
1

Quantifying the knowledge in Deep Neural
Networks: an overview

Ioanna Valsamara, Ioannis Mademlis, Ioannis Pitas

Abstract

Deep Neural Networks (DNNs) have proven to be extremely effective at learning a wide range of tasks. Due
to their complexity and frequently inexplicable internal state, DNNs are difficult to analyze: their black-box nature
makes it challenging for humans to comprehend their internal behavior. Several attempts to interpret their operation
have been made during the last decade, but analyzing deep neural models from the perspective of the knowledge
encoded in their layers is a very promising research direction, which has barely been touched upon. Such a research
approach could provide a more accurate insight into a DNN model, its internal state, learning progress, and knowledge
storage capabilities. The purpose of this survey is two-fold: a) to review the concept of DNN knowledge quantification
and highlight it as an important near-future challenge, as well as b) to provide a brief account of the scant existing
methods attempting to actually quantify DNN knowledge. Although a few such algorithms have been proposed, this
is an emerging topic still under investigation.

Keywords

Deep Neural Networks, knowledge quantification, knowledge metrics, model interpretability

I. INTRODUCTION

Deep Neural Networks (DNNs) are among the most widely used and accurate machine learning models,
showing remarkable performance in a variety of tasks [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. Their
efficiency depends directly on the knowledge they manage to encode in their hidden layers during their
training process. Thus, explaining and quantifying the knowledge encoded inside a trained DNN has become
an important research direction.

Since DNNs were from the start conceived as learning machines [11], early research attempted to exploit
statistical learning theory [12], in order to analyze neural network model capacity. Thus, measures such as
the Vapnik-Chervonenkis (VC) dimension [13] were used to evaluate DNNs capabilities. VC-dimension is
a broad model complexity measure, directly linked to its generalization performance [14], that indicates
model learning capacity. The VC-dimension of linear DNNs has been thoroughly investigated in [15], while
it was used to explore their generalization capability in [14], [16], [17] and their model complexity in [18],
[19], [20]. DNN depth and its impact on DNN model performance has also been investigated by looking
into the DNN generalization bound, which has been derived using the VC-dimension [21].

DNNs are typically employed on traditional machine learning tasks such as classification or regression.
However, in general, classical statistical learning theory is difficult to employ for measuring the classification
capacity of non-linear DNNs. It may lead to loose estimates that are not sufficient to explain DNN model
generalization capabilities [22]. Although such metrics could shed some light on the DNN theoretical prop-
erties in terms of training data and network architecture, they leave many unanswered questions regarding
the knowledge encoded in a trained DNN. In fact, DNN architecture affects its classification/regression
performance and the amount and quality of the knowledge it learns from a given training dataset.

Moving beyond the narrowly technical realm of machine learning, knowledge, in general, is notoriously
difficult to be defined; its existing definitions are far from quantifiable. Essentially, knowledge is composed
of mental constructions like reasoning on concepts. In addition to text, its semantic content can also be
transmitted and stored in visual and audio formats. The conventional way of representing knowledge is with
textual form, where information is expressed in the form of sentences, propositions, or theorems. Addi-
tional concept semantics can also be incorporated to produce multimodal knowledge representation forms.
However, text-based representation remains the most prevalent approach, utilizing logical propositions/rules

2

that are true. Linguistically and technically, this is the most straightforward way to represent knowledge
and quantify it by roughly counting the total number of written sentences that currently exist in human
knowledge. While this number is enormous, it is not infinite. The English language has approximately
500,000 words and 15 to 20 words per sentence (on average). Therefore, the maximal number of simple
propositions is 0.510 × 1060 [23]. Both true and (many more) false or utterly incomprehensible statements
are included in this number, which is huge but finite. When focusing on the set of logical propositions that
are true, it can be considerably reduced.

From a machine learning perspective, knowledge may generally be described as a function (learned
mapping) y = f(x;θ) from input vectors x to output vectors y [24]. However, this is a vague definition.
Machine learning relies on training data and on humans to configure, launch, and analyze ML systems
and their results. DNNs can learn concepts through training, e.g., object recognition. Although some
of these concepts can be abstract, most learned concepts are very material-related and can be used in
solving everyday real-world problems. This paper argues that, particularly for DNNs, their knowledge
quantification should aim to measure the amount of knowledge encoded inside the entire model y = f(x,θ),
its intermediate/hidden layers or its individual neurons. This would provide a new perspective on analyzing
DNNs, diagnosing problems, and interpreting the superior performance of deep learning, by revealing the
internal behavior of a DNN through understanding and estimating the related information flow during the
training process. DNN interpretability is an important research area since the prevalent black-box view
of Deep Learning creates difficulties in analyzing and, thus, optimizing neural models. Without a practical
grasp of how knowledge is encoded inside a trained DNN, and without being able to measure its quantity, it
is difficult to cope with any model restrictions and enhance their performance. For deep learning to mature,
a much better understanding of encoded knowledge is required. This knowledge is related to several aspects
of DNN operation, such as: a) patterns discovered in the input data samples themselves, b) DNN model
generalization ability, and c) the patterns extracted separately by each hidden DNN layer, as a function of
its input feature map.

Knowledge metrics would allow for detailed comparisons across the various layers of a single DNN, or
across the corresponding layers of different DNN models. Such metrics would potentially reveal new ways
to enrich network capabilities while providing a new perspective for analyzing DNN performance in various
tasks. Finally, measuring DNN knowledge also provides an insightful understanding regarding the nature
and inner mechanisms of relevant DNN training and knowledge transfer algorithms. Such an understanding
can be used to diagnose, evaluate and optimize the said algorithms, like knowledge distillation [25], deep
compression via pruning [26], adversarial attacks [27], object segmentation, or even incremental learning
ones.

However, up to now, little effort has been expended on DNN knowledge quantification. Instead, most
previous research revolves around visualizing the activation patterns of hidden layers of Convolutional
Neural Networks (CNNs) during the inference stage, in order to provide qualitative explanations of their
stored knowledge. Indeed, the exact configuration of the CNN convolutional layer activation patterns for
a specific input image depends on the knowledge encoded in the trained CNN model parameters, e.g.,
their convolution kernels. Alternatively, the detection and display of input image patterns, that have the
potential to strongly activate a neuron in a specific CNN layer, could be used to infer that a form of
knowledge has been encoded therein about these input image patterns. Typically, early CNN filters detect
simple visual patterns, like image edges or texture elements, and subsequent CNN convolution kernels
encode semantic knowledge about input image objects and object regions. Gradient-based approaches [28]
measure the importance of the intermediate-layer activations using the output gradients w.r.t. the input
image. Convolutional feature maps can be visualized as images [29]. Alternative approaches visualize the
input image pixels attribution/importance/saliency, e.g., by measuring the influence of each input pixel on
the final CNN output [30], [31]. Gradient-weighted Class Activation Mapping (Grad-CAM) produces visual
explanations using the gradients of target patterns into the final convolutional layer. A localization map is
produced which highlights important input image regions [32]. Grad-CAM++ is a generalization of Grad-
CAM that also provides visual explanations of CNN models [33]. In order to quantify the interpretability of

3

latent CNN representations, the compatibility between individual CNN hidden units and a set of semantic
patterns is evaluated in [34]. Interactive visualization tools are designed to specifically visualize DNN
architecture and knowledge in [35], [36].

More relevant to this paper is a class of rather recent methods, aiming to quantitatively explain the
capabilities and characteristics of trained DNNs, such as the relative importance of their various internal
representations, their generalization ability or the information flow within them. An approach relying on
learning to extract the most informative features for each given data sample, in the form of intermediate
DNN layer activation maps, is proposed in [37] for DNN model interpretation. The instance-wise feature
selection process exploits the maximization of the mutual information between selected image features and
the DNN output. However, it does not quantify knowledge as such but only highlights important input
image features.

Mutual information has been used as a metric to estimate the structure of internal representations and
the information flow inside a trained DNN [38]. Several other quantitative metrics aiming to explain DNN
capabilities have also been proposed lately. To evaluate DNN robustness, Cross Lipschitz Extreme Value
for nEtwork Robustness (CLEVER) is defined in [39], while Fourier analysis is employed to analyze DNN
training with stochastic gradient-based methods and explain their generalization capabilities [40].

