与植物抗盐研究

访谈: Plant Biotechnol J 抗盐文章 NMT 思路

专家讲座:NMT 如何与转运蛋白功能研究相结合

Plant Sci:湖南农大|氮素利用效率与镉耐受性的平衡

JXB、PCE 非损伤微测技术重金属 胁迫研究案例

(一作讲解) 钙参与盐胁迫下作物酚 类积累的 GABA 信号转导

NMT 文献

NMT 文献资源汇总

NMT 实验过程——NMT 实验设计

	\ <u></u>
1. 保卫细胞 K ⁺ /Ca ⁺ 测出的结果和理 论不一致怎么办? 2. 保卫细胞实验结果不理想的核心 原因	
保卫细胞离子流检测体系	
盐腺实时泌 Na+ 速率实验体系	
根实时吸收铵硝速率实验体系	
根实时排 NH₄ ⁺ 速率实验体系	

NMT 在重金属研究中实验设计指导	
NMT 技术活体脑片跨膜离子流检测 体系	
1.NMT 能测哪些指标 2. 测试液设计经验 3. 植物逆境胁迫研究能测哪些离子 / 分子指标 4. 不同离子 / 分子对应的植物生理 功能是什么	
1. 液泡可以检测吗 2. 根、叶肉的前处理方法区别 3. 盐胁迫植物根排 Na ⁺ 速率检测体系 4. 如何挑选活体植物样品以保证数据的平行性 5.NMT 在植物免疫 Ca ²⁺ 信号研究上,都研究过哪些钙通道6可准确、高效检测细菌、微藻、单细胞等微观样品信号的方法	
1. 保卫细胞 K ⁺ /Ca ²⁺ 测出的结果和理论不一致怎么办? 2. 保卫细胞实验结果不理想的核心原因	

NMT 技术应用报告——NMT 实验前物品准备

NMT 实验前物品准备清单

NMT 技术应用报告——NMT 实验测试液和校正液

- 1. 测试液和培养液的区别
- 2. 测试液能否不含待测离子
- 3. 测试液越简单越好吗
- 4.NISC 测试标准是什么

NMT 实验校正液如何设计	
如何更准确地配制 NMT 专用溶液	
1. 什么是测试液 2. 测试液和校正液的区别 3. 如何正确配制测试液和校正液	
1. 如何在符合技术要求的前提下, 简化测试液成份 2. 测试液中为什么要加缓冲成份	

NMT 技术应用报告——NMT 设备操作流程

NMT 设备单离子操作流程	
NMT 设备单离子操作流程详细介绍	
aSMS 设备操作流程	
显微镜下快速寻找传感器方法	
前置放大器更换	

NMT 技术应用报告——NMT 实验样品固定检测

NMT 技术应用报告——NMT 实验数据分析处理

数据分析处理流程(1.0 版本流速检 测软件)	
数据分析处理流程(2.0 版本流速检测软件)	
为什么 NMT 实验数据有正有负	
流速数据折线图怎么做	
NMT 流速数据结果是以什么形式呈 现的?	
NMT 流速数据折线图、平均值、标 准差	

NMT 技术应用报告——NMT 实验瞬时处理

NMT 瞬时处理操作方法	
瞬时实验与非瞬时实验的区别	
NMT 瞬时处理关键步骤:校准干扰	

NMT 技术应用报告——NMT 实验设备使用常问解答

校正时斜率值异常处理方法	
校正时斜率值异常处理方法详解	
LIX 泄漏处理方法	

软件读数报错的处理方法	
软件读数报错的处理方法详解	
检测时传感器电位值变化巨大,如 何处理	
1. 实验前为什么要校正 2. 校正时软件读数报错的处理方法 3. 校正时斜率值异常的处理方法	
1. 显微镜下找传感器容易损坏怎么办 2. 传感器校正时容易忽视的错误操作 3. 图像采集没有图像怎么办	

三、致谢

感谢中关村 NMT 产业联盟以及旭月生物功能研究院提供的各类技术文献资源,感谢联盟各领域专家根据自己的实际经验提供的宝贵意见和建议,感谢旭月(北京)科技有限公司总结完善的技术使用经验。

希望广大科研学者们通过 NMT 视频资源, 能够快速学习掌握 NMT 知识,在自己的科研领 域高效的完成研究突破和转化应用创新。

(责任编辑:李雪霏)

NMT 技术应用报告——NMT 设备维修维护

参比电极套管如何更换? 可视化传感器制备装置无图像怎么 办?

