Journal of Advancement in Parallel Computing
Volume 6 Issue 3

HBRP
PUBLICATION

Data Driven Exploration: Unleashing Topic Modelling
Using Python

LV. Dwaraka Srihithl, A. David Donaldz, T. Aditya Sai Srinivas® , G. T hippanna",
P, Vijaya Lakshmi’
!Student Alliance University
2 Assistant Professor, 3 Associate Professor, 4Pr0fess0r, 5Student,
Ashoka Women's Engineering College, Kurnool

Corresponding Author
E-mail Id: - dwarakanani525@gmail.com

ABSTRACT
Topic Modeling is a crucial technique in natural language processing that involves assigning
topic labels to a set of text documents. The primary objective of topic modeling is to unveil
the latent themes or subjects present within the textual data. This article serves as a
comprehensive guide for individuals seeking to acquire knowledge on performing topic
modeling using machine learning algorithms with the aid of Python. Through this article,
readers will gain insights into the fundamental concepts of topic modeling, various machine
learning techniques used in the process, and a step-by-step implementation using Python
programming language. By the end of this article, readers will have a solid foundation in
topic modeling and the necessary skills to explore and extract meaningful topics from their

own text data.
Keywords:- Topic Modeling, Python.

INTRODUCTION

Topic Modeling is a powerful Natural
Language Processing (NLP) technique that
enables us to uncover hidden themes or
topics within a collection of text
documents. By employing algorithms to
analyze the frequency and distribution of
words, topic modeling aims to identify
relationships between the content of a
document and the underlying topics it
covers. This process has gained significant
attention in various domains, including
information retrieval, content analysis,
social media analysis, and customer
feedback analysis, among others.

To successfully conduct topic modeling,
we require a suitable dataset that contains
text documents. Fortunately, I have come
across an ideal dataset specifically curated
for this purpose. You can conveniently
download the dataset from the provided

link, which will serve as the foundation for
our topic modeling exploration.

In the subsequent sections of this article,
we will delve into the intricacies of
performing topic modeling with Machine
Learning techniques using the Python
programming language. This
comprehensive guide will equip you with
the necessary knowledge and practical
skills to extract meaningful topics from
your own text data. We will cover essential
topics such as preprocessing text data,
selecting appropriate algorithms,
evaluating topic models, and visualizing
the results.

By the end of this article, you will have a
solid understanding of topic modeling
principles, along with the ability to
implement topic modeling workflows in

{JBRP Publication Page 38-42 2023. All Rights Reserved

Page 38

HBRP
PUBLICATION

Journal of Advancement in Parallel Computing

Volume 6 Issue 3

Python. Whether you are a data scientist, a
researcher, or simply interested in
exploring the underlying themes in your
textual data, this article will serve as an
invaluable resource for unleashing the
power of topic modeling through a data-
driven approach.

reveal insightful patterns and latent topics
hidden within your text documents.

TOPIC

PYTHON
To start this task, we initiate by importing
the requisite Python libraries and the

MODELLING USING

dataset.
So, let's embark on this exciting journey
and discover how topic modeling can

import numpy 2s np

import pandas as pd

import nltk

from nltk.corpus import stopuwords

from nltk.stem.wordnet import WordNetlemmatizer

import string

from sklearn.feature extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
nltk.download(punkt")

nltk.download(' stopwords")

nltk.download('wordnet")

nltk.download(omy-1.4")

data = pd.read_csv("articles.csv”, encoding = 'latinl')
print(data.head())

Article \
Data analysis iz the process of inspecting and...
The performance of a machine learning algerith...
You must have seen the news divided into categ...
When there are only two classes in a classific...
The Multinomial Naive Bayes is one of the vari...

R "

Title
8 Best Books to Learn Data Analysis
1 Assumptions of Machine Learning Algorithms
2 News Classification with Machine Learning
3 Multiclass Classification Algorithms in Machin...
4 Multinomial Maive Bayes in Machine Learning
[nltk _data] Downloading package punkt to /root/nltk data...
[nltk_data] Package punkt is already up-to-date!
[nltk data] Downloading package stopwords to /root/nltk data...
[nltk_data] Package stopwords is already up-to-date!
[nltk data] Downloading package wordnet to /root/nltk _data...
[nltk data] Package wordnet is already up-to-date!
[nltk _data] Downloading package omw-1.4 to /root/nltk data...
[nltk_data] Package omw-1.4 is already up-to-date!

{JBRP Publication Page 38-42 2023. All Rights Reserved Page 39

HBRP
PUBLICATION

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

In order to address the Natural Language
Processing problem at hand, it is
imperative to preprocess the textual
content by eliminating punctuation and
stopwords. The following steps outline the
process of cleaning the textual data:
Removal of Punctuation: Punctuation
marks such as periods, commas, and
quotation marks serve as noise in the
textual data. Hence, we commence the
cleaning process by eliminating these
punctuation marks.

Elimination of Stopwords: Stopwords are
commonly occurring words in a language

def preprocess text(text):
Convert text to lowercase
text = text.lower()
Remove punctuation

text = text.translate(str.maketrans(’’,

Tokenize text
tokens = nltk.word tokenize(text)
Remove stopwords

nn

(e.g., "the," "is," "and") that do not carry
significant meaning or contribute to the
overall context of the text. These
stopwords often hinder accurate topic
modeling results. Consequently, we
proceed by removing these stopwords
from the textual data.

By performing these essential data
cleansing steps, we can ensure that the
textual data is optimized for subsequent
topic modeling procedures, enabling us to
derive more accurate and meaningful
insights from the text corpus.