DNN knowledge quantification is directly related to the model’s generalization capabilities. This claim is
based on the underlying intuition that a lower/higher ability for successful generalization (at the test stage)
implies that less/more knowledge was encoded in the model parameters during training. Thus, the metric
of DNN stiffness was proposed in order to diagnose and characterize model generalization capabilities [41].
Higher stiffness indicates that a network is learning more generalizable features. In a similar vein, the
relationship between trained DNN sensitivity and generalization are explored in [42]. Sensitivity is defined
as a trained DNN classifier’s capability to distinguish between similar inputs belonging to different classes.
The contribution of various layers on the generalization ability of DNNs is studied in [43]. Based on the
results, a complexity measure is proposed in [44] to analyze DNN generalization power.

Under the assumption that the knowledge stored in an intermediate DNN hidden layer is the set of visual
patterns encoded by its neural activations (features, or representations), different stored knowledge can be
identified for each input test data sample. Using this approach, Centered Kernel Alignment (CKA), closely
connected to Canonical Correlation Analysis (CCA), has been used to compare such representations from
different DNNs and measure their similarities [45]. Quantifiable knowledge consistency between different
DNNs has been investigated to diagnose feature representations [46]. A task-agnostic method is proposed to
disentangle feature components, which represent the consistent knowledge, from the raw intermediate-layer
representations of each DNN. In both [45] and [46], the DNNs can have identical (but differently trained)
or different architectures.

Another perspective to explain DNNs is by quantifying the interactions between input variables/attributes
that are internally transformed by DNNs [47], [48], [49]. The various attributes of the input test vector/data
sample do not typically carry significant information individually. In contrast, the DNN infers conclusions
based on their correlations and interactions. The strongly interacting ones are considered to form a prototype
feature that the DNN has previously memorized during training. Multivariate interaction significance is
defined based on the Shapley value, aiming to explain DNNs and interpret their operation [48]. In the specific
case of Natural Language Processing (NLP), interactions among latent word representations encoded within
a DNN are extracted and quantified. A tree structure is generated to organize them hierarchically [47]. In
such scenarios, interactions between word representations are proposed as a generic tool to objectively
interpret the DNN inference process.

The majority of these quantitative measures are employed for interpreting DNN operation and are only
loosely connected with the issue of DNN knowledge encoding. In most cases (not all), there is a lack of clear
correlation between such measures and the knowledge stored in the DNN model layers. The naive alternative
of conventional DNN classification accuracy evaluation on a specific test dataset cannot quantify neither
the internal DNN state nor its representations, thus, it only provides limited hints about its generalization
capabilities.

4

Knowledge quantification metrics would allow for more precise conclusions regarding what a DNN has
learned during its training process. Although no commonly accepted definition of DNN knowledge has been
proposed yet, several metrics falling under this general area have been presented in recent years and are
discussed in the following Sections. The most obvious and naive choice is to simply measure the accuracy
of DNN predictions on a known test set. Besides this, two types of more advanced methods have emerged:
a) information-theoretic metrics, which leverage an individual DNN layer’s information to quantify the
knowledge it encodes, and b) knowledge points metrics, that quantify the knowledge points stored in a
trained DNN.

The remainder of this paper is organized in the following manner. Formal notations and definitions are
summarized in Section II. Knowledge quantification metrics are presented in Section III. A discussion
follows in Section IV, while conclusions are drawn in Section V.

II. NOTATION AND DEFINITIONS

Deep Neural Networks (DNNs) are neural networks with a count of layers (depth) that is greater than or
equal to 3: L ≥ 3. Typically, DNNs have a large number of hidden layers (L >> 3). In the context of this
paper, the knowledge quantification of Convolutional Neural Networks is examined. They can be composed
of convolutional layers, possibly followed by fully connected layers. For a layer l with an activation function
f l(·), the convolution or fully connected layer neural activation patterns are respectively defined as:

a(l) = f l(w(l) ∗ a(l−1) + b(l)), (1)

or as:
a(l) = f l(w(l)Ta(l−1) + b(l)), (2)

where w(l) are the l-th layer convolution kernels, in the case of a convolutional layer, or the l-th layer’s
synaptic weights, in the case of a fully connected layer respectively. b(l) are the biases. Given a set of
classes C = {Ck, k = 1, ..,m} and an input sample x ∈ RN , DNN models predicts a class label vector for
each input sample xi.

Definition 1. Knowledge quantification is the process of quantifying the amount of knowledge encoded
within a trained DNN. It requires an accurate DNN knowledge definition. The methods described in this
survey quantify knowledge as a) the DNN success rate on a test set, b) the information encoded in a layer
or c) as knowledge points.

Definition 2. Knowledge points are the DNN input patterns (units) whose information is discarded much
less than the information of other input patterns. Thus, they are more heavily exploited in DNN prediction.
In previous literature, they are also referred to as visual concepts or discriminative visual concepts and are
often defined by human annotations [34]. The amount of knowledge encoded by a DNN can be measured
as the number of learned knowledge points that are encoded in its intermediate layers. For example, in a
multiclass image classification setting containing a class named “Dog”, the visual concepts of a “dog tail”
or a “dog head” can be regarded as different knowledge points. Classification accuracy is likely high if the
encoded knowledge points are sufficiently discriminative with regard to the supported data classes.

An input unit is defined as a variable (or a set of variables) in the input sample, e.g, each word in an
input sentence, a pixel, or an image region in an input image as illustrated in Fig. 1. These input units,
corresponding to specific object parts, are memorized during training as feature maps produced by a DNN
layer and are subsequently utilized for prediction during inference.

The information of certain units (e.g., background image pixels, in the case of whole-image classification)
is largely discarded, while the information of other units is retained. These input units without significant
information discarding are considered to be knowledge points since they are supposed to encode informa-
tion important for inferring predictions. Contrarily, it is widely assumed that input units with significant
information-discarding will have little impact on the prediction. As a result, measuring the amount of
information discarding allows for precise knowledge points quantification. Overall, knowledge points can
be categorized as task-relevant or task-irrelevant.

5

Fig. 1: Possible knowledge points visualized as image regions on the foreground of an STL-10 image.

Definition 3. Forward propagation is regarded as the layer-wise discarding of input information by
information-bottleneck theory [50]. In early layers, the majority of the input information is used to compute
network features. However, in late layers, only relevant attribute-level (e.g., pixel-level) information is
retained as features. Thus, information from input units that is irrelevant to the inference is discarded. As
a result, the late layer features will encode information that is highly significant to inference predictions.
When a DNN extracts the feature from a particular intermediate layer, the quantity of input information
that is discarded can be used to measure the amount of information encoded in that layer. The Entropy
of Input Information that is contained in the feature of an intermediate layer l, quantifies the amount of
information discard during the forward propagation [51].

For a DNN trained on a classification task and an object instance xc ∈ RN where N is the number
of the input units, let f∗ = f(xc) denote the feature of an intermediate network layer and y∗ the network
prediction for xc. An input unit is defined as a variable (or a set of variables) in the input sample (e.g
the embedding of a word in the input sentence or a pixel). The DNN is considered to satisfy Lipschitz
constraint ||y′ − y∗|| ≤ κ||f(x′

c) − f∗||, where y′ denotes the network prediction for a sample x′
c. The

Lipschitz constant κ can be computed as the maximum norm of the gradient within a small range of
features, indicating that if the low-dimensional manifold of features w.r.t. the input xc is weakly perturbed
within a small range {f(xc)

′
∣∣∣ ||f(x′

c) − f∗||2 ≤ τ}, where τ is a positive scalar, the DNN output is also
perturbed within a small range ||y′ − y∗|| ≤ κ · τ . In particular, the weakly perturbed features, represent
the same object instance. Perturbations ∆xc are added to the input sample xc to approximate the feature
manifold. Thus, samples x′

c = xc + ∆xc subject to ||f(x′
c) − f∗||2 ≤ τ are generated. ∥f(x′

c) − f∗∥2 ≤ τ
denotes a small range of features representing the concept of the object. The conditional entropy H(X ′

c) is
defined by the formulation:

H(X ′
c) ≜ −

∑
x′
c∈X ′

c

p(x′
c)logp(x

′
c). (3)

It quantifies the uncertainty of the input when the feature represents the same object instance ||y′ − y∗|| ≤
κ · τ . Thus, H(X ′

c) measures the amount of information that may be discarded without influencing the
inference prediction. Generally, the conditional entropy H(X ′

c), where X ′
c denotes a set of inputs that

correspond to the concept of a specific object instance, is used to formulate information discarding, given
the intermediate-layer feature f∗ = f(xc). H(X ′

c) is defined on a set X ′
c consisting of elements x′

c such
that ∥f(x′

c)− f∗∥2 ≤ τ .

6

Assuming that ∆xc is an i.i.d. Gaussian noise, x′
c = xc +∆xc ∼ N (xc,Σ(σ) = diag(σ2

1, ..., σ
2
n)) where

σi denotes the variance of the perturbation for the i-th input unit. Assuming that x′
c follows a Gaussian

distribution and that the covariance matrix is a diagonal one Σ = diag(σ2
1, ..., σ

2
n), the entropy of the input

H(X ′
c) can be decomposed into attribute-level (e.g., pixel-level) entropies:

H(X ′
c) =

N∑
i=1

Hi, (4)

where N is the number of input units and Hi is attribute-wise information discarding. Hi is defined as:

Hi = logσi + a, (5)

where a = 1
2
log(2πe) is a constant. Large values of Hi indicate that the information of the i-th unit is

significantly discarded during forward propagation.
Definition 4. Coherency implies that a method needs to enable fair layer-wise comparisons and fair

comparisons between different neural networks, indicating that a knowledge quantification metric should
be invariant to network configurations.

Definition 5. Generality refers to the fact that a method should have strong connections to existing
mathematical theories [52] and should be defined without regard for model architectures or tasks [53].

III. KNOWLEDGE QUANTIFICATION METRICS

We still lack the mathematical tools to accurately evaluate the knowledge encoded in the DNN layers
and their learning capacity. Knowledge quantification would allow for a more precise interpretation and
evaluation of DNN training performance. Of course, assuming a classification setting, DNN knowledge can
be naively quantified post-training based on the DNN test set predictions:

k =
m∑
i=1

Pi

m
, (6)

where Pi is the DNN success rate for a class Ci. The success rates for the classes are measured based on
a test set as {(Pi, Ci), i = 1, ...,m}. The normalized success rates are defined as follows:

PiN =
Pi

km
. (7)

In order to evaluate and quantify the DNN knowledge, the Entropy E of the normalized success rate is
defined as:

E = −
N∑
i=1

PiN logPiN . (8)

Despite the fact that this approach is a clear and reasonable solution to the problem of knowledge quantifi-
cation in classification tasks, it necessitates test inference. It is entirely dependent on the test set chosen.
Other methods, which are not test-specific and are more generic, need to be developed.

Existing approaches moving in this direction allow us to examine the intermediate DNN layers and the
kind or the amount of information they encode. These approaches are described in the following subsections.

A. Information-theoretic metrics

A group of DNN knowledge quantification methods measures a trained DNN layer’s information. The
underlying assumption is that the amount of this information is proportional to the knowledge this layer
encodes, thus it may act as a proxy for the latter one. The information flow, between the layers and
specifically between each pair of layers, inside a fully-connected feed-forward DNN can be seen in Fig. 2.

7

Fig. 2: The information flow through the DNN layers. Information-theoretic metrics utilize layer-wise
information measurements in order to quantify the encoded DNN knowledge.

1) : Information-theoretic metrics for general applications.
Entropy has been metric widely utilized in recently developed approaches for information quantification.
Earlier DNN explainability methods, such as perturbation-based methods [31] or gradient-based approaches
[28], depend mainly on a specific network design. Unlike such methods, conditional input entropy ensures
fair comparisons between different DNN layers or network architectures. Recent algorithms leverage entropy
to quantify knowledge encoded in an intermediate DNN layer [51], [53]. A relevant method attempts to
determine how much input information was discarded when the DNN extracts the layer features, when its
activations were computed during inference [51]. The intuition is that non-essential input information is
discarded and only task-relevant information (i.e., the layer’s knowledge) is retained in the layer’s output
features. DNN knowledge is quantified by defining two entropy-based metrics, namely the Strict Information
Discarding and the Reconstruction Uncertainty. The entropy of the information imported in a layer is
measured in order to quantify the degree of information discarding (and, thus, knowledge), during forward
propagation. This way, a layer’s knowledge representations are defined as the amount of input information
that has been passed to its output.

Strict Information Discarding (SID) measures the amount of input information that is discarded during
the computation of a feature. DNNs usually selectively discard certain input attributes (e.g., pixels, in the
case of the first layer of a CNN that analyzes raw images), and thus, an amount of input information, to
compute intermediate-layer features. The discarded attributes are either task-irrelevant or inessential, due
to information redundancy. On the other hand, Reconstruction Uncertainty (RU) measures the amount of
input information discarding that can be recovered by other attributes. The information encoded in the
input attributes discarded during intermediate-layer feature extraction can be recovered due to information
redundancy.

Information discarding in a DNN layer is modeled as the entropy of input information. Let x′ ∈ RN be
the input data point and f∗ = f(x) the intermediate-layer feature. x′ ∈ X ′ represents either the input x or
the reconstructed input x̂ = g(f), where g is the function reconstructing x from its features f∗ = f(x). SID
can be evaluated using Eq. (3) for the raw input x. The reconstructed input x̂ provides the value of RU as

8

detailed subsequently.
As mentioned in Section II, if x′ follows a Gaussian distribution and has a diagonal covariance matrix,

the entropy of the Gaussian distribution, and thus, SID, is given by Eq. (4) and Eq. (5):

H(X ′) =
N∑
i=1

Hi(σi), (9)

where
Hi(σi) = logσi + a. (10)

Strict Information Discarding (SID) can be used as another metric to evaluate the DNN feature extraction
efficiency for a classification task. Generally, a DNN should discard background information and retain
foreground information. Concentration of information discarding is proposed in [51] for the specific case
of image recognition. For an input image x containing both the target object and some background, let
Λ denote the bounding box of the target and xi represent target attributes within Λ. Concentration of
information discarding or simply Concentration C is defined as follows:

C = Exi /∈Λ{Hi(σi)} − Exi∈Λ{Hi(σi)}. (11)

It measures the relative background information discarding w.r.t. foreground information discarding. Con-
centration indicates the efficiency of neural feature extraction.

Similarly to SID, RU is defined as follows:

H(X̂ ′) ≜ −
∑

x̂′=g(f)

p(x̂′)logp(x̂′), (12)

where X̂ is the set of features reconstructed using intermediate-layer features. Moreover, RU can be
decomposed into each attribute as:

H(X̂c) =
N∑
i=1

Ĥi(σ), (13)

Ĥi(σ) = logσ̂i + a (14)

where σ denotes elements on the diagonal of Σ. Ĥi(σ) is the attribute-level (pixel-level for images) RU
for the i− th input attribute.

An estimator for conditional Geometric Mutual Information (GMI) [54] is used in [26] to evaluate the
amount of mutual information exchanged between the DNN neurons. This can indicate which neurons
contribute the majority of the information that is passed to the next layer. Thus, it reveals the amount
of knowledge encoded in the DNN neurons. Geometric Mutual Information (GMI) is used as a non-
parametric, geometric, dependency measure between pairs of multivariate random variables in [26]. The
proposed dependency estimator is constructed using a minimal spanning tree and is a function of the
Friedman–Rafsky multivariate test statistic [55]. For the marginal and joint distributions fX, fY, and fXY

of random vectors X ∈ Rdx, Y ∈ Rdy respectively where dx and dy are positive integers, and for the
parameters p ∈ (0, 1) and q = 1− p, the Geometric Mutual Information (GMI) between X and Y, in [54],
is defined by:

Ip(X;Y) =
1

4pq

[∫∫ pfXY(x, y)− qfX(y)fY(y))
2

pfXY(x,y) + qfX(y)fY(y))
dxdy − (p− q)2

]
. (15)

GMI satisfies similar properties to other mutual information definitions, such as Shannon and Rényi mutual
information. As in [56], another form of GMI is given by:

Ip(X;Y) = 1− Ap(X;Y). (16)

9

For the specific case p = q = 1/2 in the, GMI is given by:

Ip(X;Y) = 1− 2

∫∫
fXY(x, y)fX(x)fY(y)

fXY(x, y) + fX(x)fY(y)
dxdy. (17)

For random variables X ∈ Rdx, Y ∈ Rdy and Z ∈ Rdz with conditional density fXY|Z, the form of this
measure is defined as [54]:

Ip(X;Y|Z) = EZ[Ĩp(fXY|Z)] (18)

and

Ĩp(fXY|Z) = 1− 2

∫ ∫
fXY|Z(x, y|z)fX|Z(x|z)fY|Z(y|z)

fXY|Z(x, y|z) + fX|Z(x|z)fY|Z(y|z)
dxdy. (19)

To estimate Ip(X;Y|Z) for m samples drawn from f(x, y, z),the data samples are split into two subsets
S1 and S2 in [26]. The Nearest Neighbour Bootstrap algorithm [57] can be used to generate independent
samples from S2 to create another set named S̄2. Then, S1 and S̄2 are connected into the concatenated
data set: S ≜ S1 ∪ S̄2. A Minimum Spanning Tree (MST) is constructed on S. Friedman-Rafsky statistic
[55] Rm is defined as the number of MST edges linking dichotomous points. It is the number of edges
connecting points of S1 and S̄2. Thus, the estimate for I(X;Y |Z) is given by:

I(X;Y |Z) = 1−
(
Rm

m

)
. (20)

During the inference stage of a trained network, the conditional GMI estimator is calculated on each
subsampled set of activations of each node pair at consecutive layers to measure their dependency. It
evaluates which neurons pass the majority of the information through layers and thus, encode a larger
amount of knowledge inside the neural network.

For a DNN with L layers, GMI is computed as the dependency ρ between the neurons in every
consecutive pair of layers. This dependency reflects the relationship between neurons in the context of
all the contributions from the preceding layer. Among the chosen pair of consecutive layers, the activation
pattern for a given node in the layer l, when layer l is closer to the input and layer l + 1 is closer to the
output, is computed as:

F (l)(x) = f(wx+ b), (21)

where x ∈ Rm×d is the input vector layer l, m is the total number of samples, d the feature dimension. f()
is the activation function and w ∈ RN(l) and b are the weight vector and bias. GMI computed between the
activations from the selected neuron i from layer l+ 1 and the activations from the neuron j from layer l,
(F

(l+1)
i , F

(l)
j), given the existence of every other possible neuron in layer l, is defined as in Eq. (18):

ρ(F
(l+1)
i , F

(l)
j) ≜ I(F

(l+1)
i , F

(l)
j |F (l)

j) (22)

where F
(l)
j is the vector of all the neuron outputs of the layer l except F (l)

j . Larger values of GMI indicate
that the neuron passes a larger amount of information from layer l to layer l + 1, thus, it is assumed to
encode a larger amount of knowledge.

2) : Information-theoretic metrics for Natural Language Processing (NLP).
For the specific application of Natural Language Processing (NLP), a unified information-based measure
is defined in [53], in order to quantify information and the way it is passed from one DNN layer to the
next one. It can provide quantitative explanations about the intermediate deep NLP layers, by quantifying
the amount of information of an input word that is encoded in an intermediate DNN layer. This method
satisfies generality and provides reliable results. In order to define such a measure, a deep NLP neural
network with L intermediate layers is modeled by a function f(x) where x is an input sentence of a dataset

10

X consisting input sentences. Every sentence is a concatenation of the vectorized embedding of each word
x = [xT

1 ,x
T
2 , ...,x

T
n]

T ∈ X consisting of elements xi that denote the i-th word.
The knowledge, or more specifically, the amount of information of an input word encoded in a deep NLP

intermediate layer is quantified by input information discarding when the DNN extracted the feature map
of this layer. The Deep NLP f model can be constructed by layers of RNNs, self-attention layers (as in
Transformers [58]), or any other type of layers. The output of each intermediate layer is a series of hidden
states denoted as s = Φ(xi) where Φi, i = 1, ..., L is the function of each specific layer. In order to quantify
the information of the xi that is used to compute the hidden state of the DNN layers, the information at
different levels is first defined: the corpus level, the sentence level, and the word level. At the corpus level,
knowledge explanations regard the entire sentence space. The random variable S denotes a hidden state.
The information of X encoded by a hidden state S is measured by the mutual information:

MI(X ;S) = H(X)−H(X|S), (23)

where H(·) represents the entropy and H(X|S) the amount of the information discarding of the hidden
state. The decomposition of H(X|S) at sentence level is given by:

H(X|S) =
∫
s∈S

p(s)H(X|s)ds. (24)

At sentence level, the information of a sentence x discarded by a hidden state of an intermediate layer
s = Φ(x) is quantified as the entropy of the input:

H(X|s) = −
∫
x′∈X

p(x′|s)logp(x′|s)dx′, (25)

where the entropy H(X|s) reflects how much information from sentence x is discarded by s during forward
propagation. H(X|s) reaches the minimum value, if and only p(x′|Φ(x)) << p(x|Φ) where x′ ̸= x. Thus,
Φ(x′) ̸= Φ(x) for each elements x′ ̸= x, which indicates that all information from x is utilized. If only
a small percentage of the information from x is used, p(x′|s) will be more evenly distributed. Thus, the
entropy H(X|s) will have a larger value. At the word level, independence between the input words is
assumed. Thus, for a random variable Xi of the i-th word of the input data, H(X|s) =

∑
i(Xi|s) and

H(Xi|s) = −
∫
x′
i∈Xi

p(x′
i|s)logp(x′

i|s)dx′
i. (26)

3) : Information-theoretic metrics for computer vision.
The CNN convolutional layers employ 1D, 2D or 3D convolutions for analyzing 1D signals, images, and
videos, respectively. These convolutions are essentially 1D/2D/3D FIR filters. In order to interpret DNNs
and their knowledge, recent methods aim to quantify the information contribution of such convolution
kernels to the visual pattern (concept) encoding and prediction. Thus, the encoded knowledge in a network
or even, of an individual neuron could be evaluated. The visual patterns (concepts) that contribute more,
encode more information and thus, knowledge. The so-called Net2Vec framework is proposed in [59] in
order to examine how CNN filters encode visual patterns. They are aligned with filter activations by learned
concept embeddings that are employed to weight filter activations, in order to execute concept interference.
A class weight is learned for every concept in the dataset, for each class to be recognized. The weights that
arise are interpreted as class embeddings and provide information about how visual patterns and classes are
encoded. Images may contain any number of different visual patterns, indexed by v. For an image dataset
X , x ∈ X denotes the probe images that contain the visual pattern v. To determine which filter k in layer
l best segments pattern v, the IoU score is computed as in [59] as:

IoUset(v;Mk, s) =
Σx∈Xs,v |Mk(x) ∩ Lv(x)|
Σx∈Xs,v |Mk(x) ∪ Lc(x)|

. (27)

11

It computes the Intersection over Union (Jakkard index) metric between the ground-truth segmentation
masks Lv and the binary segmentation masks Mk produced by the filter. | · | denotes the cardinality of a
set and Mk(x)∩Lv(x) are the intersections for every (k,v) pair. The sets are merged for all images in the
subset Xs,v of the data, where s ∈ {train, val}. The best filter is then selected on the training set as:

k∗(v) = argmaxkIoUset(v;Mk, train). (28)

The validation IoU score, IoUset(v;M∗
k , val) is reported. Single-filter performance is frequently highly

linearly correlated with learned weights vector w [59]. Therefore, individual filter performance indicates
its weight in a linear filter combination. A filter set IoU score is correlated with its associated weight
value passed through a ReLU defined as: max(wk, 0). The contribution of a single filter k to the pattern v
encoding can be quantified by:

r =
IoUset(v;M∗

k , val)

IoUset(v;M(·;w), val)
, (29)

being the ratio of the validation score IoU (IoUset(v;M∗
k , val)) to the validation score IoU (IoUset(v;M(·;w), val)).

The numerator is the intersection over union difference between the ground-truth segmentation masks Lv

and the binary segmentation mask Mk∗ produced by the single filter k∗. The denominator is the intersection
over union difference between the ground-truth segmentation masks Lv and the segmentation masks M(·;x)
produced by the filters K, where w ∈ RK is learned weights vector of v and K is the total number of
filters in a layer.