» string.punctuation)

stop words = set(stopwords.words("english™))
tokens = [word for word in tokens if word not in stop words]

Lemmatize tokens
lemma = WordhetLemmatizer()

tokens = [lemma.lemmatize(word) for word in tokens]

Join tokens to form preprocessed fext
'.join(tokens)

preprocessed text =
return preprocessed text

data['Article’] = data['Article'].apply(preprocess_text)

Next, a crucial step in our workflow is to
transform the textual data into a numerical
representation, facilitating the application
of machine learning algorithms. To
achieve this, we employ the technique of
text vectorization:

Text vectorization involves the conversion
of text documents into numerical vectors,
where each element represents a specific
feature or attribute of the text.

This numerical representation allows us to
quantify and analyze the textual data using

various mathematical and statistical
operations.

By employing text vectorization, we can
effectively capture the essential
characteristics of the text, such as word
frequencies or term presence, which are
instrumental in uncovering the latent
topics within the corpus. Furthermore, this
transformation enables us to apply
machine learning algorithms that require
numerical inputs, facilitating the
subsequent topic modeling tasks.

{JBRP Publication Page 38-42 2023. All Rights Reserved

Page 40

HBRP
PUBLICATION

Journal of Advancement in Parallel Computing
Volume 6 Issue 3

Through the process of text vectorization,
we bridge the gap between the inherent
nature of textual data and the
computational capabilities of machine

vectorizer = TfidfVectorizer()

learning algorithms, empowering us to
conduct comprehensive analyses and
extract meaningful insights from the text
corpus.

X = vectorizer.fit_transform{data['Article’].values)

In the subsequent phase, we will leverage a
sophisticated algorithm to establish
meaningful relationships among the textual
data and assign topic labels accordingly.
For this purpose, we will employ the
Latent Dirichlet Allocation (LDA)
algorithm.

Latent Dirichlet Allocation (LDA) is a
prominent generative probabilistic
algorithm specifically designed to unveil
the latent topics inherent within a textual
corpus. By probabilistically modeling the
co-occurrence patterns of words across
documents, LDA enables us to identify
underlying topic distributions and assign
topic labels to the documents.

Utilizing the LDA algorithm in our topic
modeling workflow empowers us to

extract valuable insights and gain a
comprehensive understanding of the
thematic structure within the corpus. The
algorithm facilitates the automatic
discovery of topics by iteratively
allocating words to topics and topics to
documents based on their statistical
distributions.

By employing the LDA algorithm, we can
effectively assign topic labels to the textual
data, allowing us to explore and analyze
the composition of the corpus in a more
structured and interpretable manner. This
approach enhances our ability to derive
valuable knowledge and make informed
decisions based on the discovered topics.

lda = LatentDirichletAllocation(n_components=5, random state=42)

Ida.fit(x)

topic_modelling = lda.transform(x)

topic_labels = np.argmax(topic_modelling, axis=1)

data["topic_labels'] = topic_labels

Presented below is the finalized dataset, enriched with topic labels:

{JBRP Publication Page 38-42 2023. All Rights Reserved

Page 41

HBRP Journal of Advancement in Parallel Computing
PUBLICATION Volume 6 Issue 3

print(data.head())

Article
data analysis process inspecting exploring dat...
performance machine learning algorithm particu...
must seen news divided category go news websit...
two class classification problem problem binar...
multinomial naive bayes one variant naive baye...

ool R e T

Title topic_labels

8 Best Books to Learn Data Analysis 2
1 Assumptions of Machine Learning Algorithms 3
2 News Classification with Machine Learning 1
3 Multiclass Classification Algorithms in Machin... 3
4 Multinomial Maive Bayes in Machine Learning 1
Thus, by leveraging Machine Learning REFERENCES
techniques in conjunction with the Python 1. https://thecleverprogrammer.com/202
programming language, you have 0/10/24/topic-modeling-with-python/
successfully acquired the ability to assign 2. https://ourcodingclub.github.io/tutoria
topic labels to textual data. Is/topic-modelling-python/

3. https://monkeylearn.com/blog/introdu
CONCLUSION ction-to-topic-modeling/
Topic Modeling emerges as a vital Natural 4. https://www.analyticsvidhya.com/blog
Language Processing technique for /2016/08/beginners-guide-to-topic-
uncovering latent topics within text modeling-in-python/
documents. Its ability to identify and 5. https://www.loginworks.com/blogs/ho
establish relationships between textual w-to-implement-topic-modeling-in-
content and topics holds significant value machine-learning-python/

in understanding the underlying themes
present in a corpus.

{JBRP Publication Page 38-42 2023. All Rights Reserved Page 42

https://thecleverprogrammer.com/2020/10/24/topic-modeling-with-python/
https://thecleverprogrammer.com/2020/10/24/topic-modeling-with-python/
https://ourcodingclub.github.io/tutorials/topic-modelling-python/
https://ourcodingclub.github.io/tutorials/topic-modelling-python/
https://monkeylearn.com/blog/introduction-to-topic-modeling/
https://monkeylearn.com/blog/introduction-to-topic-modeling/
https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/
https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/
https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/
https://www.loginworks.com/blogs/how-to-implement-topic-modeling-in-machine-learning-python/
https://www.loginworks.com/blogs/how-to-implement-topic-modeling-in-machine-learning-python/
https://www.loginworks.com/blogs/how-to-implement-topic-modeling-in-machine-learning-python/