B. Knowledge points metrics

The knowledge of an intermediate DNN layer is defined as the set of knowledge points that are encoded by
the neural activations/features of this layer as can be seen in Fig. 3. Consequently, the number of learned
knowledge points is proportional to the amount of encoded DNN knowledge. In recent studies, various
methods for quantifying the knowledge points encoded in DNN intermediate layers have been developed.

Fig. 3: The emergence of possible knowledge points encoded by the DNN visualized as image regions on
the foreground of STL-10 images.

A relevant knowledge quantification approach based on entropy is proposed in [52]. The amount of
knowledge of each DNN layer is measured as knowledge points, i.e., input units, whose information is
regarded as important for decision-making since it is discarded much less than the information of other
input units. For this specific research, the information in each input unit discarded by the DNN is used
to define and quantify knowledge points not explicitly defined or labeled by human annotation, namely
Dark Matters [52]. The knowledge points encoded in the layers of a DNN for classification are quantified,

12

and their quality is evaluated, based on information theory. DNN forward propagation is considered as a
gradual, layer-wise process of discarding the input unit information.

The amount of information discarding of each input unit is formulated as the entropy H(Xc), where Xc

denotes a set of inputs xc corresponding to the concept of a specific object instance. This entropy quantifies
the amount of input information that can be discarded without affecting the inference of the object. As
mentioned in Subsection II, assuming that xc follows a Gaussian distribution, H(Xc) can be decomposed
into attribute-level entropies as follows:

H(Xc) =
N∑
i=1

Hi =
N∑
i=1

(
logσi +

1

2
log(2πe)

)
, (30)

where N is the number of input units. Attribute-level entropies Hi measure the attribute-wise information
discarding in the intermediate DNN layer. High attribute-wise entropies Hi indicate that the information of
the i-th unit is significantly discarded by the DNN during forward propagation.

The attribute-wise information of each input unit discarded by the DNN is used to define and quantify
knowledge points. For trained DNN and an input sample x ∈ X , where X denotes the set of input samples,
and the attribute-wise information discarding Hi w.r.t. the feature of a certain network layer f∗ = f(x),
the amount of knowledge encoded is measured by how many knowledge points it encodes. The number of
knowledge points encoded on the background Nb(x) and the number of knowledge points encoded on the
foreground Nf (x) are defined as follows:

Nb(x) =
∑

i∈Λb(x)

I(H −Hi > b) (31)

Nf (x) =
∑

i∈Λf (x)

I(H −Hi > b), (32)

where I(·) is an indicator function:

I(x) =

{1, if x is true

0, else

and Λb(x) and Λf (x) denote the background and the foreground input unit sets respectively. The knowledge
points are measured/evaluated for a convolutional or a fully-connected (FC) DNN layer. The average entropy
value of the background units:

H =
1

|Λb|

|Λb|∑
i=1

Hi (33)

is the baseline entropy to determine knowledge points. Thus, input units with entropy Hi significantly lower
than H , (Hi < H − b), represent valid knowledge points. b is the threshold to determine the knowledge
points. The coherency of the method allows the metric to ensure fair comparisons between DNN layers and
between different DNNs.

Knowledge quantification using knowledge points also involves a number of additional metrics [52]. The
metric λ, which assesses the quality of knowledge points by determining whether the majority of them or
not is localized in the foreground of the input data samples, is defined as follows:

λ = Ex∈X [Nf (x)/(Nf (x) + (Nb(x))] (34)

where X is a set of input samples and x ∈ X an input sample. The larger the value of λ is, the more
reliable the DNN feature representation. A well-trained model should be able to encode a large number of
knowledge points on the foreground and a small number on the background.

13

Two additional metrics concern DNN knowledge acquisition in the classification tasks. Their goal is to
discover how fast a DNN learns different object classes and whether multiple knowledge points are learned
within similar epochs, i.e., whether different knowledge points are learned simultaneously. Firstly, a weight
distance is defined:

d =
m̂∑
k=1

∥wk −wk−1∥
w0

, (35)

w0 and wk are the initial parameter vector and the one learned at epoch k and m̂ = argmaxkNfk(X)
is the training epoch number at which the model learns the most task-relevant, or foreground, knowledge
points. Weight distance d measures the progress of learning at the m̂− th epoch, by quantifying the update
rate of the weight vector wk. Its first and second-order statistics (d̄k and σ2

dk
) over different input data

samples can be measured, in order to quantify the degree to which a DNN learns multiple knowledge
points simultaneously:

d̄k =
1

NI

NI∑
i=1

m̂∑
k=1

∥wk −wk−1∥
∥w0∥

(36)

σ2
dk

=
1

NI

NI∑
i=1

(m̂∑
k=1

∥wk −wk−1∥
∥w0∥

− d̄k

)2

, (37)

where NI is the total number of training samples. According to information-bottleneck theory [50], a DNN
tends to learn many knowledge points during early training epochs and then starts discarding the task-
irrelevant knowledge points later. Considering that epoch m̂ encodes the richest foreground knowledge
points, d̄k represents the average weight distance, at which the DNN obtains the most foreground visual
concepts and measures whether a DNN learns knowledge points quickly. σ2

dk
describes the variance of the

weight distance across different input samples and evaluates whether a DNN learns knowledge points of
various input samples at similar speeds. Small d̄k and σdk values suggest that the DNN can learn many
different knowledge points fast and simultaneously.

The two-stage training process, where task-irrelevant features are discarded at the later epochs, leads to
detours, namely inconsistent and unstable optimization directions in the model parameters space [52]. A
new metric is defined in order to discover if the network obtains knowledge points (hence knowledge),
without significant detours. The stability of optimization directions of a DNN is quantified by ρ:

ρ =
∥SM(x)∥

∥ ∪M
j=1 Sj(x)∥

, (38)

where Sj(x) = {i ∈ x|Hi < H − b}, denote a set of foreground knowledge points encoded by the
DNN learned after the j-th epoch, j = 1, 2, ...,M . Every knowledge point v ∈ Sj(x) refers to a specific
foreground input sample unit i, which satisfies Hi < H − b. The numerator represents the number of
foreground knowledge points chosen for classification, whereas the denominator denotes the total number
of knowledge points that have temporarily been learned during training. Thus, ρ represents the ratio of
the encoded knowledge points to all temporarily attempted knowledge points in intermediate epochs. The
ratio of the discarded knowledge points is 1− ρ. Thus, higher values of ρ indicate a stable network that is
optimized with fewer detours during learning.

The discriminative power of intermediate layer feature maps can be visualized, in order to measure the
amount of knowledge points learned by the model [27]. The intermediate-layer features are divided into
feature components representing a specific image region. Knowledge points are defined as discriminant
feature components. Quantifying them serves as a proxy for measuring the encoded CNN knowledge.
The visualization displays the emergence of intermediate DNN layer visual patterns in a spatiotemporal
manner. Initially, the method illustrates how the DNN gradually learns the regional visual patterns at each

14

intermediate DNN layer during training. Any increases in the discriminative power of each individual visual
pattern that emerge along the learning process are also visualized.

Based on these visual illustrations, the quality and quantity of intermediate knowledge points encoded
in the CNN model layers are measured. All knowledge points encoded in the model as regional patterns
with strong discriminative power are counted, while their significance for classification is also measured
as follows. For a pre-trained CNN and an input image x ∈ RN , the output feature of a specific DNN
layer is denoted by f ∈ Rd. Feature f is considered to follow a radial distribution of massive pseudo-
categories (many more than the actual number of semantic classes in the dataset). Each pseudocategory
c has a mean direction µc (c = 1, ..., C) in the feature space. cos(f ,µc) shows the similarity between
the feature f and category c. Specifically, the von Mises-Fisher (vMF) distribution [60] models the radial
distribution. The likelihood of each feature f belonging to category c ∈ {1, ..., C} is assumed to follow
a vMF distribution. The discriminative power of the feature f ∈ Rd of each sample x ∈ X is visualized
to illustrate the classification confidence of each feature towards distinct classes. The objective is to learn
a linear transformation that will project f to a low dimensionality space. Thus, the projected feature is
g = Mf ∈ Rd′ where d′ << d. It preserves the similarity between each feature f and different class
mean vectors. The linear transformation M uses the projected feature g for classification and forces the
classification based on g to mimic the classification based on the original feature f . Let y ∈ Y = {1, ..., C}
denote a class. To compute the classification probability pM(y|x), it is assumed that the distribution p(g)
is a mixture model, with each mixture component p(g|y) following a revised von Mises-Fisher (vMF)
distribution. Then g = [lg,Og] where lg = ||g||2 and Og = g/lg denote the magnitude and orientation of
g. p(g) is defined as:

p(g) =
∑
y

πy.p(lg|y).pvMF (Og|µy, κ(lg)), (39)

where πy denotes the prior propability of the y-th category. The variance parameter κ(lg) is determined
based on statistics of all features of the same strength lg.

The classification probability pM(y|x) based on the projected feature g is measured by the posterior
probability p(y|g) in the mixture model as:

pM(y|x) = p(y)· (g|y)
p(g)

=
πy · pvMF (Og|µy, κ(lg))

Σ(y′)π(y′) · pvMF (Og|µ(y′), κ(lg))
. (40)

It is assumed that the prior of the magnitude of g is independent from the pattern class: p(lg|y) = p(lg).
Regional features are projected into a low-dimensional space via a linear transformation Λ as: h(r) =

Λf (r) ∈ Rd′ (d′ << K). The importance and reliability of the original feature f (r) are reflected by the
projected regional features h(r). As mentioned above, the orientation of h(r) represents the reliability of
classification vs different classes, while the magnitude ||h(r)||2 represents the feature importance.

Knowledge points are defined as regional features h(r) that satisfy the condition:

maxcp(y = c|h(r)) > τ. (41)

Thus, they are discriminant enough for any pattern classification. p(y = c|h(r)) is the classification proba-
bility similar to Eq.(40). It is defined as follows:

p(y = c|h(r)) =
πc · exp[κ(||h(r)||2) · cos(h(r), µc)]

Σ′
cπ

′
c · exp[κ(||h(r)||2) · cos(h(r), µc′)]

, (42)

where πc denotes the prior probability of the c-th class. After quantifying the total number of knowledge
points, the reliable ones are disentangled as those that satisfy:

ctruth = argmaxcp(y = c|h(r)), (43)

i.e., those that push classification decisions toward the correct inference. The ratio of reliable knowledge
points is defined as the ratio of reliable knowledge points number to the total knowledge points number. It
can be used as a metric to evaluate the quality of knowledge points.

15

By juxtaposing [52] and [27], one can see that the first method extracts knowledge points encoded
in intermediate DNN layers via attribute-wise information discarding [52]. In contrast, the latter method
quantifies knowledge points and their reliability for classification via their discriminative power.

IV. DISCUSSION

The aim of this survey is to identify DNN knowledge quantification methods. The naive approach to
achieve this is to test the DNN and utilize its test predictions to directly measure the DNN model success
rate on a particular test data set. This intuitive approach obviously does not provide any intuition on DNN
structure and its relation to knowledge.

We have identified two types of more advanced DNN knowledge quantification metrics: information-
theoretic and knowledge points metrics. These two types have been detailed in Subsections III-A and III-B,
respectively. Fig. 4 depicts the evolution of the knowledge quantification methods studied in this survey.
The relevant metrics are summarized in Table I.

Fig. 4: A timeline of the metrics defined to quantify the knowledge of Deep Neural Networks.

Method Architecture Modality Task Year
Information-theoretic metrics

Strict Information Discarding [51] Generic Generic Generic 2019
Reconstruction Uncertainty [51] Generic Generic Generic 2019
Filter Contribution (Net2Vec) [59] CNN Images Segmentation 2018
Unified Information-based measure [53] Generic Language Generic 2019
Geometric Mutual Information (GMI) [54] Generic Generic Generic 2021

Knowledge points metrics
Number of knowledge points [52] Generic Generic Classification 2022
Number of knowledge points [27] CNN Images Classification 2021

TABLE I: Knowledge quantification methods.

As it can be observed in Table I, all methods primarily aim to interpret and define the knowledge encoded
in the DNN layers while striving to design appropriate quantification metrics. Information-theoretic methods

16

focus on measuring the DNN layer’s information, during inference on input samples, under the assumption
that this information is proportional to the encoded/stored knowledge. In particular, Strict Information
Discarding (SID) and Reconstruction Uncertainty (RU) [51] are both entropy-based metrics that measure
input information discarding by a specific neural layer from different perspectives. Since entropy is a generic
mathematical tool, both SID and RU are agnostic to the task and to the network architecture. Therefore, they
can be used for comparisons between DNNs trained for different tasks, between different neural architectures
executing the same task, as well as between different layers of the same DNN model. However, in most of
the relevant literature, such metrics are only applied for whole-image classification tasks. Furthermore, based
on the input data sample entropy, the unified information-based measure defined in [53] aims at interpreting
deep NLP neural networks by quantifying the amount of information, or the knowledge, of an input word
that is encoded in their intermediate layers. More specifically, four broadly used architectures are studied
in this research: BERT [61], a Transformer [58], an LSTM, and a CNN. This method provides consistent
and interpretable results across different layers of a model and also across different NLP models. The
Net2Vec framework introduced in [59] is applied for both image segmentation and classification tasks, in
order to investigate how semantic concepts are encoded by CNN convolution kernels. The framework links
semantic image concepts with filter activations. Using the IoU score, a metric for measuring the contribution
of a CNN convolution kernel to the encoding of an image concept is designed. The conditional geometric
mutual information (GMI) can be used to measure the dependency between the neurons of successive DNN
layers [26]. For each pair of DNN layers, the conditional GMI is used to compute a model-agnostic and
task-agnostic importance score.

Knowledge points metrics aim to quantify the encoded DNN knowledge points and, thus, the encoded
knowledge. In [52], knowledge points encoded in the intermediate layers of a classification DNN are
quantified based on the entropy of the input data sample: they are defined as the input units whose
information is discarded considerably less than that of other input units. It can be applied on multiple
different model architectures and on different classification tasks (image classification, 3D point cloud
classification, and binary sentiment classification), enabling comparisons between various layers of a single
DNN, as well as between various DNN models. In [27] the total amount of knowledge points is measured
by their discrimination power. It allows the quantitative and qualitative estimation of knowledge points
encoded in different layers, in order to identify the percentage of the reliable ones. It has been implemented
in conjunction with various CNN architectures trained for whole-image classification.

Method Coherency GeneralityFair layer-wise comparisons Fair comparisons between different networks
Information-theoretic methods

Strict Information Discarding[51] Yes Yes Yes
Reconstruction Uncertainty[51] Yes Yes Yes
Filter Contribution (Net2Vec)[59] Yes Yes No
Unified Information-based measure[53] Yes Yes Yes
Geometric Mutual Information (GMI)[54] Yes No Yes

Knowledge points based methods
Number of Knowledge points[52] Yes Yes Yes
Number of Knowledge points[27] Yes Yes No

TABLE II: Coherency and generality comparisons of the knowledge quantification methods.

A reliable method for quantifying the encoded DNN knowledge should meet the coherency and generality
criteria mentioned in [51], [53], [52], as overviewed in Table II. SID and RU defined in [51], reflecting the
entropy of input data samples, are both generic metrics and thus, ensure coherent evaluations and enable
fair comparisons over different layers of the same, or different, DNNs. The unified information-theoretic
measure defined in [53], based on entropy and mutual information measurements, provides reliable and
coherent evaluations across neurons (or timestamps in NLP), layers, and models, demonstrating how the
network structure processes data inputs through its layers. Knowledge points in [52] are also defined based
on the pixel-wise information discarding and without strong assumptions on the neural architectures. Thus,

17

this method provides coherent evaluations and enables fair layer-wise comparisons on the interior of a
DNN architecture, as well as between different DNNs. The filter contribution measure defined in [59],
quantifying how much a filter contributes to a concept encoding based on the IoU score, enables comparisons
between different layers and various networks, hence providing also coherent results. The Geometric Mutual
Information (GMI) score used in [26] to approximate an importance score of each neuron contribution,
enables comparisons between different neurons and layers of the same DNN. However, it cannot compare
different trained models, as it is neither agnostic to the task nor to the network architecture. The knowledge
points defined in [27] are counted as regional patterns with strong discrimination power and evaluated as
reliable or not, yielding coherent evaluations both between the DNN layers and between different DNNs
(e.g., between the teacher and the student network for the specific task of knowledge distillation).

Entropy is a generic metric with significant connections to existing information theories [50]. As a
result, the generality of the entropy-based metrics listed in Table II, Strict Information Discarding (SID),
Reconstruction Uncertainty (RU) [51] and the number of the knowledge points defined in [52], enables
fair comparisons between DNNs learned for different tasks and between different DNNs architectures.
The unified information-based measure is defined in [53] without much restrictions on tasks and network
architectures, since it is based on mutual information which is a fundamental quantity in information theory,
ensuring the generality of the metric. The filter contribution measure defined in [59] and the knowledge
points defined in [27] are both task-specific metrics and thus, do not allow fair comparisons between
different tasks or architectures. The Geometric Mutual Information (GMI) score defined in [26], based on
the geometric mutual information measurement, is used to compute a model-agnostic and task-agnostic
importance score without hurting the generality of the metric.

It is clearly not generic nor trustworthy enough to employ the trained DNN predictions and directly
measure the DNN model success rate at a specific test set when aiming at understanding and quantifying
the amount of the encoded DNN knowledge. The methods outlined in this survey appear to be more in line
with the issue of knowledge quantification and actually attempt to access, define and measure the encoded
DNN knowledge, providing a new perspective on analyzing deep network properties. The information-
theoretic metrics measure a trained DNN layer’s information assuming that the amount of this information
is proportional to the knowledge this layer encodes. This assumption is drawn as an obvious conclusion,
given the strong connection between the encoded information and knowledge. However, a specific DNN
knowledge definition is needed to directly develop trustworthy knowledge quantification metrics. Knowledge
points methods directly define knowledge as the total amount of knowledge points encoded by the DNN and
fairly quantify its actual amount. They can, therefore, interpret and diagnose the inner workings of DNNs not
only by measuring the number of the encoded knowledge points but moreover, by evaluating their quality
and determining whether they are reliable enough for classification. Knowledge points are quantified in
input samples from the perspective of pixel-wise entropies [52], or in terms of their discrimination power
[27], hence restricting their application exclusively to image classification tasks. On the other hand, since
the network may concurrently acquire new knowledge points and discard old ones which are irrelevant to
the task at each epoch, DNN learning cannot be accurately divided into a learning phase and a discarding
phase. Thus, the division in [52] is just a rough approximation.

A number of the methods summarized above have been designed specifically for deep CNNs. However,
the vast majority are generic ones and, thus, applicable to multiple different neural architectures. Still, the
majority of the relevant experiments found in the literature have been conducted on image analysis tasks.
Furthermore, almost all of the presented methods, which can be employed for knowledge quantification,
focus solely on experiments for classification settings. Given the level of maturity other computational tasks
have achieved thanks to DNNs (e.g., regression, object detection in images, image segmentation, machine
translation, etc.) it is evident that this is still an emerging area in urgent need of additional investigation.
Novel metrics need to be precisely defined and alternative approaches to measuring the knowledge of trained
DNN knowledge must be discovered.

18

V. CONCLUSIONS

DNN knowledge quantification and interpretability remain a challenge within the machine learning
community. This paper argues that precise DNN knowledge quantification measures are necessary to this
end. However, although knowledge quantification metrics applied to trained models could potentially greatly
facilitate this quest for interpretable DNNs, this is still very much a nascent and emerging area. Only a
handful of existing methods attempt to measure the knowledge encoded inside a trained model, almost
exclusively for the simple classification setting. Much more research is needed for knowledge in other
machine learning tasks e.g in regression. This survey reviews the state-of-the-art in this area and attempts to
highlight knowledge quantification as an important emerging research challenge. Despite the identification
of certain central trends (such as information-theoretic measures) in the scant relevant literature, further
research is urgently needed.

ACKNOWLEDGEMENT

The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 951911 (AI4Media). This publication reflects
only the authors’ views. The European Commission is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] Efstratios Kakaletsis, Charalampos Symeonidis, Maria Tzelepi, Ioannis Mademlis, Anastasios Tefas,
Nikos Nikolaidis, and Ioannis Pitas. “Computer Vision for Autonomous UAV Flight Safety: An
Overview and a Vision-based Safe Landing Pipeline Example”. In: ACM Computing Surveys (CSUR)
54.9 (2021), pp. 1–37.

[2] Dionysios Karamouzas, Ioannis Mademlis, and Ioannis Pitas. “Public opinion monitoring through
collective semantic analysis of tweets”. In: Social Network Analysis and Mining 12.1 (2022), pp. 1–21.

[3] Christos Papaioannidis, Ioannis Mademlis, and Ioannis Pitas. “Autonomous UAV safety by visual hu-
man crowd detection using multi-task deep neural networks”. In: 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2021, pp. 11074–11080.

[4] Christos Papaioannidis, Ioannis Mademlis, and Ioannis Pitas. “Fast CNN-based Single-Person 2D
Human Pose Estimation for Autonomous Systems”. In: IEEE Transactions on Circuits and Systems
for Video Technology (2022).

[5] Iason Karakostas, Vasileios Mygdalis, Anastasios Tefas, and Ioannis Pitas. “Occlusion detection and
drift-avoidance framework for 2D visual object tracking”. In: Signal Processing: Image Communi-
cation 90 (2021), p. 116011.

[6] Yannis Assael, Thea Sommerschield, Brendan Shillingford, Mahyar Bordbar, John Pavlopoulos,
Marita Chatzipanagiotou, Ion Androutsopoulos, Jonathan Prag, and Nando de Freitas. “Restoring
and attributing ancient texts using deep neural networks”. In: Nature 603.7900 (2022), pp. 280–283.

[7] Spiros Chadoulos, Iordanis Koutsopoulos, and George C Polyzos. “One model fits all: Individualized
household energy demand forecasting with a single deep learning model”. In: Proceedings of the
Twelfth ACM International Conference on Future Energy Systems. 2021, pp. 466–474.

[8] Brais Bosquet, Daniel Cores, Lorenzo Seidenari, Vı́ctor M Brea, Manuel Mucientes, and Alberto Del
Bimbo. “A full data augmentation pipeline for small object detection based on generative adversarial
networks”. In: Pattern Recognition 133 (2023), p. 108998.

[9] Nikolaos Passalis, Loukia Avramelou, Solon Seficha, Avraam Tsantekidis, Stavros Doropoulos, Gior-
gos Makris, and Anastasios Tefas. “Multisource financial sentiment analysis for detecting Bitcoin
price change indications using deep learning”. In: Neural Computing and Applications 34.22 (2022),
pp. 19441–19452.

19

[10] Charalampos Symeonidis, Ioannis Mademlis, Ioannis Pitas, and Nikos Nikolaidis. “Neural Attention-
driven Non-Maximum Suppression for Person Detection”. In: IEEE Transactions on Image Processing
(2023). accepted for publication.

[11] Adam S Charles. “Interpreting deep learning: The machine learning Rorschach test?” In: arXiv
preprint arXiv:1806.00148 (2018).

[12] Vladimir N. Vapnik. “An overview of statistical learning theory”. In: IEEE Transactions on Neural
Networks vol. 10.no. 5 (1999), pp. 988–999.

[13] Vladimir Vapnik, Esther Levin, and Yann Le Cun. “Measuring the VC-dimension of a learning
machine”. In: Neural computation vol. 6.no. 5 (1994), pp. 851–876.

[14] Runqi Wang, Linlin Yang, Baochang Zhang, Wentao Zhu, David Doermann, and Guodong Guo.
“Confidence Dimension for Deep Learning based on Hoeffding Inequality and Relative Evaluation”.
In: arXiv preprint arXiv:2203.09082 (2022).

[15] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. “Nearly-tight VC-dimension
and pseudodimension bounds for piecewise linear neural networks”. In: The Journal of Machine
Learning Research vol. 20.no. 1 (2019), pp. 2285–2301.

[16] Husheng Li. “Analysis on the nonlinear dynamics of deep neural networks: Topological entropy and
chaos”. In: arXiv preprint arXiv:1804.03987 (2018).

[17] Jingwei Zhang, Tongliang Liu, and Dacheng Tao. “An optimal transport view on generalization”. In:
arXiv preprint arXiv:1811.03270 (2018).

[18] Himanshu Pant, Mayank Sharma, Abhimanyu Dubey, Sumit Soman, Suraj Tripathi, Sai Guruju,
Nihal Goalla, et al. “Learning Neural Network Classifiers with Low Model Complexity”. In: arXiv
preprint arXiv:1707.09933 (2017).

[19] Mayank Sharma, Aayush Yadav, Sumit Soman, et al. “Effect of Various Regularizers on Model
Complexities of Neural Networks in Presence of Input Noise”. In: aarXiv preprint arXiv:1901.11458
(2019).

[20] Mayank Sharma, Sumit Soman, et al. “Radius-margin bounds for deep neural networks”. In: rXiv
preprint arXiv:1811.01171 (2018).

[21] Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and Tie-Yan Liu. “On the depth of deep neural
networks: A theoretical view”. In: Proceedings of the AAAI Conference on Artificial Intelligence vol.
30.no. 1 (2016).

[22] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. “Understanding
deep learning (still) requires rethinking generalization”. In: Communications of the ACM vol. 61.no.
3 (202), pp. 107–115.

[23] Pitas Ioannis. Artificial Intelligence Science and Society / Part A: Introduction to AI Science and
Information Technology. Pitas Ioannis; 1st edition (October 11, 2022), 2022.

[24] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. “Distilling the Knowledge in a Neural Network”.
In: arXiv preprint arXiv:1503.02531 vol. 2.no. 7 (2015).

[25] Xu Cheng, Zhefan Rao, Yilan Chen, and Quanshi Zhang. “Explaining Knowledge Distillation by
Quantifying the Knowledge”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2020), pp. 12925–12935.

[26] Madan Ravi Ganesh, Jason J Corso, and Salimeh Yasaei Sekeh. “MINT: Deep Network Compression
via Mutual Information-based Neuron Trimming”. In: IEEE 2020 25th International Conference on
Pattern Recognition (ICPR) (2021), pp. 8251–8258.

[27] Mingjie Li, Shaobo Wang, and Quanshi Zhang. “Visualizing the Emergence of Intermediate Visual
Patterns in DNNs”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 6594–6607.

[28] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”. In: In Workshop at International
Conference on Learning Representations (2014).

20

[29] Alexey Dosovitskiy and Thomas Brox. “Inverting Visual Representations with Convolutional Net-
works”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016),
pp. 4829–4837.

[30] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. “Visualizing Deep Neural Network
Decisions: Prediction Difference Analysis”. In: arXiv preprint arXiv:1702.04595 (2017).

[31] Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan,
Been Kim, and Sven Dähne. “Learning how to explain neural networks: PatternNet and PatternAt-
tribution”. In: arXiv preprint arXiv:1705.05598 (2017).

[32] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Local-
ization”. In: Proceedings of the IEEE international conference on computer vision (2017), pp. 618–
626.

[33] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. “Grad-
CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks”. In:
2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (2018), pp. 839–847.

[34] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. “Network Dissection:
Quantifying Interpretability of Deep Visual Representations”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2017), pp. 6541–6549.

[35] Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh, Emily Reif, and Ann Yuan. “The Language
Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models”. In: arXiv
preprint arXiv:2008.05122 (2020).

[36] Zijie J. Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred Hohman, Minsuk
Kahng, and Duen Horng Polo Chau. “CNN Explainer: Learning Convolutional Neural Networks
with Interactive Visualization”. In: IEEE Transactions on Visualization and Computer Graphics vol.
27.no. 2 (2021), pp. 1396–1406.

[37] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. “Learning to Explain: An Information-
Theoretic Perspective on Model Interpretation”. In: International Conference on Machine Learning
(2018), pp. 883–892.

[38] Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kings-
bury, and Yury Polyanskiy. “Estimating Information Flow in Deep Neural Networks”. In: arXiv
preprint arXiv:1810.05728 (2018).

[39] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. “Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach”.
In: arXiv preprint arXiv:1801.10578 (2018).

[40] Zhiqin John Xu. “Understanding training and generalization in deep learning by Fourier analysis”.
In: arXiv preprint arXiv:1808.04295 (2018).

[41] Stanislav Fort, Paweł Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. “Stiffness: A
New Perspective on Generalization in Neural Networks”. In: arXiv preprint arXiv:1901.09491 (2019).

[42] Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
“Sensitivity and Generalization in Neural Networks: an Empirical Study”. In: arXiv preprint arXiv:1802.08760
(2018).

[43] Chiyuan Zhang, Samy Bengio, and Yoram Singer. “Are All Layers Created Equal?” In: arXiv preprint
arXiv:1902.01996 (2019).

[44] Niladri S Chatterji, Behnam Neyshabur, and Haniei Sedghi. “The intriguing role of module criticality
in the generalization of deep networks”. In: arXiv preprint arXiv:1912.00528 (2019).

[45] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. “Similarity of Neural
Network Representations Revisited”. In: International Conference on Machine Learning (2019),
pp. 3519–3529.

21

[46] Ruofan Liang, Tianlin Li, Longfei Li, Jing Wang, and Quanshi Zhang. “Knowledge Consistency
between Neural Networks and Beyond”. In: arXiv preprint arXiv:1908.01581 (2019).

[47] Die Zhang, Huilin Zhou, Hao Zhang, Xiaoyi Bao, Da Huo, Ruizhao Chen, Xu Cheng, Mengyue Wu,
and Quanshi Zhang. “Building Interpretable Interaction Trees for Deep NLP Models”. In: Proceedings
of the AAAI Conference on Artificial Intelligence (2021).

[48] Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, and Quanshi Zhang. “Interpreting Multivariate
Shapley Interactions in DNNs”. In: arXiv preprint arXiv:2010.05045 (2020).

[49] Hao Zhang, Sen Li, Yinchao Ma, Mingjie Li, Yichen Xie, and Quanshi Zhang. “Interpreting and
Boosting Dropout from a Game-Theoretic View”. In: International Conference on Learning Repre-
sentations vol. 35.no. 16 (2021), pp. 14328–14337.

[50] Ravid Shwartz-Ziv and Naftali Tishby. “Opening the Black Box of Deep Neural Networks via
Information”. In: arXiv preprint arXiv:1703.00810 (2017).

[51] Haotian Ma, Yinqing Zhang, Fan Zhou, and Quanshi Zhang. “Quantifying Layerwise Information
Discarding of Neural Networks”. In: arXiv preprint arXiv:1906.04109 (2019).

[52] Quanshi Zhang, Xu Cheng, Yilan Chen, and Zhefan Rao. “Quantifying the Knowledge in a DNN to
Explain Knowledge Distillation for Classification”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2022).

[53] Chaoyu Guan, Xiting Wang, Quanshi Zhang, Runjin Chen, Di He, and Xing Xie. “Towards a Deep
and Unified Understanding of Deep Neural Models in NLP”. In: 36th International Conference on
Machine Learning (2019), pp. 2454–2463.

[54] Salimeh Yasaei Sekeh and Alfred O Hero. “Geometric Estimation of Multivariate Dependency”. In:
Entropy vol.21.no.8 (2019), p. 787.

[55] Jerome H Friedman and Lawrence Cs Rafsky. “Multivariate Generalizations of the Wald-Wolfowitz
and Smirnov Two-Sample Tests”. In: The Annals of Statistics vol. 7.no. 4 (1979), pp. 697–717.

[56] Visar Berisha and Alfred O Hero. “Empirical non-parametric estimation of the Fisher information”.
In: IEEE Signal Processing Letters vol. 2.no. 7 (2014), pp. 988–992.

[57] Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros G Dimakis, and Sanjay
Shakkottai. “Model-powered conditional independence test”. In: Advances in neural information
processing systemss vol. 30 (2007).

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural information pro-
cessing systems 30 (2017).

[59] Ruth Fong and Andrea Vedaldi. “Net2Vec: Quantifying and Explaining how Concepts are Encoded
by Filters in Deep Neural Networks”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2018), pp. 8730–8738.

[60] Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, Suvrit Sra, and Greg Ridgeway. “Clustering
on the Unit Hypersphere using von Mises-Fisher Distributions.” In: Journal of Machine Learning
Research 6.9 (2005).

[61] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training of deep
bidirectional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

